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ABSTRACT

Outliers are aberrant observations that adversely affect parameter estimation and predictive
capability of a given model. The problem of outlier detection in time series has gained much
attention in the literature and various methods of detection have been developed, but are
limited to univariate time series with its attendant swamping effect. This work is focused on
developing outlier Generating Mechanisms (GMs) for the detection of outliers in the

Multivariate Time Series (MTS) setting that is capable of ameliorating the swamping effect.

Two-variable Vector Autoregressive (VAR) models X, =¢,, X, , +#,, X, , +a, and
Xy =01 Xy +P,, Xy, +ay were considered, where X and Xj.q, i,J=1, 2 were the current

and lagged values of the response and explanatory variables respectively, ¢. , i,j=1, 2, were

ij !
coefficients, t is the time and a,, anda,, were distributed as N(0,X). Each series was assumed

to have been generated by the model f(Z,, . (B), w&!) where Z; is an outlier free time series,
£Mis a time indicator where &M =1 forall t=T and £ =0 otherwise, ¢,(8) = 1- ©;:B-

""" — ©,B” were polynomials of order p and w = (wy,...,w;) were the magnitude of
outliers. The nature of effect of outlier on uncontaminated series determines the model which
could be Innovative (10), Additive (AO), Multiplicative (MO), and Convolution (CO) which
is the combination of 10 and AO effects. These models were used to develop four GMs for
detection of outliers in multivariate time series. The magnitudes of outliers and their variances
with the test statistics were derived for the four generating mechanisms. Simulation data of
sample sizes of 10, 50, and100 were used to establish the validity of the developed models.
Data on Nigerian Gross Domestic Product (GDP) and Consumer Price Index (CPI),
commercial bank deposits and loans were also used. Estimates of the magnitude and residual
variance of outliers were obtained using method of least squares. The percentages of outliers
detected for simulated data and the number of detected outliers in data sets were observed.
The relative efficiency of the models was evaluated in determining the best outlier generating

mechanism.



The developed generating mechanisms — were: X, =®; X, ,+®; § @(B)(1+w),
Xi=D; Xy, +D; & (0+o(B)).X; =Dy X1 TP (DEtT ¢ (B)and X, =, X1 +D;
& [20(B)+w(1+@(B))] for 10, AO, MO and CO respectively. The performance of the

generating mechanisms based on simulations showed that the percentages of outliers detected
using 10, AO, MO, and CO were 21%, 71%, 86%, and 100% respectively. For GDP and CPI,
30 outliers were detected by CO; 29 each by 10 and AO while MO was unable to detect any
outlier because it did not exhibit any multiplicative effect on the data. For deposit and loan, 6
outliers each were detected by all the GMs except MO. The CO gave a high precision with
low percentage of variation compared with other generating mechanisms. It was observed that
whenever the explanatory variable was infested with outlier, the response variable is also
contaminated.

The derived outlier generating mechanisms were able to detect potential outlier independently
in multivariate time series with the swamping effect ameliorated. The pairwise relative
efficiency of the variances indicated that convolution model was the best. It is therefore

recommended for outlier detection in multivariate time series setting.

Keywords: Outlier generating mechanism, Vector autoregressive models, Gross domestic
product, Consumer price index.
Word count: 498
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CHAPTER ONE
INTRODUCTION

1.0 General Introduction

Generally, time series is defined as a collection of observations made sequentially over time
or data that are collected at regular interval of time. Although the ordering is usually through
time, particularly in terms of some equally spaced time intervals, the ordering may also be
taken through other dimensions such as space known as frequency domain. Time series occur
in a variety of fields. These observations are stochastic and are known to follow patterns
based on time series theory. It is an important aspect of statistics that is well known for its
descriptive capability, analysis, identification, and determination of stochastic models for the
existing dynamic system as well as its uses in forecasting and monitoring of events. Among
the components of series are the trend, seasonal movement, cyclical movement, irregular
movement and outliers.

Real data and databases may often include some erroneous parts. These situations, which
damage the characteristics of data, are called “abnormal conditions,” and the values, which
cause these “abnormal conditions,” are called outliers, Kaya (2010). The outliers, which are
really independent, are the situations that cause the parameter estimation values in modelling
to be subjective, they damage the processes even though they are set properly, and it is an
obligation to destroy or to eliminate the effects.

A commonly used definition of outliers is that they are minority of observations in a datasets
that have different patterns from that of the majority of observations in the dataset or are
observations, which deviate so much from other observations as to arouse suspicious that they
were generated by a different mechanism, Harkins (1980).

Outlier can also be defined as observations that appear to be inconsistent with the remainder
of the data set, Betnett and Lewis (1994). Another definition is that outliers are minority of
observations in a datasets that have different patterns from that of the majority of observations
in the dataset. The assumption here is that there is a core of at least 50% of observations in a
dataset that are homogenous (that is, represented by a common pattern) and the remaining

observations (hopefully few) have patterns that are inconsistent with this common pattern.



Identification of outlying data points is often by itself the primary goal, without any intention
of fitting a statistical model. The outliers themselves are points of primary interest, drawing

attention to unknown aspects of data, or especially if unexpected, leading to new discoveries.

On human angle, in the September 11, 2001 attacks on World Trade Centers in New York,
United State of America, 5 out of the 80 passengers on one of the flights displayed unusual
characteristics. These five passengers (outliers) were not U.S. citizens but had lived in the
USA for some periods of time, were citizens of a particular foreign country, had all
purchased one-way tickets, had purchased these tickets at the gate with cash rather than credit
cards, and did not have any checked luggage. One or two of these characteristics might not be
very unusual, but taken together, could be seen as markedly different from the majority of
airline passengers. Also unauthorized computer network intrusions could also be seen as
outliers, whereby the intruder exhibits a combination of characteristics that jointly
considered, are different from typical network users. Perpetrators of credit card fraud provide
yet another example where identification of outliers is critical and where the transaction
database needs to be analyzed with the specific purpose of identifying unusual transactions.
These examples demonstrate the need for outlier identification on every kind of datasets.

The essence of outlier detection is to discover the unusual data, whose behaviour is very
exceptional when compared to the rest of the data set. Examining the extraordinary behaviour
of outliers helps to uncover the valuable knowledge hidden behind them and to help the
decision makers to improve on the quality of data.

Detection methods are divided into two parts: univariate and multivariate methods. In
univariate methods, observations are examined individually while in multivariate methods,
associations between variables in the same dataset are taken into account.

Different types of outliers such as additive and innovation outliers were studied by Tsay et.
al (2000). A graphical method was explored by Khattree and Naik (1987). Grossi (1999)
proposed a leave-k-out diagnostic procedure while Bayesian analysis was performed by
Barnett (1978).

The problem of outlier detection in time series has gained much attention as far back as early
1970s and various methods are available. For this reason, several outlier detection, and robust
estimation procedures have been proposed in the literature for time series analysis.

Fox (1972) concluded that the importance of outlier detection in time series lead to:

e Better understanding of the series under study

e Better modelling and estimation



e Improved intervention analysis and

e Better forecasting performance

1.1 Justification for the Study

Several methods of outlier detection in time series are available for univariate time series but
very limited ones for multivariate case. Although outliers could be easily identified in
univariate through graphical examination of the data, visual inspection does not work for
more than one dimension. Examining each dimension by itself or in pairs does not work
because it is quite possible for data to be outliers in multivariate space, but not outlying in
any of the original univariate dimensions. Thus, graphical inspection is insufficient for outlier
detection. In many cases, multivariate observation cannot be detected as outlier when each
variable is considered independently, but when multivariable analysis is performed and the
interactions among different variables are compared within the class of data, outlier detection
is better done. Thus there is need for multivariate outlier detection due to the well-known

swamping effects.

1.2 Specific objectives of the study
In addition to the review of the existing techniques for identification and labelling outliers in
both univariate and multivariate time series, attention in this study is focused on:
1. Outlier identification and estimation of the magnitude of outliers under classical rules.
2. Models for discovering occurrences of outlier’s in multivariate time series data are
proposed under Gaussian assumption; the theoretical basis for the new model is
developed in order to determine their relative efficiency.
3. Application of the models to both simulated and real life data sets is presented to

justify or check the effectiveness of the proposed models.



CHAPTER TWO

REVIEW OF LITERATURE

2.0 Introduction

Before proceeding, we review the literature on outlier detection in both univariate and

multivariate time series.

Outlier detection has gained much attention in the 1980s and various methods are available
especially in univariate time series. In time series analysis, outliers are known to cause biases
in parameter estimation as well as model misspecification, resulting in misleading
conclusion. For this reason, several outlier detection and robust estimation procedures have

been proposed in the literature for time series analysis.

2.1. Outlier Detection in Univariate Time Series
According to Fox (1972), there are two types of outliers in a time series. The first type of
outlier is called the “additive outlier (AO)” which assumes disturbances are committed by
addition of an unknown magnitude of outlier to a particular observation. Mathematically, the
observed time series is

Y, = Z, + &, t=12,......... n (2.1)

Where Z, is an outlier-free time series, assumed to follow the autoregressive time series as

#(B)

Z, =M a,; while a, ==—==£Y,, o denotes the magnitude of the disturbance and

#(B) o(B) "

T is the indicator variable defined by:

& = {(1) i’; t> 7 and Y, is the outlier contaminated series (2.2)

In other words, for an AO model
Y, = Z,if t # Tand Y, = Z, + w (2.3)

A typical practical example of an AO is a typographical or a recording error in a time series.



Another type of outlier is called “Innovative Outlier (I0)”, a weighted function of the

disturbance term innovative outlier may affect every subsequent observation of the series.

Mathematically, an 10 model is defined as:

_ B T

Where &I is defined as before and w denotes the magnitude of outlier while a, is the

disturbance term. Rewriting the model as

0(B)

— g\o) T
G
where  Z, s &
We see that an 10 affects the series through its own dynamic weights % and, in effect,

becomes part of the system thereafter. In practice, an 10 often indicates an onset of certain
changes in the system. For instance, in a manufacturing process, changing an operator or a
measurement instrument may result in an 10.

Of course, many other types of disturbances can occur in a time series. The AO and 10
models are two of many possibilities.

In Chen et.al (1988) and Tsay (1988) papers, two other types of disturbances were
introduced. They are the level shift and temporary change in level. Mathematically, a level
shift (LS) which was described by

Vo= Zet 758 (2.6)

Where w, is the amount of shift in the level Z,. Writing

———— =1+ B+ B? + - 2.7

) + B + + (2.7)
We see that for the above model
Z r T

Vo= {Fyw, pi'sr (2.8)

Where wis the initial shift



Thus, the fixed constants w; i.e.(the magnitudes of outlier for level shift) is added to every
observation one after the other . Such a level shift is permanent.
In some cases, the effect of a level shift is only temporary.

A mathematical model capable of describing such a shift is

Vo= Zit+ g558.0 < 8 <1 (2.9)
Since
1
_ 2p2 3p3
T35 14+ 6B + 6%B% 4+ 63B% + (2.10)

the magnitudes of level shift at timesd,d +1,d+2, ... are w,., dws, ....

where w.and w, are magnitudes of outliers for temporary change and level shift respectively
and d is the rate at which subsequence shifts are discounted.

Thus, the initial shift is w, and the subsequent shifts are discounted at the rate §. With

0 < & < 1,theshiftdecays exponentially to zero. We refer to such a temporary level
shift as a transient change (TC) model.

In practice, outliers can occur at any time point is a series. Thus, to detect an outlier, we need
to estimate the parameters w,, w,, w, w, and check the significance of these estimates.

For simplicity, Chen et.al (1988) assumed that time series parameters are known and can be
estimated and an iterative procedure was employed to detect outliers. The four outlier models

discussed were then put in the general form as

w(B) I(d)

Y, = Zt"'woﬁt

(2.11)

Where Y; is the outlier contaminated series and

1 AO case
w, AO case 6(B) 10
w; 10 case 0 () ¢ (B) case
wy = ws LS case ; 338 ﬁ LS case
w. TC case 1 e
m case




Given 6(B) and ¢(B), define as (L-6,8-6,8%-..0,B°) and (L-6,58-6,5% —..6,5")

as the polynomial function of the autoregressive AR, process and moving average MAq

respectively.

Then,

_ 0B e®) i

Ve = woyXe + a; (2.13)

which is precisely a simple linear regression equation. Therefore,

~ Yro1 VXt
Wy = =—/—/——— 2.14
0 i yex? ( )
and
~ o2
Var((,l)()) = m , (215)

where n is the sample size. Using simple least squares technique, the following were obtained
by Chen et.al (1988)

10 case: @,4 = yq and Var(®,,) =o?

AO case: By,q = plyq (va = Irfmyay) and Var(@,4) = piq o2 where i's
are the m-weights of Z, and

Py = (L4 7+t )

. — 2 —d ~ — 2 2 l
LS case: @sq = piq (Vo — Zi=fmivar:) and Var(@,4) = p24 02 where n;'s are

m(B)

the coefficient of B! in the polynomial n(B) = 1o — ;4B — n,B% — - = —

and p2; = (1 + 12 + -+ n2_g)7!

TC case: @D = piq (Va — Xisi BiYass) and Var (@.4) = pZ, 02 where B;'s

n(B)
1- 6B

are the coefficient of B! in the polynomial B(B) = B, — BB — - = and

ple = (1 + B2+ - + B2y L

Based on the above results, these test statistics were employed

Wy d
Oa

Existence ofan 10 atd: 4,4, =



Wq d

e Existenceofan AOatd: 1,4 =

Pa,dOa
- @
e ExistenceofanLSatd: A,y = —=
’ PsdOa
- @
e ExistenceofanTCatd: 4,4 = —%
’ Pc,dCa

Under the null hypothesis of normality, no disturbance at d and knowing the time series
parameters and d, all of the above four statistics are distributed as N (0, 1). In practice, the
parameters can be replaced by the MLEs. However, since d is unknown, there is need to
apply the tests to all possible values of d. Consequently, in other words, there is need to
consider the maximum of test statistics over d. The resulting statistics are no longer normal.
However, one can obtain certain percentiles via simulation or using distributions of certain
extreme-value statistics. Experience suggests that using a critical value of 3.0 or 3.5 works
reasonably well in practice.
Iterative procedure for time series analysis in the presence of outliers, level-shifts, and
temporary changes was considered by Tsay (1988) and Chang, et al. (1988).
The procedure considered by them is the very basic one as follows:

a. ldentify an ARMA model for y,, estimate the associated parameters and assuming that

there are no outliers iny,.

b. Based on the model of step (a) above, compute the four test statistics for each time

point and identify

Av,max = mzx {l/lv,d |}:

max

ﬂ'a,max S d {lla,d|}1

max

As,max = d {l/lsdl} and

Ac,max = m‘;x {llc,d I}

Where Ay, 1a, A4s, and Ac are the test statistics for innovative, additive, level shift and

temporary change models respectively.



c. Let 2 = max{Aymax» 2amax»» Asmax » Aemax } @nd compare A with the pre-specified

critical value C. if A < C, there is no outlier and stop. If A = C, continue to the next step.

d. Compute a modified series Y;* by removing the effect of the identified outlier and go to

step a with y, replaced by Y;" .

Chen and Liu (1993) proposed iterative procedure to reduce masking effects by estimating
jointly the model parameters and the magnitudes of outlier effects.

Pankratz (1993) considers AO and 10 in a dynamic regression model with a single input and
a single output. He classifies outliers in the input series as passed and non-passed outliers and
uses a weighted average of least squares estimators to estimate non-passed outliers. The
approach however becomes complicated when there are multiple inputs or multiple output

series.

As a result of outlier masking effect of both Additive and Innovative on the estimates of
parameters and the multiplicative effect on parameters estimated, Shittu (2000) introduced
two other types of outliers which are Convolution outlier (CO) and Multiplicative outlier
(MO).

The MO and CO were derived as follows:

Assuming that outlier free series Z; follows the ARMA ), process and can be written as

_ 0Ba;
Zi = o(B) (2.16)

Where 6(B)and ¢(B) are define as
(-68-6,82—..6,8°) and (1-6,8-6,5—..6,") as the polynomial function of the

autoregressive (AR)) process and moving average MAq respectively.
; H(B) _ 1
Letting A(B) = 7(B)

Then multiplicative outlier model was defined as
X, = Z, 0&" (2.17)

and using the least square theory, the estimate of the magnitude of outlier » and residual

variance were arrived at as

W wT= IO (B) 1 St and

10



11 (B)  6%,) respectively.
The corresponding test statistic was defined as

_  ® T
AT = T,

(2.18)

The testing criteria Am = MaX (r: 1<t<n) M| Was employed for outlier detection using the

critical values suggested by Chang et.al (1988).

For non-parametric approach, Ljung,(1993) and Battaglia and Baragona, (2007) have
proposed specific procedures based on the relationship between the additive outliers and the

linear interpolator, while Baragona et.al., (2001) used a genetic algorithm.

Shittu and Shangodoyin (2008) considered the identification and detection of outliers in
frequency domain using the spectral method. By assuming both the additive and
multiplicative effect of outliers on a series, the parameters of the model were estimated using
the maximum likelihood method with a view to measuring the effect of the suspected outlier
on the parameter of the series. They concluded that the occurrence of outliers has led to a
shift in the phase, amplitude of the Fourier series thus affected the periodogram estimates,
and detection of aberrant observations is more exact in the frequency domain than in the time,

domain.

2.2 Reviews on Outlier Detection in Multivariate Time Series

As earlier noted, not much work has been done on outlier detection in multivariate time
series. Among the existing ones, was the projection pursuit techniques used by Tsay et.al
(2004) in order to find the linear combination of a multivariate time series that maximizes
kurtosis with the purpose of best reproducing the outlying signal. Then, detection of time
points and estimating the magnitudes of multiple outliers were accomplished by employing

univariate searching methods.

Baragona and Battaglia (2007) proposed the Independent Component Analysis (ICA) as a
tool capable of identifying the locations of multiple outliers in multivariate time series. It was
believed that outlying components have a very large kurtosis. The ICA was therefore used at
identifying a set of independent unobservable variables that are supposed to generate the data
set of interest. An unknown mixing matrix was postulated to linearly transform the

unobservable variables to produce a set of observable mixed ones. Both unobservable

11



variables and the mixing matrix have to be estimated from the data. The ICA has been
applied successfully to a variety of fields such as biomedicine, speech, and radar, signal
processing and time series. Suppose that we observe a contaminated multivariate time series
obtained by linearly mixing some independent Gaussian signals, and adding, only at some
fixed time points, a constant to each observed component. When the series is decomposed by
ICA, the most important non-Gaussian components is likely to represent the outlying pattern,
while the remaining independent components would be essentially similar to Gaussian linear

combinations of the outlier free time series.

In their own work, Cucina, et.al (2008) used meta-heuristic methods to detect additive
outliers in multivariate time series. The implemented algorithms were; simulated annealing,
threshold accepting and two different versions of genetic algorithm. They used the same
objective function, the generalized AIC-like criterion, and in contrast with many of the
existing methods, they do not require specifying a vector auto regressive moving averages
model for the data and are able to detect any number of potential outliers simultaneously.
They concluded that almost all available methods for outlier detection are iterative, but there
is a crucial difference with respect to the meta-heuristic algorithms in that it seems to be able

to provide more flexibility and adaptation to the outlier detection problem.

In the detection of outliers in multivariate time series model, Helbling and Cleroux, (2009),
introduced the coefficient of vector autocorrelation, obtained its influence function together
with its distribution, and used it for testing the hypothesis of presence of outliers.
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CHAPTER THREE

METHODOLOGY AND THEORETICAL FRAME WORK

3.0 Introduction

This chapter is divided into two sections. The first section deals with a brief review of some
basic tools, concepts, and methodology in time series analyses applicable in this research
work.

The second section deals with the theoretical framework where, four model-generating
mechanisms for the detection of outliers in the multivariate time series are developed by
specifying two-variable Vector Auto-Regressive (VAR) models and comparing their relative
sensitivity to outlier.

For the four models, estimates of the magnitude of outlier as well as their residual variances
are obtained using the method of least squares. The test statistic for each model for testing the
existence of outlier will then be constructed.

3.1 Basic Concept of Time Series
3.1.1 Time Series

A time series is a set of observations measured sequentially over time. These measurements
may be made continuously through time or be taken at a discrete time points. By convention,
these two types of series are called continuous and discrete time series, respectively,
according to the nature of time. In other words, for discrete time series, for example, it is the
time of occurrence that is discrete. For a continuous time series, the observed variable is
typically a continuous variable recorded continuously on time, such as a measure of brain
activity recorded from an electronic machine. The usual method of analysing such a series is
to sample (or digitize) the series at equal time interval to give a discrete time series. Little or
no information is lost by this process provided that the sampling interval is small enough,
Chatfield (1980).

3.1.2 Univariate and Multivariate Time Series Models
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A univariate time series model for a given variable is based only on past values of that
variable, while a multivariate model for a given variable may be based, not only on past
values of that variable, but also on present and past values of other (predictor) variables. In
the latter case, the variation in one series may help to explain the variation in another series.

3.1.3 Time Plot

This is the plot of the series against the corresponding time period. It is the first step in
analyzing a time series. It helps to show up the important features such as trend, seasonality,
discontinuity, outliers, and smooth changes in structure, turning points, and sudden
discontinuities. The plot of time series graph is vital, both in describing the data, helping to
formulate a sensible model and in choosing an appropriate forecasting method. Chatfield
(1980).

3.2 Analysis of a Time Series
There are two major types of analysis of time series data.
3.2.1 Deterministic Modelling

An observed realization of a series is believed to be made up of four major components

regarded as variations. These are the secular trend, seasonal, cyclical and irregular variations.

The secular trend is the general direction of the movement of a series with time. It indicates
the direction of assessment of the behaviour of the series upon studying the time-plot of the
series. In order to isolate the contributing effect of the secular trend the moving average

analysis of the series is performed or the series is regressed on time variable (t).

The seasonal variation component gives the structure of the series with respect to equal-
spaced, defined periods with relatively small time intervals such as daily, monthly, quarterly,
annually repetitive patterns. This variation is isolated by the determination of seasonal index

corresponding to each defined period, which is used to adjust the original data.

The cyclical variation represents the long term repetitive cycle that may be inherent in a
series. It should be long enough to exhibit such cycle; while the irregular variation is the
residual, unpredictable, non-structured components of the series. It usually results from

unexpected shock, mishaps such as wars, natural disasters or extreme favourable condition
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such as in the income series of an individual who win a lottery jackpot. Since the irregular
variation is expected to be less prominent in determining the true structure of the series it is
often merged with the cyclical component which is equally less influential, especially in short
series. They both form the remnant after the secular trend and the seasonal variation

components must have been eliminated from the series.

The process of decomposition requires that either an additive or multiplicative model be used
in the representation of the series depending on, whether the time plot of the series reveals a

series with increasing or constant bandwidth.

3.2.2 Dynamic Modeling

Modeling in this sense is about constructing mathematical relation by exploring statistical
properties of two or more series. The model thus generates the underlying series or
establishes relationship between series. A time series model can be constructed in time or

frequency domain.

In time domain modeling, time is the reference parameter. The model that may be as a result
of relating present observation with past ones or from evaluating random error terms. The
time plot shows the structure of the series in this form of modeling, while the plot of a
correlogram is based on values of Auto Correlation Function (ACF) or Partial
Autocorrelation Function (PACF) against respective time lag. The correlogram is an

important tool employed in the identification and estimation of a model.

On the other hand, it is often postulated that a series is made up of more than one sinusoidal
wave curves, which is typical of long series. In the process of splitting such series into its
different component waveforms, the series is modeled in the frequency domain. In this
respect evaluating periodic functions and relevant statistical properties are required to achieve
this goal. The plot of either a Periodogram or Spectral Density Function is synonymous to

what plotting the ACF or PACF correlogram achieves in the time domain.

3.3 Fundamental Properties of Dynamic Models

A series is completely described by its expected value, variance, auto-covariance function,
autocorrelation function and partial autocorrelation function; irrespective of the model
constructed for such series. These measures form the basis upon which some fundamental

properties peculiar to model building are considered.
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3.3.1 Stationarity

Stationarity is a condition required to infuse certain level of control for congenital variability
within a series. Stationarity is a measure of state of equilibrium of a process about a constant
mean level. When a series is not stationary, it is difficult to exploit its analysis for predicting
future values of the series since such forecast tends to explode with increase in time value.
This inhibits control actions required to be taken if the need arises. In addition, a stationary

series enables a parsimonious reduction of parameters required to be estimated in a model.

3.3.2 Weak Stationarity

A time series is said to be stationary if its underlying generating process is based on a
constant mean and constant variance with its autocorrelation function essentially constant
through time. Thus, if different subsets of a realization are considered (time series ‘sample’)
the different subsets will typically have means, variances, and autocorrelation function that

do not differ significantly.

A statistical test for stationarity is the most widely used Dickey Fuller test. To carry out the

test, estimate by Ordinary Least Squares (OLS) regression model is constructed:
Yo = OYeo1 + biyig + o+ bpYey (3.1)

where y, denotes the differenced series (yyw1). The number of terms in the regression, p, is
usually set to be about 3. Then if ¢ is nearly zero, then the original series y; needs

differencing and if ¢ < 0 then y; is already stationary.
3.3.3 Autocorrelation Functions

Autocorrelation refers to the way the observations in a time series are related to each other
and is measured by the simple correlation between current observation (YY) and observation
from p periods before the current one (Y). That is for a given series Y}, autocorrelation at

lag p, correlation (Y, Y¢k) and is given by

_ Cov(Y, Y.)
P JVar (Y )var(Y, )

(3.2)

The value of p, ranges from —1 to +1. Box and Jenkins has suggested that maximum number

of useful r, are roughly n/4 where n is the number of periods upon which information on Y is

available. The plot of ACF on time t is called the correlogram.
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3.3.4 Partial Autocorrelation

Partial autocorrelations are used to measure the degree of association between Y and Yy

when the Y-effects at other time lags 1, 2, 3, ..,, p—I are removed.
3.3.5 Model Identification Process

Theoretical ACFs and PACFs (Autocorrelations versus lags) are used to determine the
appropriate model for a time series. Thus one can compare the correlogram (plot of sample
ACFs versus lags) with these theoretical ACFs/PACFs, to find a reasonable good match and
tentatively select one or more ARIMA models.

3.4 Types of Dynamic Models

3.4.1 Autoregressive (AR) Model

Let X; be any time series and X; is said to follow an autoregressive process of order p, AR(p),
if it satisfies the equation:
Xi=og+ 01 Xt1+ 02Xt o+ ... + O Xtk + & (3.3)

where &; is a sequence of independent and identically distributed Gaussian
variables with mean zero and variance ¢*

An AR process is said to be stationary if the root of the polynomial equations

(1-6(8))=0 lies outside the unit root circle otherwise, the series is said to be non-stationary.

An AR of order p i.e. AR( p) has the following properties:

Q
1-6,-6,-..0

P

E(Xy) = (3.4)

2

a
Var() = 1o = . (35)
1_p191 - 10202 _"'ppep

2 - -
where O, IS the variance of the error terms.

A plot of its correlogram (ACF/PACF vs Time lag) shows an exponentially decaying ACF
function and the PACF cut-off after lag k thus identifying an AR model of order k.

3.4.2 Moving Average (MA) Model
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This model expresses the current observation X; for teT as the combination of a constant
term and current error term with the linear combination of past random error terms up to a

lagged period q i.e.
Xi=et+ oo+ P11+ ot o+ ...+ (I)qgt—q (36)

Characteristically, a moving average process is always stationary, as it largely depends on q
past random errors which are independent and identically distributed depending on the order
of the model; however invertibility condition is required to be satisfied in the process of

estimating the parameters of the model.

- - - - 2
The random error terms are white noise having mean zero and variance o, hence

E(Xt) =u=ap (37)
Var(Xy) =vyo = cz (1+ @7 + 7 +...+¢qz) (3.8)
o2 if k=12, ]
and y, =<1 ¢ C 3.9
Yk {0 K> j (3.9)

To identify a MA(q) process, the ACF cut-off after lag g i.e. and the PACF progressively

dampens-out with increase in lag period.

3.4.3 Autoregressive Moving Average (ARMA) Model

This model as the name suggest combines the feature of both AR( ) and MA() models. An

ARMA( p ) is represented as:

Xe= 0 X1 + 0 Xe o+ oot + ert,p — &1+ Pogrot ...+ d)qst,p (3.10)
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To satisfy the stationarity and the invertibility conditions, the root of polynomial equations
0(B) = 0 and ¢(B) = 0 must lie outside the unit root circle. In the identification process of an
ARMA;, ) model, it is required that the ACF and PACEF tails off as the lag periods k and j
increases. The ARMA, ) process have the advantage of modelling a time series with fewer
parameters estimated as either a pure AR, or MA(g would have done.

Table 1.1: Summary of Model Identification Process

Model ACF PACF

AR(p) Spikes decay towards zero Spikes cutoff to zero

MA(Q) Spikes cutoff to zero Spikes decay to zero
ARMA(pQ) Spikes decay to zero Spikes decay to zero

Pankratz (1983)
3.4.4. Autoregressive Moving Integrated Average (ARIMA) Model

In general, an ARIMA model is characterized by the notation ARIMA (p, d, q) where, p, d
and g denote orders of auto-regression, integration (differencing) and moving average
respectively. In ARIMA, time series is a linear function of past actual values and random
shocks. For instance, given a time series process {Y}, a first order auto-regressive process is
denoted by ARIMA (1, 0, 0) or simply AR (1) and is given by

Vi=u+d1Yiq1t+e (3.11)
and a first order moving average process is denoted by ARIMA (0, 0, 1) or simply MA (1)
and is given by

Y, =u—0:6,1 +¢ (3.12)

Alternatively, the model ultimately derived, may be a mixture of these processes and of

higher orders as well. Thus a stationary ARIMA (p, q) process is defined by the equation
Vo=diYia+ ¥, +tdyY, — 016 — 026, —0q6 ¢t & (3.13)

where &’s are independently and normally distributed with zero mean and constant variance

o? fort=1i,2,..n. The values of p and g, in practice lie between 0 and 3.
3.5 Estimation

At the identification stage, one or more models are tentatively chosen that seem to provide

statistically adequate representations of the available data. Then precise estimates of
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parameters of the model are obtained by least squares as advocated by Box and Jenkins
(1994). Standard computer packages like SAS, SPSS, R-programming etc. are available for
finding the estimates of relevant parameters using iterative procedures.

3.5.1 Diagnostics

Different models can be obtained for various combinations of autoregressive and moving
averages individually and collectively. The best model is obtained with following

diagnostics:

3.5.2 Model Identification Criteria
For the model identification criteria Pankratz (1983) gave three alternatives; Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC) and Schwarz-Bayesian
Information Criteria (SBC).

AIC is given by AIC = (-2 log L + 2 m) (3.14)

where m = p+ g+ P+ Q and L is the likelihood function. Since —2 log L is approximately

equal to {n (I+log 27) + n log 6>} where o2 is the model mean square error.

AIC can be written as: MC={n (t+log 2 ) + n log ¢ + 2m} and because first term in this

equation is a constant, it is usually omitted while comparing between models.
As an alternative to AIC, sometimes SBC is also used which is given by:
SBC=log a2 + (m log n)/n.

After tentative model has been fitted to the data, it is important to perform diagnostic checks
to test the adequacy of the model and, if need be, to suggest potential improvements. One
way to accomplish this is through the analysis residuals. It has been found that it is effective
to measure the overall adequacy of the chosen model by examining a quantity Q known as
Box-Pierce statistic (a function of autocorrelations of residuals) whose approximate

distribution is chi-square and is computed as follows:

Q=n3r’Q) Q=nXi, () (3.15)
where summation extends from 1 to k with k as the maximum lag considered, n is the number
of observations in the series, r (j) is the estimated autocorrelation at lag j; k can be any
positive integer and is usually around 20. Q follows Chi-square with (k-m) degrees of
freedom where m is the number of parameters estimated in the model. A modified Q statistic

is the Ljung-box statistic which is given by
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Q=nn+2)Ti () /(n—1) (3.16)

The Q Statistic is compared to critical values from chi-square distribution. If model is
correctly specified, residuals should be uncorrelated and Q should be small (the probability

value should be large). A significant value indicates that the chosen model does not fit well.

3.6 Theoretical Framework
This work is premised on detection of outliers in the multivariate time series setting using the

Vector Autoregressive (VAR) modeling approach.

3.6.1 Vector Autoregression

Vector Autoregression (VAR) is a statistical model used to capture the linear
interdependencies among multiple time series. VAR models generalize the univariate
autoregression (AR) models. All the variables in a VAR are treated symmetrically; each
variable has an equation explaining its evolution based on its own lags and the lags of all the
other variables in the model. VAR modelling does not require expert knowledge, which
previously had been used in structural models with simultaneous equations.

VAR models were advocated by Sims (1980), who criticized the claims and performance of
earlier modelling in macroeconomic econometrics. Sims recommended VAR models, which
had previously appeared in time series statistics and system identification a method to
estimate economics relationships, thus being an alternative to the “incredible identification
restrictions” in structural models.

A VAR model describes the evolution of a set of k variables (called endogenous variables)
over the same sample period (¢ = 1, ..., T) as a linear function of only their past evolution.

The variables are collected ina k x 1 vector y, .

A (reduced) p-th order VAR, denoted VAR (p), is
Ye= ¢+ Ayi1 + Ay + .. + Ay, + e (3.17)

Where c is a k x 1 vector of constants (intercept), A; is a k x k matrix (forevery I =1, ..., p)

and e, is ak x 1 vector of error terms satisfying the following:

1. E(e;) = 0 every error term has mean zero;
2. E(e;e’,) = Q the contemporaneous covariance matrix of error terms is Q (k x k

positive definite matrix);
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3. E(e;e’;_;) = 0 for any non-zero k, there is no correlation across time; in particular,
no serial correlation in individual error terms.
The [-periods back observation y, _; is called the [-th lag of y, thus, a pth-order VAR
is also called a VAR with p lags.

In matrix notation, one can write a VAR(p) with a concise matrix notation as:
Y =BZ+ U (3.18)
For a general example of a VAR (p) with k variables,

A VAR (1) in two variables can be written in matrix form (more compact notation) as
Vil A1 Ag 2 Vit-1 et
[yZ,t] - [ ] [ Ay, 1 Ay 2] [}’z,t— 1 ] * [ez,t]’ (3.19)

or, equivalently, as the following system of two equations
Yieg = C + AraYie-1+ A12ya1 + €1y (3.20)

Yor = Co + Ay1y1e-1+ Azpyae1 + €2 (3.21)

Note that there is one equation for each variable in the model. Also note that the current (time
t) observation of each variable depends on its own lags as well as on the lags of each other
variable in the VAR.
Now writing VAR (p) as VAR (1), a VAR with p lags can always be equivalently rewritten
as a VAR with only one lag by appropriately redefining the dependent variable. The
transformation amounts to merely stacking the lags of the VAR (p) variable in the new VAR
(1) dependent variable and appending identities to complete the number of equations.
For example, the VAR (2) model

Ye = ¢+ A1yi1 + Ay ye o + ey (3.22)

Can be recanted as the VAR (1) model

[yi:] = [o] + [ ' ] [y}:t_;] W (3.23)
Where [ is the identity matrix.

The equivalent VAR (1) form is more convenient for analytical derivations and allows more

compact statements.
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3.6.2 Linear Models

Linear statistical model refers to the fact that the fraction y; is linear in the unknown

parameters, Graybill et.al (1974).

A general linear function is of the form.

Y = f(x) (3.24)
or equivalently

Y=o X1 + X, + -+ a, X, (3.25)
where

a;,i =1,2,..m are fixed arbitrary vectors, and
X;,,i=1,2,..mare scalars.

A necessary and sufficient condition that (3.25) has a non-trivial solution, that is not

all X; are simultaneously zero, is that a4, a5, ..., a,, are dependent, Rao (1965).
A special and important case of linear equations is where

a, € E,R™

If a; = (a;, ...a;,) , then (3.25) may be written as:
Yii +an Xy +apXy+-+a,m, Xy, =0

Y21 + a21X1 + a22X2 + -+ aszm =0 (326)

Ynl + aanl R an2X2 + -+ anme =0
are n linear equations in m unknowns.
If we consider uncorrelated observations (Y;,Y,,...Y;,) , such that

Y = Bo + f1X11 + -+ B X (3.27)

where i=1,2,3,...,n

If we assume that

E(Y) = Bo + B1Xin + -+ + B X (3.28)
and V(Y;) = o?
where (B, B - ---Bm) and a2 are unknown parameters and X;; are unknown coefficients.
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We can define random errors &;, &5 ... ... &, by
e, =Y, — Bo — BiX; (3.29)
fori=1,2,...m
and the ¢; satisfy
E(g)=0 (3.30)
and
V(g) = o? (3.31)
then we can write
Yi=Bo+f1Xun+ -+ PnkXi, +& (3.32)
fori=1,2,...,n
3.6.3 Least Squares Method

The theory of least squares is concerned with the estimation of parameters in linear  model,
Rao (1968) and improvement on it was have made by Rao (1973), (1974).

Equation (3.32) is a complete mathematical model of a multiple regression equation which in

matrix form can be written as
Y=XB+¢ (3.33)
where

Y = (Y, Y,, ..., Y,) is the observation vector, 8 isam x 1 vector of parameters and X is a
matrix (n x m) of explanatory variables (assumed to be of full rank) ande is an (nx1) vector of

residuals.

We assume that & has zero mean vector and variance matrix V(&) = I, where | is the nxn

identity matrix so that the true residuals have common variance and are uncorrelated.

In the absence of any contaminants, requiring modification of the model in (3.33) and

possibly revealed as outliers we have the familiar least squares analysis of the linear model.

The least squares estimation of g is
B=(X X)Xy (3.34)
with
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V(5) =v[(x X)X ‘YJ (3.35)
and that of & is

e=(h—XB) =, —R)Y

= (I, - R)e (3.36)

where

R=X(X X)"X X (3.37)
and with

V(e) = (I, — R)o?

The last term in (3.36) shows how the estimated residual ¢ relates to the unknown true
residual & but the determination of e must be sought in terms of the known quantities such as
(I, — R)Y. The estimated residuals ¢ have zero means. From (3.36), we see that they are

typically correlated and have differing variances.

Explicitly, we can write
Var (g) = [1- %X X)7X]
=(1-17;)0? (3.37)
Where X; is the | row of X.

The error variance is unknown. An unbiased estimate is obtained as

_ elg(ln - R)
_—n—q (3.38)

in view of the idempotency of (I, — R); € is termed the residual sum of squares and is

denoted by V (&) can now be estimated as
S%(e) = (I, — R)c? (3.39)
So that the estimated variance of & is

§? = (1-1)o?
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jo 1=y

standard deviation of the &.

(3.40)

(3.41)
They have an immediate intuitive appeal in that they constitute weighted version of the

estimated residual ¢, where the weights are inversely proportional to the estimates of the
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3.6.4 Gaussian Distribution

Gaussian distribution otherwise known as the normal distribution has proved to be the most

useful of all distributions for continuous random variables.

The normal distribution function is given by

—00< X <00 (3.42)
—00< {1 <o
a?> 0

This shows that a normal distribution is completely determined by specifying its mean u and

standard deviation o, also the graph of a typical normal curve is symmetrical about the mean
U.
The maximum likelihood estimate of the parameters of a normal distribution can be obtained

by the likelihood function.

L(6) =T f(X;,0) (3.43)

where X;, i = 1,2, ...,n are random samples from a population X with the probability density

function F(X, 6) and 6 is an unknown parameter.
The probability function (3.43) can be expressed as
fp o) =—= £y’ (3.44)
The likelihood function is
L(,0%) = @mo?)" 7 expl— 573 (X = 0)’] (3.45)
then the log likelihood function
1

InL = —nln (wo?) — Y5 (X - w)? (3.46)

The maximum likelihood estimate of the population mean u can be obtained by

differentiating equation (3.46) with respect to pu and equate to zero.

AL (u, o 1
Pt = Y- =0 (3.47)

= S (3.48)

n
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The maximum likelihood estimate for the variance is obtained by differentiating (3.46) with

respect to o and equating the result to zero.

We have,
AL(u,02) 1 1
L = - - (X -2 =0 (3.49)
X;—u)?
L=yt (3.50)
no? = ¥ (X; — X)? (3.51)

That is X~N (u,0?)

3.6.5 Test for Normality

To ensure strict stationarity of a time series data, we need to show that the series come from a

normal distribution with constant mean and variance. This can easily be achieved by carrying

out a normality test on the collected data using the %° (chi-square) goodness of fit test as

follows:

(i)

(i)

(iii)
(iv)

(v)

Obtain the maximum likelihood estimate of the population parameters as
described in (3.48) and (3.51).

Classify the data into intervals of equal sizes and obtain the observed frequencies
0;,i =1,2,,...k, where k is the number of classes.

Standardize the class intervals and obtain the probability for each of the intervals.
Obtain the expected frequencies e;, i = 1,2,...k by multiplying the observed
frequencies by the probability obtained for each of the standardized intervals.
Carry out the y? goodness of fit test using

)2
X =T, o (3.52)

€

When compared with the critical value ofx2 at specified level of significance.

Therefore, results obtained for multiple regression could be extended to time series model

fitting. The method of least squares discussed above is used to develop the theoretical basis

for our proposed outlier generating mechanisms in the section.
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3.7 Derivation of the Outlier generating Mechanisms

In this section the four model-generating mechanisms i.e. Innovative Outlier Model (10),
Additive Outlier Model (AO), Multiplicative Outlier Model (MO) and Convolution Qutlier
Model (CO) for the detection of outlier in Multivariate time series are derived by specifying

two-variable Vector Autoregressive (VAR) models.

3.7.1 Innovative Outlier Model

An Innovative Outlier (10) represents an unexpected change in the innovations that drive the
vector time series. For instance, suppose that the noise in a bivariate series consisting of oven
temperature and a chemical concentration reading is mainly due to the random variability of
the, feed rate. Then, a sudden change in the feed rate that happens at just a particular time
point, due to some exogenous effect, will produce an 10 in the series.

The innovative outlier-generating model is defined as:

X, =Z, +p(Bo& (3.53)
with the unobservable outlier free serieshy Z, = Mat
#(8)
(3.54)
and 0, =a +op(Bs. (3.55)
Where X = (Xa, -...Xke) is @ k-dimensional time series, Z; is an outlier free time series that

is assumed to follow the ARMAg , £7is a time indictor such that &M =1 for all
t=T and &™ =0 otherwise, ¢(B) =1-©,B-0,B*...—6,B" are polynomials of order p

and ,, = (o, a)k)' Is the size of the magnitude of outliers.

For the general case of 10:

Given a vector model Xi3; and X, such that Xi; contains outlier and Xo: is outlier free, the
magnitude of such outlier and its corresponding variance can be obtained by specifying the

two variable VAR as:
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xlt =¢11 xlt—l +¢1z X o tay

X =1 Xy g P00 Xy g +3y

where X, is the current value of the response variable
X, Is the lag value of the current variable
X, is the current value of the explanatory variable
X,._, is the lag value of the explanatory variable

Now considering

Xzt = P21 X201 + D22 X101 + a1y

When X,,_; is contaminated and assumed innovative model, we then have
T

Xoe = ®21(Zt—1 + (P(ﬁ)wft( )) + 022 X10-1 + a1¢

T
Xot =01 Zi—q + 01 <P(ﬁ)wft( ) P22 X1:-1 + aqy

Xt = 021 @(B) €1 + ¢21§0(3)wftm + D2 X1¢1

Xoe = 022 X101 + D210(F) (1 + w)

Therefore in general the 10 generating mechanism is:
Inovative model: X;;¢ = ¢;; Xjr—1 + 04 & 9(B) (1 + w)

3.7.1.1 Derivation of the Magnitude of Outlier for 10

Assuming Xy contains an outlier,

Then

Xy =2y + §D(ﬁ)w§tm

Zy + ¢(ﬂ)a)§t(T) = ¢11(th—1 + (P(ﬂ)wftm >+ P X g + 8y
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(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)



According to Tssay (1988 ) ¢, = z(8)X, and Z, :Mat

418]

As defined in equations (3.54)

X, = =p(B), (3.63)

which becomes

%;aw(ﬁ)w&” - @{%3 a +¢(ﬁ)wéf”j+¢u o(B)l s +ay .
0B) iy OBy o _ ) . )
¢(,3) at—d¢y, ¢(ﬂ) & —ay ¢11¢(ﬂ)wé:t +¢12¢(13) t-1 ¢(ﬁ)a)§t (3.65)
o) _ G(ﬂ)_l} _ ") _ ) "
a{¢(,3) P ¢(ﬁ) ¢ll¢(ﬂ)a)§t (o(ﬂ)wft +¢12(P(:8) t-1 (3.6
Making a; the subject of the formulae we have
a = ¢11¢(ﬁ )a)t(T) (_(/))(ﬁ )a)t(T) + ¢12(/’(IB )f t-1
| Ma—g,)1
) (3.67)

Using the least squares theory to differentiate the sum of squares and equating it to zero, thus

we have

$az _ 3| wuplBh” —plBlos™ + PN

#(8) (3.68)
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- [w“q);f/);)) D= oABWZ Sy gl — gl + puplpl, ]
Lb(ﬂ) (1_ ¢11)_1}

(3.69)

which becomes

i [¢11(p('3)a) t(T) - ¢(ﬁ)‘0§: + ¢12¢(ﬂ)€ t-1 ] =t

t=1

(3.70)

Since £ is atime indictor where £ =1forall t =T and &™ =0 otherwise, we have

n

Za) +¢12(/’( )th—lzo
t=1 (3.71)
Za) ¢11¢ )) = ¢12¢(ﬁ)z£t—l
t=1 (3.72)
op(B) L~ b)) =k, 0(B) (s (3.78)
Therefore, the estimator of the magnitude outlier for 10 is
= he )
1-¢. (3.79)

Its variance is

vo0=( 4] veeo)

1=¢u (3.80)
Therefore
(4 j U :
-\, @ ﬁ O,
(1—¢11 (3.81)
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With the estimate of ® and its corresponding variance, the test statistic for innovative model

is defined as:

(3.82)

Ll (3.83)

3.7.2 Additive Outlier (AO) Model

An additive outlier represents an unexpected change in the value of one of the observations. It

can appear as a result of a recording or measurement error or other single effect.

The additive outlier model is defined as

X, =Z +w&l

(3.84)

recall that ¢, = z(B)X, and Z, =Mat
#(5)
as defined in equation (3.54) and
l, =4, +7r(,8)a) (1)

Now considering
Xot = P21 Xoe—1 + P2 X101 + ayy (3.89)
When X,,_; is contaminated and assumed additive model, we have
Xoe = 01| Zecs + 0§D | + B2 Xrem + e (3.86)
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=021 Zi—1 + P w fg)l + 022X10-1 + ayy
Xpe = Bop Xieo1 + b1 Zeo + o1 0 L)
Xoe = 022 Xit-1 + h21 9(B)St—1 + 21 0 1
Xoe = Bop Xie—1 + P21 &1 (0 + 0(B)) (3.87)
Therefore in general the additive model is given as
Additive model: Xy ;¢ = ¢ Xjp—1 + Dyj €r4 (w+ 0(B)
2.7.2.1 Derivation of the Magnitude of Outlier for AO

WIth Xy, = dhy Xy stho X o ity as defined in equation (3.56)

Then,
Zt+a)é:t(T) = ¢11(Z t+a)§(T) )+ Pro Xyq +ay (3.88)
M (T _ |: (,B) (T)j| Y 3.89
¢(ﬂ) a+od =¢, ¢(ﬂ) +od |+, (P(IB) ¢ T8y (3.89)
M)_} {@ m} ™
a{¢ IB) P ¢(ﬂ)+a)et +4, (0(13) ¢ — WS (3.80)
¢11|:¢(ﬂ) + a)é:t(T) } +d, (/)(ﬂ)ﬁ a’égtm
o\ LOB)
t )
6(8) (3.91)
Summing the square of equation (3.91) over n we have
¢11(¢(ﬁ) + a’ftm ] +, qo(ﬂ)ﬁ wé:t(T)
$az 3| L0P)
7 5 #B) _
o0p) (3.92)
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Differentiating equation (3.92) with respect to @ and setting to zero, we obtain the

magnitude of outlier in the model as

- ; ; i%[%;m&”j+¢12<o(ﬂ)£t ~ g =0
l t=1

(3.93)
anﬂl(% j+z¢12¢ B, Zn:a)=0
¢11[Mj +¢,0+ ¢12§0(18)£t -0=0
o(5)
a)(l_ ¢11) = ¢11M + ¢12¢(ﬂ)€t
#(8)
s ¢ E )+¢12¢(,B)€t
o 1-¢,,
@, = ¢(ﬂ)(l+¢12£t)
T (3.94)
Therefore, the estimate of the variance is
( ) Q’(éj%zz G;
Vion)=——+—
(1-g,) (3.95)
(4 j ARE
=|——| ¢ B|o.
(1_¢11 ( j (3_96)

Given the estimates of the mean and its variance of the magnitude, the test statistic for testing

the presence of outlier for additive model is constructed as follows
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2 = 1+¢12£t X 1_¢11

1= by PO,

A = (+¢,1) (3.97)
$,0,
3.7.3 Multiplicative Outlier Model

Since outlier may have multiplicative interaction effect on a series, there is a need to develop

its generating model.

The multiplicative outlier model is defined as:

X, =Z, o&D (3.98)
Specifying X, =¢, X, , +¢,, X,,, +a, asdefined in equation (3.56)
with the outlier free series Z, = Mdt = o(p)dt

#(8)
For the general case of MO
If we consider
Xot = 021 X301 + 022 X101 + a1y (3.99)
When X,,_; Is contaminated and assumed multiplicative model, then
Xoe = 021(Z—1 0 §1) + P22 X101 + Ay (4.0)
Xoe = 021(0(B) €1 0 &1 + D22 X101 + Ay
Xpe = B21 0 1 @(B) + Do X1e—1 + aye
Xpe = B3 X1e—1 + Ba1 0§21 @(B) (4.1)
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Therefore in general, the MO generating mechanism IS

Multiplicative model: Xy ; = ¢;; Xje—1 + By w -1 9(B)
3.7.3.1 Derivation of the Magnitude of outlier for MO

By taking the logarithm of equation (3.98) in other to make it linear and further

simplification, we have
log ((8)*)= log () ), +log ™ 42)

with a, = log [ﬁ(ﬁ)_l]ft O =logwg® 4 8 =0 -

m _ (D)
LS =g L 05 + Py Xy 8,

From: (4.3)
log Z, +log & = ¢, [Iog Z, , +long w&'” ]+ Po Xy +8 (4.4)
Since, Z, = %at
Then  109Z =logp(p)a
where ?(8)= %
log (), +log @& = ¢, [log p(B)]a, , +log @£ + ¢y, G(B)1 +2, (4.5)
Ifwelet Q =logw&’, and 7, =logg(s)a,
Then we have
0+00 = (0, +O0 )+ dp(B)t, + 2, (4.6)
LA O =dt s+ 4,0 +ho( )+,
a =l +Q" —gt  —4.0" — g .o(B)l, a.7)
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By summing the square of equation (4.7) over n we have

Zaf = Z[Et + Qt(T) B ¢ll£t—l - ¢11th - ¢12(0(:B)£t]2
t=1 t=1

(4.8)
Differentiating equation (4.8) with respect to Q, we have
oX.al n
(9a)t = 2(1_ ¢11)Z(£t + QET) _¢11£t + QET) _¢12§0(ﬂ)ft): 0 (4-9)
t=1
(1_ ¢11)Q§T) +l =l - ¢12¢(ﬂ)€t =0 (4.10)
QET) _ Pl + ¢12¢(ﬁ)£t — 4, (4.11)
1-¢,
QET) ~ gt[(¢ll+ ¢ (/’(:B)_l]
1-¢, (4.12)
recall that Q" =logw&™  when £ =1 there is presence of outlier we have
logaw, = Et[¢ll+¢12¢(ﬂ)_l]
1-¢y (4.13)
a")m ~ Anti |Og gt[ﬂ.l+¢12 ¢(ﬁ)_1] (414)
1- ¢11
Its variance is
(B)-1]
V (&, )= Anti IOQVM T O\S)~ } o2
1-¢, (4.15)

Hence the test statistic is defined as
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Anti log Vt (s : % (0(,3)—1)}

Kf (o + (/’(ﬁ)—l)Jaa}

1_¢11

= Anti log (g_t]
(o2

a
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3.7.4 Convolution Outlier Model
The outlier effect on a given series may be either additive or innovative and the effect may be
a combination of the two. By this, we propose the convolution of the additive and innovative

outliers for the multivariate setting as follows:

The innovative and additive models as defined earlier respectively are as follows:
X, =Z, +p(B)o&] forinnovative model
X =2Z, +@&" for additive model
The convolution involved adding both innovative and additive models: This gives
Xic =2 Z, + @& (1+p(B)) (4.18)
For the general case of CO, now considering,

Xot = 021 X1 + B X101 + Ay

Assuming X,._; is contaminated, we have
Xpr = 021 (2Zi-1 + 0 EP A +0(B)) ) + 02 X141 + a (4.19)
2t 21 t—1 ¢ @ 2241t—1 1t .
T
Xor = 20171 + D1 ft( (1 +o(B)) + D22 X1i—1 + ag;

where Z, = o(8)é" and Z,_; = p(B)&"

we then have

Xoe = 2051 0(B)E™ + 0,1 0ED (1 +0(B)) + B2 X1e_1 + ase (4.20)
Xoe = 20219(B)E + D210 &y + D210 E0(B) + B X1y + i,

Xpe = B2z X1 o1 + 202190(BVE + 0210 &7 + D10 E0(B)

Xoe = B3 X1 -1 + 20210 (BIED + 010 (1 + 0(B))
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Xot = Doy Xy p—1 + ¢21ft(T) [2<P(,3) + w (1 + (5)))

Therefore in general, the MO generating mechanism is

Convolution model: X¢;, = ¢;; Xjr—1 + Dy €4 [2<p(ﬁ) + w (1 + (,8)))
3.7.4.1 Derivation of Magnitude of Outlier for CO

Now, specifying X, =d, X, , +d, X, , +a,,

and substituting X, in equation (4.22) gives

27, + 0 (14 9(B)) = 4,22, + 05D W+ () + i, X + 24

20(p)a, + E® 1+ p(B)) = gu2p(Bla s + 02! A+ pB)|+ dopB), + 2,
20(B)e, — 2 20(B)a s — 2y (BN s — & L+ () + h,0s" L+ ()
a, [20(8)~20(B) 4, ~ 1= ¢, 9(B) s — 05 L+ 9 B)) + 4,057 L+ 9( B))

Summing and squaring equation (4.26)

Y a8~ 1 p(B)+ T - p(B)]

2 _ =t
a =

20(8)-20(8) ¢, — 1]

Differentiating equation (4.27) with respect to @ and equating to 0 we have

o0%al _ 21+p(B)+¢u+0(B)
ol [2¢(IB)_ 2¢(ﬁ)¢11 _1]2

n

Y [hop(B) o~ oL+ @(B))+ s L+ 9(B))] =0

t=1

P ¢(ﬂ)gt—1 - a)(1+ (D(ﬂ))+ " a)(l—l— gp(ﬂ)) =0
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a)(l"' (p(ﬂ))_ ¢11a’a)(1+ (D(ﬂ)) =@, ¢(ﬁ)£t—l

o[+ 0(8)) - 4, 0+ p(B)]= b (B s

o = ¢12¢(IB)£I—1
© (1_¢11)(1_¢’(:B))

The corresponding variance is

[P §0(ﬂ)2 O-a2
(1_ ¢11)2 (1_ @(ﬂ))z

V(C‘A)c) =

The test statistic is

@

A =
' Se(d)

21 = di1 (o(ﬁ)ft—l /(1_¢11)(1+(/’(IB))

\/¢122 ?{2) (7;

P ¢(IB)/€I—1

(1_ ¢11)2 (1+ ¢(ﬂ))2

-4,)+ 0(B))

) (1_ ¢11)(1+ §D(ﬂ)) P gD(,B)O'a
_—

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Table 3.1: Summary of Estimates and Test Statistic for the four models when X,

contains outlier

MODELS MAGNITUDE VARIANCE TEST
STATISTIC
1 2

Innovative ( . KH) b o ft__l

1-¢, 1-4, : Oa
Additive o(B)(1+4,1,) ., 2 (Ej , L+4,0,)

S — (e
1-¢, 1-¢, 4 2 $,0,
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Multiplicativ

o Antiloggt[¢n+¢12¢(ﬂ)_l:|

l_¢11

DN

$utd ¢(ﬂ)_1} o

1_¢11

. 0
Anti log [ Anti log (G—IJ

Convolution ¢, o(B) ( 2 ) 2 Ciy
- .)0-ol0) P\ f)

(1-4,)" @ ()]

3.8 Estimation of Magnitude of Outlier When X, Contains an Outlier

We now derive the estimate of magnitude of outliers for the four generating mechanisms

when we consider X as containing an outlier.

3.8.1 Innovative Outlier Model

The innovative outlier-generating model is defined as X, =Z, + o(B8)w&™ with the

9(’3 ) dt and

unobservable free series Z, = ——=<

#(B)
0, =a, +¢(B)wE™ as defined in equation (3.24)

Given a vector model Xi; and Xa; such that X, contains outlier and Xy; is outlier free,
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xlt :¢11 xlt—l +¢12 XZt—l +ay
Kot =021 KXoy 055 Xy g + 8y as defined in equation (3.56)

If X5 contains an outlier, then

Xow =Ly +¢(ﬁ)a)§tm (4.39)
Zoy + (BT = u(Zos + ABNoET )+ X + 2y (4.40)
o(8)
Il that ¢, = 7{B)X, and Z, = >a,
recall tha z{B}X, an ¢[ﬂ]a
#(5)
h _ A7)
where 7(3) o(5)
X, == olp),
()
Then we have
@ T _ (@ (T)j /¢ 4.41
A ﬁ)atw(ﬂ)w; SV ik +o(B)os") |+ 8, 0(B)1 . +ay, (4.42)

0B, _, 0B, , _ m . m
¢(ﬂ) P ¢(,B)a[ ay ¢21§0(ﬂ)w§t +¢22§D(ﬂ) t-1 §D(ﬂ)w§t 4.42)

a, {Q(ﬂ ) g, 20 ; —1} = b B0zl — (B + o (BY

#(B) s (4.43)
Making a; the subject in equation (4.43) we have
o _ 0B — B0t + brp(B) s
- 20,01
#p (4.44)
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Using the least squares theory to differentiate the sum of squares of equation (4.44) and

equating it to zero, thus we have

o, N\ ¢21¢(ﬂ)w t(T) _¢(ﬂ)w ’[(T) +¢22‘P(ﬂ)€t4
242 o(p)

—l1-¢,)-1
; ﬂ)( #) wss)
o> , T _ (M| .n
oo [2¢21¢%)t olPlos ]Z[@l(p(ﬂ)w O —p(Boz! +b,0(B) ]
7(1_%1)_ } -
Lf(ﬂ) (4.46)
Sl Boc® - Bl + gl )]t a7

Since &M isatime indictor where £ =1forall t=T and & =0 otherwise, we have

3 olg(8)—p(B)+ dp(B)Y 0, =0

t=1 t=1

(4.48)
> olo(B)~.0B) = rp B
=) =] (4.49)
a)go(ﬂ) (1=,) = p(B) £, (4.50)
Therefore, the estimator of the magnitude of outlier is
é)l N b liy
1=¢n (4.51)
The variance of the magnitude is
vio)-( % e
1=0x (4.52)

45



vo)=(f ) o

1=¢n (4.53)

With the estimate and its corresponding variance in, then the test statistic for innovative

model is

a (4.54)
3.8.2 Additive Outlier Model

The additive outlier model as defined in equation (3.57)

X, =Z, +w&"

recall that 7, = z(8) X,and ARMA(R, €) is represented as Z, = Mdt

ly=a, +7[(/B)a) t(T)

With Xp =6y Xortho Xaert@u a5 defined in equation (3.56), then

Zt+a)§t(T) = ¢21(Zt+a)§t(T) )"' Por Ky g T8y, (4.54)
%at + a)é:t(T) N ¢21{% + wé:tm } + ¢y, @(ﬂ)gt +ay (4.55)
Hence

6(8) } {e(ﬁ) (T)} )
| —<—1{=¢y| = t 22 0, — oG,

Lé(ﬁ) 7 M M .56
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HB), e, — ™
@{ o.8) £, J)@z P(B) — W
ip)_,

0(5) (4.57)

a =

Summing its square over n sample we have

i @{%3 + g J + 65, p(B), — 05

dai=y 5)

t=1

o05) (4.58)

Differentiating (4.58) with respect to @ and setting to zero, we obtain the magnitude of

outlier in the model as

oxra’ 2
—= ¢21( +(0§(T)j+¢22¢)(ﬂ)ft — t(T) :0
0w, (¢() 1j Z
( (4.59)
i% (zg—ﬂ J+Z¢22(P ﬂ)@t ZCO =0
. P (4.60)
¢11(MJ + P+ ¢12¢(,B)ft —0=0
o(8)
a)(l_ ¢21) = P, M + ¢2z(ﬂ(ﬂ)£t
¢(ﬂ) (4.61)
o(p)
¢22(p(,3)
o )’
G (4.62)
&, = (P(ﬂ)(l"' b2 ft)
F (4.63)

The estimate of its variance is
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(l_ ¢21)2 (4_64)

— ¢22 ]2 (Zj 2
=|——| ¢ B|o.
[1_¢21 (4.65)

With the derived estimates of the mean and its variance of the magnitude, the test statistic for

testing the presence of outlier is constructed as follows

ﬂ, — (1+ ¢22 gt)
$, 0, (4.66)

3.8.3 Multiplicative Outlier Model

Outlier may have multiplicative effect on a series as earlier stated; this is developed as

follows for a multivariate situation.

X, =Z o0&l (4.67)

Now, specifying two variable-vector autoregressive equations as defined in equation (3.56)

Xlt = ¢11 Xlt—l + ¢12 X2t—1 +a,

Xoo =y KXo s+ Gy Xy 1+, and considering when X, contains outlier
Assuming multiplicative model, the outlier free series is Z, = ﬂa =p(B)a
t ¢(ﬂ) t t

By taking the logarithm of both sides and further simplification, we have
log (z(8)* )= log (z(8)* o, +log 2 (4.68)
and with a, = log [n(ﬁ)‘l]ft’ Qf =logw&” 4 a =6

then
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Z, wftm =¢, 2, a)ftm + Py Xyt

log Z, +log w&("” = ¢,, [Iog Z, , +long w&™ ]+ by Xy + 2,
. 0

Since Z=—7-L = ¢(f)a,

log Z, = log ¢()a,
Hence,

logp(B)a, +log @ = ¢y, [log p()]a, , +l0g W& + ¢y, P(B)E, +2,
If we let Q7 =logew&, and ¢, =log o(S)a, ,we have
0+ =4, (0, +QD )+, 0(B) 0, +a,
0 4+00 =g, 0 +6,, 00 +p,,0(B) 0, +a,
a, =0, +Q ~4,,0 =9, Q" ~4,0(p)¢,
By summing the square of the equation (4.74) over sample size we have

Zatz = Z[Et +QET) @l _¢11Q§T) _¢22(/’(IB)€t ]2
t=1 t=1

Differentiating equation (4.75) with respect to €, and equating it to O we have

00 ~ l, [(¢21 +, (/7(,5)—1]
t l_¢21

recall that Q" = log w& " since &M =1 in the presence of outlier ,we have
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(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)



l, [¢21 + ¢y, @(ﬂ)_l]
1=¢y (4.77)

log w,, =

L, [¢21 + o, (D(IB)_]-]
1-9, (4.78)

o,, = Anti log

Its variance is

P21+ o (/7(:8)_1} o2

V(®, )= Anti Iog{ g z
Y2

(4.79)
The test statistic is
1)
A = m 4.80
= Se(a) (4.80)
([,
A; = Anti log 5 (4.81)

3.8.4 Convolution Outlier Model

The outlier effect on a given series may neither be additive or innovative and the effect may
be a combination of the two. By this we produce the convolution of the additive and

innovative outliers as follows:

Xy =Z, +o(B)o&] innovative
X =Z, +0&lD additive

The convolution involved adding both innovative and additive models which gives
Xec =22, +a)§tT (1+§D(ﬁ)) (4.82)
Now given
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X 2t = ¢21 X 2tat ¢22 Xlt—l +ay,

(4.83)
2Z, + wégt(T) (1+ ¢(ﬂ)) = ¢21(2 Z,+ a)gt(T) (1+ (/7(13)))+ Poy Xorg 2y, (4.84)
8 [20(8)-20(B) g ~1]= b, (B — 05" 1+ () + 4,057 1+ 0 B)) (4.85)
Summing the square of the equation (4.85) over sample size, we have
Yol - 02l W 0B+ o] (- ()]
at2 — t=1 5
= 20(8)~20(8) ¢, ~1] (4.86)

Differentiating equation (4.86) with respect to o and equating to zero

0xal _ 201+¢(B))+ L+ (B))

R 7 R e o
S [4urBY o - ol o))+ s ol ()] =0
= (4.88)
b2 DB s~ L+ 9(B))+ hy (L4 9(B))= 0 (4.89)
w [(1+ (0(:8))_ P (1+ (P(ﬂ))]: Py, ¢(ﬁ)€ t-1 (4.90)
O = P2 Q)(ﬂ)gt—l
© (1-¢)(1-0(B)) (4.92)
The corresponding variance is
P2 (0(2) O':
\ (C‘A)c ) = 2 2
L-¢,)" @-0(B) (4.92)
The test statistic is
PR
* Se(a) (4.93)
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Jo = ¢21§0(ﬂ)£t—1 /(1_¢21)(1+(0(:B)) (4.94)
Jéiol Botla . 6ol

a (4.95)

52



Table 3.2: Summary of Estimates and Test Statistic for the four models when Xy

contains outlier

MODEL MAGNITUDE VARIANCE TEST
STATISTIC
(4)
B 2
Innovative - i/ﬁzz ‘0 by, o
P 1-¢,, Et_—l
O-a
Additive o(B)A+¢,,0,) by V' (2)
1~ ¢ 1- ¢, go(ﬂ jaa (L5t
$2, 0,
Multiplicati — ’
ultuplicative Anti log ft[¢21 ‘;fz;(o(ﬂ) 1] Anti |Og|:¢21 +]¢-522 ¢(ﬂ)—1} o ,
21 o Anti log (—‘J
O-a
Convolution b, 9(B)!,, y ({2) p Ll
(l—¢21)(1—(p(,3)) ” ’ d

(1 \ ¢21)2 (1 - ‘P(ﬂ))z

By comparing the test statistic value A with some critical value C (Table 3.3), Tsay (1988) the

existence of outlier can be determined. Comparing A with the critical value C, if A< C, no

significant disturbance is found. On the other hand, if A >C an outlier is detected.
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Table 3.3 Default Critical VValues for Outlier Identification

Number of Observations Outlier Critical Value (C)
1 1.96
2 2.24
3 2.44
4 2.62
5 2.74
6 2.84
7 2.92
8 2.99
9 3.04
10 3.09
11 3.13
12 3.16
24 3.42
36 3.55
48 3.63
72 3.73
96 3.80
120 3.85
144 3.89
168 3.92
192 3.95
216 3.97
240 3.99
264 4.01
288 4.03
312 4.04
336 4.05
360 4.07

Source: Tsay Critical Values (1988)
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CHAPTER FOUR

ANALYSIS AND INTERPRETATION OF DATA

4.0 Introduction

In this section, analysis of both simulated and real data sets and their results are presented.
From the derived outlier generating mechanisms in chapter three and with the estimation of
the magnitudes of outliers and their variances, the test statistics constructed were used to

detect the existence of outliers in both the generated series and real data.

Simulated data used was assumed to be normally distributed while contaminated observations
assumed a uniform distribution with interval {0,1}. The simulated data were of varying sizes
of 10, 50, and 100. Also in this section, the results obtained from the analysis of real data sets
of Gross Domestic Product (GDP), Consumer Price Index (CPI), Deposits and Loans are

presented.
Statistical software R3.0.1 is used in analysing the data.

The results and outcomes for the four models i.e. Innovative, Additive, Multiplicative, and

Convolution models are summarised below.
4.1 Analysis of Simulated Data when X;; Contains Outliers

The results of the four models in terms of their outlier detection performance are tabulated

below. The results from the simulation experiment are firstly tabulated.
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Table 4.1: Innovative Model Detection Performance

Sample size No of outliers | No of  outliers | % Detected
Injected Detected

10 2 None 0

50 5 2 40

100 8 2 25

Source: Computer Output
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Table 4.2: Additive Model Detection Performance

Sample size No of outliers [ No of outliers | % Detected
injected Detected

10 2 1 50

50 5 5 100

100 8 8 100

Source: Computer Output
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Table 4.3: Multiplicative Model Detection Performance

Sample size No of outliers|No of outliers [ % Detected
injected Detected

10 2 2 100

50 5 4 80

100 8 5 62.5

Source: Computer Output
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Table 4.4: Convolution Model Detection Performance

Sample size No of outliers | No of outliers | % Detected
injected Detected

10 2 2 100

50 5 5 100

100 8 8 100

Source: Computer Output
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4.1.1 Analysis of Simulated Data when X, Contains Outliers

The results of the four models in terms of their outlier detection performance are tabulated

below.

Table 4.5: Innovative Model Detection Performance case

Sample size No of outliers Injected No of outliers | % Detected
Detected

10 2 None 0

50 5 1 20

100 8 3 375

Source: Computer Output
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Table 4.6: Additive Model Detection Performance

Sample size No of outliers Injected | No of Outliers | % Detected
Detected

10 2 1 50

50 5 3 60

100 8 6 75

Source: Computer Output
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Table 4.7: Multiplicative Model Detection Performance

Sample size No of outliers | No of Outliers | % Detected
Injected Detected

10 2 2 100

50 5 3 60

100 8 4 50

Source: Computer Output
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Table 4.8: Convolution Model Detection Performance

Sample size No of Outliers | No of Outliers | % Detected
Injected Detected

10 2 2 100

50 5 4 80

100 8 6 75

Source: Computer Output
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Table 4.9: Summary of Result on Detection Rate of the Models on Simulated Data when

X, contains outliers

n=10 n=50 n=100
Model Type | No of No of % of No of No of % of No of No of % of
outliers | outliers | outliers | outliers | outliers | outliers | outliers | outliers | outliers
injected | Detected | detected | injected | detected | detected | injected | detected | detected
Innovative 2 0 0% 5 2 40% 8 2 25%
Additive 2 1 50% 5 5 100% 8 8 100%
Multiplicative | 2 2 100% 5 4 80% 8 5 80%
Convolution | 2 2 100% 5 5 100% 8 8 100%
Source: Tables 4.1- 4.4
Table 4.10: Summary of Result on Detection Rate of the Models on Simulated Data When X,,
Contains Outliers
n=10 n=50 n=100
| Model Type | Noof |[Noof [ %of Noof |Noof |%of Noof [Noof |%of
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outliers | outliers | outliers | outliers | outliers | outliers | outliers | outliers | outliers

injected | Detected | detected | injected | detected | detected | injected | detected | detected
Innovative 2 0 0% 5 1 20% 8 3 37.5%
Additive 2 1 50% 5 3 60% 8 6 75%
Multiplicative | 2 2 100% 5 3 60% 8 4 50%
Convolution | 2 2 100% 5 5 100% 8 8 100%

Source: Tables 4.5- 4.8
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The convolution model from the summary tables of (4.9) and (4.10) is more sensitivity to
outlying observations than the other three models. The pattern of detection is not different

when we consider X;; and Xy separately as containing outliers.
4.2 Detection of Outlier in Real Data
Introduction

In order to investigate the performance of the proposed models, two different real data were
used. The first pair is GDP and CPI and the second pair is Deposit and Loan. The data was
obtained from the Annual statistical bulletin of the Central bank of Nigeria, 2011.

4.2.1 The Assumed Model
The vector autoregressive model is given as X, = 011 Xq;—1 + 012X2:-1 (4.96)
Where X, is the current value of GDP
X1¢—1 1s the past value of GDP
X,;_1 s the past value of CPI
@11 and @, are the coefficients of the model to be estimated
4.2.2 VAR Modelling of GDP and CPI

The estimated VAR model via the use of statistical package R is as follows

X]_t = 1.02865 X]_t,]_ + 0.62087 th,]_
Standard error (0.01229) (0.87628)
t-value (83.813) (0.709)

P - value (2 X 10719 (0.480)

Detection performance of the four generating models on GDP and CPI data are shown on the

tables 4.11 to 4.14.

Table 4.11: Detection Performance of Innovative Model on GDP and CPI Data
| GbP | cPl | (&) \ T | Remarks |
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11.24
11.96
11.74
12.68
11.42
12.34
12.18
13.13
12.23
13.36
13.23
14.29
13.86
15.02
14.99
15.75
16.65
17.12
17.10
18.05
15.07
17.46
17.42
18.39
25.00
26.45
26.42
27.36
32.23
34.96
35.33
36.56
53.26
54.38
53.79
55.41
65.93
67.10
66.26
68.26
76.45
78.24
77.32
80.13
133.93
133.26
130.71
134.72
166.75
171.23

63.1
63.9
64.6
65.8
67.9
70.9
70.5
72.1
73.1
73.6
72.6
72.9
74.2
75.7
76.3
81.1
83.5
82.2
83.9
85.6
87.1
87.8
85.2
84.9
88.0
89.4
89.6
91.5
92.0
92.3
97.0
96.2
95.8
92.5
95.6
95.2
97.3
95.9
94.8
99.1
100.0
105.2
109.5
108.1
113.4
114.4
115.9
117.9
119.1
119.7

22.6113650
18.6573683
20.6425816
12.5790522
15.0541890
6.9987988
10.6966899
2.9081796
6.8013567
2.4526353
7.3759771
2.7455734
4.9030520
-0.9426245
0.1923962
-71.5726541
-12.8521915
-12.0282753
-12.2586593
-25.8590499
-13.5844287
-21.5424258
-14.4191792
1.3131528
-18.4227708
-24.9093581
-22.6121455
-15.2230304
-22.2500642
-29.3707479
-34.9835355
8.2414729
-34.6542245
-33.8218265
-33.0019193
-8.3066725
-38.0302202
-41.2163021
-31.5925616
-22.1969518
-41.7140367
-57.9655457
-55.0174012
85.4678691
-75.4292968
-82.1625527
-66.6926646
5.6500031
-73.6093948
-88.7242019

0.321803170
0.265530200
0.293783600
0.179024083
0.214250035
0.099606355
0.152234450
0.041388984
0.096796374
0.034905713
0.104974326
0.039074784
0.069779851
-0.013415358
0.002738168
-0.107773419
-0.182911380
-0.171185469
-0.174464277
-0.368023967
-0.193332522
-0.306590111
-0.205212625
0.018688687
-0.262191427
-0.354508028
-0.321814279
-0.216652973
-0.316661165
-0.418002176
-0.497882929
0.117291994
-0.493196201
-0.481349578
-0.469680723
-0.118219910
-0.541243107
-0.586587174
-0.449622855
-0.315905274
-0.593670894
-0.824961093
-0.783003332
1.216371999
-1.073503827
-1.169330996
-0.949164764
0.080410401
-1.047603124
-1.262715872

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
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170.64
175.25
211.79
225.29
227.72
235.07
235.07
475.14
481.12
493.98
670.62
675.14
670.70
686.26
686.35
700.53
699.92
715.17
647.96
678.29
685.02
697.17
777.02
799.25
801.41
816.33
1165.09
1144.27
1124.63
1148.14
1164.24
1182.58
1181.00
1197.27
1625.55
1735.60
1792.35
1758.88
2039.52
2127.69
2171.58
2148.24
2631.26
2592.27
2985.54
3202.00
3169.61
3399.35
3924.77
4978.50

116.1
116.4
119.8
120.0
121.2
122.2
123.8
126.6
127.6
129.7
130.8
132.8
135.0
137.3
139.9
142.0
152.9
156.7
153.9
150.2
146.9
144.7
144.9
147.2
151.3
154.6
154.7
154.4
157.5
162.5
163.5
159.4
158.3
157.1
156.4
157.6
159.2
161.1
161.9
164.3
165.1
169.2
172.4
175.5
179.4
182.3
183.5
184.6
185.1
186.9

-68.5054107
17.2629028
-53.8165914
-85.2378150
-74.0992812
-96.2970540
552.3621033
-106.1447848
-89.6274389
350.2009229
-132.3757374
-160.4063098
-109.5034824
-156.5603922
-122.7184249
-167.4861923
-142.7692094
-374.0851356
-99.5000821
-159.6559806
-139.9146342
46.5296062
-116.3477677
-176.4037879
-148.8580771
750.1930238
-279.8235308
-274.4982751
-161.1198042
-191.4746653
-188.3331247
-236.8987028
-186.4925287
932.1238016
36.5958886
-118.5925082
-370.4825358
481.1571226
-64.2113899
-195.2475829
-382.4142356
986.3419219
-472.9035779
697.7065541
180.8497330
-516.0370280
195.6664848
978.1905297 \
2369.9105068
-3314.9069374

-0.974963624
0.245684276
-0.765913502
-1.213097887
-1.054575150
-1.370492108
7.861174064
-1.510644239
-1.275570670
4.984032026
-1.883961096
-2.282890001
-1.558444959
-2.228155203
-1.746518984
-2.383650332
-2.031880173
-5.323950264
-1.416077353
-2.272211375
-1.991254083
0.662205701
-1.655852290
-2.510564852
-2.118536460
10.676688185
-3.982426509
-3.906637888
-2.293044396
-2.725052395
-2.680342237
-3.371523729
-2.654147019
13.265912723
0.520829812
-1.687799262
-5.272678346
6.847790372
-0.913851457
-2.778748263
-5.442489361
14.037540751
-6.730326573
9.929704871
2.573839194
-7.344198446
2.784710042
13.921530778
33.728380168
-47.177495135

ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND

ND
ND

ND
ND

zZgZ
Uo0U50U§0000
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3968.28
4426.08
4986.49
5165.74
4740.81
4853.84
5524.36
5538.29
5535.96
5720.25
6461.89
6578.22
5460.76
5872.69
6608.44
6852.34
7426.52
8043.20
9055.63
9459.40
8311.23
9170.10
10013.76
10048.57

189.3
191.7
196.4
199.3
120.4
121.8
122.6
127.7
128.3
129.6
130.6
138.3
139.5
140.4
142.4
144.7
146.7
149.3
151.2
154.6
157.5
159.7
160.3
164.9

742.5847865
981.3571638
-104.2784884
-1762.3491124
-136.8234783
1364.6061225
-470.3112890
-524.1016452
-18.5965938
1477.0825951
-278.8314232
-3648.3458060
586.0113008
1431.0597137
36.0207076
909.2988607
976.6092929
1998.0382444
264.7342383
-3983.0791809
1546.7543080
1435.0210214
-826.1272233

10.568408348
13.966598066
-1.484083256
-25.081614129
-1.947260996
19.420967141
-6.693433321
-7.458973444
-0.264665261
21.021723464
-3.968306912
-51.922970921
8.340066799
20.366729431
0.512643881
12.941069957
13.899026741
28.435923342
3.767676884
-56.686870019
22.013285808
20.423106451
-11.757377747

z z zZgZ zZgZ
UOUUEU00050005§05§00050500

Note: D=Declared, ND= Not Declared

From the above Table, 29 observations were identified as outliers by the innovative model.
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Table 4.12: Detection Performance of Multiplicative Model on GDP and CPI Data

GDP CPI () T Remarks
11.24 63.1 2.017069e-117 NA ND
11.96 63.9 5.139871e-97 NA ND
11.74 64.6 2.920382e-107 NA ND

12.68 65.8 1.203955e-65 NA ND
11.42 67.9 2.026029e-78 NA ND
12.34 70.9 7.582473e-37 NA ND
12.18 70.5 6.241918e-56 NA ND
13.13 72.1 9.798034e-16 NA ND
12.23 73.1 7.921225e-36 NA ND
13.36 73.6 2.198687e-13 NA ND
13.23 72.6 8.574854e-39 NA ND
14.29 72.9 6.766058e-15 NA ND
13.86 74.2 4.963375e-26 NA ND
15.02 75.7 7.324915e+04 NA ND
14.99 76.3 1.016389¢-01 NA ND
15.75 81.1 1.207276e+39 NA ND
16.65 83.5 2.133229e+66 NA ND
17.12 82.2 1.193653e+62 NA ND
17.10 83.9 1.844463e+63 NA ND
18.05 85.6 2.859549e+133 NA ND
15.07 87.1 1.282478e+70 NA ND
17.46 87.8 1.508611e+111 NA ND
17.42 85.2 2.606898e+74 NA ND
18.39 84.9 1.670833e-07 NA ND

25.00 88.0 1.197598e+95 NA ND

26.45 89.4 3.589393e+128 NA ND

26.42 89.6 5.003890e+116 NA ND

27.36 91.5 3.670541e+78 NA ND
32.23 92.0 6.770760e+114 NA ND

34.96 92.3 3.800703e+151 NA ND
35.33 97.0 3.523468e+180 NA ND

36.56 96.2 2.927377e-43 NA ND

53.26 95.8 7.037612e+178 NA ND

54.38 925 3.560344e+174 NA ND
53.79 95.6 2.089404e+170 NA ND
55.41 95.2 7.413290e+42 NA ND
65.93 97.3 1.864851e+196 NA ND
67.10 95.9 5.172904e+212 NA ND
66.26 94.8 1.112886e+163 NA ND
68.26 99.1 3.601877e+114 NA ND
76.45 100.0 1.916458e+215 NA ND
78.24 105.2 1.429280e+299 NA ND
77.32 109.5 8.709662e+283 NA ND
80.13 108.1 0.000000e+00 NA ND
133.93 113.4 Inf NA ND
133.26 114.4 Inf NA ND
130.71 115.9 Inf NA ND
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134.72
166.75
171.23
170.64
175.25
211.79
225.29
227.72
235.07
235.07
475.14
481.12
493.98
670.62
675.14
670.70
686.26
686.35
700.53
699.92
715.17
647.96
678.29
685.02
697.17
777.02
799.25
801.41
816.33
1165.09
1144.27
1124.63
1148.14
1164.24
1182.58
1181.00
1197.27
1625.55
1735.60
1792.35
1758.88
2039.52
2127.69
2171.58
2148.24
2631.26
2592.27
2985.54
3202.00
3169.61

117.9
119.1
119.7

116.1
116.4
119.8

120.0

121.2
122.2

123.8

126.6

127.6

129.7

130.8

132.8

135.0

137.3

139.9

142.0

152.9

156.7

153.9

150.2

146.9

144.7

144.9

147.2

151.3

154.6

154.7

154.4

157.5

162.5

163.5

159.4
158.3

157.1

156.4

157.6

159.2

161.1

161.9
164.3

165.1

169.2

172.4

175.5

179.4

182.3

183.5

6.931504e-30

Inf

Inf

Inf

8.084754e-90

5.530023e+277

Inf

Inf

Inf
0.000000e+00

Inf

Inf

0.000000e+00

Inf

Inf

Inf

Inf

Inf

Inf

Inf

Inf

Inf

Inf

Inf

7.324314e-241

Inf

Inf

Inf

0.000000e+00

Inf

Inf

Inf

Inf

Inf

Inf

Inf

0.000000e+00

1.354615e-189

Inf

Inf

0.000000e+00

Inf

Inf

Inf

0.000000e+00

Inf

0.000000e+00

0.000000e+00
Inf

0.000000e+00

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
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3399.35 184.6 0.000000e+00 NA ND
3924.77 185.1 0.000000e+00 NA ND
4978.50 186.9 Inf NA ND
3968.28 189.3 0.000000e+00 NA ND

4426.08 191.7 0.000000e+00 NA ND
4986.49 196.4 Inf NA ND
5165.74 199.3 Inf NA ND
4740.81 120.4 Inf NA ND
4853.84 121.8 0.000000e+00 NA ND
5524.36 122.6 Inf NA ND
5538.29 127.7 Inf NA ND

5535.96 128.3 9.449216e+95 NA ND
5720.25 129.6 0.000000e+00 NA ND
6461.89 130.6 Inf NA ND
6578.22 138.3 Inf NA ND

5460.76 139.5 0.000000e+00 NA ND

5872.69 140.4 0.000000e+00 NA ND

6608.44 142.4 1.259722¢-186 NA ND
6852.34 144.7 0.000000e+00 NA ND
7426.52 146.7 0.000000e+00 NA ND
8043.20 149.3 0.000000e+00 NA ND
9055.63 151.2 0.000000e+00 NA ND
9459.40 154.6 Inf NA ND
8311.23 157.5 0.000000e+00 NA ND
9170.10 159.7 0.000000e+00 NA ND
10013.76 160.3 *Inf NA ND
10048.57 164.9

*Inf. Indicates infinite value.
From the table above, no outlier was detected Multiplicative model as a result of non

multiplicative nature of the data.
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Table 4.13: Detection Performance of Convolution Model on GDP and CPI Data

GDP CPI (o) T Remarks
11.24 63.1 -43.3445592 -0.321803170 ND
11.96 63.9 -35.7649972 -0.265530200 ND
11.74 64.6 -39.5705258 -0.293783600 ND
12.68 65.8 -24.1132491 -0.179024083 ND
11.42 67.9 -28.8579300 -0.214250035 ND
12.34 70.9 -13.4162555 -0.099606355 ND
12.18 70.5 -20.5048792 -0.152234450 ND
13.13 72.1 -5.5747968 -0.041388984 ND
12.23 73.1 -13.0377714 -0.096796374 ND
13.36 73.6 -4.7015471 -0.034905713 ND
13.23 72.6 -14.1392824 -0.104974326 ND
14.29 72.9 -5.2630908 -0.039074784 ND
13.86 74.2 -9.3988411 -0.069779851 ND
15.02 75.7 1.8069516 0.013415358 ND
14.99 76.3 -0.3688114 -0.002738168 ND
15.75 81.1 14.5162999 0.107773419 ND
16.65 83.5 24.6368398 0.182911380 ND
17.12 82.2 23.0574444 0.171185469 ND
17.10 83.9 23.4990761 0.174464277 ND
18.05 85.6 49.5701663 0.368023967 ND
15.07 87.1 26.0404923 0.193332522 ND
17.46 87.8 41.2954703 0.306590111 ND
17.42 85.2 27.6406562 0.205212625 ND
18.39 84.9 -2.5172310 -0.018688687 ND
25.00 88.0 35.3152887 0.262191427 ND
26.45 89.4 47.7496670 0.354508028 ND
26.42 89.6 43.3460556 0.321814279 ND
27.36 91.5 29.1815883 0.216652973 ND
32.23 92.0 42.6519685 0.316661165 ND
34.96 92.3 56.3018696 0.418002176 ND
35.33 97.0 67.0612291 0.497882929 ND
36.56 96.2 -15.7983832 -0.117291994 ND
53.26 95.8 66.4299608 0.493196201 ND
54.38 92,5 64.8343064 0.481349578 ND
53.79 95.6 63.2625960 0.469680723 ND
55.41 95.2 15.9233668 0.118219910 ND
65.93 97.3 72.9015314 0.541243107 ND
67.10 95.9 79.0090493 0.586587174 ND
66.26 94.8 60.5609463 0.449622855 ND
68.26 99.1 42.5501553 0.315905274 ND
76.45 100.0 79.9631751 0.593670894 ND
78.24 105.2 111.1162919 0.824961093 ND
77.32 109.5 105.4648851 0.783003332 ND
80.13 108.1 -163.8365097 -1.216371999 ND
133.93 113.4 144.5932004 1.073503827 ND
133.26 114.4 157.5004269 1.169330996 ND
130.71 115.9 127.8456280 0.949164764 ND
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134.72
166.75
171.23
170.64
175.25
211.79
225.29
227.72
235.07
235.07
475.14
481.12
493.98
670.62
675.14
670.70
686.26
686.35
700.53
699.92
715.17
647.96
678.29
685.02
697.17
777.02
799.25
801.41
816.33
1165.09
1144.27
1124.63
1148.14
1164.24
1182.58
1181.00
1197.27
1625.55
1735.60
1792.35
1758.88
2039.52
2127.69
2171.58
2148.24
2631.26
2592.27
2985.54
3202.00
3169.61

117.9
119.1
119.7
116.1
116.4
119.8
120.0
121.2
122.2
123.8
126.6
127.6
129.7
130.8
132.8
135.0
137.3
139.9
142.0
152.9
156.7
153.9
150.2
146.9
1447
144.9
147.2
151.3
154.6
154.7
154.4
157.5
162.5
163.5
159.4
158.3
157.1
156.4
157.6
159.2
161.1
161.9
164.3
165.1
169.2
172.4
175.5
179.4
182.3
183.5

-10.8306993
141.1045631
170.0786942
131.3205479
-33.0918949
103.1630085
163.3955105
142.0436445
184.5953736

203.4728519
171.8101425
-671.3130623
253.7559322
307.4887700
209.9112632
300.1163887
235.2434738
321.0604579
273.6795619
717.0975902
190.7353764
306.0504364
268.2075214
-89.1943179
223.0313261
338.1549256
285.3515369

-1438.0726696

536.4040443
526.1958653
308.8564936
367.0448462
361.0227113
454.1198587
357.4944049

-70.1520083
227.3343520
710.1916338
-922.3478302
123.0891810
374.2772911
733.0639492

-1890.7551999

906.5263062

-1337.4594205

-346.6775218
989.2104071
-375.0802997

1058.8432834

1786.8224860

-0.080410401
1.047603124
1.262715872
0.974963624
-0.245684276
0.765913502
1.213097887
1.054575150
1.370492108
-7.861174064
1.510644239
1.275570670
-4.984032026
1.883961096
2.282890001
1.558444959
2.228155203
1.746518984
2.383650332
2.031880173
5.323950264
1.416077353
2.272211375
1.991254083
-0.662205701
1.655852290
2.510564852
2.118536460
10.676688185
3.982426509
3.906637888
2.293044396
2.725052395
2.680342237
3.371523729
2.654147019
13.265912723
-0.520829812
1.687799262
5.272678346
-6.847790372
0.913851457
2.778748263
5.442489361
14.037540751
6.730326573
-9.929704871
-2.573839194
7.344198446
-2.784710042
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3399.35
3924.77
4978.50
3968.28
4426.08
4986.49
5165.74
4740.81
4853.84
5524.36
5538.29
5535.96
5720.25
6461.89
6578.22
5460.76
5872.69
6608.44
6852.34
7426.52
8043.20
9055.63
9459.40
8311.23
9170.10
10013.76
10048.57

184.6
185.1
186.9
189.3
191.7
196.4
199.3
120.4
121.8
122.6
127.7
128.3
129.6
130.6
138.3
139.5
140.4
142.4
1447
146.7
149.3
151.2
154.6
157.5
159.7
160.3
164.9

-1875.1294957
-4542.9688375
6354.4673406
-1423.4881589
-1881.1997334
199.8952796
3378.3119976
262.2819708
-2615.8637941
901.5570520
1004.6697691
35.6484963
-2831.4740918
534.5022367
6993.6486029
-1123.3466708
-2743.2511335
-69.0494227
-1743.0685151
-1872.0983646
-3830.1131854
-507.4788232
7635.3113522
-2965.0303673
-2750.8447103
1583.6337365

-13.921530778
-33.728380168
47.177495135
-10.568408348
-13.966598066
1.484083256
25.081614129
1.947260996
-19.420967141
6.693433321
7.458973444
0.264665261
-21.021723464
3.968306912
51.922970921
-8.340066799
-20.366729431
-0.512643881
-12.941069957
-13.899026741
-28.435923342
-3.767676884
56.686870019
-22.013285808
-20.423106451
11.757377747

z z z zgZ z52Z
SOUUUE0UU05U00U0505000505§00000

From the above table, 31 observations were identified as outliers by the convolution model.
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Table 4.14: Detection Performance of Additive Model on GDP and CPI Data

GDP CPI (ca) T Remarks
11.24 63.1 8.333881e+00 0.321803170 ND
11.96 63.9 6.876555e+00 0.265530200 ND
11.74 64.6 7.608246e+00 0.293783600 ND
12.68 65.8 4.636267e+00 0.179024083 ND
11.42 67.9 5.548529e+00 0.214250035 ND
12.34 70.9 2.579550e+00 0.099606355 ND
12.18 70.5 3.942484e+00 0.152234450 ND
13.13 72.1 1.071869e+00 0.041388984 ND
12.23 73.1 2.506779e+00 0.096796374 ND
13.36 73.6 9.039689¢-01 0.034905713 ND
13.23 72.6 2.718567e+00 0.104974326 ND
14.29 729 1.011937e+00 0.039074784 ND
13.86 74.2 1.807120e+00 0.069779851 ND
15.02 75.7 -3.474235e-01 -0.013415358 ND
14.99 76.3 7.091156e-02 0.002738168 ND
15.75 81.1 -2.791057e+00 -0.107773419 ND
16.65 83.5 -4.736938e+00 -0.182911380 ND
17.12 82.2 -4.433267e+00 -0.171185469 ND
17.10 83.9 -4.518180e+00 -0.174464277 ND
18.05 85.6 -9.530882e+00 -0.368023967 ND
15.07 87.1 -5.006819e+00 -0.193332522 ND
17.46 87.8 -7.939902e+00 -0.306590111 ND
17.42 85.2 -5.314483e+00 -0.205212625 ND
18.39 84.9 4.839893e-01 0.018688687 ND
25.00 88.0 -6.790089e+00 -0.262191427 ND
26.45 89.4 -9.180853e+00 -0.354508028 ND
26.42 89.6 -8.334169e+00 -0.321814279 ND
27.36 91.5 -5.610759e+00 -0.216652973 ND
32.23 92.0 -8.200716e+00 -0.316661165 ND
34.96 92.3 -1.082519e+01 -0.418002176 ND
35.33 97.0 -1.289390e+01 -0.497882929 ND
36.56 96.2 3.037563e+00 0.117291994 ND
53.26 95.8 -1.277252e+01 -0.493196201 ND
54.38 92.5 -1.246573e+01 -0.481349578 ND
53.79 95.6 -1.216353e+01 -0.469680723 ND
55.41 95.2 -3.061594e+00 -0.118219910 ND
65.93 97.3 -1.401682e+01 -0.541243107 ND
67.10 95.9 -1.519111e+01 -0.586587174 ND
66.26 94.8 -1.164408e+01 -0.449622855 ND
68.26 99.1 -8.181141e+00 -0.315905274 ND
76.45 100.0 -1.537456e+01 -0.593670894 ND
78.24 105.2 -2.136439%¢e+01 -0.824961093 ND
77.32 109.5 -2.027779e+01 -0.783003332 ND
80.13 108.1 3.150093e+01 1.216371999 ND
133.93 113.4 -2.780101e+01 -1.073503827 ND
133.26 114.4 -3.028269e+01 -1.169330996 ND
130.71 115.9 -2.458095e+01 -0.949164764 ND
134.72 117.9 2.082424e+00 0.080410401 ND
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166.75
171.23
170.64
175.25
211.79
225.29
227.72
235.07
235.07
475.14
481.12
493.98
670.62
675.14
670.70
686.26
686.35
700.53
699.92
715.17
647.96
678.29
685.02
697.17
777.02
799.25
801.41
816.33
1165.09
1144.27
1124.63
1148.14
1164.24
1182.58
1181.00
1197.27
1625.55
1735.60
1792.35
1758.88
2039.52
2127.69
2171.58
2148.24
2631.26
2592.27
2985.54
3202.00
3169.61
3399.35

119.1
119.7
116.1
116.4
119.8
120.0
121.2
122.2
123.8
126.6
127.6
129.7
130.8
132.8
135.0
137.3
139.9
142.0
152.9
156.7
153.9
150.2
146.9
1447
144.9
147.2
151.3
154.6
154.7
154.4
157.5
162.5
163.5
159.4
158.3
157.1
156.4
157.6
159.2
161.1
161.9
164.3
165.1
169.2
172.4
175.5
179.4
182.3
183.5
184.6

-2.713025e+01
-3.270112e+01
-2.524907e+01
6.362596e+00
-1.983521e+01
-3.141614e+01
-2.731081e+01
-3.549225e+01
2.035844e+02
-3.912183e+01
-3.303403e+01
1.290737e+02
-4.878979e+01
-5.912103e+01
-4.035975e+01
-5.770354e+01
-4.523039%e+01
-6.173046e+01
-5.262051e+01
-1.378767e+02
-3.667279e+01
-5.884448e+01
-5.156840e+01
1.714944e+01
-4.288235e+01
-6.501722e+01
-5.486469e+01
2.764990e+02
-1.031347e+02
-1.011720e+02
-5.938400e+01
-7.057190e+01
-6.941403e+01
-8.731386e+01
-6.873564e+01
3.435533e+02
1.348816e+01
-4.370969e+01
-1.365489e+02
1.773403e+02
-2.366642e+01
-7.196249e+01
-1.409466e+02
3.635365e+02
-1.742983e+02
2.571540e+02
6.665587e+01
-1.901960e+02
7.211689e+01
3.605321e+02

-1.047603124
-1.262715872
-0.974963624
0.245684276

-0.765913502
-1.213097887
-1.054575150
-1.370492108
7.861174064

-1.510644239
-1.275570670
4.984032026

-1.883961096
-2.282890001
-1.558444959
-2.228155203
-1.746518984
-2.383650332
-2.031880173
-5.323950264
-1.416077353
-2.272211375
-1.991254083
0.662205701

-1.655852290
-2.510564852
-2.118536460
10.676688185
-3.982426509
-3.906637888
-2.293044396
-2.725052395
-2.680342237
-3.371523729
-2.654147019
13.265912723
0.520829812

-1.687799262
-5.272678346
6.847790372

-0.913851457
-2.778748263
-5.442489361
14.037540751
-6.730326573
9.929704871

2.573839194

-7.344198446
2.784710042

13.921530778

ND
ND
ND
ND
ND
ND
ND
ND

ND
ND

ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND

ND
ND

ND
ND

pd =z
OgUPgUPOO0U
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3924.77
4978.50
3968.28
4426.08
4986.49
5165.74
4740.81
4853.84
5524.36
5538.29
5535.96
5720.25
6461.89
6578.22
5460.76
5872.69
6608.44
6852.34
7426.52
8043.20
9055.63
9459.40
8311.23
9170.10
10013.76
10048.57

185.1
186.9
189.3
191.7
196.4
199.3
120.4
121.8
122.6
127.7
128.3
129.6
130.6
138.3
139.5
140.4
142.4
1447
146.7
149.3
151.2
154.6
157.5
159.7
160.3
164.9

8.734790e+02
-1.221777e+03
2.736948e+02
3.616993e+02
-3.843397e+01
-6.495498e+02
-5.042909e+01
5.029535e+02
-1.733428e+02
-1.931684e+02
-6.854155e+00
5.444090e+02
-1.027690e+02
-1.344672e+03
2.159865e+02
5.274463e+02
1.327617e+01
3.351407e+02
3.599493e+02
7.364179e+02
9.757322e+01
-1.468045e+03
5.700879e+02
5.289064e+02
-3.044861e+02

33.728380168
-47.177495135
10.568408348
13.966598066
-1.484083256
-25.081614129
-1.947260996
19.420967141
-6.693433321
-7.458973444
-0.264665261
21.021723464
-3.968306912
-51.922970921
8.340066799
20.366729431
0.512643881
12.941069957
13.899026741
28.435923342
3.767676884
-56.686870019
22.013285808
20.423106451
-11.757377747

z z zZgZ zZgZ
U0OUUE00U050005§05§0005050000

From the above table, 31 observations were detected as outliers were by the additive model.
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4.2.3. Assumed Model of Deposits and Loans

Here two cases are considered. The first case is when loan is contaminated. The vector
autoregressive model is given as

X1t = D11 X111+ D12Xoe1 + 4 (4.98)

where Xj, is the current value of deposit, X;,_; is the immediate past value of deposit, and

X,:_1 Isthe immediate past value of loan

4.2.. VAR Modelling of Deposits and Loans

The estimated VAR model via the use of statistical package R is as follows

Xlt =0.4826 X]_t_]_ — 0.1579 th.]_ (499)

S.e  (0.1836) (0.1561)
t (2.628) (-1.012)
P-value (0.0142) (0.3210)
When deposit is contaminated,

then, the vector autoregressive model is given as
Xoe = P21 X2e-1+  Do2Xieo1 + 4, (5.00)

where X,, is the current value of loan , X,,_; is the immediate past value of loan and X;,_; is
the immediate past value of deposit.

The estimated VAR model via the use of statistical package R is as follows

Xt = 0.9605 X1 — 0.3339 X1 (5.10)
Se (01712 (0.2015)

t (5.610) (-1.657)

P (6.78¢.06)  (0.1095)
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Figure 4.1: Box Plot of Loan Data

From the box plot of loan data above, it shows that there is presence of outlier in the data.
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Figure 4.2: Box Plots of Deposit Data

Boscplot of Deposit

From the box plot of Deposit data on figure 4.2 above, it shows that there is presence of
outlier in the data.

The detection performance of the four generating models on Deposits and Loans data for the

two cases are shown on the tables 4.15 to 4.20.
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Table 4.15: Detection Performance of Additive Model on Deposit and Loan Data for

Case One
Deposit Loan (Wa) T Remarks

111.7 35.9 -7425.1230 -3.5562723 ND
131.2 44.2 -7287.8225 -3.4905121 ND
276.6 58.2 -7320.9776 -3.5063918 ND
3114 114.9 -6766.7184 -3.2409286 ND
873.5 373.6 -6641.4233 -3.1809184 ND
1229.2 492.8 -6645.0523 -3.1826565 ND
1378.4 659.9 -2347.0674 -1.1241310 ND
5722.0 3721.1 -1321.7090 -0.6330342 ND
8360.1 4730.8 -214.7493 -0.1028544 ND
10580.7 5962.1 -7060.4273 -3.3816009 ND
4612.2 1895.3 10107.6624 4.8410781 D
19542.2 10910.4 -10360.6635 -4.9622533 D
4855.2 1602.2 -790.9809 -0.3788413 ND
8807.1 8659.3 2051.1317 0.9823922 ND
12442.0 4411.2 6231.8871 2.9847704 ND
19047.6 11158.6 3575.8049 1.7126364 ND
18513.8 11852.7 1289.6953 0.6177012 ND
15860.5 7498.1 6662.9285 3.1912183 ND
20640.9 11150.3 1167.7164 0.5592793 ND
16875.9 12341.0 1158.2959 0.5547673 ND
14861.6 8942.2 7283.8830 3.4886253 ND
20551.8 11251.9 48840.8554 23.3923914 D
64490.0 34118.5 -14779.9643 -7.0788832 D
18461.9 16105.5 -10755.6646 -5.1514396 D
3118.6 24274.6 -2097.8978 -1.0047909 ND
3082.3 27263.5 8721.0511 4.1769588 D
13411.8 46521.5 -3338.5137 -1.5989855 ND
3296.2 15590.5 -2683.9759 -1.2854938 ND
3953.1 63769.4 747.8194 0.3581691 ND
94.7 71294.2
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Table 4.16: Detection Performance of Additive Model on Deposit and Loan Data
For Case Two

Deposit Loan (Wm) t Remarks
111.7 35.9 -6512.6824 -2.8431714 ND
131.2 44.2 -6500.1432 -2.8376973 ND
276.6 58.2 -6408.3408 -2.7976201 ND
3114 114.9 -6192.4792 -2.7033837 ND
873.5 373.6 -6134.0659 -2.6778829 ND
1229.2 492.8 -5962.6850 -2.6030650 ND
1378.4 659.9 -3012.1602 -1.3149862 ND
5722.0 3721.1 -3492.2985 -1.5245950 ND
8360.1 4730.8 -2349.9174 -1.0258780 ND
10580.7 5962.1 -6857.8767 -2.9938691 ND
4612.2 1895.3 4070.3484 1.7769480 ND
19542.2 10910.4 -8911.3893 -3.8903489 ND
4855.2 1602.2 2181.8965 0.9525270 ND
8807.1 8659.3 -7524.7308 -3.2849904 ND
12442.0 4411.2 4516.4853 1.9717132 ND
19047.6 11158.6 935.5785 0.4084354 ND
18513.8 11852.7 -4263.9115 -1.8614498 ND
15860.5 7498.1 2684.7738 1.1720627 ND
20640.9 11150.3 1963.8506 0.8573370 ND
16875.9 12341.0 -3835.6962 -1.6745084 ND
14861.6 8942.2 1065.8428 0.4653035 ND
20551.8 11251.9 23614.0175 10.3089165 D
64490.0 341185 -1690.5372 -0.7380196 ND
18461.9 16105.5 8410.6161 3.6717318 ND
3118.6 24274.6 -1569.6781 -0.6852574 ND
3082.3 27263.5 14805.4833 6.4634699 D
13411.8 46521.5 -31173.0466 -13.6088801 D
3296.2 15590.5 43336.2504 18.9188386 D
3953.1 63769.4 4806.4960 2.0983200 ND
94.7 71294.2
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Table 4.17: Detection Performance of Convolution Model on Deposit and Loan Data
For Case One

Deposit Loan (W) t Remarks
111.7 35.9 543.83931 3.4944194 ND
131.2 44.2 533.78300 3.4298029 ND
276.6 58.2 536.21138 3.4454064 ND
3114 114.9 495.61569 3.1845603 ND
873.5 373.6 486.43869 3.1255938 ND
1229.2 492.8 486.70449 3.1273017 ND
1378.4 659.9 171.90659 1.1045794 ND
5722.0 3721.1 96.80611 0.6220241 ND
8360.1 4730.8 15.72891 0.1010655 ND
10580.7 5962.1 517.12786 3.3227859 ND
4612.2 1895.3 -740.31692 -4.7568790 D
19542.2 10910.4 758.84751 4.8759466 D
4855.2 1602.2 57.93392 0.3722523 ND
8807.1 8659.3 -150.23132 -0.9653058 ND
12442.0 4411.2 -456.44297 -2.9328574 ND
19047.6 11158.6 -261.90317 -1.6828492 ND
18513.8 11852.7 -94.46133 -0.6069578 ND
15860.5 7498.1 -488.01380 -3.1357146 ND
20640.9 11150.3 -85.52721 -0.5495519 ND
16875.9 12341.0 -84.83722 -0.5451185 ND
14861.6 8942.2 -533.49445 -3.4279489 ND
20551.8 11251.9 -3577.25755 -22.9855362 D
64490.0 341185 1082.53098 6.9557628 D
18461.9 16105.5 787.77864 5.0618425 D
3118.6 24274.6 153.65662 0.9873149 ND
3082.3 27263.5 -638.75715 -4.1043105 D
13411.8 46521.5 244.52322 1.5711749 ND
3296.2 15590.5 196.58282 1.2631357 ND
3953.1 63769.4 -54.77264 -0.3519396 ND
94.7 71294.2
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Table 4.18: Detection Performance of Convolution Model on Deposit and Loan Data

For Case Two

Deposit Loan (W,) T Remarks
111.7 35.9 13212.666 2.7937212 ND
131.2 44.2 13187.227 2.7883423 ND
276.6 58.2 13000.982 2.7489621 ND
311.4 114.9 12563.051 2.6563648 ND
873.5 373.6 12444544 2.6313074 ND
1229.2 492.8 12096.854 2.5577908 ND
1378.4 659.9 6110.949 1.2921152 ND
5722.0 3721.1 7085.034 1.4980783 ND
8360.1 4730.8 4767.417 1.0080353 ND
10580.7 5962.1 13912.983 2.9417979 ND
4612.2 1895.3 -8257.758 -1.7460422 ND
19542.2 10910.4 18079.066 3.8226855 ND
4855.2 1602.2 -4426.543 -0.9359600 ND
8807.1 8659.3 15265.869 3.2278558 ND
12442.0 4411.2 -9162.862 -1.9374199 ND
19047.6 11158.6 -1898.064 -0.4013316 ND
18513.8 11852.7 8650.451 1.8290743 ND
15860.5 7498.1 -5446.760 -1.1516774 ND
20640.9 11150.3 -3984.180 -0.8424257 ND
16875.9 12341.0 7781.705 1.6453843 ND
14861.6 8942.2 -2162.339 -0.4572106 ND
20551.8 11251.9 -47907.162 -10.1296173 D
64490.0 34118.5 3429.693 0.7251835 ND
18461.9 16105.5 -17063.117 -3.6078707 ND
3118.6 24274.6 3184.499 0.6733390 ND
3082.3 27263.5 -30036.765 -6.3510532 D
13411.8 46521.5 63242.614 13.3721859 D
3296.2 15590.5 -87918.829 -18.5897902 D
3953.1 63769.4 -9751.224 -2.0618247 ND
94.7 71294.2
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Table 4.19: Detection Performance of Innovative Model on Deposit and Loan Data
For Case One

Deposit Loan (W) t Remarks
111.7 35.9 3094.70968 -3.4944194 ND
131.2 44.2 -3037.48437 -3.4298029 ND
276.6 58.2 -3051.30304 -3.4454064 ND
311.4 114.9 -2820.29389 -3.1845603 ND
873.5 373.6 -2768.07229 -3.1255938 ND
1229.2 492.8 -2769.58479 -3.1273017 ND
1378.4 659.9 -978.23192 -1.1045794 ND
5722.0 3721.1 -550.87378 -0.6220241 ND
8360.1 4730.8 -89.50514 -0.1010655 ND
10580.7 5962.1 -2942.70855 -3.3227859 ND
4612.2 1895.3 4212.76267 4.7568790 D
19542.2 10910.4 -4318.21071 -4.8759466 D
4855.2 1602.2 -329.67215 -0.3722523 ND
8807.1 8659.3 854.88915 0.9653058 ND
12442.0 4411.2 2597.38207 2.9328574 ND
19047.6 11158.6 1490.35620 1.6828492 ND
18513.8 11852.7 537.53081 0.6069578 ND
15860.5 7498.1 2777.03540 3.1357146 ND
20640.9 11150.3 486.69136 0.5495519 ND
16875.9 12341.0 482.76499 0.5451185 ND
14861.6 8942.2 3035.84241 3.4279489 ND
20551.8 11251.9 20356.33200 22.9855362 D
64490.0 34118.5 -6160.12677 -6.9557628 D
18461.9 16105.5 -4482.84285 -5.0618425 D
3118.6 24274.6 -874.38077 -0.9873149 ND
3082.3 27263.5 3634.83828 4.1043105 D
13411.8 46521.5 -1391.45583 -1.5711749 ND
3296.2 15590.5 -1118.65169 -1.2631357 ND
3953.1 63769.4 311.68289 0.3519396 ND
94.7 71294.2
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Table 4.20: Detection Performance of Convolution Model on Deposit and Loan Data

For Case Two

Deposit Loan (W) t Remarks
111.7 35.9 -4689.5805 -2.7937212 ND
131.2 44.2 -4680.5514 -2.7883423 ND
276.6 58.2 -4614.4474 -2.7489621 ND
311.4 114.9 -4459.0121 -2.6563648 ND
873.5 373.6 -4416.9505 -2.6313074 ND
1229.2 492.8 -4293.5445 -2.5577908 ND
1378.4 659.9 -2168.9631 -1.2921152 ND
5722.0 3721.1 -2514.6958 -1.4980783 ND
8360.1 4730.8 -1692.1026 -1.0080353 ND
10580.7 5962.1 -4938.1442 -2.9417979 ND
4612.2 1895.3 2930.9316 1.7460422 ND
19542.2 10910.4 -6416.8149 -3.8226855 ND
4855.2 1602.2 1571.1159 0.9359600 ND
8807.1 8659.3 -5418.3252 -3.2278558 ND
12442.0 4411.2 3252.1809 1.9374199 ND
19047.6 11158.6 673.6810 0.4013316 ND
18513.8 11852.7 -3070.3104 -1.8290743 ND
15860.5 7498.1 1933.2223 1.1516774 ND
20640.9 11150.3 1414.1079 0.8424257 ND
16875.9 12341.0 -2761.9658 -1.6453843 ND
14861.6 8942.2 767.4803 0.4572106 ND
20551.8 11251.9 17003.7213 10.1296173 D
64490.0 341185 -1217.3034 -0.7251835 ND
18461.9 16105.5 6056.2237 3.6078707 ND
3118.6 24274.6 -1130.2765 -0.6733390 ND
3082.3 27263.5 10660.9691 6.3510532 D
13411.8 46521.5 -22446.7435 -13.3721859 ND
3296.2 15590.5 31205.0892 18.5897902 D
3953.1 63769.4 3461.0086 2.0618247 ND
94.7 71294.2

87




Table 4.21: Detection Performance of Multiplicative Model on Deposit and Loan Data
For Case One

Deposit Loan (Wm) t Remarks
111.7 35.9 Inf NA ND
131.2 44.2 Inf NA ND
276.6 58.2 Inf NA ND
3114 114.9 Inf NA ND
873.5 373.6 Inf NA ND
1229.2 492.8 Inf NA ND
1378.4 659.9 Inf NA ND
5722.0 3721.1 Inf NA ND
8360.1 4730.8 Inf NA ND
10580.7 5962.1 Inf NA ND
4612.2 1895.3 0 NA ND
19542.2 10910.4 Inf NA ND
4855.2 1602.2 0 NA ND
8807.1 8659.3 Inf NA ND
12442.0 4411.2 0 NA ND
19047.6 11158.6 0 NA ND
18513.8 11852.7 Inf NA ND
15860.5 7498.1 0 NA ND
20640.9 11150.3 0 NA ND
16875.9 12341.0 Inf NA ND
14861.6 8942.2 0 NA ND
20551.8 11251.9 0 NA ND
64490.0 341185 Inf NA ND
18461.9 16105.5 0 NA ND
3118.6 24274.6 Inf NA ND
3082.3 27263.5 0 NA ND
13411.8 46521.5 Inf NA ND
3296.2 15590.5 0 NA ND
3953.1 63769.4 0 NA ND
94.7 71294.2

From Table 4.21 above the multiplicative model could not detect any outlier as a result of

non multiplicative nature of the data analysed.
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Table 4.22: Summary of Outlier Detection of the Four Models on Deposits and Loan

Data
Model No of outliers for No of outliers for
Case 1 Case 2
Convolution 6 4
Innovative 6 4
Multiplicative — —
Additive 6 4

Source : From Tables 4.15 -4.21

4.3 Discussion of Results

Results obtained from the analysed simulated data with varying sample sizes of 10, 50,

and100 gave an average percentage rates of outlier detection for 10, AO, MO, and CO as
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21%, 71%, 86% and 100% respectively of the injected outliers. However, with real data on
GDP and CPI, CO detected 30 observations as outliers, 10 and AO identified the same
number of 29 observations as outliers while MO detected nO outlier, as the data did not
exhibit any multiplicative effect of outliers on the observations .

For the second real data set of Deposit and Loan, 6 outliers were equally detected by all the
models when we consider the case of deposit depending on loan .For the second case of
Deposit depending on Loan, 4 outliers were equally detected by all models except for MO as
a result of non multiplicative nature of data.

All the four derived outlier-generating mechanisms were able to detect potential outlier
independently in multivariate time series. However as the sample size increases, CO was
found to be most sensitive to outliers for the simulated data sets.

Of the four-outlier detection models, CO has been found to be most efficient with minimum
standard error of the estimate and is therefore recommended for outlier detection in

multivariate time series data.
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CHAPTER FIVE

SUMMARY, CONCLUSION, CONTRIBUTION TO KNOWLEDGE
AND AREA OF FURTHER RESEARCH

5.0 Introduction

This chapter is divided into four sections. The first section gives the summary of the findings,
while the second gives the conclusion based on the analysed data. The third section highlights
contribution to knowledge and the last section highlights the suggested the area for further

studies.
5.1 Summary

This project work is undertaken to develop test statistic for detecting outliers assuming
different outliers generating mechanism in multivariate time series models. In line with the
main objectives of the study, the test statistics were derived for each generating mechanism
namely; the Additive, Innovative, Multiplicative, and Convolution models. Attempts were
also made to determine the model with greatest detective power in terms of their sensitivity to
the number of outliers detected by applying the models to both simulated and two different
pairs of real data. All these were achieved using theoretical and analytical methods. The

convolution model was found to be most sensitive to outlier detection.
5.2 Conclusion

Having considered necessary statistical techniques in accordance with main purpose of the
work, which is outlier generating mechanisms, identification and estimation of the magnitude
of outliers and deriving models for discovering outlier’s occurrences in multivariate time
series data using both simulated and real data, there is no doubt that the research has been
successful as the proposed models were able to detect outliers in multivariate time series and
enjoy ability to identify outliers independently. This is indeed a great promise over the

conventional approaches of outlier detection in multivariate time series.
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5.3 Contribution to Knowledge

The research work made use of the theory of maximum likelihood and Vector Autoregressive

(VAR) model in multivariate time series from which these contributions were made.

(a) New outlier generating mechanisms; Convolution, Multiplicative, Innovative and additive
were developed by extending the outlier detection in univariate time series to multivariate
time series. For each model, estimates of the magnitude of outliers and their residual
variances were obtained.

(b) For each generating mechanism, appropriate test statistic was developed, both simulated
data and empirical data were used to validate the performance of the models.

(c) All the derived outlier generating mechanisms were able to detect varying number of
potential outliers independently in multivariate time series with the swamping effect
ameliorated. The pair wise relative efficiency of the variances indicated that convolution

model has the minimum residual variance and was the most sensitive to outliers.

5.4 Area of Further Research

The outlier detection in multivariate time series can be extended to frequency domain since
this work is limited to time domain. In addition the present work only considered integration

of order one, this can be extended to higher orders of integration.

We hope that this will be a subject for further research.
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APPENDIX A

OUTPUT FOR INNOVATIVE

[1] "INNOVATIVE"
> WI=(P11/(1-P12))*e

> WI

1 2 3 4 5 6
22.6113650  18.6573683  20.6425816  12.5790522
10.6966899 2.9081796

9 10 11 12 13 14

6.8013567 2.4526353 7.3759771 2.7455734

0.1923962 -7.5726541

17 18 19 20 21 22
-12.8521915 -12.0282753 -12.2586593 -25.8590499
144191792  1.3131528

25 26 27 28 29 30
-18.4227708 -24.9093581 -22.6121455 -15.2230304
34.9835355 8.2414729

33 34 35 36 37 38
-34.6542245 -33.8218265 -33.0019193  -8.3066725
31.5925616 -22.1969518

41 42 43 44 45 46
-41.7140367 -57.9655457 -55.0174012 85.4678691
66.6926646 5.6500031

49 50 o1 52 53 54
-73.6093948 -88.7242019 -68.5054107 17.2629028
74.0992812 -96.2970540

57 58 59 60 61 62
552.3621033 -106.1447848 -89.6274389 350.2009229
109.5034824 -156.5603922

65 66 67 68 69 70
-122.7184249 -167.4861923 -142.7692094 -374.0851356
139.9146342 46.5296062

73 74 75 76 77 78

-116.3477677 -176.4037879 -148.8580771 750.1930238
161.1198042 -191.4746653

81 82 83 84 85 86

97

7 8
15.0541890 6.9987988
15 16
4.9030520 -0.9426245
23 24
-13.5844287 -21.5424258 -
31 32
-22.2500642 -29.3707479 -
39 40
-38.0302202 -41.2163021 -
47 48
-75.4292968 -82.1625527 -
55 56
-53.8165914 -85.2378150 -
63 64

-132.3757374 -160.4063098

71 72
-99.5000821 -159.6559806

79 80
-279.8235308 -274.4982751
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-188.3331247 -236.8987028 -186.4925287 932.1238016 36.5958886 -118.5925082 -
370.4825358 481.1571226

89 90 91 92 93 94 95 96

-64.2113899 -195.2475829 -382.4142356 986.3419219 -472.9035779 697.7065541
180.8497330 -516.0370280

97 98 99 100 101 102 103 104

195.6664848 978.1905297 2369.9105068 -3314.9069374 742.5847865 981.3571638 -
104.2784884 -1762.3491124

105 106 107 108 109 110 111 112

-136.8234783 1364.6061225 -470.3112890 -524.1016452 -18.5965938 1477.0825951 -
278.8314232 -3648.3458060

113 114 115 116 117 118 119 120

586.0113008 1431.0597137  36.0207076 909.2988607 976.6092929 1998.0382444
264.7342383 -3983.0791809

121 122 123
1546.7543080 1435.0210214 -826.1272233
> ABS(W1)
> var(e)

[1] 83164.05
> W=(P11/(1-P12))
> var(W1)=W~"2*var

>varWwl
[1] 612201.8
> t=e/sd(e)

>t
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1 2 3 4 5 6 7 8

0.0288987778 0.0238453159 0.0263825461 0.0160768373 0.0192402211 0.0089449147
0.0136710572 0.0037168405

9 10 11 12 13 14 15 16

0.0086925710 0.0031346256 0.0094269728 0.0035090192 0.0062664156 -0.0012047347
0.0002458947 -0.0096783387

17 18 19 20 21 22 23 24

-0.0164259268 -0.0153729089 -0.0156673545 -0.0330495279 -0.0173617730 -
0.0275326048 -0.0184286378 0.0016782937

25 26 27 28 29 30 31 32

-0.0235454853  -0.0318357607 -0.0288997754 -0.0194560113 -0.0284370121 -
0.0375377036 -0.0447112069 0.0105331320

33 34 35 36 37 38 39 40

-0.0442903263  -0.0432264682 -0.0421785741 -0.0106164613 -0.0486050658 -
0.0526770832 -0.0403773244 -0.0283691311

41 42 43 44 45 46 47 48

-0.0533132201 -0.0740836931 -0.0703157750 0.1092334301 -0.0964034895 -
0.1050090233 -0.0852375120 0.0072210671

49 50 51 52 53 54 55 56

-0.0940775377 -0.1133952328 -0.0875543181 0.0220630993 -0.0687810629 -
0.1089394062 -0.0947036441 -0.1230738245

57 58 59 60 61 62 63 64

0.7059542710 -0.1356598574 -0.1145496277 0.4475792887 -0.1691847008 -0.2050095740
-0.1399524888 -0.2000942441

65 66 67 68 69 70 71 72

-0.1568420348 -0.2140581189 -0.1824682261 -0.4781048476 -0.1271675003 -
0.2040506051 -0.1788198955 0.0594678275

73 74 75 76 77 78 79 80

-0.1486999254  -0.2254553792 -0.1902501904 0.9587949030 -0.3576324580 -
0.3508264389 -0.2059214657 -0.2447169292

81 82 83 84 85 86 87 88

-0.2407018385 -0.3027717688 -0.2383494385 1.1913141306 0.0467718979 -0.1515688481
-0.4735004935 0.6149497290
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89 90 91 92 93 94 95 96

-0.0820662835 -0.2495389605 -0.4887499728 1.2606083732 -0.6044011684 0.8917138212
0.2311375829 -0.6595284900

97 98 99 100 101 102 103 104

0.2500743441 1.2501903701 3.0288979535 -4.2366641313 0.9490710867 1.2542375320
-0.1332746107 -2.2523954405

105 106 107 108 109 110 111 112

-0.1748691996 1.7440543345 -0.6010880566 -0.6698355891 -0.0237676421 1.8878064959
-0.3563644807 -4.6628204372

113 114 115 116 117 118 119 120

0.7489601082 1.8289862954 0.0460367796 1.1621423891 1.2481694478 2.5536213001
0.3383473724 -5.0906312053

121 122 123
1.9768514231 1.8340491012 -1.0558436906
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f=sd(e)/sqrt(124)
> t=e/f
>t
1 2 3

0.321803170 0.265530200
0.152234450 0.041388984

9 10 11

0.096796374 0.034905713
0.002738168 -0.107773419

17 18 19

-0.182911380 -0.171185469
0.205212625 0.018688687

25 26 27

-0.262191427 -0.354508028
0.497882929 0.117291994

33 34 35

-0.493196201 -0.481349578
0.449622855 -0.315905274

41 42 43

-0.593670894 -0.824961093
0.949164764 0.080410401

49 50 51

-1.047603124 -1.262715872
1.054575150 -1.370492108

57 58 59

7.861174064 -1.510644239
1.558444959 -2.228155203

65 66 67

-1.746518984 -2.383650332
1.991254083 0.662205701

73 74 75

-1.655852290 -2.510564852
2.293044396 -2.725052395

81 82 83

-2.680342237 -3.371523729
5.272678346 6.847790372

89 90 91

-0.913851457 -2.778748263
2.573839194 -7.344198446

4 5

6

7 8

0.293783600 0.179024083 0.214250035 0.099606355

12

13 14

15 16

0.104974326 0.039074784 0.069779851 -0.013415358

20
-0.174464277

28
-0.321814279

36
-0.469680723

44
-0.783003332

52
-0.974963624

60
-1.275570670

68
-2.031880173

76
-2.118536460

84
-2.654147019

92

21 22
-0.368023967

29 30
-0.216652973

37 38
-0.118219910

45 46
1.216371999

53 54
0.245684276

61 62

23 24
-0.193332522 -0.306590111

31 32
-0.316661165 -0.418002176 -

39 40
-0.541243107 -0.586587174 -

47 48
-1.073503827 -1.169330996 -

55 56
-0.765913502 -1.213097887 -

63 64

4.984032026 -1.883961096 -2.282890001 -

69 70
-5.323950264
77 78
10.676688185
85 86
13.265912723
93 94

71 72
-1.416077353 -2.272211375 -

79 80
-3.982426509 -3.906637888 -

87 88
0.520829812 -1.687799262 -

95 96

-5.442489361 14.037540751 -6.730326573 9.929704871
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97 98 99 100 101 102 103 104

2.784710042 13.921530778 33.728380168 -47.177495135 10.568408348 13.966598066
-1.484083256 -25.081614129

105 106 107 108 109 110 111 112

-1.947260996 19.420967141 -6.693433321 -7.458973444 -0.264665261 21.021723464 -
3.968306912 -51.922970921

113 114 115 116 117 118 119 120

8.340066799 20.366729431 0.512643881 12.941069957 13.899026741 28.435923342
3.767676884 -56.686870019

121 122 123
22.013285808 20.423106451 -11.757377747
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APPENDIX B

OUTPUT FOR ADDITIVE MODEL

Jdp=x1t
cpi=x2t

gdpt=matrix(gdp)
cpit=matrix(cpi)

gdpt

[1.]
[2.]
[3.]
[4.]
[5.]
[6.]
[7.]
[8.]
[9.]
[10.]
[11]
[12,]
[13]
[14.]
[15.]
[16.]
[17.]
[18,]
[19.]
[20.]
[21)]
[22,]
[23]
[24.]
[25]
[26.]

[.1]
11.24
11.96
11.74
12.68
11.42
12.34
12.18
13.13
12.23
13.36
13.23
14.29
13.86
15.02
14.99
15.75
16.65
17.12
17.10
18.05
15.07
17.46
17.42
18.39
25.00
26.45
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[27.]
[28.]
[29.]
[30.]
[31]
[32]
[33]
[34.]
[35.]
[36.]
[37.]
[38.]
[39.]
[40.]
[41.]
[42.]
[43.]
[44.]
[45.]
[46.]
[47.]
[48.]
[49.]
[50.]
[51]
[52]
[53.]
[54.]
[55.]
[56.]
[57.]
[58]
[59.]
[60.]
[61.]

26.42
27.36
32.23
34.96
35.33
36.56
53.26
54.38
53.79
55.41
65.93
67.10
66.26
68.26
76.45
78.24
77.32
80.13
133.93
133.26
130.71
134.72
166.75
171.23
170.64
175.25
211.79
225.29
227.72
235.07
235.07
475.14
481.12
493.98
670.62
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[62,] 675.14
[63,] 670.70
[64,] 686.26
[65,] 686.35
[66,] 700.53
[67,] 699.92
[68,] 715.17
[69,] 647.96
[70,] 678.29
[71,] 685.02
[72,] 697.17
[73,] 777.02
[74] 799.25
[75,] 801.41
[76,] 816.33
[77,] 1165.09
[78,] 1144.27
[79,] 1124.63
[80,] 1148.14
[81,] 1164.24
[82,] 1182.58
[83,] 1181.00
[84,] 1197.27
[85,] 1625.55
[86,] 1735.60
[87,] 1792.35
[88,] 1758.88
[89,] 2039.52
[90,] 2127.69
[91,] 2171.58
[92,] 2148.24
[93,] 2631.26
[94,] 2592.27
[95,] 2985.54
[96,] 3202.00
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[97,] 3169.61
[98,] 3399.35
[99,] 3924.77
[100,] 4978.50
[101,] 3968.28
[102,] 4426.08
[103,] 4986.49
[104,] 5165.74
[105,] 4740.81
[106,] 4853.84
[107,] 5524.36
[108,] 5538.29
[109,] 5535.96
[110,] 5720.25
[111,] 6461.89
[112,] 6578.22
[113,] 5460.76
[114,] 5872.69
[115,] 6608.44
[116,] 6852.34
[117,] 7426.52
[118,] 8043.20
[119,] 9055.63
[120,] 9459.40
[121,] 8311.23
[122,] 9170.10
[123,] 10013.76
[124,] 10048.57
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> cpit
[1]

[1,] 63.1
[2,] 63.9
[3,] 64.6
[4,] 65.8
[5,] 67.9
[6,] 70.9
[7,] 70.5
[8,] 72.1
[9,] 73.1
[10,] 73.6
[11,] 72.6
[12,] 72.9
[13,] 74.2
[14,] 75.7
[15,] 76.3
[16,] 81.1
[17,] 83.5
[18,] 82.2
[19,] 83.9
[20,] 85.6
[21,] 87.1
[22,] 87.8
[23,] 85.2
[24,] 84.9
[25,] 88.0
[26,] 89.4
[27,] 89.6
[28,] 91.5
[29,] 92.0
[30,] 92.3
[31,] 97.0
[32,] 96.2
[33,] 95.8

107



[34,] 92.5
[35,] 95.6
[36,] 95.2
[37,] 97.3
[38,] 95.9
[39,] 94.8
[40,] 99.1
[41,] 100.0
[42,] 105.2
[43,] 109.5
[44,] 108.1
[45,] 113.4
[46,] 114.4
[47,] 115.9
[48,] 117.9
[49,] 119.1
[50,] 119.7
[51,] 116.1
[52,] 116.4
[53,] 119.8
[54,] 120.0
[55,] 121.2
[56,] 122.2
[57,] 123.8
[58,] 126.6
[59,] 127.6
[60,] 129.7
[61,] 130.8
[62,] 132.8
[63,] 135.0
[64,] 137.3
[65,] 139.9
[66,] 142.0
[67,] 152.9
[68,] 156.7
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[69,] 153.9
[70,] 150.2
[71,] 146.9
[72,] 144.7
[73,] 144.9
[74,] 147.2
[75,] 151.3
[76,] 154.6
[77,] 154.7
[78,] 154.4
[79,] 157.5
[80,] 162.5
[81,] 163.5
[82,] 159.4
[83,] 158.3
[84,] 157.1
[85,] 156.4
[86,] 157.6
[87,] 159.2
[88,] 161.1
[89,] 161.9
[90,] 164.3
[91,] 165.1
[92,] 169.2
[93,] 172.4
[94,] 175.5
[95,] 179.4
[96,] 182.3
[97,] 183.5
[98,] 184.6
[99,] 185.1
[100,] 186.9
[101,] 189.3
[102,] 191.7
[103,] 196.4
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[104,] 199.3
[105,] 120.4
[106,] 121.8
[107,] 122.6
[108,] 127.7
[109,] 128.3
[110,] 129.6
[111,] 130.6
[112,] 138.3
[113,]139.5
[114,] 140.4
[115,]142.4
[116,] 144.7
[117,] 146.7
[118,] 149.3
[119,]151.2
[120,] 154.6
[121,] 157.5
[122,] 159.7
[123,] 160.3
[124,] 164.9
> summary(fastVARX(gdpt,cpit,1,1,getdiag=FALSE))
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Call:
Im(formula = varxz3y.p ~ varxz$2)

Residuals:
Min 1Q Median 3Q Max
-1468.05 -47.01 -9.53 596 873.48

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -47.11304 103.18480 -0.457 0.649
varxz$Z.I1 1.02865 0.01227 83.813 <2e-16 ***
varxz$Z.11 0.62087 0.87628 0.709 0.480

Signif. codes: 0 ****>0.001 ‘**> 0.01 **> 0.05 ‘> 0.1 > 1

Residual standard error: 290.8 on 120 degrees of freedom
Multiple R-squared: 0.9883, Adjusted R-squared: 0.9881
F-statistic: 5057 on 2 and 120 DF, p-value: < 2.2e-16

>
> resid(VARXZ(gdpt, cpit, 1, 1))
NULL
> resid(fastVARX(gdpt,cpit,1,1,getdiag=FALSE))
1 2 3 4 5 6 7 8

8.333881e+00 6.876555e+00 7.608246e+00 4.636267e+00 5.548529e+00 2.579550e+00
3.942484e+00 1.071869e+00

9 10 11 12 13 14 15 16

2.506779e+00 9.039689%e-01 2.718567e+00 1.011937e+00 1.807120e+00 -3.474235e-01
7.091156e-02 -2.791057e+00
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17 18 19 20 21

-4,736938e+00 -4.433267e+00 -4.518180e+00
7.939902e+00 -5.314483e+00 4.839893e-01

25 26 27 28 29

-6.790089e+00 -9.180853e+00 -8.334169e+00
1.082519e+01 -1.289390e+01 3.037563e+00

33 34 35 36 37

-1.277252e+01  -1.246573e+01  -1.216353e+01
1.519111e+01 -1.164408e+01 -8.181141e+00

41 42 43 44 45

-1.537456e+01 -2.136439%+01 -2.027779e+01
3.028269e+01 -2.458095e+01 2.082424e+00

49 50 51 52 53

-2.713025e+01 -3.270112e+01 -2.524907e+01
3.141614e+01 -2.731081e+01 -3.549225e+01

57 58 59 60 61

2.035844e+02 -3.912183e+01 -3.303403e+01
5.912103e+01 -4.035975e+01 -5.770354e+01

65 66 67 68 69

-4.52303%+01 -6.173046e+01 -5.262051e+01
5.884448e+01 -5.156840e+01 1.714944e+01

73 74 75 76 77

-4.288235e+01 -6.501722e+01 -5.486469e+01
1.011720e+02 -5.938400e+01 -7.057190e+01

81 82 83 84 85

-6.941403e+01 -8.731386e+01 -6.873564e+01
4.370969e+01 -1.365489e+02 1.773403e+02

89 90 91 92 93

-2.366642e+01  -7.196249e+01  -1.409466e+02

2.571540e+02 6.665587e+01 -1.901960e+02
97 98 99 100 101

7.211689%+01 3.605321e+02 8.734790e+02 -1.221777e+03 2.736948e+02 3.616993e+02

-3.843397e+01 -6.495498e+02

112

-9.530882e+00

-5.610759e+00

-3.061594e+00

3.150093e+01

6.362596e+00

1.290737e+02

-1.378767e+02

2.764990e+02

3.435533e+02

3.635365e+02

24
-5.006819e+00

32
-8.200716e+00

40
-1.401682e+01

48
-2.780101e+01

56
-1.983521e+01

64
-4.878979%e+01

72
-3.667279%+01

80
-1.031347e+02

88
1.348816e+01

96
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105 106 107 108 109 110 111 112

-5.042909e+01 5.029535e+02  -1.733428e+02  -1.931684e+02  -6.854155e+00
5.444090e+02 -1.027690e+02 -1.344672e+03
113 114 115 116 117 118 119 120

2.159865e+02 5.274463e+02 1.327617e+01 3.351407e+02 3.599493e+02 7.364179e+02
9.757322e+01 -1.468045e+03

121 122 123
5.700879e+02 5.289064e+02 -3.044861e+02
>
> e=resid(fastVARX(gdpt,cpit,1,1,getdiag=FALSE))
>e
1 2 3 4 5 6 7 8

8.333881e+00 6.876555e+00 7.608246e+00 4.636267e+00 5.548529e+00 2.579550e+00
3.942484e+00 1.071869e+00

9 10 11 12 13 14 15 16

2.506779e+00 9.039689e-01 2.718567e+00 1.011937e+00 1.807120e+00 -3.474235e-01
7.091156e-02 -2.791057e+00

17 18 19 20 21 22 23 24

-4.736938e+00 -4.433267e+00 -4.518180e+00 -9.530882e+00 -5.006819e+00
7.939902e+00 -5.314483e+00 4.839893e-01

25 26 27 28 29 30 31 32

-6.79008%e+00 -9.180853e+00  -8.334169e+00 -5.610759e+00 -8.200716e+00 -
1.082519e+01 -1.289390e+01 3.037563e+00

33 34 35 36 37 38 39 40

-1.277252e+01  -1.246573e+01  -1.216353e+01 -3.061594e+00 -1.401682e+01 -
1.519111e+01 -1.164408e+01 -8.181141e+00

41 42 43 44 45 46 47 48

-1.537456e+01 -2.136439e+01 -2.027779e+01 3.150093e+01 -2.780101le+01 -
3.028269e+01 -2.458095e+01 2.082424e+00

49 50 51 52 53 54 55 56

-2.713025e+01 -3.270112e+01 -2.524907e+01 6.362596e+00 -1.983521e+01 -
3.141614e+01 -2.731081e+01 -3.549225e+01
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57 58 59 60 61 62 63 64

2.035844e+02 -3.912183e+01 -3.303403e+01 1.290737e+02 -4.878979e+01 -
5.912103e+01 -4.035975e+01 -5.770354e+01

65 66 67 68 69 70 71 72

-4.523039e+01 -6.173046e+01 -5.262051e+01 -1.378767e+02 -3.667279e+01 -
5.884448e+01 -5.156840e+01 1.714944e+01

73 74 75 76 77 78 79 80

-4.288235e+01 -6.501722e+01 -5.486469e+01 2.764990e+02 -1.031347e+02 -
1.011720e+02 -5.938400e+01 -7.057190e+01

81 82 83 84 85 86 87 88

-6.941403e+01 -8.731386e+01 -6.873564e+01 3.435533e+02 1.348816e+01 -
4.370969e+01 -1.365489e+02 1.773403e+02

89 90 91 92 93 94 95 96
-2.366642e+01  -7.196249e+01  -1.409466e+02 3.635365e+02  -1.742983e+02
2.571540e+02 6.665587e+01 -1.901960e+02

97 98 99 100 101 102 103 104

7.211689e+01 3.605321e+02 8.734790e+02 -1.221777e+03 2.736948e+02 3.616993e+02
-3.843397e+01 -6.495498e+02

105 106 107 108 109 110 111 112
-5.042909e+01 5.029535e+02 ~ -1.733428e+02  -1.931684e+02  -6.854155e+00
5.444090e+02 -1.027690e+02 -1.344672e+03

113 114 115 116 117 118 119 120

2.159865e+02 5.274463e+02 1.327617e+01 3.351407e+02 3.599493e+02 7.364179e+02
9.757322e+01 -1.468045e+03

121 122 123
5.700879e+02 5.289064e+02 -3.044861e+02
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> sd(e)
[1] 288.3818
> sd(e)/sqrt(124)
[1] 25.89745
> f=sd(e)/sqrt(124)
> t=e/f
>t
1 2 3 4 5 6 7 8

0.321803170 0.265530200 0.293783600 0.179024083 0.214250035 0.099606355
0.152234450 0.041388984

9 10 11 12 13 14 15 16

0.096796374 0.034905713 0.104974326 0.039074784 0.069779851 -0.013415358
0.002738168 -0.107773419

17 18 19 20 21 22 23 24

-0.182911380 -0.171185469 -0.174464277 -0.368023967 -0.193332522 -0.306590111
0.205212625 0.018688687

25 26 27 28 29 30 31 32

-0.262191427 -0.354508028 -0.321814279 -0.216652973 -0.316661165 -0.418002176
0.497882929 0.117291994

33 34 35 36 37 38 39 40

-0.493196201 -0.481349578 -0.469680723 -0.118219910 -0.541243107 -0.586587174
0.449622855 -0.315905274

41 42 43 44 45 46 47 48

-0.593670894 -0.824961093 -0.783003332 1.216371999 -1.073503827 -1.169330996
0.949164764 0.080410401

49 50 51 52 53 54 55 56

-1.047603124 -1.262715872 -0.974963624 0.245684276 -0.765913502 -1.213097887
1.054575150 -1.370492108

57 58 59 60 61 62 63 64

7.861174064 -1.510644239 -1.275570670 4.984032026 -1.883961096 -2.282890001
1.558444959 -2.228155203
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65 66 67 68 69 70 71 72

-1.746518984 -2.383650332 -2.031880173 -5.323950264 -1.416077353 -2.272211375 -
1.991254083 0.662205701

73 74 75 76 77 78 79 80

-1.655852290 -2.510564852 -2.118536460 10.676688185 -3.982426509 -3.906637888 -
2.293044396 -2.725052395

81 82 83 84 85 86 87 88

-2.680342237 -3.371523729 -2.654147019 13.265912723 0.520829812 -1.687799262 -
5.272678346 6.847790372

89 90 91 92 93 94 95 96

-0.913851457 -2.778748263 -5.442489361 14.037540751 -6.730326573 9.929704871
2.573839194 -7.344198446

97 98 99 100 101 102 103 104

2.784710042 13.921530778 33.728380168 -47.177495135 10.568408348 13.966598066
-1.484083256 -25.081614129

105 106 107 108 109 110 111 112

-1.947260996 19.420967141 -6.693433321 -7.458973444 -0.264665261 21.021723464 -
3.968306912 -51.922970921

113 114 115 116 117 118 119 120

8.340066799 20.366729431 0.512643881 12.941069957 13.899026741 28.435923342
3.767676884 -56.686870019

121 122 123
22.013285808 20.423106451 -11.757377747
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APPENDIX C

OUTPUT FOR MULTIPLICATIVE MODEL
[1] "Multiplicative"
> w=e*(P11+P12*fi-1)/(1-P11)
> Wm=10"w
>Wm
1 2 3 4 5 6 7 8

2.017069e-117 5.139871e-97 2.920382e-107 1.203955e-65 2.026029e-78 7.582473e-37
6.241918e-56 9.798034e-16

9 10 11 12 13 14 15 16

7.921225e-36 2.198687e-13 8.574854e-39 6.766058e-15 4.963375e-26 7.324915e+04
1.016389%-01 1.207276e+39

17 18 19 20 21 22 23 24

2.133229e+66 1.193653e+62 1.844463e+63 2.859549e+133 1.282478e+70
1.508611e+111 2.606898e+74 1.670833e-07

25 26 27 28 29 30 31 32
1.197598e+95  3.589393e+128  5.003890e+116 3.670541e+78  6.770760e+114
3.800703e+151 3.523468e+180 2.927377e-43
33 34 35 36 37 38 39 40

7.037612e+178 3.560344e+174  2.089404e+170 7.413290e+42 1.864851e+196
5.172904e+212 1.112886e+163 3.601877e+114

41 42 43 44 45 46 47 48
1.916458e+215 1.429280e+299 8.709662e+283 0.000000e+00 Inf Inf
Inf 6.931504e-30

49 50 51 52 53 54 55 56

Inf Inf Inf 8.084754e-90 5.530023e+277 Inf Inf Inf

57 58 59 60 61 62 63 64
0.000000e+00 Inf Inf 0.000000e+00 Inf Inf Inf Inf

65 66 67 68 69 70 71 72

Inf Inf Inf Inf Inf Inf Inf 7.324314e-241

73 74 75 76 77 78 79 80

Inf Inf Inf 0.000000e+00 Inf Inf Inf Inf

81 82 83 84 85 86 87 88

Inf Inf Inf 0.000000e+00 1.354615e-189 Inf Inf
0.000000e+00

89 90 91 92 93 94 95 96
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Inf Inf Inf 0.000000e+00 Inf 0.000000e+00 0.000000e+00

Inf

97 98 99 100 101 102 103 104
0.000000e+00 0.000000e+00 0.000000e+00 Inf 0.000000e+00 0.000000e+00
Inf Inf

105 106 107 108 109 110 111 112

Inf 0.000000e+00 Inf Inf 9.449216e+95 0.000000e+00 Inf
Inf

113 114 115 116 117 118 119 120

0.000000e+00 0.000000e+00 1.259722e-186 0.000000e+00 0.000000e+00 0.000000e+00
0.000000e+00 Inf

121 122 123
0.000000e+00 0.000000e+00 Inf
>
>
> sd(e)

[1] 288.3818
> se=sd(e)/sqrt(124)
> t=10"(e/se)

>t
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APPENDIX D

OUTPUT FOR CONVOLUTION MODEL
[1] "CONVOLUTION™
> Wc=P12*fi*e/(1-P11)*(1-fi)
>Wec
1 2 3 4 ) 6

-43.3445592 -35.7649972 -39.5705258 -24.1132491
20.5048792 -5.5747968

9 10 11 12 13 14

-13.0377714  -4.7015471 -14.1392824  -5.2630908
0.3688114 14.5162999

17 18 19 20 21 22

24.6368398  23.0574444  23.4990761  49.5701663
27.6406562 -2.5172310

25 26 27 28 29 30

35.3152887  47.7496670  43.3460556  29.1815883
67.0612291 -15.7983832

33 34 35 36 37 38

66.4299608  64.8343064  63.2625960  15.9233668
60.5609463 42.5501553

41 42 43 44 45 46

79.9631751 111.1162919 105.4648851 -163.8365097
127.8456280 -10.8306993

49 50 51 52 53 54

141.1045631 170.0786942 131.3205479 -33.0918949
142.0436445 184.5953736

57 58 59 60 61 62

-1058.8432834 203.4728519 171.8101425 -671.3130623
209.9112632 300.1163887

119

7 8

-28.8579300 -13.4162555 -

15 16
-0.3988411  1.8069516 -

23 24
26.0404923  41.2954703

31 32
42.6519685  56.3018696

39 40
72.9015314  79.0090493

47 48
144.5932004 157.5004269

55 56
103.1630085 163.3955105

63 64
253.7559322 307.4887700



65 66 67 68 69 70 71 72

235.2434738 321.0604579 273.6795619 717.0975902 190.7353764 306.0504364
268.2075214 -89.1943179

73 74 75 76 77 78 79 80

223.0313261 338.1549256 285.3515369 -1438.0726696 536.4040443 526.1958653
308.8564936 367.0448462

81 82 83 84 85 86 87 88

361.0227113 454.1198587 357.4944049 -1786.8224860 -70.1520083 227.3343520
710.1916338 -922.3478302

89 90 91 92 93 94 95 96

123.0891810 374.2772911 733.0639492 -1890.7551999 906.5263062 -1337.4594205 -
346.6775218 989.2104071

97 98 99 100 101 102 103 104

-375.0802997 -1875.1294957 -4542.9688375 6354.4673406 -1423.4881589 -1881.1997334
199.8952796 3378.3119976

105 106 107 108 109 110 111 112

262.2819708 -2615.8637941 901.5570520 1004.6697691  35.6484963 -2831.4740918
534.5022367 6993.6486029

113 114 115 116 117 118 119 120

-1123.3466708 -2743.2511335 -69.0494227 -1743.0685151 -1872.0983646 -3830.1131854
-507.4788232 7635.3113522

121 122 123
-2965.0303673 -2750.8447103 1583.6337365
>
> wc=Wc/e
> varWc=wc”2*var(e)
> varWc
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626
2249626 2249626 2249626 2249626 2249626

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626
2249626 2249626 2249626 2249626 2249626

31 32 33 34 3 36 37 38 39 40 41 42 43 44 45

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626
2249626 2249626 2249626 2249626 2249626

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
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2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626
2249626 2249626 2249626 2249626 2249626

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626
2249626 2249626 2249626 2249626 2249626

/%6 77 /8 79 80 81 8 83 84 8 8 8 88 89 90

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626
2249626 2249626 2249626 2249626 2249626

91 92 93 94 9% 96 97 98 99 100 101 102 103 104
105

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626
2249626 2249626 2249626 2249626 2249626

106 107 108 109 110 111 112 113 114 115 116 117 118
119 120

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626
2249626 2249626 2249626 2249626 2249626

121 122 123
2249626 2249626 2249626
> sdWc=sqrt(varwc)
> seWc=sdWoc/sqrt(124)
> t=Woc/seWc

>t

121



1 2 3

4 5 6

7 8

-0.321803170 -0.265530200 -0.293783600 -0.179024083 -0.214250035 -0.099606355 -

0.152234450 -0.041388984
9 10 11

12 13 14

15 16

-0.096796374 -0.034905713 -0.104974326 -0.039074784 -0.069779851 0.013415358 -

0.002738168 0.107773419
17 18 19

0.182911380 0.171185469
0.205212625 -0.018688687

25 26 27

0.262191427 0.354508028
0.497882929 -0.117291994

33 34 35

0.493196201 0.481349578
0.449622855 0.315905274

41 42 43

0.593670894 0.824961093
0.949164764 -0.080410401

49 50 51

1.047603124 1.262715872
1.054575150 1.370492108

57 58 59

-7.861174064 1.510644239
1.558444959 2.228155203

65 66 67

1.746518984 2.383650332
1.991254083 -0.662205701

73 74 75

1.655852290 2.510564852
2.293044396 2.725052395

81 82 83

2.680342237 3.371523729
5.272678346 -6.847790372

89 90 91

20 21 22
0.174464277 0.368023967

28 29 30
0.321814279 0.216652973

36 37 38
0.469680723 0.118219910

44 45 46
0.783003332 -1.216371999

52
0.974963624

53 54
-0.245684276

60
1.275570670

61 62
-4.984032026

68 69 70
2.031880173 5.323950264

76 77 78
2.118536460 -10.676688185

84 85 86
2.654147019 -13.265912723

92 93 94

23 24
0.193332522

31 32
0.316661165

39 40
0.541243107

47 48
1.073503827

55 56
0.765913502

63 64
1.883961096

71 72
1.416077353

79 80
3.982426509

87 88
-0.520829812

95 96

0.306590111

0.418002176

0.586587174

1.169330996

1.213097887

2.282890001

2.272211375

3.906637888

1.687799262

0.913851457 2.778748263 5.442489361 -14.037540751 6.730326573 -9.929704871 -

2.573839194 7.344198446
97 98 99

100 101 102

122

103

104



-2.784710042 -13.921530778 -33.728380168 47.177495135 -10.568408348 -13.966598066
1.484083256 25.081614129

105 106 107 108 109 110 111 112

1.947260996 -19.420967141 6.693433321 7.458973444 0.264665261 -21.021723464
3.968306912 51.922970921

113 114 115 116 117 118 119 120

-8.340066799 -20.366729431 -0.512643881 -12.941069957 -13.899026741 -28.435923342
-3.767676884 56.686870019

121 122 123
-22.013285808 -20.423106451 11.757377747

123



