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ABSTRACT 
 

Outliers are aberrant observations that adversely affect parameter estimation and predictive 

capability of a given model. The problem of outlier detection in time series has gained much 

attention in the literature and various methods of detection have been developed, but are 

limited to univariate time series with its attendant swamping effect. This work is focused on 

developing outlier Generating Mechanisms (GMs) for the detection of outliers in the 

Multivariate Time Series (MTS) setting that is capable of ameliorating the swamping effect. 

 

Two-variable Vector Autoregressive (VAR) models and 1121211111 tttt aXXX   

tttt aXXX 2112212212    were considered, where Xit and Xjt-1, i,j=1, 2 were the current 

and lagged values of the response and explanatory variables respectively, ij , i,j=1, 2, were 

coefficients, t is the time and ta1 and ta2 were distributed as N(0,Σ). Each series was assumed 

to have been generated by the model 𝑓(𝑍𝑡 , 𝜑𝑡(𝛽), 𝜔𝜉𝑡
𝑇) where Zt is an outlier free time series, 

)(T

t is a time indicator where  1)( T

t  for all 0and )(  T

tTt   otherwise,   (t  = 1- Ө1B-

……
 – ӨpB

p
 were polynomials of order p and  𝜔 =  𝜔1, … , 𝜔𝑘 

′   were the magnitude of 

outliers. The nature of effect of outlier on uncontaminated series determines the model which 

could be Innovative (IO), Additive (AO), Multiplicative (MO), and Convolution (CO) which 

is the combination of IO and AO effects. These models were used to develop four GMs for 

detection of outliers in multivariate time series. The magnitudes of outliers and their variances 

with the test statistics were derived for the four generating mechanisms. Simulation data of 

sample sizes of 10, 50, and100 were used to establish the validity of the developed models. 

Data on Nigerian Gross Domestic Product (GDP) and Consumer Price Index (CPI), 

commercial bank deposits and loans were also used. Estimates of the magnitude and residual 

variance of outliers were obtained using method of least squares. The percentages of outliers 

detected for simulated data and the number of detected outliers in data sets were observed. 

The relative efficiency of the models was evaluated in determining the best outlier generating 

mechanism.  
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The developed generating mechanisms were: ijjtiiit XX  1 𝛏 T

t
φ β  1+ω ,

ijjtiiit XX  1 𝛏 1t  ω+φ β  ,X ijtjiiit X  1, ω𝛏
2T

t φ  β and ijjtiiit XX  1

𝛏 T

t
[2φ β +ω 1+φ β  ] for IO, AO, MO and CO respectively. The performance of the 

generating mechanisms based on simulations showed that the percentages of outliers detected 

using IO, AO, MO, and CO were 21%, 71%, 86%, and 100% respectively. For GDP and CPI, 

30 outliers were detected by CO; 29 each by IO and AO while MO was unable to detect any 

outlier because it did not exhibit any multiplicative effect on the data. For deposit and loan, 6 

outliers each were detected by all the GMs except MO. The CO gave a high precision with 

low percentage of variation compared with other generating mechanisms. It was observed that 

whenever the explanatory variable was infested with outlier, the response variable is also 

contaminated. 

The derived outlier generating mechanisms were able to detect potential outlier independently 

in multivariate time series with the swamping effect ameliorated. The pairwise relative 

efficiency of the variances indicated that convolution model was the best. It is therefore 

recommended for outlier detection in multivariate time series setting. 

Keywords: Outlier generating mechanism, Vector autoregressive models, Gross domestic              

                    product, Consumer price index.  

Word count: 498  
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    CHAPTER ONE 

                               INTRODUCTION    

1.0  General Introduction 

Generally, time series is defined as a collection of observations made sequentially over time 

or data that are collected at regular interval of time. Although the ordering is usually through 

time, particularly in terms of some equally spaced time intervals, the ordering may also be 

taken through other dimensions such as space known as frequency domain. Time series occur 

in a variety of fields. These observations are stochastic and are known to follow patterns 

based on time series theory. It is an important aspect of statistics that is well known for its 

descriptive capability, analysis, identification, and determination of stochastic models for the 

existing dynamic system as well as its uses in forecasting and monitoring of events. Among 

the components of series are the trend, seasonal movement, cyclical movement, irregular 

movement and outliers. 

Real data and databases may often include some erroneous parts. These situations, which 

damage the characteristics of data, are called “abnormal conditions,” and the values, which 

cause these “abnormal conditions,” are called outliers, Kaya (2010). The outliers, which are 

really independent, are the situations that cause the parameter estimation values in modelling 

to be subjective, they damage the processes even though they are set properly, and it is an 

obligation to destroy or to eliminate the effects.  

A commonly used definition of outliers is that they are minority of observations in a datasets 

that have different patterns from that of the majority of observations in the dataset or are 

observations, which deviate so much from other observations as to arouse suspicious that they 

were generated by a different mechanism, Harkins (1980).  

Outlier can also be defined as observations that appear to be inconsistent with the remainder 

of the data set, Betnett and Lewis (1994). Another definition is that outliers are minority of 

observations in a datasets that have different patterns from that of the majority of observations 

in the dataset. The assumption here is that there is a core of at least 50% of observations in a 

dataset that are homogenous (that is, represented by a common pattern) and the remaining 

observations (hopefully few) have patterns that are inconsistent with this common pattern.  
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Identification of outlying data points is often by itself the primary goal, without any intention 

of fitting a statistical model. The outliers themselves are points of primary interest, drawing 

attention to unknown aspects of data, or especially if unexpected, leading to new discoveries.  

On human angle, in the September 11, 2001 attacks on World Trade Centers in New York, 

United State of America, 5 out of the 80 passengers on one of the flights displayed unusual 

characteristics. These five passengers (outliers) were not U.S. citizens but had lived in the 

USA for some periods of time, were citizens of a particular foreign country, had all 

purchased one-way tickets, had purchased these tickets at the gate with cash rather than credit 

cards, and did not have any checked luggage. One or two of these characteristics might not be 

very unusual, but taken together, could be seen as markedly different from the majority of 

airline passengers. Also unauthorized computer network intrusions could also be seen as 

outliers, whereby the intruder exhibits a combination of characteristics that jointly 

considered, are different from typical network users. Perpetrators of credit card fraud provide 

yet another example where identification of outliers is critical and where the transaction 

database needs to be analyzed with the specific purpose of identifying unusual transactions. 

These examples demonstrate the need for outlier identification on every kind of datasets. 

The essence of outlier detection is to discover the unusual data, whose behaviour is very 

exceptional when compared to the rest of the data set. Examining the extraordinary behaviour 

of outliers helps to uncover the valuable knowledge hidden behind them and to help the 

decision makers to improve on the quality of data.  

Detection methods are divided into two parts: univariate and multivariate methods. In 

univariate methods, observations are examined individually while in multivariate methods, 

associations between variables in the same dataset are taken into account.  

 Different types of outliers such as additive and innovation outliers were studied by Tsay et. 

al (2000). A graphical method was explored by Khattree and Naik (1987). Grossi (1999) 

proposed a leave-k-out diagnostic procedure while Bayesian analysis was performed by 

Barnett (1978). 

The problem of outlier detection in time series has gained much attention as far back as early 

1970s and various methods are available. For this reason, several outlier detection, and robust 

estimation procedures have been proposed in the literature for time series analysis. 

Fox (1972) concluded that the importance of outlier detection in time series lead to: 

 Better understanding of the series under study  

 Better modelling and estimation  
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 Improved intervention analysis and 

 Better forecasting performance        

 

1.1  Justification for the Study 

Several methods of outlier detection in time series are available for univariate time series but 

very limited ones for multivariate case. Although outliers could be easily identified in 

univariate through graphical examination of the data, visual inspection does not work for 

more than one dimension. Examining each dimension by itself or in pairs does not work 

because it is quite possible for data to be outliers in multivariate space, but not outlying in 

any of the original univariate dimensions. Thus, graphical inspection is insufficient for outlier 

detection. In many cases, multivariate observation cannot be detected as outlier when each 

variable is considered independently, but when multivariable analysis is performed and the 

interactions among different variables are compared within the class of data, outlier detection 

is better done. Thus there is need for multivariate outlier detection due to the well-known 

swamping effects.  

 

1.2 Specific objectives of the study 

In addition to the review of the existing techniques for identification and labelling outliers in 

both univariate and multivariate time series, attention in this study is focused on:     

1. Outlier identification and estimation of the magnitude of outliers under classical rules. 

2.  Models for discovering occurrences of outlier‟s in multivariate time series data are 

proposed under Gaussian assumption; the theoretical basis for the new model is 

developed in order to determine their relative efficiency.  

3. Application of the models to both simulated and real life data sets is presented to 

justify or check the effectiveness of the proposed models. 

              

     

  



 

5 
 

CHAPTER TWO 

                     REVIEW OF LITERATURE    

2.0 Introduction  

Before proceeding, we review the literature on outlier detection in both univariate and 

multivariate time series. 

             

Outlier detection has gained much attention in the 1980s and various methods are available 

especially in univariate time series. In time series analysis, outliers are known to cause biases 

in parameter estimation as well as model misspecification, resulting in misleading 

conclusion. For this reason, several outlier detection and robust estimation procedures have 

been proposed in the literature for time series analysis. 

  

2.1. Outlier Detection in Univariate Time Series 

According to Fox (1972), there are two types of outliers in a time series. The first type of 

outlier is called the “additive outlier (AO)” which assumes disturbances are committed by 

addition of an unknown magnitude of outlier to a particular observation. Mathematically, the 

observed time series is 

 𝑌𝑡  =   𝑍𝑡  +   𝜔𝜉𝑡
𝑇        ,   t = 1,2,……….n               (2.1) 

        T = 1,2,………n                                                                                                       

                   

Where 𝑍𝑡  is an outlier-free time series, assumed to follow the autoregressive time series as 

 
 

;tt aZ



 while 

 
 

,tt Ya



  ω denotes the magnitude of the disturbance and  

 

𝜉𝑡
𝑇  is the indicator variable defined by: 

 

 𝜉𝑡
𝑇  =  {0   𝑖𝑓  𝑡 ≠  𝑇

1   𝑖𝑓  𝑡 =  𝑇
 tYand  is the outlier contaminated series                         (2.2) 

In other words, for an AO model 

  𝑌𝑡  =   𝑍𝑡  𝑖𝑓  𝑡  ≠   𝑇  and  𝑌𝑡  =   𝑍𝑡  +   𝜔                                                 (2.3) 

A typical practical example of an AO is a typographical or a recording error in a time series. 
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Another type of outlier is called “Innovative Outlier (IO)”, a weighted function of the 

disturbance term innovative outlier may affect every subsequent observation of the series. 

 

Mathematically, an IO model is defined as: 

 

              𝑌𝑡  =   
𝜃 𝐵 

𝜙 𝐵 
 𝑎𝑡  +   𝜔𝜉𝑡

𝑇                             (2.4) 

Where 𝜉𝑡
𝑇  is defined as before and  𝜔  denotes the magnitude of outlier while ta is the 

disturbance term. Rewriting the model as  

  

                    𝑌𝑡  =   𝑍𝑡 +   
𝜃 𝐵 

𝜙 𝐵 
𝜔𝜉𝑡

𝑇                                                                                       (2.5)         

          

          where     𝑍𝑡  = 
𝜃(𝐵)

𝜙(𝐵)
  𝑎𝑡         

We see that an IO affects the series through its own dynamic weights  
𝜃 𝐵 

𝜙 𝐵 
  and, in effect, 

becomes part of the system thereafter. In practice, an IO often indicates an onset of certain 

changes in the system. For instance, in a manufacturing process, changing an operator or a 

measurement instrument may result in an IO. 

Of course, many other types of disturbances can occur in a time series. The AO and IO 

models are two of many possibilities.  

In Chen et.al (1988) and Tsay (1988) papers, two other types of disturbances were 

introduced. They are the level shift and temporary change in level. Mathematically, a level 

shift (LS) which was described by 

 

         𝑌𝑡  =   𝑍𝑡 +   
𝜔𝑠

 1 − 𝐵 
𝜉𝑡

𝑇                        (2.6)

     

Where  𝜔𝑠 is the amount of shift in the level 𝑍𝑡 . Writing 

1

 1 −  𝐵 
 =   1 +   𝐵 +   𝐵2  +   ⋯                                                                                           (2.7) 

We see that for the above model 

 𝑌𝑡  =   {𝑍𝑡  +  𝑤𝑠    𝑓𝑜𝑟   𝑡  ≥  𝑇
𝑍𝑡                  𝑓𝑜𝑟   𝑡 <  𝑇

                  (2.8) 

Where sw is the initial shift 
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Thus, the fixed constants 𝑤𝑠 i.e.(the magnitudes of outlier for level shift) is added to every 

observation one after the other . Such a level shift is permanent. 

In some cases, the effect of a level shift is only temporary.  

A mathematical model capable of describing such a shift is 

 

            𝑌𝑡  =   𝑍𝑡 +   
𝜔𝑐

 1 − 𝛿𝐵 
𝜉𝑡

𝑇 , 0  <    𝛿  <   1                              (2.9) 

Since 

1

1 −  𝛿𝐵
 =   1 +   𝛿𝐵 +   𝛿2𝐵2  +   𝛿3𝐵3  +   ⋯                                                                    (2.10) 

the magnitudes of level shift at times d, d  + 1, d + 2,  … are 𝜔𝑐 ,  𝛿𝜔𝑠,  ….  

where 𝜔𝑐and 𝜔𝑠 are magnitudes of outliers for temporary change and level shift respectively  

and d is the rate at which subsequence shifts are discounted. 

Thus, the initial shift is 𝜔𝑠 and the subsequent shifts are discounted at the rate 𝛿. With  

0  <    𝛿  <   1, the shift decays exponentially to zero. We refer to such a temporary level  

shift as a transient change (TC) model. 

In practice, outliers can occur at any time point is a series. Thus, to detect an outlier, we need 

to estimate the parameters 𝜔𝑎 , 𝜔𝑣 , 𝜔𝑠 , 𝜔𝑐  and check the significance of these estimates. 

For simplicity, Chen et.al (1988) assumed that time series parameters are known and can be 

estimated and an iterative procedure was employed to detect outliers. The four outlier models 

discussed were then put in the general form as 

 

        𝑌𝑡  =   𝑍𝑡 +  𝜔0
𝜔 𝐵 

𝛿 𝐵 
𝐼𝑡
 𝑑 

                                                                                         (2.11)  

Where Yt  is the outlier contaminated series and 

 

                  𝜔0  =

 
 
 
 
 
 
 𝜔𝑎    𝐴𝑂  𝑐𝑎𝑠𝑒
𝜔𝐼    𝐼𝑂  𝑐𝑎𝑠𝑒
𝜔𝑠   𝐿𝑆  𝑐𝑎𝑠𝑒
𝜔𝑐    𝑇𝐶  𝑐𝑎𝑠𝑒

     

 ;    
𝜔 𝐵 

𝛿 𝐵 
 =  

 1                 𝐴𝑂  𝑐𝑎𝑠𝑒
𝜃 𝐵 

𝜙 𝐵 
         𝐼𝑂  𝑐𝑎𝑠𝑒

1

 1−𝐵 
        𝐿𝑆  𝑐𝑎𝑠𝑒

1

1−𝛿𝐵
         𝑇𝐶  𝑐𝑎𝑠𝑒
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Given 𝜃 𝐵  and 𝜙 𝐵 , define as    q

q

p

p and  ...1...1 2

21

2

21    

as the polynomial function of the autoregressive AR(p) process and moving average MA(q)  

respectively. 

 

                                      𝑦𝑡  =   
𝜃 𝐵 

𝜙 𝐵 

𝜔 𝐵 

𝛿 𝐵 
𝜉𝑡

𝑇                                    (2.12) 

Then,  

                                                 𝑦𝑡  =    𝜔0𝑦𝑥𝑡  +   𝑎𝑡                          (2.13) 

   which is precisely a simple linear regression equation. Therefore, 

 

 𝜔 0  =   
 𝑦𝑡𝑥𝑡

𝑛
𝑡=1

 𝑦𝑡𝑥𝑡
2𝑛

𝑡=1
                                                                                                  (2.14)    

and                 

        Var(𝜔 0) =   
𝜍𝑎

2

 𝑥𝑡
2𝑛

𝑡=1
 ,               (2.15) 

 

where n is the sample size. Using simple least squares technique, the following were obtained 

by  Chen et.al (1988) 

 IO case: 𝜔 𝑣,𝑑    =  𝑦𝑑  and Var 𝜔 𝑣,𝑑   =𝜍𝑎
2 

 AO case: 𝜔 𝑎,𝑑   =  𝜌𝑎,𝑑
2   𝑦𝑑  −   π𝑖

𝑛−𝑑
𝑖=1 𝑦𝑑+𝑖  and Var 𝜔 𝑎,𝑑   =  𝜌𝑎,𝑑

2  𝜍𝑎
2 where 𝜋′𝑠 

are the 𝜋-weights of 𝑍𝑡  and 

 𝜌𝑎,𝑑
2  =    1 +   𝜋1

2  +   ⋯ +  𝜋𝑛−𝑑
2   −1  

 LS case: 𝜔 𝑠,𝑑   =  𝜌𝑠,𝑑
2   𝑦𝑑  −    η𝑖

𝑛−𝑑
𝑖=1 𝑦𝑑+𝑖  and Var 𝜔 𝑠,𝑑   =  𝜌𝑠,𝑑

2  𝜍𝑎
2 where η𝑖 ′𝑠 are 

the coefficient of Βi in the polynomial η Β  =   η0  − η1Β −  η2Β
2  −   ⋯  =   

π Β 

1 −  Β
  

and  𝜌𝑠,𝑑
2  =    1 +   η1

2  +  ⋯ +  η𝑛−𝑑
2   −1 

 TC case: 𝜔 𝑐,𝑑   =  𝜌𝑐,𝑑
2   𝑦𝑑  −    β𝑖

𝑛−𝑑
𝑖=1 𝑦𝑑+𝑖  and Var  𝜔 𝑐,𝑑   =  𝜌𝑐,𝑑

2  𝜍𝑎
2  where β𝑖 ′𝑠 

are the coefficient of Βi in the polynomial β Β  =   β0  − β1Β  −   ⋯  =   
π Β 

1 −  δΒ
  and 

𝜌𝑐,𝑑
2  =    1 +   β1

2  +   ⋯ +  β𝑛−𝑑
2   −1. 

 

Based on the above results, these test statistics were employed 

 Existence of an IO at 𝑑:  𝜆𝑣,𝑑  =   
𝜔 𝑣,𝑑

σa
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 Existence of an AO at 𝑑:  𝜆𝑎,𝑑  =   
𝜔 𝑎 ,𝑑

𝜌𝑎 ,𝑑σa
 

 

 Existence of an LS at 𝑑:  𝜆𝑠,𝑑  =   
𝜔 𝑠,𝑑

𝜌𝑠,𝑑σa
 

 

 Existence of an TC at 𝑑:  𝜆𝑐,𝑑  =   
𝜔 𝑐,𝑑

𝜌𝑐,𝑑σa
 

Under the null hypothesis of normality, no disturbance at d and knowing the time series 

parameters and d, all of the above four statistics are distributed as N (0, 1). In practice, the 

parameters can be replaced by the MLEs. However, since d is unknown, there is need to 

apply the tests to all possible values of d. Consequently, in other words, there is need to 

consider the maximum of test statistics over d. The resulting statistics are no longer normal. 

However, one can obtain certain percentiles via simulation or using distributions of certain 

extreme-value statistics. Experience suggests that using a critical value of 3.0 or 3.5 works 

reasonably well in practice.  

Iterative procedure for time series analysis in the presence of outliers, level-shifts, and 

temporary changes was considered by Tsay (1988) and Chang, et al. (1988).  

The procedure considered by them is the very basic one as follows: 

a. Identify an ARMA model for 𝑦𝑡 , estimate the associated parameters and assuming that 

there are no outliers in𝑦𝑡 . 

 

b. Based on the model of step (a) above, compute the four test statistics for each time 

point and identify 

        𝜆𝑣,𝑚𝑎𝑥 =  |𝜆𝑣,𝑑 | 
𝑑   

𝑚𝑎𝑥
,      

        

          𝜆𝑎,𝑚𝑎𝑥  =   |𝜆𝑎,𝑑 | 
𝑑   

𝑚𝑎𝑥
, 

 

         𝜆𝑠,𝑚𝑎𝑥  =  |𝜆𝑠,𝑑 | 
𝑑   

𝑚𝑎𝑥
  and 

 

         𝜆𝑐,𝑚𝑎𝑥  =          |𝜆𝑐,𝑑 | 
𝑑   

𝑚𝑎𝑥
 

 

Where 𝜆v, 𝜆a, 𝜆s, and 𝜆c  are the test statistics for innovative, additive, level shift and 

temporary change models respectively. 
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c. Let 𝜆 =   𝑚𝑎𝑥 𝜆𝑣,𝑚𝑎𝑥 , 𝜆𝑎,𝑚𝑎𝑥 , , 𝜆𝑠,𝑚𝑎𝑥  , 𝜆𝑐,𝑚𝑎𝑥   and compare 𝜆 with the pre-specified 

critical value C. if 𝜆 < 𝐶, there is no outlier and stop. If 𝜆 ≥ 𝐶, continue to the next step. 

 

 d. Compute a modified series 𝑌𝑡
∗ by removing the effect of the identified outlier and go to 

step a with 𝑦𝑡  replaced by 𝑌𝑡
∗  . 

 

Chen and Liu (1993) proposed iterative procedure to reduce masking effects by estimating 

jointly the model parameters and the magnitudes of outlier effects. 

Pankratz (1993) considers AO and IO in a dynamic regression model with a single input and 

a single output. He classifies outliers in the input series as passed and non-passed outliers and 

uses a weighted average of least squares estimators to estimate non-passed outliers. The 

approach however becomes complicated when there are multiple inputs or multiple output 

series. 

 As a result of outlier masking effect of both Additive and Innovative on the estimates of 

parameters and the multiplicative effect on parameters estimated, Shittu (2000) introduced 

two other types of outliers which are Convolution outlier (CO) and Multiplicative outlier 

(MO). 

The MO and CO were derived as follows: 

Assuming that outlier free series Zt follows the ARMA(p,q),  process and can be written as  

Zt  =   
𝜃(𝐵)𝑎𝑡

𝛷(𝐵)
                      (2.16)       

Where 𝜃 𝐵 and 𝜙 𝐵  are define as :

   q

q

p

p and  ...1...1 2

21

2

21   as the polynomial function of the 

autoregressive (AR(p)) process and moving average MA(q) respectively. 

Letting   
    1

 B
B

B 


  

Then multiplicative outlier model was defined as  

       𝑋𝑡 = 𝑍𝑡  ω𝜉𝑡
(𝑇)

     
                                    

(2.17) 

and using the least square theory, the estimate of the magnitude of outlier ω and residual 

variance were arrived at as          

    (M) T = п (B) 
-1 

еt  and    
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 п (B) 
-2 

σ
2

a) respectively.  

The corresponding test statistic was defined as        

   𝜆𝑀𝑇  =     
   (M) T

𝜋(𝐵)−1  𝜍𝑎
                                                                                 (2.18)       

  

The testing criteria λM = Max (T: 1Tп) λM  was employed for outlier detection using the 

critical values suggested by Chang et.al (1988). 

For non-parametric approach, Ljung,(1993) and Battaglia and Baragona, (2007) have 

proposed specific procedures based on the relationship between the additive outliers and the 

linear interpolator, while Baragona et.al., (2001) used a genetic algorithm. 

Shittu and Shangodoyin (2008) considered the identification and detection of outliers in 

frequency domain using the spectral method. By assuming both the additive and 

multiplicative effect of outliers on a series, the parameters of the model were estimated using 

the maximum likelihood method with a view to measuring the effect of the suspected outlier 

on the parameter of the series. They concluded that the occurrence of outliers has led to a 

shift in the phase, amplitude of the Fourier series thus affected the periodogram estimates, 

and detection of aberrant observations is more exact in the frequency domain than in the time, 

domain. 

2.2 Reviews on Outlier Detection in Multivariate Time Series 

As earlier noted, not much work has been done on outlier detection in multivariate time 

series. Among the existing ones, was the projection pursuit techniques used by Tsay et.al 

(2004) in order to find the linear combination of a multivariate time series that maximizes 

kurtosis with the purpose of best reproducing the outlying signal. Then, detection of time 

points and estimating the magnitudes of multiple outliers were accomplished by employing 

univariate searching methods. 

Baragona and Battaglia (2007) proposed the Independent Component Analysis (ICA) as a 

tool capable of identifying the locations of multiple outliers in multivariate time series. It was 

believed that outlying components have a very large kurtosis. The ICA was therefore used at 

identifying a set of independent unobservable variables that are supposed to generate the data 

set of interest. An unknown mixing matrix was postulated to linearly transform the 

unobservable variables to produce a set of observable mixed ones. Both unobservable 
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variables and the mixing matrix have to be estimated from the data. The ICA has been 

applied successfully to a variety of fields such as biomedicine, speech, and radar, signal 

processing and time series. Suppose that we observe a contaminated multivariate time series 

obtained by linearly mixing some independent Gaussian signals, and adding, only at some 

fixed time points, a constant to each observed component. When the series is decomposed by 

ICA, the most important non-Gaussian components is likely to represent the outlying pattern, 

while the remaining independent components would be essentially similar to Gaussian linear 

combinations of the outlier free time series.  

In their own work, Cucina, et.al (2008) used meta-heuristic methods to detect additive 

outliers in multivariate time series. The implemented algorithms were; simulated annealing, 

threshold accepting and two different versions of genetic algorithm. They used the same 

objective function, the generalized AIC-like criterion, and in contrast with many of the 

existing methods, they do not require specifying a vector auto regressive moving averages 

model for the data and are able to detect any number of potential outliers simultaneously. 

They concluded that almost all available methods for outlier detection are iterative, but there 

is a crucial difference with respect to the meta-heuristic algorithms in that it seems to be able 

to provide more flexibility and adaptation to the outlier detection problem. 

 In the detection of outliers in multivariate time series model, Helbling and Cleroux, (2009), 

introduced the coefficient of vector autocorrelation, obtained its influence function together 

with its distribution, and used it for testing the hypothesis of presence of outliers. 
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CHAPTER THREE 

METHODOLOGY AND THEORETICAL FRAME WORK 

 

3.0 Introduction 

This chapter is divided into two sections. The first section deals with a brief review of some 

basic tools, concepts, and methodology in time series analyses applicable in this research 

work.  

The second section deals with the theoretical framework where, four model-generating 

mechanisms for the detection of outliers in the multivariate time series are developed by 

specifying two-variable Vector Auto-Regressive (VAR) models and comparing their relative 

sensitivity to outlier.  

 

For the four models, estimates of the magnitude of outlier as well as their residual variances 

are obtained using the method of least squares. The test statistic for each model for testing the 

existence of outlier will then be constructed. 

 

3.1 Basic Concept of Time Series  

3.1.1 Time Series 

A time series is a set of observations measured sequentially over time. These measurements 

may be made continuously through time or be taken at a discrete time points. By convention, 

these two types of series are called continuous and discrete time series, respectively, 

according to the nature of time. In other words, for discrete time series, for example, it is the 

time of occurrence that is discrete. For a continuous time series, the observed variable is 

typically a continuous variable recorded continuously on time, such as a measure of brain 

activity recorded from an electronic machine. The usual method of analysing such a series is 

to sample (or digitize) the series at equal time interval to give a discrete time series. Little or 

no information is lost by this process provided that the sampling interval is small enough, 

Chatfield (1980). 

 

3.1.2 Univariate and Multivariate Time Series Models 
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A univariate time series model for a given variable is based only on past values of that 

variable, while a multivariate model for a given variable may be based, not only on past 

values of that variable, but also on present and past values of other (predictor) variables. In 

the latter case, the variation in one series may help to explain the variation in another series. 

 

3.1.3 Time Plot  

This is the plot of the series against the corresponding time period. It is the first step in 

analyzing a time series. It helps to show up the important features such as trend, seasonality, 

discontinuity, outliers, and smooth changes in structure, turning points, and sudden 

discontinuities. The plot of time series graph is vital, both in describing the data, helping to 

formulate a sensible model and in choosing an appropriate forecasting method. Chatfield 

(1980). 

 

3.2 Analysis of a Time Series 

There are two major types of analysis of time series data.  

3.2.1 Deterministic Modelling 

An observed realization of a series is believed to be made up of four major components 

regarded as variations. These are the secular trend, seasonal, cyclical and irregular variations. 

The secular trend is the general direction of the movement of a series with time. It indicates 

the direction of assessment of the behaviour of the series upon studying the time-plot of the 

series. In order to isolate the contributing effect of the secular trend the moving average 

analysis of the series is performed or the series is regressed on time variable (t). 

The seasonal variation component gives the structure of the series with respect to equal-

spaced, defined periods with relatively small time intervals such as daily, monthly, quarterly, 

annually repetitive patterns. This variation is isolated by the determination of seasonal index 

corresponding to each defined period, which is used to adjust the original data. 

The cyclical variation represents the long term repetitive cycle that may be inherent in a 

series. It should be long enough to exhibit such cycle; while the irregular variation is the 

residual, unpredictable, non-structured components of the series. It usually results from 

unexpected shock, mishaps such as wars, natural disasters or extreme favourable condition 
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such as in the income series of an individual who win a lottery jackpot. Since the irregular 

variation is expected to be less prominent in determining the true structure of the series it is 

often merged with the cyclical component which is equally less influential, especially in short 

series. They both form the remnant after the secular trend and the seasonal variation 

components must have been eliminated from the series. 

The process of decomposition requires that either an additive or multiplicative model be used 

in the representation of the series depending on, whether the time plot of the series reveals a 

series with increasing or constant bandwidth. 

3.2.2 Dynamic Modeling  

Modeling in this sense is about constructing mathematical relation by exploring statistical 

properties of two or more series. The model thus generates the underlying series or 

establishes relationship between series. A time series model can be constructed in time or 

frequency domain. 

In time domain modeling, time is the reference parameter. The model that may be as a result 

of relating present observation with past ones or from evaluating random error terms. The 

time plot shows the structure of the series in this form of modeling, while the plot of a 

correlogram is based on values of Auto Correlation Function (ACF) or Partial 

Autocorrelation Function (PACF) against respective time lag. The correlogram is an 

important tool employed in the identification and estimation of a model. 

On the other hand, it is often postulated that a series is made up of more than one sinusoidal 

wave curves, which is typical of long series. In the process of splitting such series into its 

different component waveforms, the series is modeled in the frequency domain. In this 

respect evaluating periodic functions and relevant statistical properties are required to achieve 

this goal. The plot of either a Periodogram or Spectral Density Function is synonymous to 

what plotting the ACF or PACF correlogram achieves in the time domain. 

3.3 Fundamental Properties of Dynamic Models 

A series is completely described by its expected value, variance, auto-covariance function, 

autocorrelation function and partial autocorrelation function; irrespective of the model 

constructed for such series. These measures form the basis upon which some fundamental 

properties peculiar to model building are considered. 



 

16 
 

3.3.1 Stationarity 

Stationarity is a condition required to infuse certain level of control for congenital variability 

within a series. Stationarity is a measure of state of equilibrium of a process about a constant 

mean level. When a series is not stationary, it is difficult to exploit its analysis for predicting 

future values of the series since such forecast tends to explode with increase in time value. 

This inhibits control actions required to be taken if the need arises. In addition, a stationary 

series enables a parsimonious reduction of parameters required to be estimated in a model. 

3.3.2 Weak Stationarity 

A time series is said to be stationary if its underlying generating process is based on a 

constant mean and constant variance with its autocorrelation function essentially constant 

through time. Thus, if different subsets of a realization are considered (time series „sample‟) 

the different subsets will typically have means, variances, and autocorrelation function that 

do not differ significantly. 

A statistical test for stationarity is the most widely used Dickey Fuller test. To carry out the 

test, estimate by Ordinary Least Squares (OLS) regression model is constructed:  

 𝑦𝑡
′ = 𝜙𝑦𝑡−1 + 𝑏1𝑦𝑡−2

′ + ⋯ + 𝑏𝑃𝑦𝑡−𝑝
′             (3.1)   

where 𝑦𝑡
′  denotes the differenced series (yt–yt-1). The number of terms in the regression, p, is 

usually set to be about 3. Then if 𝜙 is nearly zero, then the original series yt needs 

differencing and if 𝜙 < 0 then yt is already stationary.   

3.3.3 Autocorrelation Functions  

Autocorrelation refers to the way the observations in a time series are related to each other 

and is measured by the simple correlation between current observation (Yt) and observation 

from p periods before the current one (Yt–k). That is for a given series Yt, autocorrelation at 

lag p, correlation (Yt, Yt–k) and is given by   

 
 

   ktt

ktt
k

YVarYVar

YYCov




,

        (3.2) 

   

The value of k ranges from –1 to +1. Box and Jenkins has suggested that maximum number 

of useful rp are roughly n/4 where n is the number of periods upon which information on Yt is 

available. The plot of ACF on time t is called the correlogram. 
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3.3.4 Partial Autocorrelation 

Partial autocorrelations are used to measure the degree of association between Yt and Yt–p 

when the Y-effects at other time lags 1, 2, 3, ..,, p–l are removed. 

3.3.5 Model Identification Process  

Theoretical ACFs and PACFs (Autocorrelations versus lags) are used to determine the 

appropriate model for a time series. Thus one can compare the correlogram (plot of sample 

ACFs versus lags) with these theoretical ACFs/PACFs, to find a reasonable good match and 

tentatively select one or more ARIMA models. 

3.4 Types of Dynamic Models  

3.4.1 Autoregressive (AR) Model 

Let Xt be any time series and Xt is said to follow an autoregressive process of order p, AR(p), 

if it satisfies the equation: 

Xt = 0 + 1Xt –1 + 2Xt –2 + … + kXt –k + t                                   (3.3) 

where t is a sequence of independent and identically distributed Gaussian 

variables with mean zero and variance σ
2. 

An AR process is said to be stationary if the root of the polynomial equations         

   01    lies outside the unit root circle otherwise, the series is said to be non-stationary. 

An AR of order   i.e. AR(  ) has the following properties:  

 E(Xt) = 




...1 21

0


                  (3.4) 

Var(Xt) = 0 =








...1 2211

2



t                           (3.5) 

               where 
2

t
 is the variance of the error terms. 

  A plot of its correlogram (ACF/PACF vs Time lag) shows an exponentially decaying ACF 

function and the PACF cut-off after lag k thus identifying an AR model of order k. 

3.4.2 Moving Average (MA) Model 



 

18 
 

This model expresses the current observation Xt for tT as the combination of a constant 

term and current error term with the linear combination of past random error terms up to a 

lagged period q  i.e. 

 Xt = t + 0 + 1t –1 + 2t –2 + … + qt –q                                        (3.6) 

Characteristically, a moving average process is always stationary, as it largely depends on q 

past random errors which are independent and identically distributed depending on the order 

of the model; however invertibility condition is required to be satisfied in the process of 

estimating the parameters of the model. 

The random error terms are white noise having mean zero and variance 
2

, hence  

 E(Xt) =  = 0                                                      (3.7) 

     

 Var(Xt) = 0 = 
2

  22

2

2

1 ...1 q                              (3.8)

   

and 









jk

jkif
k

0

...,2,1
 

2

                    (3.9) 

To identify a MA(q) process, the ACF cut-off after lag q  i.e. and the PACF progressively 

dampens-out with increase in lag period. 

3.4.3 Autoregressive Moving Average (ARMA) Model  

This model as the name suggest combines the feature of both AR(  ) and MA(q) models. An 

ARMA(  ,q) is represented as: 

Xt = 1Xt–1 + 2Xt–2 + ………. + pXt–p  – 1t–1 +   2t–2 + … + qt–p                                            (3.10) 
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To satisfy the stationarity and the invertibility conditions, the root of polynomial equations 

(B) = 0 and (B) = 0 must lie outside the unit root circle. In the identification process of an 

ARMA(p, q) model, it is required that the ACF and PACF tails off as the lag periods k and j 

increases. The ARMA(p,q) process have the advantage of modelling a time series with fewer 

parameters estimated as either a pure AR(p) or MA(q) would have done. 

 Table 1.1: Summary of Model Identification Process 

Model ACF PACF 

AR(p) Spikes decay towards zero Spikes cutoff to zero 

MA(q) Spikes cutoff to zero Spikes decay to zero 

ARMA(pq) Spikes decay to zero Spikes decay to zero 

         Pankratz (1983)           

3.4.4. Autoregressive Moving Integrated Average (ARIMA) Model 

In general, an ARIMA model is characterized by the notation ARIMA (p, d, q) where, p, d 

and q denote orders of auto-regression, integration (differencing) and moving average 

respectively. In ARIMA, time series is a linear function of past actual values and random 

shocks. For instance, given a time series process {Yt}, a first order auto-regressive process is 

denoted by ARIMA (1, 0, 0) or simply AR (1) and is given by 

 𝑌𝑡 = 𝜇 + 𝜙1𝑌𝑡−1 + 𝜖𝑡                                                   (3.11) 

and a first order moving average process is denoted by ARIMA (0, 0, 1) or simply MA (1) 

and is given by 

 𝑌𝑡 = 𝜇 − 𝜃1𝜖𝑡−1 + 𝜖𝑡                                                  (3.12) 

Alternatively, the model ultimately derived, may be a mixture of these processes and of 

higher orders as well. Thus a stationary ARIMA (p, q) process is defined by the equation  

 𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡–2 + ⋯ + 𝜙𝑝𝑌𝑡–𝑝 − 𝜃1𝜖𝑡–1 − 𝜃2𝜖𝑡–2 − ⋯𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡          (3.13) 

where εt‟s are independently and normally distributed with zero mean and constant variance 

𝜍2 for t = i, 2, ....n. The values of p and q, in practice lie between 0 and 3. 

3.5 Estimation 

At the identification stage, one or more models are tentatively chosen that seem to provide 

statistically adequate representations of the available data. Then precise estimates of 
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parameters of the model are obtained by least squares as advocated by Box and Jenkins 

(1994). Standard computer packages like SAS, SPSS, R-programming etc. are available for 

finding the estimates of relevant parameters using iterative procedures. 

3.5.1 Diagnostics 

Different models can be obtained for various combinations of autoregressive and moving 

averages individually and collectively. The best model is obtained with following 

diagnostics: 

3.5.2 Model Identification Criteria  

For the model identification criteria Pankratz (1983) gave three alternatives; Akaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC) and Schwarz-Bayesian 

Information Criteria (SBC). 

AIC is given by AIC = (–2 log L + 2 m)       (3.14) 

where m = p+ q+ P+ Q and L is the likelihood function. Since –2 log L is approximately 

equal to {n (l+log 2𝜋) + n log 𝜍2} where 𝜍2 is the model mean square error. 

 AIC can be written as: MC={n (t+log 2 𝜋) + n log 𝜍2 + 2m} and because first term in this 

equation is a constant, it is usually omitted while comparing between models. 

 As an alternative to AIC, sometimes SBC is also used which is given by: 

 SBC= log 𝜍2 + (m log n)/n. 

After tentative model has been fitted to the data, it is important to perform diagnostic checks 

to test the adequacy of the model and, if need be, to suggest potential improvements. One 

way to accomplish this is through the analysis residuals. It has been found that it is effective 

to measure the overall adequacy of the chosen model by examining a quantity Q known as 

Box-Pierce statistic (a function of autocorrelations of residuals) whose approximate 

distribution is chi-square and is computed as follows: 

 𝑄 = 𝑛  𝑟2(𝑗) Q = n  𝑟2(𝑗)𝑘
𝑖=1                    (3.15) 

where summation extends from 1 to k with k as the maximum lag considered, n is the number 

of observations in the series, r (j) is the estimated autocorrelation at lag j; k can be any 

positive integer and is usually around 20. Q follows Chi-square with (k-m) degrees of 

freedom where m is the number of parameters estimated in the model. A modified Q statistic 

is the Ljung-box statistic which is given by 
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 𝑄 = 𝑛(𝑛 + 2)  𝑟2(𝑗)𝑘
𝑖=1 /(𝑛 − 1)               (3.16) 

The Q Statistic is compared to critical values from chi-square distribution. If model is 

correctly specified, residuals should be uncorrelated and Q should be small (the probability 

value should be large). A significant value indicates that the chosen model does not fit well.  

3.6 Theoretical Framework 

This work is premised on detection of outliers in the multivariate time series setting using the 

Vector Autoregressive (VAR) modeling approach.   

 

3.6.1 Vector Autoregression   

Vector Autoregression (VAR) is a statistical model used to capture the linear 

interdependencies among multiple time series. VAR models generalize the univariate 

autoregression (AR) models. All the variables in a VAR are treated symmetrically; each 

variable has an equation explaining its evolution based on its own lags and the lags of all the 

other variables in the model. VAR modelling does not require expert knowledge, which 

previously had been used in structural models with simultaneous equations. 

VAR models were advocated by Sims (1980), who criticized the claims and performance of 

earlier modelling in macroeconomic econometrics. Sims recommended VAR models, which 

had previously appeared in time series statistics and system identification a method to 

estimate economics relationships, thus being an alternative to the “incredible identification 

restrictions” in structural models. 

A VAR model describes the evolution of a set of k variables (called endogenous variables) 

over the same sample period (t = 1, …, T) as a linear function of only their past evolution. 

The variables are collected in a k x 1 vector 𝑦𝑡  . 

 

A (reduced) p-th order VAR, denoted VAR (p), is 

   𝑦𝑡 =   𝑐 +   𝐴1𝑦𝑡 −1  +  𝐴2𝑦𝑡 −2  + …… +    𝐴𝑝𝑦𝑡 −𝑝  +   𝑒𝑡   (3.17) 

 

Where c is a k x 1 vector of constants (intercept), 𝐴𝑖   is a k x k matrix (for every I = 1 , …, p) 

and 𝑒𝑡   is a k x 1 vector of error terms satisfying the following: 

  

1. Ε 𝑒𝑡  =   0  every error term has mean zero; 

2. Ε 𝑒𝑡𝑒
′
𝑡  =   Ω the contemporaneous covariance matrix  of error terms is Ω ( k × k 

positive  definite matrix); 
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3. Ε 𝑒𝑡𝑒
′
𝑡−𝑘  =   0  for any non-zero k, there is no correlation across time; in particular, 

no serial correlation in individual error terms.  

The 𝑙-periods back observation 𝑦𝑡 −1 is called the 𝑙-th lag of y, thus, a pth-order VAR 

is also called a VAR with p lags. 

.  

  In matrix notation, one can write a VAR(p) with a concise matrix notation as: 

 𝑌 =   ΒΖ +   U                            (3.18) 

For a general example of a VAR (p) with k variables,  

A VAR (1) in two variables can be written in matrix form (more compact notation) as 

  
𝑦1 ,𝑡

𝑦2 ,𝑡
  =    

𝑐1

𝑐2
  +   

𝐴1 ,   𝟏 𝐴1 ,   𝟐

𝐴2 ,   𝟏 𝐴2 ,   𝟐
     

𝑦1 ,𝑡 −1

𝑦2 ,𝑡 −  1      +   
𝑒1 ,𝑡

𝑒2 ,𝑡
  ,                      (3.19) 

 

or, equivalently, as the following system of two equations 

 𝑦1 ,𝑡  =   𝐶1  +   𝐴1 ,𝟏 𝑦1 ,𝑡−1  +   𝐴1 ,𝟐𝑦2 ,𝑡−1  +    𝑒1 ,𝑡                      (3.20) 

 

 𝑦2 ,𝑡  =   𝐶2  +   𝐴2 ,𝟏 𝑦1 ,𝑡−1  +   𝐴2 ,𝟐𝑦2 ,𝑡−1  +    𝑒2 ,𝑡                    (3.21) 

     

Note that there is one equation for each variable in the model. Also note that the current (time 

t) observation of each variable depends on its own lags as well as on the lags of each other 

variable in the VAR. 

 Now writing VAR (p) as VAR (1), a VAR with p lags can always be equivalently rewritten 

as a VAR with only one lag by appropriately redefining the dependent variable. The 

transformation amounts to merely stacking the lags of the VAR (p) variable in the new VAR 

(1) dependent variable and appending identities to complete the number of equations. 

For example, the VAR (2) model 

 𝑦𝑡  =   𝑐 +   𝐴1 𝑦𝑡−1  +  𝐴2 𝑦𝑡−2  +  𝑒 𝑡               (3.22) 

 

Can be recanted as the VAR (1) model 

 
𝑦𝑡

𝑦𝑡−1
  =    

𝑐
0
  +    

𝐴1 𝐴 𝟐

𝐼 0
     

𝑦𝑡 −1

𝑦𝑡 −  2      +   
𝑒𝑡

0
  ,             (3.23) 

Where  𝐼 is the identity matrix. 

The equivalent VAR (1) form is more convenient for analytical derivations and allows more 

compact statements. 
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3.6.2 Linear Models 

Linear statistical model refers to the fact that the fraction yi is linear in the unknown 

parameters, Graybill et.al (1974). 

 A general linear function is of the form. 

 𝑌 = 𝑓 𝑥                  (3.24) 

or equivalently 

 𝑌 = 𝛼1𝑋1 + 𝛼2𝑋2 + ⋯ + 𝑎𝑛𝑋𝑛               (3.25) 

where 

 𝛼𝑖 , 𝑖 = 1, 2, …𝑚  are fixed arbitrary vectors, and 

 𝑋𝑖 , 𝑖 = 1, 2, …𝑚 are scalars.  

 A necessary and sufficient condition that (3.25) has a non-trivial solution, that is not 

all 𝑋𝑖  are simultaneously zero, is that 𝛼1, 𝛼2, … , 𝛼𝑚   are dependent, Rao (1965). 

  A special and important case of linear equations is where          

𝛼𝑖 ∈   𝐸𝑛ℝ
𝑚  .  

If 𝛼𝑖 =  𝑎𝑖𝑖 , … 𝑎𝑖𝑚    , then (3.25) may be written as: 

 𝑌11 + 𝑎11𝑋1 + 𝑎12𝑋2 + ⋯ + 𝑎1𝑚𝑋𝑚 = 0 

 𝑌21 + 𝑎21𝑋1 + 𝑎22𝑋2 + ⋯ + 𝑎2𝑚𝑋𝑚 = 0                        (3.26) 

 : : :  :    :  :  

 𝑌𝑛1 + 𝑎𝑛1𝑋1 + 𝑎𝑛2𝑋2 + ⋯ + 𝑎𝑛𝑚 𝑋𝑚 = 0 

 are n linear equations in m unknowns. 

If we consider uncorrelated observations    𝑌1, 𝑌2, … 𝑌𝑛  , such that 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋11 + ⋯ + 𝛽𝑚𝑋𝑛𝑖                                          (3.27)      

where    i = 1, 2, 3,…, n 

If we assume that  

 𝐸 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑚𝑋𝑛𝑖                          (3.28) 

and 𝑉 𝑌𝑖 = 𝜍2 

where   𝛽0 , 𝛽1 …… . 𝛽𝑚    and 𝜍2 are unknown parameters and Xij are unknown coefficients. 
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We can define random errors  𝜀1, 𝜀2, … ……𝜀𝑛  by 

  𝜀1, = 𝑌𝑖 − 𝛽0 − 𝛽𝑖𝑋𝑖                          (3.29) 

   for i = 1, 2, …m 

and the 𝜀𝑖   satisfy   

 𝐸 𝜀𝑖 = 0                            (3.30)  

and  

 𝑉 𝜀𝑖 = 𝜍2                     (3.31) 

then we can write  

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑚 𝑋𝑖𝑛
+ 𝜀𝑖                  (3.32) 

  for i = 1, 2, …, n 

3.6.3 Least Squares Method  

The theory of least squares is concerned with the estimation of parameters in linear     model, 

Rao (1968) and improvement on it was have made by Rao (1973), (1974). 

Equation (3.32) is a complete mathematical model of a multiple regression equation which in 

matrix form can be written as  

𝑌 = 𝑋𝛽 + 𝜀                           (3.33) 

where  

𝑌 =  𝑌1, 𝑌2, … , 𝑌𝑛  is the observation vector,  𝛽  is a m x 1 vector of parameters and X is a 

matrix (n x m) of explanatory variables (assumed to be of full rank) and𝜀 is an (nx1) vector of 

residuals. 

We assume that 𝜀 has zero mean vector and variance matrix 𝑉 𝜀 = 𝜍2𝐼𝑛   where I is the nxn 

identity matrix so that the true residuals have common variance and are uncorrelated.         

In the absence of any contaminants, requiring modification of the model in (3.33) and 

possibly revealed as outliers we have the familiar least squares analysis of the linear model. 

The least squares estimation of 𝛽 is  

    YXXX `1`ˆ 
                   (3.34) 

with  
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   YXXXV `1`V)ˆ(


                  (3.35) 

and that of 𝜀 is  

 𝜀 =  ℎ − 𝑋𝛽 =  𝐼𝑛 − 𝑅 𝑌 

   =  𝐼𝑛 − 𝑅 𝜀               (3.36) 

where  

   XXXXXR `1` 
                 (3.37) 

and with  

 𝑉 𝜀 =  𝐼𝑛 − 𝑅 𝜍2  

The last term in (3.36) shows how the estimated residual 𝜀 relates to the unknown true 

residual 𝜀 but the determination of 𝜖 must be sought in terms of the known quantities such as 

 𝐼𝑛 − 𝑅 𝑌. The estimated residuals 𝜀 have zero means. From (3.36), we see that they are 

typically correlated and have differing variances.  

 Explicitly, we can write  

  𝑉𝑎𝑟  𝜀𝑗  =  1 − 𝑋𝑗 (𝑋`𝑋)−1𝑋𝑗     

        =  1 − 𝑟𝑗𝑗  𝜍
2              (3.37) 

Where 𝑋𝑗
` is the j

th
 row of X. 

The error variance is unknown. An unbiased estimate is obtained as  

  𝜍2 =
𝜀 ′𝜀

𝑛−𝑞
. 

  
 

qn

RIn






 1

                        (3.38) 

in view of the idempotency of  𝐼𝑛 − 𝑅 ;  𝜀 is termed the residual sum of squares and is 

denoted by 𝑉  ̂  can now be estimated as  

  𝑆2 𝜀 =  𝐼𝑛 − 𝑅 𝜍2               (3.39) 

So that the estimated variance of 𝜀𝑗  is 

  𝑆2 =  1 − 𝑟𝑗𝑗  𝜍
2 
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 

qn

r jj






 11
 

  
 

qn

s

rjj






2

11 
                       (3.40)  

      𝜀𝑗 =
𝜀𝑗

𝑆𝑗
 

  𝜀𝑗 =
𝜀𝑗

𝑆𝑗
   

 𝑛−1

1−𝑟𝑗𝑗
                (3.41)  

They have an immediate intuitive appeal in that they constitute weighted version of the 

estimated residual 𝜀𝑗 , where the weights are inversely proportional to the estimates of the 

standard deviation of the 𝜀𝑗 . 
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3.6.4 Gaussian Distribution  

Gaussian distribution otherwise known as the normal distribution has proved to be the most 

useful of all distributions for continuous random variables.  

The normal distribution function is given by  

  𝑓 𝑋 =
1

 2𝜋
𝜍  𝑒𝑥𝑝

− 
1

2𝜍2  (𝑋−𝜇)2

     x                   (3.42) 

                 

        𝜍2 >  0    

This shows that a normal distribution is completely determined by specifying its mean 𝜇 and 

standard deviation 𝜍, also the graph of a typical normal curve is symmetrical about the mean 

𝜇. 

The maximum likelihood estimate of the parameters of a normal distribution can be obtained 

by the likelihood function. 

    

𝐿  𝜃 =  𝑓 𝑋𝑖 , 𝜃 𝑛
𝑖=1                                                                                                          (3.43) 

where 𝑋𝑖 , 𝑖 = 1, 2, … , 𝑛 are random samples from a population X with the probability density 

function F X, θ  and θ is an unknown parameter.  

The probability function (3.43) can be expressed as 

 𝑓 𝑋, 𝜇, 𝜍2 =
1

𝜍 2𝜋
 ℓ

− 
1

2𝜍2  (𝑋−𝜇)2

                           (3.44)                         

The likelihood function is 

 𝐿 𝜇, 𝜍2 = (2𝜋𝜍2)− 
𝑛

2 exp[−
1

2𝜍2 (𝑋 − 𝜇)2]             (3.45) 

then the log likelihood function  

 In 𝐿 = −𝑛𝑙𝑛  𝜋𝜍2 −  
1

2𝜍2
𝑛
𝑖=1 (𝑋 − 𝜇)2             (3.46) 

The maximum likelihood estimate of the population mean 𝜇 can be obtained by 

differentiating equation (3.46) with respect to μ and equate to zero. 

 
𝜕𝐿(𝜇 , 𝜍2  )

𝜕𝜇
= − 

1

2𝜍2
𝑛
𝑖=1 (𝑥𝑖 − 𝜇)2 = 0              (3.47) 

  𝜇 =
 𝑥𝑖

𝑛
𝑖=1

𝑛
                (3.48) 
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The maximum likelihood estimate for the variance is obtained by differentiating (3.46) with 

respect to 𝜍2 and equating the result to zero. 

 We have,  

 
𝜕𝐿(𝜇 , 𝜍2  )

𝜕𝜍2 = −
1

2𝜍2 −  
1

2𝜍4 (𝑋 − 𝜇)2 = 0             (3.49) 

  
𝑛

2𝜍2
=  

(𝑋𝑖−𝜇)2

2𝜍4
                                    (3.50) 

  n𝜍2 =  (𝑋𝑖 − 𝑋 )2               (3.51) 

That is 𝑋~𝑁 (𝜇, 𝜍2) 

3.6.5 Test for Normality  

To ensure strict stationarity of a time series data, we need to show that the series come from a 

normal distribution with constant mean and variance. This can easily be achieved by carrying 

out a normality test on the collected data using the χ
2
 (chi-square) goodness of fit test as 

follows: 

(i) Obtain the maximum likelihood estimate of the population parameters as 

described in (3.48) and (3.51). 

(ii) Classify the data into intervals of equal sizes and obtain the observed frequencies 

0𝑖 , 𝑖 = 1, 2, , … 𝑘, where k is the number of classes. 

(iii) Standardize the class intervals and obtain the probability for each of the intervals. 

(iv) Obtain the expected frequencies 𝑒𝑖 , 𝑖 = 1, 2, … 𝑘 by multiplying the observed 

frequencies by the probability obtained for each of the standardized intervals. 

(v) Carry out the χ
2
 goodness of fit test using  

   

                    𝜒2 =  
(0𝑖−𝑒𝑖)

2

𝑒𝑖

𝑘
𝑖=1                                                                                                     (3.52) 

When compared with the critical value of χ
2  at specified level of significance.     

Therefore, results obtained for multiple regression could be extended to time series model 

fitting. The method of least squares discussed above is used to develop the theoretical basis 

for our proposed outlier generating mechanisms in the section. 
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3.7   Derivation of the Outlier generating Mechanisms 

 In this section the four model-generating mechanisms i.e. Innovative Outlier Model (IO), 

Additive Outlier Model (AO), Multiplicative Outlier Model (MO) and Convolution Outlier 

Model (CO) for the detection of outlier in Multivariate time series are derived by specifying 

two-variable Vector Autoregressive (VAR) models.  

 

3.7.1 Innovative Outlier Model 

 

An Innovative Outlier (IO) represents an unexpected change in the innovations that drive the 

vector time series. For instance, suppose that the noise in a bivariate series consisting of oven 

temperature and a chemical concentration reading is mainly due to the random variability of 

the, feed rate. Then, a sudden change in the feed rate that happens at just a particular time 

point, due to some exogenous effect, will produce an IO in the series. 

The innovative outlier-generating model is defined as: 

    T

ttt ZX (                             (3.53)  

with the unobservable outlier free series by 
 
  tt aZ



                          

(3.54) 

and                                 T

ttt a  .               (3.55) 

where    itX = (x1t, …,xkt) is a k-dimensional time series, Zt is an outlier free time series that 

is assumed to follow the ARMA(pq) , )(T

t is a time indictor such that  1)( T

t  for all 

0)(  T

tandTt   otherwise,   B(  = 1- Ө1B- Ө2 B
2
 ... – Өp B

p
  are polynomials of order p 

and   =  
1

, … , 
𝑘
 
′
  is the size of the magnitude of outliers. 

For the general case of IO: 

Given a vector model X1t and X2t such that X1t contains outlier and X2t is outlier free, the 

magnitude of such outlier and its corresponding variance can be obtained by specifying the 

two variable VAR(2) as:  
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(3.57)                                                                                                

(3.56)                                                                                               

2112212212

1  121211111

tttt

tttt

aXXX

aXXX













where      1tX  is the current value of the response variable 

 

           
1 1tX 

 is the lag value of the current variable 

            2tX  is the current value of the explanatory variable  

            2 1tX   is the lag value of the explanatory variable 

Now considering 

𝑋2𝑡 = ∅21𝑋2𝑡−1 + ∅22𝑋1𝑡−1 + 𝑎1𝑡              (3.58) 

When 𝑋2𝑡−1 is contaminated and assumed innovative model, we then have 

𝑋2𝑡 = ∅21 𝑍𝑡−1 + 𝜑(𝛽)𝜔𝜉𝑡
(𝑇)

 + ∅22𝑋1𝑡−1 + 𝑎1𝑡                           (3.59) 

𝑋2𝑡 = ∅21 𝑍𝑡−1 + ∅21 𝜑 (𝛽 𝜔𝜉𝑡
(𝑇)

 ∅22𝑋1𝑡−1 + 𝑎1𝑡   

𝑋2𝑡 = ∅21 𝜑 (𝛽  𝜖𝑡−1 + ∅21𝜑(𝛽)𝜔𝜉𝑡
(𝑇)

+ ∅22𝑋1𝑡−1 

𝑋2𝑡 = ∅22 𝑋1𝑡−1 + ∅21𝜑 (𝛽   1 + 𝜔        (3.60) 

     

Therefore in general the IO generating mechanism is:  

𝐼𝑛𝑜𝑣𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙:  𝑋𝐼 𝑖 𝑡 = 𝜙𝑖 𝑖  𝑋𝑗𝑡 −1 + ∅𝑖𝑗  𝜉𝑡
𝑇𝜑 (𝛽   1 + 𝜔   

3.7.1.1 Derivation of the Magnitude of Outlier for IO 

Assuming X1t contains an outlier,  

Then 

    T

ttt ZX  11           (3.61) 

         tt

T

tt

T

tt aXZZ 1121211111   
       (3.62)
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 According to Tssay ( 1988 )  
 
  tttt ZandX a



 

  

As defined in equations (3.54)   

  
 

  (3.63)                                                                               t

t

tX 





  

which becomes 

                       (3.64) 

 

 
 

 
 

         T

tt

T

ttt aaat 








 11211111 

       (3.65)

 

 
 

 
 

          1121111 1 







 t

T

t

T

tta 









           (3.66)

 

Making at the subject of the formulae we have 

 

 
         
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Using the least squares theory to differentiate the sum of squares and equating it to zero, thus 

we have 
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    
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which becomes 
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(3.70)

 

Since )(T

t  is a time indictor where  1)( T

t  for all 0)(  T

tandTt   otherwise, we have 
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      112111  t
                (3.78)

 

Therefore, the estimator of the magnitude outlier for IO is  
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Its variance is  
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With the estimate of ω and its corresponding variance, the test statistic for innovative model 

is defined as:  

 

(3.83)                                                                                                                                     

                                                                                                   

1

1

                 (3.82)                                                                                                                         
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ˆ
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 3.7.2 Additive Outlier (AO) Model 

An additive outlier represents an unexpected change in the value of one of the observations. It 

can appear as a result of a recording or measurement error or other single effect.  

The additive outlier model is defined as  

  )(T

ttt ZX 
                               (3.84)

 

recall that    tt X
     

and          
 
  ttZ a





       

 as defined in equation (3.54)  and

 

   )(T

ttt a 
 

Now considering 

𝑋2𝑡 = ∅21𝑋2𝑡−1 + ∅22𝑋1𝑡−1 + 𝑎1𝑡                (3.85) 

When 𝑋2𝑡−1 is contaminated and assumed additive model, we have 

𝑋2𝑡 = ∅21 𝑍𝑡−1 + 𝜔 𝜉𝑡−1
(𝑇)

 + ∅22𝑋1𝑡−1 + 𝑎1𝑡              (3.86) 
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 = ∅21 𝑍𝑡−1 + 𝜙21 𝜔 𝜉𝑡−1
(𝑇)

+ ∅22𝑋1𝑡−1 + 𝑎1𝑡   

𝑋2𝑡 = ∅22 𝑋1𝑡−1 + 𝜙21 𝑍𝑡−1 + 𝜙21 𝜔 𝜉𝑡−1
(𝑇)

 

𝑋2𝑡 = ∅22 𝑋1𝑡−1 + 𝜙21 𝜑 𝛽 𝜉𝑡−1 + 𝜙21 𝜔 𝜉𝑡−1 

𝑋2𝑡 = ∅22 𝑋1𝑡−1 + 𝜙21 𝜉𝑡−1  𝜔 + 𝜑 𝛽                (3.87) 

Therefore in general the additive model is given as 

𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙: 𝑋𝐴 𝑖 𝑡 = 𝜙𝑖 𝑖  𝑋𝑗𝑡 −1 + ∅𝑖𝑗  𝜖𝑡−1  𝜔 + 𝜑 𝛽    

2.7.2.1 Derivation of the Magnitude of Outlier for AO 

With tttt aXXX 1121211111   
    as defined in equation (3.56)  

Then,
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 Summing the square of equation (3.91) over n we have  
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Differentiating equation (3.92) with respect to   and setting to zero, we obtain the 

magnitude of outlier in the model as  
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Therefore, the estimate of the variance is  
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Given the estimates of the mean and its variance of the magnitude, the test statistic for testing 

the presence of outlier for additive model is constructed as follows 
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 (3.97)                                                                                                      
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3.7.3 Multiplicative Outlier Model  

Since outlier may have multiplicative interaction effect on a series, there is a need to develop 

its generating model. 

The multiplicative outlier model is defined as:   

 )(T

ttt ZX 
                           (3.98) 

(3.56)                                   equation  in  defined as     1121211111 tttt aXXXSpecifying   

 

 

with the outlier free series  
 
 

 dtdtZt 



   

For the general case of MO 

If we consider 

𝑋2𝑡 = ∅21𝑋2𝑡−1 + ∅22𝑋1𝑡−1 + 𝑎1𝑡                (3.99) 

When 𝑋2𝑡−1 is contaminated and assumed multiplicative model, then 

𝑋2𝑡 = ∅21 𝑍𝑡−1 𝜔 𝜉𝑡−1 + ∅22𝑋1𝑡−1 + 𝑎1𝑡                 (4.0) 

𝑋2𝑡 = ∅21 𝜑 𝛽   𝜖𝑡−1 𝜔 𝜉𝑡−1 + ∅22𝑋1𝑡−1 + 𝑎1𝑡       

𝑋2𝑡 = ∅21  𝜔 𝜉𝑡−1
2  𝜑 𝛽 + ∅22𝑋1𝑡−1 + 𝑎1𝑡  

𝑋2𝑡 = ∅22  𝑋1𝑡−1 + ∅21  𝜔 𝜉𝑡−1
2  𝜑 𝛽                  (4.1) 
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Therefore in general, the MO generating mechanism is           

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙: 𝑋𝑀 𝑖 𝑡 = 𝜙𝑖 𝑖  𝑋𝑗𝑡−1 + ∅𝑖𝑗  𝜔 𝜉𝑡−1
2  𝜑 𝛽  

3.7.3.1 Derivation of the Magnitude of outlier for MO 

By taking the logarithm of equation (3.98) in other to make it linear and further 

simplification, we have 
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By summing the square of equation (4.7) over n we have 
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Differentiating equation (4.8) with respect to t
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recall that  1  whenlog )()()(  T
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               (4.14) 

Its variance is 
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Hence the test statistic is defined as        
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 3.7.4 Convolution Outlier Model 

The outlier effect on a given series may be either additive or innovative and the effect may be 

a combination of the two. By this, we propose the convolution of the additive and innovative 

outliers for the multivariate setting as follows: 

The innovative and additive models as defined earlier respectively are as follows: 

 

 

             model additivefor            

         model innovativefor           

)(T

tttA

T

tttI

ZX

ZX









  

The convolution involved adding both innovative and additive models: This gives 

     12 T

tttC ZX
                          (4.18) 

For the general case of CO, now considering, 

𝑋2𝑡 = ∅21𝑋2𝑡−1 + ∅22𝑋1𝑡−1 + 𝑎1𝑡  

Assuming  𝑋2𝑡−1 is contaminated, we have 

𝑋2𝑡 = ∅21  2𝑍𝑡−1 + 𝜔 𝜉𝑡
(𝑇) 1 + 𝜑 (𝛽)  + ∅22𝑋1𝑡−1 + 𝑎1𝑡                                              (4.19) 

𝑋2𝑡 = 2∅21𝑍𝑡−1 + ∅21𝜔 𝜉𝑡
(𝑇) 1 + 𝜑 (𝛽) + ∅22𝑋1𝑡−1 + 𝑎1𝑡  

where 𝑍𝑡 = 𝜑 𝛽 𝜉𝑡
(𝑇)

 and 𝑍𝑡−1 = 𝜑 𝛽 𝜉𝑡
(𝑇)

 

we then have 

𝑋2𝑡 = 2∅21𝜑 𝛽 𝜉𝑡
(𝑇)

+ ∅21𝜔𝜉𝑡
(𝑇) 1 + 𝜑 (𝛽) + ∅22𝑋1𝑡−1 + 𝑎1𝑡            (4.20) 

𝑋2𝑡 = 2∅21𝜑 𝛽 𝜉𝑡
(𝑇)

+ ∅21𝜔 𝜉𝑡−1 + ∅21𝜔 𝜉𝑡
(𝑇)

𝜑 𝛽 + ∅22𝑋1𝑡−1 + 𝑎1𝑡  

𝑋2𝑡 = ∅22  𝑋1 𝑡−1 + 2∅21𝜑 𝛽 𝜉𝑡
(𝑇)

+ ∅21𝜔 𝜉𝑡
(𝑇)

+ ∅21𝜔 𝜉𝑡
(𝑇)

𝜑 𝛽  

𝑋2𝑡 = ∅22  𝑋1 𝑡−1 + 2∅21𝜑 𝛽 𝜉𝑡
(𝑇)

+ ∅21𝜔 𝜉𝑡
(𝑇)

 1 + 𝜑 𝛽   
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𝑋2𝑡 = ∅22  𝑋1 𝑡−1 + ∅21𝜉𝑡
(𝑇)

 2𝜑 𝛽 + 𝜔  1 +   𝛽                             (4.21) 

Therefore in general, the MO generating mechanism is 

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙: 𝑋𝐶 𝑖 𝑡 = 𝜙𝑖 𝑖  𝑋𝑗𝑡−1 + ∅𝑖𝑗   𝜉𝑡−1
𝑇   2𝜑 𝛽 + 𝜔  1 +   𝛽     

3.7.4.1 Derivation of Magnitude of Outlier for CO 

Now, specifying  tttt aXXX 1121211111   
                        (4.22)

 

and substituting  tCX  in equation (4.22)  gives 

       tt

T

tt

T

tt aXZZ 11212

)(

111

)( 1212   
                               (4.23) 

             tt

T

tt

T

tt aaa 1112111

)( 1212   
         (4.24)

 

              1122 )(

11

)(

1121111

T

t

T

ttttt aaa 
        (4.25)

 

               11122 )(

11

)(

11211

T

t

T

ttta 
        (4.26)

 

Summing and squaring equation (4.26)  

        

    















n

t

n

t

T

t

T

tt

ta
1

2

11

1

2

11112

2

122

11



 

           (4.27)

 

 Differentiating equation (4.27) with respect to   and equating to 0 we have  

 
     

    
0 

122

112
2

11

11

2
















ta

`             (4.28)

 

         011
1

11112 




n

t

t  
             (4.29)

 

        011 11112   t              (4.30)
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        11211 11  t
              (4.31)

 

         11211 11  t
                         (4.32)

 

 
    





 

11
ˆ

11

112 t

C



                     (4.33)

 

The corresponding variance is  

 

    22

11

22

12

11
)ˆV(







 a

C

               (4.34)

 

The test statistic is 

 
 C

C
i

eS 




ˆ.

ˆ


                 (4.35) 

 
      

    22

11

2
2

2

12

11111

11

11/
















 

a

t

i


              (4.36)

 
 

    
    

  a

t









12

11

11

112 11
*

11




 

             (4.37)

 

              
a

t

i


 1       


                 (4.38) 

Table 3.1:  Summary of Estimates and Test Statistic for the four models when 1tX     

contains outlier 

 

MODELS 

 

MAGNITUDE VARIANCE TEST 

STATISTIC 

Innovative 













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1
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
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2
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12

1
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




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121 
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Multiplicativ
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3.8 Estimation of Magnitude of Outlier When X2t Contains an Outlier 

 We now derive the estimate of magnitude of outliers for the four generating mechanisms 

when we consider X2t  as containing an outlier. 

3.8.1 Innovative Outlier Model  

The innovative outlier-generating model is defined as    T

ttt ZX (  with the 

unobservable free series  
 
 

dtZ t



   and   

      T

ttt a   as defined in equation (3.24) 

Given a vector model X1t and X2t such that X2t contains outlier and X1t is outlier free,   
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tttt

tttt

aXXX

aXXX

2112212212

1121211111













              as defined in equation (3.56) 

If X2t contains an outlier, then 

    T

ttt ZX  221                                             (4.39)
 

         tt

T

tt

T

tt aXZZ 1122212212   
                   (4.40)

 

recall that  
 
  ta



  ttt ZandX  

where  
 
 


    

 
 
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  

Then we have  
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Making at the subject in equation (4.43) we have  
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Using the least squares theory to differentiate the sum of squares of equation (4.44) and 

equating it to zero, thus we have 
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Since )(T

t  is a time indictor where  1)( T

t  for all 0)(  T

tandTt   otherwise, we have 
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      122211  t
                (4.50)

 

Therefore, the estimator of the magnitude of outlier is   
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The variance of the magnitude is  
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46 
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


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                (4.53)

 

With the estimate and its corresponding variance in, then the test statistic for innovative 

model is 

 

a

t

I


 1


                 (4.54)

 

3.8.2 Additive Outlier Model 

The additive outlier model as defined in equation (3.57)  

   )(T

ttt ZX   
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 Summing its square over n sample we have  
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Differentiating (4.58) with respect to   and setting to zero, we obtain the magnitude of 

outlier in the model as  
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The estimate of its variance is  
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With the derived estimates of the mean and its variance of the magnitude, the test statistic for 

testing the presence of outlier is constructed as follows 

  

a

t

A





22

221 


                                                 (4.66)

 

3.8.3 Multiplicative Outlier Model  

Outlier may have multiplicative effect on a series as earlier stated; this is developed as 

follows for a multivariate situation.  

                          
)(T

ttt ZX 
                                           (4.67)

 

Now, specifying two variable-vector autoregressive equations as defined in equation (3.56)
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         and considering when X2t contains outlier

 

Assuming multiplicative model, the outlier free series is 
 
 

  ttt aZ a
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By taking the logarithm of both sides and further simplification, we have 
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then 
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If we let ,log T

t

T

t   and   tt alog  ,we have  
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By summing the square of the equation (4.74) over sample size we have 
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Differentiating equation (4.75) with respect to 0  it  to  equating  and Ω t  
we have 
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t ce   in the presence of outlier ,we have  
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Its variance is 
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The test statistic is   
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3.8.4 Convolution Outlier Model 

The outlier effect on a given series may neither be additive or innovative and the effect may 

be a combination of the two. By this we produce the convolution of the additive and 

innovative outliers as follows: 
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The convolution involved adding both innovative and additive models which gives 
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    Now given  
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Summing the square of the equation (4.85) over sample size, we have 
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 Differentiating equation (4.86) with respect to ω and equating to zero  
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The corresponding variance is  
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 Table 3.2: Summary of Estimates and Test Statistic for the four models when X2t     

contains outlier 
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By comparing the test statistic value λ with some critical value C (Table 3.3), Tsay (1988) the 

existence of outlier can be determined. Comparing 𝜆 with the critical value C, if λ< 𝐶, no 

significant disturbance is found. On the other hand, if 𝜆 ≥C an outlier is detected.  
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Table 3.3 Default Critical Values for Outlier Identification 

 

Number of Observations   Outlier Critical Value (C) 

1 1.96 

2 2.24 

3 2.44 

4 2.62 

5 2.74 

6 2.84 

7 2.92 

8 2.99 

9 3.04 

10 3.09 

11 3.13 

12 3.16 

24 3.42 

36 3.55 

48 3.63 

72 3.73 

96 3.80 

120 3.85 

144 3.89 

168 3.92 

192 3.95 

216 3.97 

240 3.99 

264 4.01 

288 4.03 

312 4.04 

336 4.05 

360 4.07 

 

Source: Tsay Critical Values (1988) 
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CHAPTER FOUR 

ANALYSIS AND INTERPRETATION OF DATA 

4.0 Introduction 

In this section, analysis of both simulated and real data sets and their results are presented. 

From the derived outlier generating mechanisms in chapter three and with the estimation of 

the magnitudes of outliers and their variances, the test statistics constructed were used to 

detect the existence of outliers in both the generated series and real data. 

Simulated data used was assumed to be normally distributed while contaminated observations 

assumed a uniform distribution with interval {0,1}. The simulated data were of varying sizes 

of 10, 50, and 100. Also in this section, the results obtained from the analysis of real data sets 

of Gross Domestic Product (GDP), Consumer Price Index (CPI), Deposits and Loans are 

presented. 

Statistical software R3.0.1 is used in analysing the data.  

The results and outcomes for the four models i.e. Innovative, Additive, Multiplicative, and 

Convolution models are summarised below. 

4.1 Analysis of Simulated Data when X1t Contains Outliers 

The results of the four models in terms of their outlier detection performance are tabulated 

below. The results from the simulation experiment are firstly tabulated. 
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Source: Computer Output 

 

Table 4.1: Innovative Model Detection Performance 

Sample size  No of outliers 

Injected  

No  of outliers 

Detected  

% Detected 

10  2  None  0  

50  5  2  40  

100  8  2  25  
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Source: Computer Output 

 

Table 4.2: Additive Model Detection Performance 

  

Sample size  No of outliers 

injected  

No  of outliers 

Detected 

% Detected 

10  2  1  50  

50  5  5  100  

100  8  8  100  
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Source: Computer Output 

 

Table 4.3: Multiplicative Model Detection Performance 

Sample size  No of outliers 

injected 

No of outliers 

Detected  

% Detected 

10  2  2  100  

50  5  4  80  

100  8  5  62.5  
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Source: Computer Output 

 

Table 4.4: Convolution Model Detection Performance 

Sample size  No of outliers 

injected 

No of outliers 

Detected 

% Detected  

10  2  2  100  

50  5  5  100  

100  8  8  100  
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Source: Computer Output 

 

 

4.1.1 Analysis of Simulated Data when X2t Contains Outliers 

The results of the four models in terms of their outlier detection performance are tabulated 

below. 

 

Table 4.5: Innovative Model Detection Performance case  

Sample size  No of outliers Injected No of outliers 

Detected 

% Detected  

10  2  None  0  

50  5  1  20  

100  8  3  37.5  
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Source: Computer Output 

 

Table 4.6: Additive Model Detection Performance 

Sample size  No of outliers Injected  No of Outliers 

Detected  

% Detected 

10  2  1  50  

50  5  3  60  

100  8  6  75  
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Source: Computer Output 

 

Table 4.7: Multiplicative Model Detection Performance 

Sample size  No of outliers 

Injected 

No of Outliers 

Detected  

  

% Detected 

10  2  2  100  

50  5  3  60  

100  8  4  50  
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Source: Computer Output 

 

 

 

Table 4.8: Convolution Model Detection Performance 

Sample size  No of Outliers 

Injected 

No of Outliers 

Detected 

% Detected  

10  2  2  100  

50  5  4  80  

100  8  6  75  
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Table 4.9: Summary of Result on Detection Rate of the Models on Simulated Data when 

      
1tX  contains outliers 

 

Source: Tables 4.1- 4.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.10: Summary of Result on Detection Rate of the Models on Simulated Data When 2tX  

        Contains Outliers 

 

                n=10           n=50       n=100 

Model Type No of No of % of No of No of % of No of No of % of 

                n=10           n=50       n=100 

Model Type No of 

outliers 

injected 

No of 

outliers 

Detected 

% of 

outliers  

detected 

No of 

outliers 

injected 

No of 

outliers 

detected 

% of 

outliers  

detected 

No of 

outliers 

injected 

No of 

outliers 

detected 

% of 

outliers  

detected 

Innovative 2 0 0% 5 2 40% 8 2 25% 

Additive 2 1 50% 5 5 100% 8 8 100% 

Multiplicative 2 2 100% 5 4 80% 8 5 80% 

Convolution 2 2 100% 5 5 100% 8 8 100% 
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outliers 

injected 

outliers 

Detected 

outliers  

detected 

outliers 

injected 

outliers 

detected 

outliers  

detected 

outliers 

injected 

outliers 

detected 

outliers  

detected 

Innovative 2 0 0% 5 1 20% 8 3 37.5% 

Additive 2 1 50% 5 3 60% 8 6 75% 

Multiplicative 2 2 100% 5 3 60% 8 4 50% 

Convolution 2 2 100% 5 5 100% 8 8 100% 

 

Source: Tables 4.5- 4.8 
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The convolution model from the summary tables of (4.9) and (4.10) is more sensitivity to 

outlying observations than the other three models. The pattern of detection is not different 

when we consider X1t  and  X2t  separately as containing outliers. 

4.2 Detection of Outlier in Real Data 

Introduction 

In order to investigate the performance of the proposed models, two different real data were 

used. The first pair is GDP and CPI and the second pair is Deposit and Loan. The data was 

obtained from the Annual statistical bulletin of the Central bank of Nigeria, 2011.   

4.2.1 The Assumed Model  

The vector autoregressive model is given as 𝑋1𝑡 =   ∅11𝑋1𝑡−1 +  ∅12𝑋2𝑡−1                     (4.96)                                         

Where  𝑋1𝑡  is the current value of GDP 

          𝑋1𝑡−1 is the past value of GDP 

         𝑋2𝑡−1 is the past value of CPI  

         ∅11  and   ∅12  are the coefficients of the model to be estimated 

4.2.2 VAR Modelling of GDP and CPI 

The estimated VAR model via the use of statistical package R is as follows 

   X1t  =   1.02865  X1t–1    +  0.62087  X2t–1 

 

Standard error            (0.01229)  (0.87628) 

t-value             (83.813)  (0.709) 

P - value             (2 X 10
–16

)  (0.480) 

 

Detection performance of the four generating models on GDP and CPI data are shown on the 

tables 4.11 to 4.14. 

   

 

Table 4.11: Detection Performance of Innovative Model on GDP and CPI Data  

GDP CPI (ώI) T Remarks 
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11.24 

11.96 

11.74 

12.68 

11.42 

12.34 

12.18 

13.13 

12.23 

13.36 

13.23 

14.29 

13.86 

15.02 

14.99 

15.75 

16.65 

17.12 

17.10 

18.05 

15.07 

17.46 

17.42 

18.39 

25.00 

26.45 

26.42 

27.36 

32.23 

34.96 

35.33 

36.56 

53.26 

54.38 

53.79 

55.41 

65.93 

67.10 

66.26 

68.26 

76.45 

78.24 

77.32 

80.13 

133.93 

133.26 

130.71 

134.72 

166.75 

171.23 

63.1 

63.9 

64.6 

65.8 

67.9 

70.9 

70.5 

72.1 

73.1 

73.6 

72.6 

72.9 

74.2 

75.7 

76.3 

81.1 

83.5 

82.2 

83.9 

85.6 

87.1 

87.8 

85.2 

84.9 

88.0 

89.4 

89.6 

91.5 

92.0 

92.3 

97.0 

96.2 

95.8 

92.5 

95.6 

95.2 

97.3 

95.9 

94.8 

99.1 

100.0 

105.2 

109.5 

108.1 

113.4 

114.4 

115.9 

117.9 

119.1 

119.7 

22.6113650 

18.6573683 

20.6425816 

12.5790522 

15.0541890 

6.9987988 

10.6966899 

2.9081796 

6.8013567 

2.4526353 

7.3759771 

2.7455734 

4.9030520 

-0.9426245 

0.1923962 

-7.5726541 

-12.8521915 

-12.0282753 

-12.2586593 

-25.8590499 

-13.5844287 

-21.5424258 

-14.4191792 

1.3131528 

-18.4227708 

-24.9093581 

-22.6121455 

-15.2230304 

-22.2500642 

-29.3707479 

-34.9835355 

8.2414729 

-34.6542245 

-33.8218265 

-33.0019193 

-8.3066725 

-38.0302202 

-41.2163021 

-31.5925616 

-22.1969518 

-41.7140367 

-57.9655457 

-55.0174012 

85.4678691 

-75.4292968 

-82.1625527 

-66.6926646 

5.6500031 

-73.6093948 

-88.7242019 

0.321803170 

0.265530200 

0.293783600 

0.179024083 

0.214250035 

0.099606355 

0.152234450 

0.041388984 

0.096796374 

0.034905713 

0.104974326 

0.039074784 

0.069779851 

-0.013415358 

0.002738168 

-0.107773419 

-0.182911380 

-0.171185469 

-0.174464277 

-0.368023967 

-0.193332522 

-0.306590111 

-0.205212625 

0.018688687 

-0.262191427 

-0.354508028 

-0.321814279 

-0.216652973 

-0.316661165 

-0.418002176 

-0.497882929 

0.117291994 

-0.493196201 

-0.481349578 

-0.469680723 

-0.118219910 

-0.541243107 

-0.586587174 

-0.449622855 

-0.315905274 

-0.593670894 

-0.824961093 

-0.783003332 

1.216371999 

-1.073503827 

-1.169330996 

-0.949164764 

0.080410401 

-1.047603124 

-1.262715872 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 
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170.64 

175.25 

211.79 

225.29 

227.72 

235.07 

235.07 

475.14 

481.12 

493.98 

670.62 

675.14 

670.70 

686.26 

686.35 

700.53 

699.92 

715.17 

647.96 

678.29 

685.02 

697.17 

777.02 

799.25 

801.41 

816.33 

1165.09 

1144.27 

1124.63 

1148.14 

1164.24 

1182.58 

1181.00 

1197.27 

1625.55 

1735.60 

1792.35 

1758.88 

2039.52 

2127.69 

2171.58 

2148.24 

2631.26 

2592.27 

2985.54 

3202.00 

3169.61 

3399.35 

3924.77 

4978.50 

116.1 

116.4 

119.8 

120.0 

121.2 

122.2 

123.8 

126.6 

127.6 

129.7 

130.8 

132.8 

135.0 

137.3 

139.9 

142.0 

152.9 

156.7 

153.9 

150.2 

146.9 

144.7 

144.9 

147.2 

151.3 

154.6 

154.7 

154.4 

157.5 

162.5 

163.5 

159.4 

158.3 

157.1 

156.4 

157.6 

159.2 

161.1 

161.9 

164.3 

165.1 

169.2 

172.4 

175.5 

179.4 

182.3 

183.5 

184.6 

185.1 

186.9 

-68.5054107 

17.2629028 

-53.8165914 

-85.2378150 

-74.0992812 

-96.2970540 

552.3621033 

-106.1447848 

-89.6274389 

350.2009229 

-132.3757374 

-160.4063098 

-109.5034824 

-156.5603922 

-122.7184249 

-167.4861923 

-142.7692094 

-374.0851356 

-99.5000821 

-159.6559806 

-139.9146342 

46.5296062 

-116.3477677 

-176.4037879 

-148.8580771 

750.1930238 

-279.8235308 

-274.4982751 

-161.1198042 

-191.4746653 

-188.3331247 

-236.8987028 

-186.4925287 

932.1238016 

36.5958886 

-118.5925082 

-370.4825358 

481.1571226 

-64.2113899 

-195.2475829 

-382.4142356 

986.3419219 

-472.9035779 

697.7065541 

180.8497330 

-516.0370280 

195.6664848 

978.1905297  \ 

2369.9105068 

-3314.9069374 

-0.974963624 

0.245684276 

-0.765913502 

-1.213097887 

-1.054575150 

-1.370492108 

7.861174064 

-1.510644239 

-1.275570670 

4.984032026 

-1.883961096 

-2.282890001 

-1.558444959 

-2.228155203 

-1.746518984 

-2.383650332 

-2.031880173 

-5.323950264 

-1.416077353 

-2.272211375 

-1.991254083 

0.662205701 

-1.655852290 

-2.510564852 

-2.118536460 

10.676688185 

-3.982426509 

-3.906637888 

-2.293044396 

-2.725052395 

-2.680342237 

-3.371523729 

-2.654147019 

13.265912723 

0.520829812 

-1.687799262 

-5.272678346 

6.847790372 

-0.913851457 

-2.778748263 

-5.442489361 

14.037540751 

-6.730326573 

9.929704871 

2.573839194 

-7.344198446 

2.784710042 

13.921530778 

33.728380168 

-47.177495135 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

D 

D 

ND 

ND 

D 

D 

D 

D 

ND 

D 

ND 

D 

D 

D 
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3968.28 

4426.08 

4986.49 

5165.74 

4740.81 

4853.84 

5524.36 

5538.29 

5535.96 

5720.25 

6461.89 

6578.22 

5460.76 

5872.69 

6608.44 

6852.34 

7426.52 

8043.20 

9055.63 

9459.40 

8311.23 

9170.10 

10013.76 

10048.57 

189.3 

191.7 

196.4 

199.3 

120.4 

121.8 

122.6 

127.7 

128.3 

129.6 

130.6 

138.3 

139.5 

140.4 

142.4 

144.7 

146.7 

149.3 

151.2 

154.6 

157.5 

159.7 

160.3 

164.9 

742.5847865 

981.3571638 

-104.2784884 

-1762.3491124 

-136.8234783 

1364.6061225 

-470.3112890 

-524.1016452 

-18.5965938 

1477.0825951 

-278.8314232 

-3648.3458060 

586.0113008 

1431.0597137 

36.0207076 

909.2988607 

976.6092929 

1998.0382444 

264.7342383 

-3983.0791809 

1546.7543080 

1435.0210214 

-826.1272233 

 

10.568408348 

13.966598066 

-1.484083256 

-25.081614129 

-1.947260996 

19.420967141 

-6.693433321 

-7.458973444 

-0.264665261 

21.021723464 

-3.968306912 

-51.922970921 

8.340066799 

20.366729431 

0.512643881 

12.941069957 

13.899026741 

28.435923342 

3.767676884 

-56.686870019 

22.013285808 

20.423106451 

-11.757377747 

 

D 

D 

ND 

D 

ND 

D 

D 

D 

ND 

D 

ND 

D 

D 

D 

ND 

D 

D 

D 

ND 

D 

D 

D 

D 

 

Note: D=Declared, ND= Not Declared 

 

From the above Table, 29 observations were identified as outliers by the innovative model.   
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Table 4.12: Detection Performance of Multiplicative Model on GDP and CPI Data  

 

GDP CPI (ώm) T Remarks 

11.24 

11.96 

11.74 

 12.68 

11.42 

12.34 

12.18 

13.13 

12.23 

13.36 

13.23 

14.29 

13.86 

15.02 

14.99 

15.75 

16.65 

17.12 

17.10 

18.05 

15.07 

17.46 

17.42 

18.39 

 25.00 

 26.45 

 26.42 

 27.36 

32.23 

 34.96 

35.33 

 36.56 

 53.26 

 54.38 

53.79 

55.41 

65.93 

67.10 

66.26 

68.26 

76.45 

78.24 

77.32 

80.13 

133.93 

133.26 

130.71 

63.1 

 63.9 

64.6 

65.8 

67.9 

 70.9 

 70.5 

72.1 

 73.1 

  73.6 

 72.6 

 72.9 

 74.2 

  75.7 

 76.3 

  81.1 

  83.5 

 82.2 

 83.9 

 85.6 

 87.1 

 87.8 

 85.2 

 84.9 

  88.0 

  89.4 

  89.6 

  91.5 

  92.0 

  92.3 

  97.0 

  96.2 

  95.8 

  92.5 

  95.6 

 95.2 

  97.3 

  95.9 

 94.8 

 99.1 

 100.0 

105.2 

109.5 

 108.1 

113.4 

114.4 

115.9 

2.017069e-117   

5.139871e-97  

2.920382e-107   

1.203955e-65   

2.026029e-78   

7.582473e-37   

6.241918e-56   

9.798034e-16 

7.921225e-36   

2.198687e-13  

 8.574854e-39   

6.766058e-15   

4.963375e-26   

7.324915e+04   

1.016389e-01   

1.207276e+39 

2.133229e+66   

1.193653e+62   

1.844463e+63  

2.859549e+133   

1.282478e+70  

1.508611e+111   

2.606898e+74   

1.670833e-07 

1.197598e+95  

3.589393e+128  

5.003890e+116   

3.670541e+78  

6.770760e+114  

3.800703e+151  

3.523468e+180   

2.927377e-43 

7.037612e+178  

3.560344e+174  

2.089404e+170   

7.413290e+42  

1.864851e+196  

5.172904e+212  

1.112886e+163  

3.601877e+114 

1.916458e+215  

1.429280e+299  

8.709662e+283   

0.000000e+00   

 Inf 

 Inf  

Inf   

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 
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134.72 

166.75 

171.23 

170.64 

175.25 

 211.79 

 225.29 

 227.72 

235.07 

 235.07 

 475.14 

 481.12 

493.98 

670.62 

 675.14 

 670.70 

 686.26 

686.35 

 700.53 

 699.92 

715.17 

 647.96 

 678.29 

 685.02 

 697.17 

 777.02 

 799.25 

 801.41 

 816.33 

1165.09 

1144.27 

1124.63 

1148.14 

1164.24 

1182.58 

 1181.00 

 1197.27 

1625.55 

 1735.60 

 1792.35 

1758.88 

2039.52 

 2127.69 

 2171.58 

2148.24 

2631.26 

2592.27 

2985.54 

3202.00 

 3169.61 

 117.9 

119.1 

119.7 

 116.1 

116.4 

119.8 

 120.0 

 121.2 

122.2 

 123.8 

 126.6 

 127.6 

 129.7 

 130.8 

 132.8 

 135.0 

 137.3 

 139.9 

 142.0 

 152.9 

 156.7 

 153.9 

 150.2 

 146.9 

 144.7 

 144.9 

 147.2 

 151.3 

 154.6 

 154.7 

 154.4 

 157.5 

 162.5 

 163.5 

 159.4 

158.3 

 157.1 

 156.4 

 157.6 

 159.2 

 161.1 

 161.9 

164.3 

 165.1 

 169.2 

 172.4 

 175.5 

 179.4 

 182.3 

 183.5 

6.931504e-30 

Inf  

Inf  

Inf   

8.084754e-90  

5.530023e+277    

Inf 

Inf 

Inf 

 0.000000e+00  

Inf 

Inf   

0.000000e+00 

Inf 

Inf  

Inf 

Inf 

Inf 

Inf 

Inf 

Inf 

Inf 

Inf 

Inf  

7.324314e-241 

Inf 

Inf 

Inf   

0.000000e+00   

Inf  

Inf  

Inf 

Inf 

Inf  

Inf 

Inf 

0.000000e+00  

1.354615e-189     

Inf  

Inf 

0.000000e+00 

Inf            

Inf 

Inf   

0.000000e+00  

Inf   

0.000000e+00   

0.000000e+00   

 Inf 

0.000000e+00   

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 
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 3399.35 

3924.77 

4978.50 

3968.28 

 4426.08 

4986.49 

5165.74 

4740.81 

4853.84 

5524.36 

5538.29 

 5535.96 

5720.25 

6461.89 

6578.22 

 5460.76 

 5872.69 

 6608.44 

6852.34 

7426.52 

8043.20 

9055.63 

9459.40 

8311.23 

9170.10 

10013.76 

10048.57 

184.6 

 185.1 

186.9 

189.3 

191.7 

196.4 

199.3 

 120.4 

 121.8 

122.6 

 127.7 

128.3 

129.6 

130.6 

138.3 

139.5 

140.4 

142.4 

144.7 

146.7 

149.3 

 151.2 

154.6 

 157.5 

 159.7 

160.3 

164.9 

0.000000e+00   

0.000000e+00 

Inf   

0.000000e+00   

0.000000e+00  

Inf           

Inf 

Inf   

0.000000e+00    

Inf  

Inf   

9.449216e+95  

0.000000e+00            

Inf 

Inf 

0.000000e+00   

0.000000e+00  

1.259722e-186   

0.000000e+00   

0.000000e+00   

0.000000e+00   

0.000000e+00            

Inf 

0.000000e+00   

0.000000e+00            

*Inf 

 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

 

*Inf. Indicates infinite value. 

 

From the table above, no outlier was detected Multiplicative model as a result of non 

multiplicative nature of the data.  
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Table 4.13: Detection Performance of Convolution Model on GDP and CPI Data  

 

GDP CPI (ώc) T Remarks 

11.24 

11.96 

11.74 

12.68 

11.42 

12.34 

12.18 

13.13 

12.23 

13.36 

13.23 

14.29 

13.86 

15.02 

14.99 

15.75 

16.65 

17.12 

17.10 

18.05 

15.07 

17.46 

17.42 

18.39 

25.00 

26.45 

26.42 

27.36 

32.23 

34.96 

35.33 

36.56 

53.26 

54.38 

53.79 

55.41 

65.93 

67.10 

66.26 

68.26 

76.45 

78.24 

77.32 

80.13 

133.93 

133.26 

130.71 

63.1 

63.9 

64.6 

65.8 

67.9 

70.9 

70.5 

72.1 

73.1 

73.6 

72.6 

72.9 

74.2 

75.7 

76.3 

81.1 

83.5 

82.2 

83.9 

85.6 

87.1 

87.8 

85.2 

84.9 

88.0 

89.4 

89.6 

91.5 

92.0 

92.3 

97.0 

96.2 

95.8 

92.5 

95.6 

95.2 

97.3 

95.9 

94.8 

99.1 

100.0 

105.2 

109.5 

108.1 

113.4 

114.4 

115.9 

-43.3445592 

-35.7649972 

-39.5705258 

-24.1132491 

-28.8579300 

-13.4162555 

-20.5048792 

-5.5747968 

-13.0377714 

-4.7015471 

-14.1392824 

-5.2630908 

-9.3988411 

1.8069516 

-0.3688114 

14.5162999 

24.6368398 

23.0574444 

23.4990761 

49.5701663 

26.0404923 

41.2954703 

27.6406562 

-2.5172310 

35.3152887 

47.7496670 

43.3460556 

29.1815883 

42.6519685 

56.3018696 

67.0612291 

-15.7983832 

66.4299608 

64.8343064 

63.2625960 

15.9233668 

72.9015314 

79.0090493 

60.5609463 

42.5501553 

79.9631751 

111.1162919 

105.4648851 

-163.8365097 

144.5932004 

157.5004269 

127.8456280 

-0.321803170 

-0.265530200 

-0.293783600 

-0.179024083 

-0.214250035 

-0.099606355 

-0.152234450 

-0.041388984 

-0.096796374 

-0.034905713 

-0.104974326 

-0.039074784 

-0.069779851 

0.013415358 

-0.002738168 

0.107773419 

0.182911380 

0.171185469 

0.174464277 

0.368023967 

0.193332522 

0.306590111 

0.205212625 

-0.018688687 

0.262191427 

0.354508028 

0.321814279 

0.216652973 

0.316661165 

0.418002176 

0.497882929 

-0.117291994 

0.493196201 

0.481349578 

0.469680723 

0.118219910 

0.541243107 

0.586587174 

0.449622855 

0.315905274 

0.593670894 

0.824961093 

0.783003332 

-1.216371999 

1.073503827 

1.169330996 

0.949164764 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 
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134.72 

166.75 

171.23 

170.64 

175.25 

211.79 

225.29 

227.72 

235.07 

235.07 

475.14 

481.12 

493.98 

670.62 

675.14 

670.70 

686.26 

686.35 

700.53 

699.92 

715.17 

647.96 

678.29 

685.02 

697.17 

777.02 

799.25 

801.41 

816.33 

1165.09 

1144.27 

1124.63 

1148.14 

1164.24 

1182.58 

1181.00 

1197.27 

1625.55 

1735.60 

1792.35 

1758.88 

2039.52 

2127.69 

2171.58 

2148.24 

2631.26 

2592.27 

2985.54 

3202.00 

3169.61 

117.9 

119.1 

119.7 

116.1 

116.4 

119.8 

120.0 

121.2 

122.2 

123.8 

126.6 

127.6 

129.7 

130.8 

132.8 

135.0 

137.3 

139.9 

142.0 

152.9 

156.7 

153.9 

150.2 

146.9 

144.7 

144.9 

147.2 

151.3 

154.6 

154.7 

154.4 

157.5 

162.5 

163.5 

159.4 

158.3 

157.1 

156.4 

157.6 

159.2 

161.1 

161.9 

164.3 

165.1 

169.2 

172.4 

175.5 

179.4 

182.3 

183.5 

-10.8306993 

141.1045631 

170.0786942 

131.3205479 

-33.0918949 

103.1630085 

163.3955105 

142.0436445 

184.5953736 

-1058.8432834 

203.4728519 

171.8101425 

-671.3130623 

253.7559322 

307.4887700 

209.9112632 

300.1163887 

235.2434738 

321.0604579 

273.6795619 

717.0975902 

190.7353764 

306.0504364 

268.2075214 

-89.1943179 

223.0313261 

338.1549256 

285.3515369 

-1438.0726696 

536.4040443 

526.1958653 

308.8564936 

367.0448462 

361.0227113 

454.1198587 

357.4944049 

-1786.8224860 

-70.1520083 

227.3343520 

710.1916338 

-922.3478302 

123.0891810 

374.2772911 

733.0639492 

-1890.7551999 

906.5263062 

-1337.4594205 

-346.6775218 

989.2104071 

-375.0802997 

-0.080410401 

1.047603124 

1.262715872 

0.974963624 

-0.245684276 

0.765913502 

1.213097887 

1.054575150 

1.370492108 

-7.861174064 

1.510644239 

1.275570670 

-4.984032026 

1.883961096 

2.282890001 

1.558444959 

2.228155203 

1.746518984 

2.383650332 

2.031880173 

5.323950264 

1.416077353 

2.272211375 

1.991254083 

-0.662205701 

1.655852290 

2.510564852 

2.118536460 

-10.676688185 

3.982426509 

3.906637888 

2.293044396 

2.725052395 

2.680342237 

3.371523729 

2.654147019 

-13.265912723 

-0.520829812 

1.687799262 

5.272678346 

-6.847790372 

0.913851457 

2.778748263 

5.442489361 

-14.037540751 

6.730326573 

-9.929704871 

-2.573839194 

7.344198446 

-2.784710042 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

D 

D 

ND 

ND 

D 

D 

D 

D 

ND 

D 

ND 
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3399.35 

3924.77 

4978.50 

3968.28 

4426.08 

4986.49 

5165.74 

4740.81 

4853.84 

5524.36 

5538.29 

5535.96 

5720.25 

6461.89 

6578.22 

5460.76 

5872.69 

6608.44 

6852.34 

7426.52 

8043.20 

9055.63 

9459.40 

8311.23 

9170.10 

10013.76 

10048.57 

184.6 

185.1 

186.9 

189.3 

191.7 

196.4 

199.3 

120.4 

121.8 

122.6 

127.7 

128.3 

129.6 

130.6 

138.3 

139.5 

140.4 

142.4 

144.7 

146.7 

149.3 

151.2 

154.6 

157.5 

159.7 

160.3 

164.9 

-1875.1294957 

-4542.9688375 

6354.4673406 

-1423.4881589 

-1881.1997334 

199.8952796 

3378.3119976 

262.2819708 

-2615.8637941 

901.5570520 

1004.6697691 

35.6484963 

-2831.4740918 

534.5022367 

6993.6486029 

-1123.3466708 

-2743.2511335 

-69.0494227 

-1743.0685151 

-1872.0983646 

-3830.1131854 

-507.4788232 

7635.3113522 

-2965.0303673 

-2750.8447103 

1583.6337365 

 

-13.921530778 

-33.728380168 

47.177495135 

-10.568408348 

-13.966598066 

1.484083256 

25.081614129 

1.947260996 

-19.420967141 

6.693433321 

7.458973444 

0.264665261 

-21.021723464 

3.968306912 

51.922970921 

-8.340066799 

-20.366729431 

-0.512643881 

-12.941069957 

-13.899026741 

-28.435923342 

-3.767676884 

56.686870019 

-22.013285808 

-20.423106451 

11.757377747 

 

D 

D 

D 

D 

D 

ND 

D 

ND 

D 

D 

D 

ND 

D 

ND 

D 

D 

D 

ND 

D 

D 

D 

ND 

D 

D 

D 

D 

ND 

 

From the above table, 31 observations were identified as outliers by the convolution model.   
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Table 4.14: Detection Performance of Additive Model on GDP and CPI Data  

GDP CPI (ώA) T Remarks 

11.24 

11.96 

11.74 

12.68 

11.42 

12.34 

12.18 

13.13 

12.23 

13.36 

13.23 

14.29 

13.86 

15.02 

14.99 

15.75 

16.65 

17.12 

17.10 

18.05 

15.07 

17.46 

17.42 

18.39 

25.00 

26.45 

26.42 

27.36 

32.23 

34.96 

35.33 

36.56 

53.26 

54.38 

53.79 

55.41 

65.93 

67.10 

66.26 

68.26 

76.45 

78.24 

77.32 

80.13 

133.93 

133.26 

130.71 

134.72 

63.1 

63.9 

64.6 

65.8 

67.9 

70.9 

70.5 

72.1 

73.1 

73.6 

72.6 

72.9 

74.2 

75.7 

76.3 

81.1 

83.5 

82.2 

83.9 

85.6 

87.1 

87.8 

85.2 

84.9 

88.0 

89.4 

89.6 

91.5 

92.0 

92.3 

97.0 

96.2 

95.8 

92.5 

95.6 

95.2 

97.3 

95.9 

94.8 

99.1 

100.0 

105.2 

109.5 

108.1 

113.4 

114.4 

115.9 

117.9 

8.333881e+00 

6.876555e+00 

7.608246e+00 

4.636267e+00 

5.548529e+00 

2.579550e+00 

3.942484e+00 

1.071869e+00 

2.506779e+00 

9.039689e-01 

2.718567e+00 

1.011937e+00 

1.807120e+00 

-3.474235e-01 

7.091156e-02 

-2.791057e+00 

-4.736938e+00 

-4.433267e+00 

-4.518180e+00 

-9.530882e+00 

-5.006819e+00 

-7.939902e+00 

-5.314483e+00 

4.839893e-01 

-6.790089e+00 

-9.180853e+00 

-8.334169e+00 

-5.610759e+00 

-8.200716e+00 

-1.082519e+01 

-1.289390e+01 

3.037563e+00 

-1.277252e+01 

-1.246573e+01 

-1.216353e+01 

-3.061594e+00 

-1.401682e+01 

-1.519111e+01 

-1.164408e+01 

-8.181141e+00 

-1.537456e+01 

-2.136439e+01 

-2.027779e+01 

3.150093e+01 

-2.780101e+01 

-3.028269e+01 

-2.458095e+01 

2.082424e+00 

0.321803170 

0.265530200 

0.293783600 

0.179024083 

0.214250035 

0.099606355 

0.152234450 

0.041388984 

0.096796374 

0.034905713 

0.104974326 

0.039074784 

0.069779851 

-0.013415358 

0.002738168 

-0.107773419 

-0.182911380 

-0.171185469 

-0.174464277 

-0.368023967 

-0.193332522 

-0.306590111 

-0.205212625 

0.018688687 

-0.262191427 

-0.354508028 

-0.321814279 

-0.216652973 

-0.316661165 

-0.418002176 

-0.497882929 

0.117291994 

-0.493196201 

-0.481349578 

-0.469680723 

-0.118219910 

-0.541243107 

-0.586587174 

-0.449622855 

-0.315905274 

-0.593670894 

-0.824961093 

-0.783003332 

1.216371999 

-1.073503827 

-1.169330996 

-0.949164764 

0.080410401 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 
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166.75 

171.23 

170.64 

175.25 

211.79 

225.29 

227.72 

235.07 

235.07 

475.14 

481.12 

493.98 

670.62 

675.14 

670.70 

686.26 

686.35 

700.53 

699.92 

715.17 

647.96 

678.29 

685.02 

697.17 

777.02 

799.25 

801.41 

816.33 

1165.09 

1144.27 

1124.63 

1148.14 

1164.24 

1182.58 

1181.00 

1197.27 

1625.55 

1735.60 

1792.35 

1758.88 

2039.52 

2127.69 

2171.58 

2148.24 

2631.26 

2592.27 

2985.54 

3202.00 

3169.61 

3399.35 

119.1 

119.7 

116.1 

116.4 

119.8 

120.0 

121.2 

122.2 

123.8 

126.6 

127.6 

129.7 

130.8 

132.8 

135.0 

137.3 

139.9 

142.0 

152.9 

156.7 

153.9 

150.2 

146.9 

144.7 

144.9 

147.2 

151.3 

154.6 

154.7 

154.4 

157.5 

162.5 

163.5 

159.4 

158.3 

157.1 

156.4 

157.6 

159.2 

161.1 

161.9 

164.3 

165.1 

169.2 

172.4 

175.5 

179.4 

182.3 

183.5 

184.6 

-2.713025e+01 

-3.270112e+01 

-2.524907e+01 

6.362596e+00 

-1.983521e+01 

-3.141614e+01 

-2.731081e+01 

-3.549225e+01 

2.035844e+02 

-3.912183e+01 

-3.303403e+01 

1.290737e+02 

-4.878979e+01 

-5.912103e+01 

-4.035975e+01 

-5.770354e+01 

-4.523039e+01 

-6.173046e+01 

-5.262051e+01 

-1.378767e+02 

-3.667279e+01 

-5.884448e+01 

-5.156840e+01 

1.714944e+01 

-4.288235e+01 

-6.501722e+01 

-5.486469e+01 

2.764990e+02 

-1.031347e+02 

-1.011720e+02 

-5.938400e+01 

-7.057190e+01 

-6.941403e+01 

-8.731386e+01 

-6.873564e+01 

3.435533e+02 

1.348816e+01 

-4.370969e+01 

-1.365489e+02 

1.773403e+02 

-2.366642e+01 

-7.196249e+01 

-1.409466e+02 

3.635365e+02 

-1.742983e+02 

2.571540e+02 

6.665587e+01 

-1.901960e+02 

7.211689e+01 

3.605321e+02 

-1.047603124 

-1.262715872 

-0.974963624 

0.245684276 

-0.765913502 

-1.213097887 

-1.054575150 

-1.370492108 

7.861174064 

-1.510644239 

-1.275570670 

4.984032026 

-1.883961096 

-2.282890001 

-1.558444959 

-2.228155203 

-1.746518984 

-2.383650332 

-2.031880173 

-5.323950264 

-1.416077353 

-2.272211375 

-1.991254083 

0.662205701 

-1.655852290 

-2.510564852 

-2.118536460 

10.676688185 

-3.982426509 

-3.906637888 

-2.293044396 

-2.725052395 

-2.680342237 

-3.371523729 

-2.654147019 

13.265912723 

0.520829812 

-1.687799262 

-5.272678346 

6.847790372 

-0.913851457 

-2.778748263 

-5.442489361 

14.037540751 

-6.730326573 

9.929704871 

2.573839194 

-7.344198446 

2.784710042 

13.921530778 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

D 

D 

ND 

ND 

D 

D 

D 

D 

ND 

D 

ND 

D 
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3924.77 

4978.50 

3968.28 

4426.08 

4986.49 

5165.74 

4740.81 

4853.84 

5524.36 

5538.29 

5535.96 

5720.25 

6461.89 

6578.22 

5460.76 

5872.69 

6608.44 

6852.34 

7426.52 

8043.20 

9055.63 

9459.40 

8311.23 

9170.10 

10013.76 

10048.57 

185.1 

186.9 

189.3 

191.7 

196.4 

199.3 

120.4 

121.8 

122.6 

127.7 

128.3 

129.6 

130.6 

138.3 

139.5 

140.4 

142.4 

144.7 

146.7 

149.3 

151.2 

154.6 

157.5 

159.7 

160.3 

164.9 

8.734790e+02 

-1.221777e+03 

2.736948e+02 

3.616993e+02 

-3.843397e+01 

-6.495498e+02 

-5.042909e+01 

5.029535e+02 

-1.733428e+02 

-1.931684e+02 

-6.854155e+00 

5.444090e+02 

-1.027690e+02 

-1.344672e+03 

2.159865e+02 

5.274463e+02 

1.327617e+01 

3.351407e+02 

3.599493e+02 

7.364179e+02 

9.757322e+01 

-1.468045e+03 

5.700879e+02 

5.289064e+02 

-3.044861e+02 

 

33.728380168 

-47.177495135 

10.568408348 

13.966598066 

-1.484083256 

-25.081614129 

-1.947260996 

19.420967141 

-6.693433321 

-7.458973444 

-0.264665261 

21.021723464 

-3.968306912 

-51.922970921 

8.340066799 

20.366729431 

0.512643881 

12.941069957 

13.899026741 

28.435923342 

3.767676884 

-56.686870019 

22.013285808 

20.423106451 

-11.757377747 

 

D 

D 

D 

D 

ND 

D 

ND 

D 

D 

D 

ND 

D 

ND 

D 

D 

D 

ND 

D 

D 

D 

ND 

D 

D 

D 

D 

 

From the above table, 31 observations were detected as outliers were by the additive model.  
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4.2.3. Assumed Model of Deposits and Loans  

 Here two cases are considered. The first case is when loan is contaminated. The vector 

autoregressive model is given as 

𝑋1𝑡 =               ∅11𝑋1𝑡−1 +       ∅12𝑋2𝑡−1 + ℓ𝑡                (4.98) 

 

where  𝑋1𝑡  is the current value of deposit, 𝑋1𝑡−1 is the immediate past value of deposit, and 

𝑋2𝑡−1  is the immediate past value of  loan 

 

4.2.. VAR Modelling of Deposits and Loans  

The estimated VAR model via the use of statistical package R is as follows 

X1t = 0.4826 X1t-1 –– 0.1579 X2t-1               (4.99)

         

S.e (0.1836) (0.1561) 

t  (2.628)  (–1.012) 

P-value (0.0142) (0.3210) 

When deposit is contaminated, 

then, the vector autoregressive model is given as 

𝑋2𝑡 =               ∅21𝑋2𝑡−1 +       ∅22𝑋1𝑡−1 + ℓ𝑡                (5.00) 

 

where 𝑋2𝑡  is the current value of loan , 𝑋2𝑡−1 is the immediate past value of loan and 𝑋1𝑡−1 is 

the immediate past value of deposit. 

The estimated VAR model via the use of statistical package R is as follows 

X2t = 0.9605 X2t-1 –– 0.3339 X1t-1                (5.10) 

S.e (0.1712) (0.2015) 

t  (5.610)  (–1.657) 

P  (6.78e.06) (0.1095) 
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Figure 4.1: Box Plot of Loan Data  

 

 From the box plot of loan data above, it shows that there is presence of outlier in the data. 
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Figure 4.2: Box Plots of Deposit Data  

 

From the box plot of Deposit data on figure 4.2 above, it shows that there is presence of 

outlier in the data. 

 

 

The detection performance of the four generating models on Deposits and Loans data for the 

two cases are shown on the tables 4.15 to 4.20. 
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Table 4.15: Detection Performance of Additive Model on Deposit and Loan Data for 

        Case One 

Deposit  Loan  (Wa) T Remarks 

111.7 

131.2 

276.6 

311.4 

873.5 

1229.2 

1378.4 

5722.0 

8360.1 

10580.7 

4612.2 

19542.2 

4855.2 

8807.1 

12442.0 

19047.6 

18513.8 

15860.5 

20640.9 

16875.9 

14861.6 

20551.8 

64490.0 

18461.9 

3118.6 

3082.3 

13411.8 

3296.2 

3953.1 

94.7 

35.9 

44.2 

58.2 

114.9 

373.6 

492.8 

659.9 

3721.1 

4730.8 

5962.1 

1895.3 

10910.4 

1602.2 

8659.3 

4411.2 

11158.6 

11852.7 

7498.1 

11150.3 

12341.0 

8942.2 

11251.9 

34118.5 

16105.5 

24274.6 

27263.5 

46521.5 

15590.5 

63769.4 

71294.2 

-7425.1230   

-7287.8225  

 -7320.9776  

 -6766.7184  

 -6641.4233   

-6645.0523  

 -2347.0674  

 -1321.7090   

 -214.7493   

-7060.4273 

10107.6624  

-10360.6635    

-790.9809   

2051.1317   

6231.8871   

3575.8049   

1289.6953   

6662.9285   

1167.7164   

1158.2959 

  7283.8830  

48840.8554 

 -14779.9643  

-10755.6646   

-2097.8978   

8721.0511   

-3338.5137   

-2683.9759    

747.8194 

-3.5562723  

-3.4905121  

-3.5063918  

-3.2409286  

-3.1809184  

-3.1826565  

-1.1241310  

-0.6330342  

-0.1028544  

-3.3816009  

4.8410781 

-4.9622533  

-0.3788413  

0.9823922  

2.9847704  

1.7126364  

0.6177012  

3.1912183  

0.5592793  

0.5547673  

3.4886253 

23.3923914 

-7.0788832  

-5.1514396 

 -1.0047909  

4.1769588  

-1.5989855  

-1.2854938  

0.3581691 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

D 

D 

ND 

D 

ND 

ND 

ND 
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Table 4.16: Detection Performance of Additive Model on Deposit and Loan Data  

        For Case Two 
 

  

Deposit  Loan  (Wm) t Remarks 

111.7 

131.2 

276.6 

311.4 

873.5 

1229.2 

1378.4 

5722.0 

8360.1 

10580.7 

4612.2 

19542.2 

4855.2 

8807.1 

12442.0 

19047.6 

18513.8 

15860.5 

20640.9 

16875.9 

14861.6 

20551.8 

64490.0 

18461.9 

3118.6 

3082.3 

13411.8 

3296.2 

3953.1 

94.7 

35.9 

44.2 

58.2 

114.9 

373.6 

492.8 

659.9 

3721.1 

4730.8 

5962.1 

1895.3 

10910.4 

1602.2 

8659.3 

4411.2 

11158.6 

11852.7 

7498.1 

11150.3 

12341.0 

8942.2 

11251.9 

34118.5 

16105.5 

24274.6 

27263.5 

46521.5 

15590.5 

63769.4 

71294.2 

 

-6512.6824  

 -6500.1432   

-6408.3408   

-6192.4792   

-6134.0659   

-5962.6850   

-3012.1602   

-3492.2985  

 -2349.9174   

-6857.8767 

  4070.3484   

-8911.3893   

2181.8965   

-7524.7308   

4516.4853    

935.5785   

-4263.9115   

2684.7738   

1963.8506   

-3835.6962 

  1065.8428  

23614.0175   

-1690.5372   

8410.6161   

-1569.6781  

14805.4833  

-31173.0466  

43336.2504   

4806.4960 

-2.8431714   

-2.8376973 

 -2.7976201   

-2.7033837  

 -2.6778829   

-2.6030650   

-1.3149862   

-1.5245950   

-1.0258780   

-2.9938691 

  1.7769480   

-3.8903489   

0.9525270   

-3.2849904   

1.9717132   

0.4084354   

-1.8614498   

1.1720627   

0.8573370  

 -1.6745084 

  0.4653035  

10.3089165   

-0.7380196   

3.6717318   

-0.6852574   

6.4634699  

-13.6088801  

18.9188386   

2.0983200 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

D 

D 

D 

ND 
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Table 4.17: Detection Performance of Convolution Model on Deposit and Loan Data  

         For Case One 

 

 

  

Deposit  Loan  (Wc) t Remarks 

111.7 

131.2 

276.6 

311.4 

873.5 

1229.2 

1378.4 

5722.0 

8360.1 

10580.7 

4612.2 

19542.2 

4855.2 

8807.1 

12442.0 

19047.6 

18513.8 

15860.5 

20640.9 

16875.9 

14861.6 

20551.8 

64490.0 

18461.9 

3118.6 

3082.3 

13411.8 

3296.2 

3953.1 

94.7 

35.9 

44.2 

58.2 

114.9 

373.6 

492.8 

659.9 

3721.1 

4730.8 

5962.1 

1895.3 

10910.4 

1602.2 

8659.3 

4411.2 

11158.6 

11852.7 

7498.1 

11150.3 

12341.0 

8942.2 

11251.9 

34118.5 

16105.5 

24274.6 

27263.5 

46521.5 

15590.5 

63769.4 

71294.2 

 

 543.83931   

533.78300   

536.21138   

495.61569   

486.43869   

486.70449   

171.90659    

96.80611    

15.72891   

517.12786 

-740.31692   

758.84751    

57.93392  

 -150.23132   

-456.44297   

-261.90317   

 -94.46133  

 -488.01380    

-85.52721    

-84.83722 

-533.49445  

-3577.25755  

1082.53098   

787.77864   

153.65662   

-638.75715   

244.52322   

196.58282    

-54.77264 

 3.4944194   

3.4298029   

3.4454064   

3.1845603   

3.1255938   

3.1273017   

1.1045794   

0.6220241   

0.1010655   

3.3227859 

-4.7568790   

4.8759466   

0.3722523   

-0.9653058   

-2.9328574   

-1.6828492   

-0.6069578   

-3.1357146  

 -0.5495519   

-0.5451185 

-3.4279489  

-22.9855362   

6.9557628   

5.0618425   

0.9873149   

-4.1043105   

1.5711749   

1.2631357 

-0.3519396 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

D 

D 

ND 

D 

ND 

ND 

ND 
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Table 4.18: Detection Performance of Convolution Model on Deposit and Loan Data  

        For Case Two 

 

  

Deposit  Loan  (Wc) T Remarks 

111.7 

131.2 

276.6 

311.4 

873.5 

1229.2 

1378.4 

5722.0 

8360.1 

10580.7 

4612.2 

19542.2 

4855.2 

8807.1 

12442.0 

19047.6 

18513.8 

15860.5 

20640.9 

16875.9 

14861.6 

20551.8 

64490.0 

18461.9 

3118.6 

3082.3 

13411.8 

3296.2 

3953.1 

94.7 

35.9 

44.2 

58.2 

114.9 

373.6 

492.8 

659.9 

3721.1 

4730.8 

5962.1 

1895.3 

10910.4 

1602.2 

8659.3 

4411.2 

11158.6 

11852.7 

7498.1 

11150.3 

12341.0 

8942.2 

11251.9 

34118.5 

16105.5 

24274.6 

27263.5 

46521.5 

15590.5 

63769.4 

71294.2 

 

13212.666  

13187.227  

13000.982  

12563.051  

12444.544  

12096.854   

6110.949   

7085.034   

4767.417  

13912.983   

-8257.758 

18079.066   

-4426.543  

15265.869   

-9162.862   

-1898.064   

8650.451   

-5446.760   

-3984.180   

7781.705   

-2162.339  

-47907.162 

  3429.693  

-17063.117   

3184.499  

-30036.765  

63242.614  

-87918.829   

-9751.224 

2.7937212   

2.7883423   

2.7489621   

2.6563648   

2.6313074   

2.5577908   

1.2921152   

1.4980783   

1.0080353   

2.9417979 

-1.7460422   

3.8226855   

-0.9359600   

3.2278558   

-1.9374199   

-0.4013316   

1.8290743   

-1.1516774   

-0.8424257   

1.6453843 

-0.4572106  

-10.1296173   

0.7251835  

 -3.6078707   

0.6733390   

-6.3510532  

13.3721859  

-18.5897902   

-2.0618247 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

D 

D 

D 

ND 
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Table 4.19: Detection Performance of Innovative Model on Deposit and Loan Data  

        For Case One 

 

  

Deposit  Loan  (WI) t Remarks 

111.7 

131.2 

276.6 

311.4 

873.5 

1229.2 

1378.4 

5722.0 

8360.1 

10580.7 

4612.2 

19542.2 

4855.2 

8807.1 

12442.0 

19047.6 

18513.8 

15860.5 

20640.9 

16875.9 

14861.6 

20551.8 

64490.0 

18461.9 

3118.6 

3082.3 

13411.8 

3296.2 

3953.1 

94.7 

35.9 

44.2 

58.2 

114.9 

373.6 

492.8 

659.9 

3721.1 

4730.8 

5962.1 

1895.3 

10910.4 

1602.2 

8659.3 

4411.2 

11158.6 

11852.7 

7498.1 

11150.3 

12341.0 

8942.2 

11251.9 

34118.5 

16105.5 

24274.6 

27263.5 

46521.5 

15590.5 

63769.4 

71294.2 

3094.70968 

 -3037.48437  

-3051.30304  

-2820.29389  

-2768.07229  

-2769.58479  

 -978.23192   

-550.87378    

-89.50514  

-2942.70855 

4212.76267 

 -4318.21071   

-329.67215   

 854.88915   

2597.38207   

1490.35620    

537.53081   

2777.03540    

486.69136   

 482.76499 

3035.84241  

20356.33200  

-6160.12677  

-4482.84285   

-874.38077   

3634.83828  

-1391.45583  

-1118.65169   

311.68289 

 

-3.4944194  

-3.4298029  

-3.4454064  

-3.1845603  

-3.1255938  

-3.1273017  

-1.1045794  

-0.6220241  

-0.1010655  

-3.3227859   

4.7568790 

-4.8759466  

-0.3722523   

0.9653058   

2.9328574   

1.6828492   

0.6069578   

3.1357146   

0.5495519   

0.5451185   

3.4279489  

22.9855362 

-6.9557628  

-5.0618425  

-0.9873149   

4.1043105  

-1.5711749  

-1.2631357   

0.3519396 

 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

D 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

D 

D 

ND 

D 

ND 

ND 

ND 
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Table 4.20: Detection Performance of Convolution Model on Deposit and Loan Data  

        For Case Two 

 

 

 

 

  

Deposit  Loan  (WI) t Remarks 

111.7 

131.2 

276.6 

311.4 

873.5 

1229.2 

1378.4 

5722.0 

8360.1 

10580.7 

4612.2 

19542.2 

4855.2 

8807.1 

12442.0 

19047.6 

18513.8 

15860.5 

20640.9 

16875.9 

14861.6 

20551.8 

64490.0 

18461.9 

3118.6 

3082.3 

13411.8 

3296.2 

3953.1 

94.7 

35.9 

44.2 

58.2 

114.9 

373.6 

492.8 

659.9 

3721.1 

4730.8 

5962.1 

1895.3 

10910.4 

1602.2 

8659.3 

4411.2 

11158.6 

11852.7 

7498.1 

11150.3 

12341.0 

8942.2 

11251.9 

34118.5 

16105.5 

24274.6 

27263.5 

46521.5 

15590.5 

63769.4 

71294.2 

 

-4689.5805   

-4680.5514   

-4614.4474   

-4459.0121   

-4416.9505   

-4293.5445   

-2168.9631   

-2514.6958   

-1692.1026   

-4938.1442     

2930.9316   

-6416.8149    

1571.1159   

-5418.3252    

3252.1809     

673.6810   

-3070.3104    

1933.2223    

1414.1079   

-2761.9658      

767.4803   

17003.7213   

-1217.3034    

6056.2237   

-1130.2765   

10660.9691  

-22446.7435   

31205.0892    

3461.0086  

 

-2.7937212   

-2.7883423  

 -2.7489621   

-2.6563648   

-2.6313074   

-2.5577908   

-1.2921152   

-1.4980783   

-1.0080353   

-2.9417979   

1.7460422   

-3.8226855    

0.9359600   

-3.2278558    

1.9374199    

0.4013316   

-1.8290743    

1.1516774   

 0.8424257   

-1.6453843   

0.4572106   

10.1296173   

-0.7251835    

3.6078707   

-0.6733390    

6.3510532  

-13.3721859   

18.5897902    

2.0618247 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

D 

ND 

ND 

ND 

D 

ND 

D 

ND 
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Table 4.21: Detection Performance of Multiplicative Model on Deposit and Loan Data  

        For Case One 

Deposit  Loan  (Wm) t Remarks 

111.7 

131.2 

276.6 

311.4 

873.5 

1229.2 

1378.4 

5722.0 

8360.1 

10580.7 

4612.2 

19542.2 

4855.2 

8807.1 

12442.0 

19047.6 

18513.8 

15860.5 

20640.9 

16875.9 

14861.6 

20551.8 

64490.0 

18461.9 

3118.6 

3082.3 

13411.8 

3296.2 

3953.1 

94.7 

35.9 

44.2 

58.2 

114.9 

373.6 

492.8 

659.9 

3721.1 

4730.8 

5962.1 

1895.3 

10910.4 

1602.2 

8659.3 

4411.2 

11158.6 

11852.7 

7498.1 

11150.3 

12341.0 

8942.2 

11251.9 

34118.5 

16105.5 

24274.6 

27263.5 

46521.5 

15590.5 

63769.4 

71294.2 

Inf  

Inf  

Inf  

Inf  

Inf 

Inf  

Inf  

Inf  

Inf  

Inf    

0  

Inf 

0  

Inf   

0    

0  

Inf   

0    

0  

Inf    

0    

0  

Inf    

0  

Inf 

0  

Inf    

0    

0 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

 

 

 

From Table 4.21 above the multiplicative model could not detect any outlier as a result of 

non multiplicative nature of the data analysed. 
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Table 4.22: Summary of Outlier Detection of the Four Models on Deposits and Loan 

          Data 

Model No of outliers for  

Case 1 

No of outliers for  

Case 2 

Convolution  6 4 

Innovative 6 4 

Multiplicative  –– –– 

Additive  6 4 

 

Source : From Tables 4.15 -4.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Discussion of Results 

Results obtained from the analysed simulated data with varying sample sizes of 10, 50, 

and100 gave an average percentage rates of outlier detection for IO, AO, MO, and CO as 
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21%, 71%, 86% and 100% respectively of the injected outliers. However, with real data on 

GDP and CPI, CO detected 30 observations as outliers, IO and AO identified the same 

number of 29 observations as outliers while MO detected nO outlier, as the data did not 

exhibit any multiplicative effect of outliers on the observations . 

For the second real data set of Deposit and Loan, 6 outliers were equally detected by all the 

models when we consider the case of deposit depending on loan .For the second case of 

Deposit depending on Loan, 4 outliers were equally detected by all models except for MO as 

a result of non multiplicative nature of data. 

All the four derived outlier-generating mechanisms were able to detect potential outlier 

independently in multivariate time series. However as the sample size increases, CO was 

found to be most sensitive to outliers for the simulated data sets.   

Of the four-outlier detection models, CO has been found to be most efficient with minimum 

standard error of the estimate and is therefore recommended for outlier detection in 

multivariate time series data. 
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                             CHAPTER FIVE 

SUMMARY, CONCLUSION, CONTRIBUTION TO KNOWLEDGE 

AND AREA OF FURTHER RESEARCH 

 

5.0 Introduction 

This chapter is divided into four sections. The first section gives the summary of the findings, 

while the second gives the conclusion based on the analysed data. The third section highlights 

contribution to knowledge and the last section highlights the suggested the area for further 

studies. 

5.1 Summary 

This project work is undertaken to develop test statistic for detecting outliers assuming 

different outliers generating mechanism in multivariate time series models. In line with the 

main objectives of the study, the test statistics were derived for each generating mechanism 

namely; the Additive, Innovative, Multiplicative, and Convolution models. Attempts were 

also made to determine the model with greatest detective power in terms of their sensitivity to 

the number of outliers detected by applying the models to both simulated and two different 

pairs of real data. All these were achieved using theoretical and analytical methods. The 

convolution model was found to be most sensitive to outlier detection.   

5.2 Conclusion 

Having considered necessary statistical techniques in accordance with main purpose of the 

work, which is outlier generating mechanisms, identification and estimation of the magnitude 

of outliers and deriving models for discovering outlier‟s occurrences in multivariate time 

series data using both simulated and real data, there is no doubt that the research has been 

successful as the proposed models were able to detect outliers in multivariate time series and 

enjoy ability to identify outliers independently. This is indeed a great promise over the 

conventional approaches of outlier detection in multivariate time series. 
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 5.3 Contribution to Knowledge 

The research work made use of the theory of maximum likelihood and Vector Autoregressive 

(VAR) model in multivariate time series from which these contributions were made. 

(a) New outlier generating mechanisms; Convolution, Multiplicative, Innovative and additive 

were developed by extending the outlier detection in univariate time series to multivariate 

time series. For each model, estimates of the magnitude of outliers and their residual 

variances were obtained. 

(b) For each generating mechanism, appropriate test statistic was developed, both simulated       

data and empirical data were used to validate the performance of the models.   

(c) All the derived outlier generating mechanisms were able to detect varying number of 

potential outliers independently in multivariate time series with the swamping effect 

ameliorated. The pair wise relative efficiency of the variances indicated that convolution 

model has the minimum residual variance and was the most sensitive to outliers.  

 

5.4 Area of Further Research 

The outlier detection in multivariate time series can be extended to frequency domain since 

this work is limited to time domain. In addition the present work only considered integration 

of order one, this can be extended to higher orders of integration.  

We hope that this will be a subject for further research. 

 

 

            

  



 

93 
 

REFERENCES 

Arnold, Z. (1962) An Efficient Method of Estimating Seemingly Unrelated Regressions and 

Tests for Aggregation Bias. Journal of the American Statistical Association, Vol. 57, No. 

298 (Jun., 1962), pp. 348 – 368 

Azami, Z., Ibrahim, A.  and Mohd, S. (2007): “Detection Procedure for a Single  Additive 

Outlier in Bilinear Model” Journal of Pak. Stat. Oper. Res. Vol No 1  PP. 1-5 

Baragona, R. & Battaglia, F. (2007). Outlier Detection in Multivariate Time Series by 

Independent Component Analysis. Neutral Computation, 19:1962-1984. 

Baragona, R., Battaglia, F. and Calzini (2001).‟‟Genetic Algorithms for the Identification of 

Addiditive and Innovational Outliers in Time Series.‟‟ Computational Statistics and Data 

Analysis.30,147. 

Barnett, V. (1978). The study of outliers: purpose and model. Applied Statistics, 27(3), 242–

250 

Barnett, V. and Lewis, T. (1994): “Outlier in Statistical Data” John Wiley & Sons U. K. 

Box, G.E.P., Jenkins, G.M. and Reinsel, G. (1994) Time Series Analysis: Forecasting and 

Control, 3rd Ed., New Jersey:' Prentice-Hall. 

Chaloner K. and Brant, R. (1988): “A Bayesian Approach to Outlier Detection and Residual 

Analysis,” Biometrika, 25, 651 – 660. 

Chang, I. (1982): “Outlier in time series”. Technical Report, Department of statistics, 

University  of Wisconsin.  

Chang, I., et. al. (1988). Estimation of time series parameters in the presence of outliers. 

Technometrics, 3, 193.204. 

Chattfield, S. (1980) “The Analysis of Time series an introduction, New York, Charian and 

Hall. 

Chen, C and Liu, L. M. (1993). “Joint Estimation of Model Parameters and Outlier effects in 

Time Series. Journal of the American Statistical Association, 88, 284 – 297 

Cucina, D., Di Salvatore, A. and Protopapas, M. (2008) „‟Meta-heuristic Methods for 

Outliers Detection in Multivariate Time Series.‟‟ Comisef working paper series, 003,270. 

Enders, W. (2003) Applied Econometric Time Series, 2
nd

 Edition, John Wiley & Sons,      

ISBN 0-471-23065-0 



 

94 
 

Forni, M., & Reichlin, I. (1998). Let's get real: a dynamic factor analytical approach to 

disaggregated business cycle. Review of Economic Studies, 65, 453/474. 

Fox, A. J. (1972). Outerliers in Time Series. Journal of the Royal Statistical Society. B34: 

350 – 363 

Galeano, P., Pena, D., & Tsay, R. S. (2004). Outlier detection in multivariate time series via 

projection pursuit. Working paper 0-42. Statistics and Econometrics Series II, Dept. De 

Estadistica, Universidad Carlos III de Madrid. 

Georgiev, I. (2005). A factor model for innovational outliers in multivariate time series, 

ICEE, First Italian Congress of Econometrics and Empirical Economics ,Venice,24-25.          

Hamilton, J. D. (1995). Time Series Analysis. Princeton University Press. 

Hawkins, D. (1980), Identification of Outliers, Chapman and Hall. 

Helbling, J and Cleroux, R. (2009).On Outlier Detection in Multivariate Time Series 

Mathematical Volume 34, Number 1, pp. 19-26    

 

Kaya, A. (1999). An Investigation: The Analysis of Outliers in Time Series. PhD Thesis. 

Dokuz Fylit Unversity, Izmir, Turkey. 

Kaya, A. (2010). Modelling Outlier Factors in Data analysis, (advances in Information 

Systems), LNCS 3261, 88 – 95 

Khattree and Naik, D.N. (1987). Detection of Outliers in Bivariate Time Series Data. 

Communications in Statistics – Theory and Methods, 16(12): 3701 – 3714 

Ljung, G. M. (1993). On Outlier Detection in Time Series. J. R. Statist. Soc. B. 55 No. 2, 559 

-567 

Lutkepohl, H. (2005). ´´New Introduction to Multiple Time Series Analysis´´, Springer, 

Berlin.  

Nelson, C.R. and Plosser, C.I. (1982). Trends and random walks in macroeconomic Time 

Series. Journal of Monetary Economics, 10, 139 – 162. 

Olivier, D. and Amelie, C. (2008) “The Impact of Outliers on Transitory and Permanent 

Components in macroeconomic Series”. Economic Bulleting, Vol. 3, No 60 PP 1 – 9 

Pankratz, A. (1983). Forcasting with Univariate Box-Jenkins Models: Concepts and Cases, 

New York: John Wiley and Sins 



 

95 
 

 Pankratz, A. (1993). Detecting and treating outliers in dynamic regression models. 

Biometrika, 80, 84'7-54. 

Pena, D. and Box, G.E.P. (1987). Identifying a Simplifying Structure in Time Series. Journal 

of the American Statistical Association, 82, 836-843. 

Rao, C. R. (1968). A note on a previous lemma in the theory of least squares and some 

further results, Sankhya, Series A30: 259–266. 

Rao, C. R. (1973).Linear Statistical Inference and Its Applications, 2nd Edn, Wiley, New 

York 

 

Rao, C. R. (1974). Characterization of prior distributions and solution to a compound 

decision problem, Discussion Paper, Indian Statistical Institute, New Delhi. 

Rolin, B. (1990): Comparing classical and Resistant Outlier rules. Journal of American Stat. 

Ass. Vol. 412 pp. 1083 – 1090. 

Rosner, B. (1975): On the Detection of Many Outliers, “Technometrics. 17, 221 – 227 

Ruey, S. Tsay (1988): Outliers, Level Shifts, and Variance Changes in Time Series. Journal 

of Forecasting, Vol. 7, I-20 Department of Statistics, Carnegie Mellon University, U. 

S.A. 

Shangodoyin, D.K. (1994): “On the Specification of time series Models in the Presence of 

aberrant Observations”. Ph.D Thesis in the Dept. of Statistics, Univ. of Ibadan. 

Shittu, I. O. and Shangodoyin, D.K. (2008) „‟Detection of Outliers in Time Series Data: A 

Frequency Domain Approach‟‟ Assian Journal of Scientific Research 1, (2) 130-137 

Shittu, I.O. (2000) „‟ On Performance of Some generating Models in Detection of Outliers 

Under Classical Rule‟‟ Mphil  in the Thesis Dept. of Statistics, Univ. of Ibadan. 

Sims, C. (1980) “Macroeconomics and reality” Econometricsa 48 (1), 11-46, JSTOR 112017 

 Sridevi, S., Abirami, S. and Rajaram, S. (2012) Detecting and Revamping of X-Outliers in 

Time Series Database. International Journal of Computer Applications 60(19):28-33. 

Tsay, R. S. (1986):  “Time series model specification in the presence of outlier”. Jour. Amer. 

Stat. Asso. 81, 132 – 141.  

Tsay, R. S. (1988). Outliers, level shifts and variance changes in time series. Journal of 

Forecasting, 7, 1-20. 



 

96 
 

Tsay, R. S., Pena, D. & Pankratz, A. E. (2000). Outliers in multivariate time series. 

Biometrika, 87, 789-804. 

Yanjie, Ji et al. (2013). Detection of Outliers in a Time Series of Available Parking Spaces. 

Mathematical Problems in Engineering Volume 2013: 1-12.  

 

 

 

 

 

  



 

97 
 

APPENDIX A 
OUTPUT FOR INNOVATIVE 

 

[1] "INNOVATIVE" 

> WI=(P11/(1-P12))*e 

> WI 

            1             2             3             4             5             6             7             8  

   22.6113650    18.6573683    20.6425816    12.5790522    15.0541890     6.9987988    

10.6966899     2.9081796  

            9            10            11            12            13            14            15            16  

    6.8013567     2.4526353     7.3759771     2.7455734     4.9030520    -0.9426245     

0.1923962    -7.5726541  

           17            18            19            20            21            22            23            24  

  -12.8521915   -12.0282753   -12.2586593   -25.8590499   -13.5844287   -21.5424258   -

14.4191792     1.3131528  

           25            26            27            28            29            30            31            32  

  -18.4227708   -24.9093581   -22.6121455   -15.2230304   -22.2500642   -29.3707479   -

34.9835355     8.2414729  

           33            34            35            36            37            38            39            40  

  -34.6542245   -33.8218265   -33.0019193    -8.3066725   -38.0302202   -41.2163021   -

31.5925616   -22.1969518  

           41            42            43            44            45            46            47            48  

  -41.7140367   -57.9655457   -55.0174012    85.4678691   -75.4292968   -82.1625527   -

66.6926646     5.6500031  

           49            50            51            52            53            54            55            56  

  -73.6093948   -88.7242019   -68.5054107    17.2629028   -53.8165914   -85.2378150   -

74.0992812   -96.2970540  

           57            58            59            60            61            62            63            64  

  552.3621033  -106.1447848   -89.6274389   350.2009229  -132.3757374  -160.4063098  -

109.5034824  -156.5603922  

           65            66            67            68            69            70            71            72  

 -122.7184249  -167.4861923  -142.7692094  -374.0851356   -99.5000821  -159.6559806  -

139.9146342    46.5296062  

           73            74            75            76            77            78            79            80  

 -116.3477677  -176.4037879  -148.8580771   750.1930238  -279.8235308  -274.4982751  -

161.1198042  -191.4746653  

           81            82            83            84            85            86            87            88  
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 -188.3331247  -236.8987028  -186.4925287   932.1238016    36.5958886  -118.5925082  -

370.4825358   481.1571226  

           89            90            91            92            93            94            95            96  

  -64.2113899  -195.2475829  -382.4142356   986.3419219  -472.9035779   697.7065541   

180.8497330  -516.0370280  

           97            98            99           100           101           102           103           104  

  195.6664848   978.1905297  2369.9105068 -3314.9069374   742.5847865   981.3571638  -

104.2784884 -1762.3491124  

          105           106           107           108           109           110           111           112  

 -136.8234783  1364.6061225  -470.3112890  -524.1016452   -18.5965938  1477.0825951  -

278.8314232 -3648.3458060  

          113           114           115           116           117           118           119           120  

  586.0113008  1431.0597137    36.0207076   909.2988607   976.6092929  1998.0382444   

264.7342383 -3983.0791809  

          121           122           123  

 1546.7543080  1435.0210214  -826.1272233  

> ABS(W1) 

 

> var(e) 

[1] 83164.05 

> W=(P11/(1-P12)) 

> var(W1)=W^2*var 

 

> varW1 

[1] 612201.8 

> t=e/sd(e) 

> t 
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            1             2             3             4             5             6             7             8  

 0.0288987778  0.0238453159  0.0263825461  0.0160768373  0.0192402211  0.0089449147  

0.0136710572  0.0037168405  

            9            10            11            12            13            14            15            16  

 0.0086925710  0.0031346256  0.0094269728  0.0035090192  0.0062664156 -0.0012047347  

0.0002458947 -0.0096783387  

           17            18            19            20            21            22            23            24  

-0.0164259268 -0.0153729089 -0.0156673545 -0.0330495279 -0.0173617730 -

0.0275326048 -0.0184286378  0.0016782937  

           25            26            27            28            29            30            31            32  

-0.0235454853 -0.0318357607 -0.0288997754 -0.0194560113 -0.0284370121 -

0.0375377036 -0.0447112069  0.0105331320  

           33            34            35            36            37            38            39            40  

-0.0442903263 -0.0432264682 -0.0421785741 -0.0106164613 -0.0486050658 -

0.0526770832 -0.0403773244 -0.0283691311  

           41            42            43            44            45            46            47            48  

-0.0533132201 -0.0740836931 -0.0703157750  0.1092334301 -0.0964034895 -

0.1050090233 -0.0852375120  0.0072210671  

           49            50            51            52            53            54            55            56  

-0.0940775377 -0.1133952328 -0.0875543181  0.0220630993 -0.0687810629 -

0.1089394062 -0.0947036441 -0.1230738245  

           57            58            59            60            61            62            63            64  

 0.7059542710 -0.1356598574 -0.1145496277  0.4475792887 -0.1691847008 -0.2050095740 

-0.1399524888 -0.2000942441  

           65            66            67            68            69            70            71            72  

-0.1568420348 -0.2140581189 -0.1824682261 -0.4781048476 -0.1271675003 -

0.2040506051 -0.1788198955  0.0594678275  

           73            74            75            76            77            78            79            80  

-0.1486999254 -0.2254553792 -0.1902501904  0.9587949030 -0.3576324580 -

0.3508264389 -0.2059214657 -0.2447169292  

           81            82            83            84            85            86            87            88  

-0.2407018385 -0.3027717688 -0.2383494385  1.1913141306  0.0467718979 -0.1515688481 

-0.4735004935  0.6149497290  
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           89            90            91            92            93            94            95            96  

-0.0820662835 -0.2495389605 -0.4887499728  1.2606083732 -0.6044011684  0.8917138212  

0.2311375829 -0.6595284900  

           97            98            99           100           101           102           103           104  

 0.2500743441  1.2501903701  3.0288979535 -4.2366641313  0.9490710867  1.2542375320 

-0.1332746107 -2.2523954405  

          105           106           107           108           109           110           111           112  

-0.1748691996  1.7440543345 -0.6010880566 -0.6698355891 -0.0237676421  1.8878064959 

-0.3563644807 -4.6628204372  

          113           114           115           116           117           118           119           120  

 0.7489601082  1.8289862954  0.0460367796  1.1621423891  1.2481694478  2.5536213001  

0.3383473724 -5.0906312053  

          121           122           123  

 1.9768514231  1.8340491012 -1.0558436906  
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f=sd(e)/sqrt(124) 

> t=e/f 

> t 

            1             2             3             4             5             6             7             8  

  0.321803170   0.265530200   0.293783600   0.179024083   0.214250035   0.099606355   

0.152234450   0.041388984  

            9            10            11            12            13            14            15            16  

  0.096796374   0.034905713   0.104974326   0.039074784   0.069779851  -0.013415358   

0.002738168  -0.107773419  

           17            18            19            20            21            22            23            24  

 -0.182911380  -0.171185469  -0.174464277  -0.368023967  -0.193332522  -0.306590111  -

0.205212625   0.018688687  

           25            26            27            28            29            30            31            32  

 -0.262191427  -0.354508028  -0.321814279  -0.216652973  -0.316661165  -0.418002176  -

0.497882929   0.117291994  

           33            34            35            36            37            38            39            40  

 -0.493196201  -0.481349578  -0.469680723  -0.118219910  -0.541243107  -0.586587174  -

0.449622855  -0.315905274  

           41            42            43            44            45            46            47            48  

 -0.593670894  -0.824961093  -0.783003332   1.216371999  -1.073503827  -1.169330996  -

0.949164764   0.080410401  

           49            50            51            52            53            54            55            56  

 -1.047603124  -1.262715872  -0.974963624   0.245684276  -0.765913502  -1.213097887  -

1.054575150  -1.370492108  

           57            58            59            60            61            62            63            64  

  7.861174064  -1.510644239  -1.275570670   4.984032026  -1.883961096  -2.282890001  -

1.558444959  -2.228155203  

           65            66            67            68            69            70            71            72  

 -1.746518984  -2.383650332  -2.031880173  -5.323950264  -1.416077353  -2.272211375  -

1.991254083   0.662205701  

           73            74            75            76            77            78            79            80  

 -1.655852290  -2.510564852  -2.118536460  10.676688185  -3.982426509  -3.906637888  -

2.293044396  -2.725052395  

           81            82            83            84            85            86            87            88  

 -2.680342237  -3.371523729  -2.654147019  13.265912723   0.520829812  -1.687799262  -

5.272678346   6.847790372  

           89            90            91            92            93            94            95            96  

 -0.913851457  -2.778748263  -5.442489361  14.037540751  -6.730326573   9.929704871   

2.573839194  -7.344198446  
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           97            98            99           100           101           102           103           104  

  2.784710042  13.921530778  33.728380168 -47.177495135  10.568408348  13.966598066  

-1.484083256 -25.081614129  

          105           106           107           108           109           110           111           112  

 -1.947260996  19.420967141  -6.693433321  -7.458973444  -0.264665261  21.021723464  -

3.968306912 -51.922970921  

          113           114           115           116           117           118           119           120  

  8.340066799  20.366729431   0.512643881  12.941069957  13.899026741  28.435923342   

3.767676884 -56.686870019  

          121           122           123  

 22.013285808  20.423106451 -11.757377747  
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APPENDIX B 
OUTPUT FOR ADDITIVE MODEL 

gdp=x1t 

 cpi=x2t 

 gdpt=matrix(gdp) 

 cpit=matrix(cpi) 

 gdpt 

           [,1] 

  [1,]    11.24 

  [2,]    11.96 

  [3,]    11.74 

  [4,]    12.68 

  [5,]    11.42 

  [6,]    12.34 

  [7,]    12.18 

  [8,]    13.13 

  [9,]    12.23 

 [10,]    13.36 

 [11,]    13.23 

 [12,]    14.29 

 [13,]    13.86 

 [14,]    15.02 

 [15,]    14.99 

 [16,]    15.75 

 [17,]    16.65 

 [18,]    17.12 

 [19,]    17.10 

 [20,]    18.05 

 [21,]    15.07 

 [22,]    17.46 

 [23,]    17.42 

 [24,]    18.39 

 [25,]    25.00 

 [26,]    26.45 
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 [27,]    26.42 

 [28,]    27.36 

 [29,]    32.23 

 [30,]    34.96 

 [31,]    35.33 

 [32,]    36.56 

 [33,]    53.26 

 [34,]    54.38 

 [35,]    53.79 

 [36,]    55.41 

 [37,]    65.93 

 [38,]    67.10 

 [39,]    66.26 

 [40,]    68.26 

 [41,]    76.45 

 [42,]    78.24 

 [43,]    77.32 

 [44,]    80.13 

 [45,]   133.93 

 [46,]   133.26 

 [47,]   130.71 

 [48,]   134.72 

 [49,]   166.75 

 [50,]   171.23 

 [51,]   170.64 

 [52,]   175.25 

 [53,]   211.79 

 [54,]   225.29 

 [55,]   227.72 

 [56,]   235.07 

 [57,]   235.07 

 [58,]   475.14 

 [59,]   481.12 

 [60,]   493.98 

 [61,]   670.62 
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 [62,]   675.14 

 [63,]   670.70 

 [64,]   686.26 

 [65,]   686.35 

 [66,]   700.53 

 [67,]   699.92 

 [68,]   715.17 

 [69,]   647.96 

 [70,]   678.29 

 [71,]   685.02 

 [72,]   697.17 

 [73,]   777.02 

 [74,]   799.25 

 [75,]   801.41 

 [76,]   816.33 

 [77,]  1165.09 

 [78,]  1144.27 

 [79,]  1124.63 

 [80,]  1148.14 

 [81,]  1164.24 

 [82,]  1182.58 

 [83,]  1181.00 

 [84,]  1197.27 

 [85,]  1625.55 

 [86,]  1735.60 

 [87,]  1792.35 

 [88,]  1758.88 

 [89,]  2039.52 

 [90,]  2127.69 

 [91,]  2171.58 

 [92,]  2148.24 

 [93,]  2631.26 

 [94,]  2592.27 

 [95,]  2985.54 

 [96,]  3202.00 
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 [97,]  3169.61 

 [98,]  3399.35 

 [99,]  3924.77 

[100,]  4978.50 

[101,]  3968.28 

[102,]  4426.08 

[103,]  4986.49 

[104,]  5165.74 

[105,]  4740.81 

[106,]  4853.84 

[107,]  5524.36 

[108,]  5538.29 

[109,]  5535.96 

[110,]  5720.25 

[111,]  6461.89 

[112,]  6578.22 

[113,]  5460.76 

[114,]  5872.69 

[115,]  6608.44 

[116,]  6852.34 

[117,]  7426.52 

[118,]  8043.20 

[119,]  9055.63 

[120,]  9459.40 

[121,]  8311.23 

[122,]  9170.10 

[123,] 10013.76 

[124,] 10048.57 
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> cpit 

        [,1] 

  [1,]  63.1 

  [2,]  63.9 

  [3,]  64.6 

  [4,]  65.8 

  [5,]  67.9 

  [6,]  70.9 

  [7,]  70.5 

  [8,]  72.1 

  [9,]  73.1 

 [10,]  73.6 

 [11,]  72.6 

 [12,]  72.9 

 [13,]  74.2 

 [14,]  75.7 

 [15,]  76.3 

 [16,]  81.1 

 [17,]  83.5 

 [18,]  82.2 

 [19,]  83.9 

 [20,]  85.6 

 [21,]  87.1 

 [22,]  87.8 

 [23,]  85.2 

 [24,]  84.9 

 [25,]  88.0 

 [26,]  89.4 

 [27,]  89.6 

 [28,]  91.5 

 [29,]  92.0 

 [30,]  92.3 

 [31,]  97.0 

 [32,]  96.2 

 [33,]  95.8 
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 [34,]  92.5 

 [35,]  95.6 

 [36,]  95.2 

 [37,]  97.3 

 [38,]  95.9 

 [39,]  94.8 

 [40,]  99.1 

 [41,] 100.0 

 [42,] 105.2 

 [43,] 109.5 

 [44,] 108.1 

 [45,] 113.4 

 [46,] 114.4 

 [47,] 115.9 

 [48,] 117.9 

 [49,] 119.1 

 [50,] 119.7 

 [51,] 116.1 

 [52,] 116.4 

 [53,] 119.8 

 [54,] 120.0 

 [55,] 121.2 

 [56,] 122.2 

 [57,] 123.8 

 [58,] 126.6 

 [59,] 127.6 

 [60,] 129.7 

 [61,] 130.8 

 [62,] 132.8 

 [63,] 135.0 

 [64,] 137.3 

 [65,] 139.9 

 [66,] 142.0 

 [67,] 152.9 

 [68,] 156.7 
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 [69,] 153.9 

 [70,] 150.2 

 [71,] 146.9 

 [72,] 144.7 

 [73,] 144.9 

 [74,] 147.2 

 [75,] 151.3 

 [76,] 154.6 

 [77,] 154.7 

 [78,] 154.4 

 [79,] 157.5 

 [80,] 162.5 

 [81,] 163.5 

 [82,] 159.4 

 [83,] 158.3 

 [84,] 157.1 

 [85,] 156.4 

 [86,] 157.6 

 [87,] 159.2 

 [88,] 161.1 

 [89,] 161.9 

 [90,] 164.3 

 [91,] 165.1 

 [92,] 169.2 

 [93,] 172.4 

 [94,] 175.5 

 [95,] 179.4 

 [96,] 182.3 

 [97,] 183.5 

 [98,] 184.6 

 [99,] 185.1 

[100,] 186.9 

[101,] 189.3 

[102,] 191.7 

[103,] 196.4 
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[104,] 199.3 

[105,] 120.4 

[106,] 121.8 

[107,] 122.6 

[108,] 127.7 

[109,] 128.3 

[110,] 129.6 

[111,] 130.6 

[112,] 138.3 

[113,] 139.5 

[114,] 140.4 

[115,] 142.4 

[116,] 144.7 

[117,] 146.7 

[118,] 149.3 

[119,] 151.2 

[120,] 154.6 

[121,] 157.5 

[122,] 159.7 

[123,] 160.3 

[124,] 164.9 

 > summary(fastVARX(gdpt,cpit,1,1,getdiag=FALSE)) 

 

  



 

111 
 

Call: 

lm(formula = varxz$y.p ~ varxz$Z) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-1468.05   -47.01    -9.53     5.96   873.48  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -47.11304  103.18480  -0.457    0.649     

varxz$Z.l1    1.02865    0.01227  83.813   <2e-16 *** 

varxz$Z.l1    0.62087    0.87628   0.709    0.480     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 290.8 on 120 degrees of freedom 

Multiple R-squared: 0.9883,     Adjusted R-squared: 0.9881  

F-statistic:  5057 on 2 and 120 DF,  p-value: < 2.2e-16  

 

>  

> resid(VARXZ(gdpt, cpit, 1, 1)) 

NULL 

> resid(fastVARX(gdpt,cpit,1,1,getdiag=FALSE)) 

            1             2             3             4             5             6             7             8  

 8.333881e+00  6.876555e+00  7.608246e+00  4.636267e+00  5.548529e+00  2.579550e+00  

3.942484e+00  1.071869e+00  

            9            10            11            12            13            14            15            16  

 2.506779e+00  9.039689e-01  2.718567e+00  1.011937e+00  1.807120e+00 -3.474235e-01  

7.091156e-02 -2.791057e+00  
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           17            18            19            20            21            22            23            24  

-4.736938e+00 -4.433267e+00 -4.518180e+00 -9.530882e+00 -5.006819e+00 -

7.939902e+00 -5.314483e+00  4.839893e-01  

           25            26            27            28            29            30            31            32  

-6.790089e+00 -9.180853e+00 -8.334169e+00 -5.610759e+00 -8.200716e+00 -

1.082519e+01 -1.289390e+01  3.037563e+00  

           33            34            35            36            37            38            39            40  

-1.277252e+01 -1.246573e+01 -1.216353e+01 -3.061594e+00 -1.401682e+01 -

1.519111e+01 -1.164408e+01 -8.181141e+00  

           41            42            43            44            45            46            47            48  

-1.537456e+01 -2.136439e+01 -2.027779e+01  3.150093e+01 -2.780101e+01 -

3.028269e+01 -2.458095e+01  2.082424e+00  

           49            50            51            52            53            54            55            56  

-2.713025e+01 -3.270112e+01 -2.524907e+01  6.362596e+00 -1.983521e+01 -

3.141614e+01 -2.731081e+01 -3.549225e+01  

           57            58            59            60            61            62            63            64  

 2.035844e+02 -3.912183e+01 -3.303403e+01  1.290737e+02 -4.878979e+01 -

5.912103e+01 -4.035975e+01 -5.770354e+01  

           65            66            67            68            69            70            71            72  

-4.523039e+01 -6.173046e+01 -5.262051e+01 -1.378767e+02 -3.667279e+01 -

5.884448e+01 -5.156840e+01  1.714944e+01  

           73            74            75            76            77            78            79            80  

-4.288235e+01 -6.501722e+01 -5.486469e+01  2.764990e+02 -1.031347e+02 -

1.011720e+02 -5.938400e+01 -7.057190e+01  

           81            82            83            84            85            86            87            88  

-6.941403e+01 -8.731386e+01 -6.873564e+01  3.435533e+02  1.348816e+01 -

4.370969e+01 -1.365489e+02  1.773403e+02  

           89            90            91            92            93            94            95            96  

-2.366642e+01 -7.196249e+01 -1.409466e+02  3.635365e+02 -1.742983e+02  

2.571540e+02  6.665587e+01 -1.901960e+02  

           97            98            99           100           101           102           103           104  

 7.211689e+01  3.605321e+02  8.734790e+02 -1.221777e+03  2.736948e+02  3.616993e+02 

-3.843397e+01 -6.495498e+02  
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         105           106           107           108           109           110           111           112  

-5.042909e+01  5.029535e+02 -1.733428e+02 -1.931684e+02 -6.854155e+00  

5.444090e+02 -1.027690e+02 -1.344672e+03  

          113           114           115           116           117           118           119           120  

 2.159865e+02  5.274463e+02  1.327617e+01  3.351407e+02  3.599493e+02  7.364179e+02  

9.757322e+01 -1.468045e+03  

          121           122           123  

 5.700879e+02  5.289064e+02 -3.044861e+02  

>  

> e=resid(fastVARX(gdpt,cpit,1,1,getdiag=FALSE)) 

> e 

            1             2             3             4             5             6             7             8  

 8.333881e+00  6.876555e+00  7.608246e+00  4.636267e+00  5.548529e+00  2.579550e+00  

3.942484e+00  1.071869e+00  

            9            10            11            12            13            14            15            16  

 2.506779e+00  9.039689e-01  2.718567e+00  1.011937e+00  1.807120e+00 -3.474235e-01  

7.091156e-02 -2.791057e+00  

           17            18            19            20            21            22            23            24  

-4.736938e+00 -4.433267e+00 -4.518180e+00 -9.530882e+00 -5.006819e+00 -

7.939902e+00 -5.314483e+00  4.839893e-01  

           25            26            27            28            29            30            31            32  

-6.790089e+00 -9.180853e+00 -8.334169e+00 -5.610759e+00 -8.200716e+00 -

1.082519e+01 -1.289390e+01  3.037563e+00  

           33            34            35            36            37            38            39            40  

-1.277252e+01 -1.246573e+01 -1.216353e+01 -3.061594e+00 -1.401682e+01 -

1.519111e+01 -1.164408e+01 -8.181141e+00  

           41            42            43            44            45            46            47            48  

-1.537456e+01 -2.136439e+01 -2.027779e+01  3.150093e+01 -2.780101e+01 -

3.028269e+01 -2.458095e+01  2.082424e+00  

           49            50            51            52            53            54            55            56  

-2.713025e+01 -3.270112e+01 -2.524907e+01  6.362596e+00 -1.983521e+01 -

3.141614e+01 -2.731081e+01 -3.549225e+01  
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           57            58            59            60            61            62            63            64  

 2.035844e+02 -3.912183e+01 -3.303403e+01  1.290737e+02 -4.878979e+01 -

5.912103e+01 -4.035975e+01 -5.770354e+01  

           65            66            67            68            69            70            71            72  

-4.523039e+01 -6.173046e+01 -5.262051e+01 -1.378767e+02 -3.667279e+01 -

5.884448e+01 -5.156840e+01  1.714944e+01  

           73            74            75            76            77            78            79            80  

-4.288235e+01 -6.501722e+01 -5.486469e+01  2.764990e+02 -1.031347e+02 -

1.011720e+02 -5.938400e+01 -7.057190e+01  

           81            82            83            84            85            86            87            88  

-6.941403e+01 -8.731386e+01 -6.873564e+01  3.435533e+02  1.348816e+01 -

4.370969e+01 -1.365489e+02  1.773403e+02  

           89            90            91            92            93            94            95            96  

-2.366642e+01 -7.196249e+01 -1.409466e+02  3.635365e+02 -1.742983e+02  

2.571540e+02  6.665587e+01 -1.901960e+02  

           97            98            99           100           101           102           103           104  

 7.211689e+01  3.605321e+02  8.734790e+02 -1.221777e+03  2.736948e+02  3.616993e+02 

-3.843397e+01 -6.495498e+02  

          105           106           107           108           109           110           111           112  

-5.042909e+01  5.029535e+02 -1.733428e+02 -1.931684e+02 -6.854155e+00  

5.444090e+02 -1.027690e+02 -1.344672e+03  

          113           114           115           116           117           118           119           120  

 2.159865e+02  5.274463e+02  1.327617e+01  3.351407e+02  3.599493e+02  7.364179e+02  

9.757322e+01 -1.468045e+03  

          121           122           123  

 5.700879e+02  5.289064e+02 -3.044861e+02  
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> sd(e) 

[1] 288.3818 

> sd(e)/sqrt(124) 

[1] 25.89745 

> f=sd(e)/sqrt(124) 

> t=e/f 

> t 

            1             2             3             4             5             6             7             8  

  0.321803170   0.265530200   0.293783600   0.179024083   0.214250035   0.099606355   

0.152234450   0.041388984  

            9            10            11            12            13            14            15            16  

  0.096796374   0.034905713   0.104974326   0.039074784   0.069779851  -0.013415358   

0.002738168  -0.107773419  

           17            18            19            20            21            22            23            24  

 -0.182911380  -0.171185469  -0.174464277  -0.368023967  -0.193332522  -0.306590111  -

0.205212625   0.018688687  

           25            26            27            28            29            30            31            32  

 -0.262191427  -0.354508028  -0.321814279  -0.216652973  -0.316661165  -0.418002176  -

0.497882929   0.117291994  

           33            34            35            36            37            38            39            40  

 -0.493196201  -0.481349578  -0.469680723  -0.118219910  -0.541243107  -0.586587174  -

0.449622855  -0.315905274  

           41            42            43            44            45            46            47            48  

 -0.593670894  -0.824961093  -0.783003332   1.216371999  -1.073503827  -1.169330996  -

0.949164764   0.080410401  

           49            50            51            52            53            54            55            56  

 -1.047603124  -1.262715872  -0.974963624   0.245684276  -0.765913502  -1.213097887  -

1.054575150  -1.370492108  

           57            58            59            60            61            62            63            64  

  7.861174064  -1.510644239  -1.275570670   4.984032026  -1.883961096  -2.282890001  -

1.558444959  -2.228155203  
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           65            66            67            68            69            70            71            72  

 -1.746518984  -2.383650332  -2.031880173  -5.323950264  -1.416077353  -2.272211375  -

1.991254083   0.662205701  

           73            74            75            76            77            78            79            80  

 -1.655852290  -2.510564852  -2.118536460  10.676688185  -3.982426509  -3.906637888  -

2.293044396  -2.725052395  

           81            82            83            84            85            86            87            88  

 -2.680342237  -3.371523729  -2.654147019  13.265912723   0.520829812  -1.687799262  -

5.272678346   6.847790372  

           89            90            91            92            93            94            95            96  

 -0.913851457  -2.778748263  -5.442489361  14.037540751  -6.730326573   9.929704871   

2.573839194  -7.344198446  

           97            98            99           100           101           102           103           104  

  2.784710042  13.921530778  33.728380168 -47.177495135  10.568408348  13.966598066  

-1.484083256 -25.081614129  

          105           106           107           108           109           110           111           112  

 -1.947260996  19.420967141  -6.693433321  -7.458973444  -0.264665261  21.021723464  -

3.968306912 -51.922970921  

          113           114           115           116           117           118           119           120  

  8.340066799  20.366729431   0.512643881  12.941069957  13.899026741  28.435923342   

3.767676884 -56.686870019  

          121           122           123  

 22.013285808  20.423106451 -11.757377747  
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APPENDIX C 
 

  OUTPUT FOR MULTIPLICATIVE MODEL 

[1] "Multiplicative" 

> w=e*(P11+P12*fi-1)/(1-P11) 

> Wm=10^w 

> Wm 

            1             2             3             4             5             6             7             8  

2.017069e-117  5.139871e-97 2.920382e-107  1.203955e-65  2.026029e-78  7.582473e-37  

6.241918e-56  9.798034e-16  

            9            10            11            12            13            14            15            16  

 7.921225e-36  2.198687e-13  8.574854e-39  6.766058e-15  4.963375e-26  7.324915e+04  

1.016389e-01  1.207276e+39  

           17            18            19            20            21            22            23            24  

 2.133229e+66  1.193653e+62  1.844463e+63 2.859549e+133  1.282478e+70 

1.508611e+111  2.606898e+74  1.670833e-07  

           25            26            27            28            29            30            31            32  

 1.197598e+95 3.589393e+128 5.003890e+116  3.670541e+78 6.770760e+114 

3.800703e+151 3.523468e+180  2.927377e-43  

           33            34            35            36            37            38            39            40  

7.037612e+178 3.560344e+174 2.089404e+170  7.413290e+42 1.864851e+196 

5.172904e+212 1.112886e+163 3.601877e+114  

           41            42            43            44            45            46            47            48  

1.916458e+215 1.429280e+299 8.709662e+283  0.000000e+00           Inf           Inf           

Inf  6.931504e-30  

           49            50            51            52            53            54            55            56  

          Inf           Inf           Inf  8.084754e-90 5.530023e+277           Inf           Inf           Inf  

           57            58            59            60            61            62            63            64  

 0.000000e+00           Inf           Inf  0.000000e+00           Inf           Inf           Inf           Inf  

           65            66            67            68            69            70            71            72  

          Inf           Inf           Inf           Inf           Inf           Inf           Inf 7.324314e-241  

           73            74            75            76            77            78            79            80  

          Inf           Inf           Inf  0.000000e+00           Inf           Inf           Inf           Inf  

           81            82            83            84            85            86            87            88  

          Inf           Inf           Inf  0.000000e+00 1.354615e-189           Inf           Inf  

0.000000e+00  

           89            90            91            92            93            94            95            96  
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          Inf           Inf           Inf  0.000000e+00           Inf  0.000000e+00  0.000000e+00           

Inf  

           97            98            99           100           101           102           103           104  

 0.000000e+00  0.000000e+00  0.000000e+00           Inf  0.000000e+00  0.000000e+00           

Inf           Inf  

          105           106           107           108           109           110           111           112  

          Inf  0.000000e+00           Inf           Inf  9.449216e+95  0.000000e+00           Inf           

Inf  

          113           114           115           116           117           118           119           120  

 0.000000e+00  0.000000e+00 1.259722e-186  0.000000e+00  0.000000e+00  0.000000e+00  

0.000000e+00           Inf  

          121           122           123  

 0.000000e+00  0.000000e+00           Inf  

>  

>  

> sd(e) 

[1] 288.3818 

> se=sd(e)/sqrt(124) 

> t=10^(e/se) 

> t 

           1            2            3            4            5            6            7            8            9           2 
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APPENDIX D 
OUTPUT FOR CONVOLUTION MODEL 

[1] "CONVOLUTION" 

> Wc=P12*fi*e/(1-P11)*(1-fi) 

> Wc 

            1             2             3             4             5             6             7             8  

  -43.3445592   -35.7649972   -39.5705258   -24.1132491   -28.8579300   -13.4162555   -

20.5048792    -5.5747968  

            9            10            11            12            13            14            15            16  

  -13.0377714    -4.7015471   -14.1392824    -5.2630908    -9.3988411     1.8069516    -

0.3688114    14.5162999  

           17            18            19            20            21            22            23            24  

   24.6368398    23.0574444    23.4990761    49.5701663    26.0404923    41.2954703    

27.6406562    -2.5172310  

           25            26            27            28            29            30            31            32  

   35.3152887    47.7496670    43.3460556    29.1815883    42.6519685    56.3018696    

67.0612291   -15.7983832  

           33            34            35            36            37            38            39            40  

   66.4299608    64.8343064    63.2625960    15.9233668    72.9015314    79.0090493    

60.5609463    42.5501553  

           41            42            43            44            45            46            47            48  

   79.9631751   111.1162919   105.4648851  -163.8365097   144.5932004   157.5004269   

127.8456280   -10.8306993  

           49            50            51            52            53            54            55            56  

  141.1045631   170.0786942   131.3205479   -33.0918949   103.1630085   163.3955105   

142.0436445   184.5953736  

           57            58            59            60            61            62            63            64  

-1058.8432834   203.4728519   171.8101425  -671.3130623   253.7559322   307.4887700   

209.9112632   300.1163887  
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           65            66            67            68            69            70            71            72  

  235.2434738   321.0604579   273.6795619   717.0975902   190.7353764   306.0504364   

268.2075214   -89.1943179  

           73            74            75            76            77            78            79            80  

  223.0313261   338.1549256   285.3515369 -1438.0726696   536.4040443   526.1958653   

308.8564936   367.0448462  

           81            82            83            84            85            86            87            88  

  361.0227113   454.1198587   357.4944049 -1786.8224860   -70.1520083   227.3343520   

710.1916338  -922.3478302  

           89            90            91            92            93            94            95            96  

  123.0891810   374.2772911   733.0639492 -1890.7551999   906.5263062 -1337.4594205  -

346.6775218   989.2104071  

           97            98            99           100           101           102           103           104  

 -375.0802997 -1875.1294957 -4542.9688375  6354.4673406 -1423.4881589 -1881.1997334   

199.8952796  3378.3119976  

          105           106           107           108           109           110           111           112  

  262.2819708 -2615.8637941   901.5570520  1004.6697691    35.6484963 -2831.4740918   

534.5022367  6993.6486029  

          113           114           115           116           117           118           119           120  

-1123.3466708 -2743.2511335   -69.0494227 -1743.0685151 -1872.0983646 -3830.1131854  

-507.4788232  7635.3113522  

          121           122           123  

-2965.0303673 -2750.8447103  1583.6337365  

>  

> wc=Wc/e 

> varWc=wc^2*var(e) 

> varWc 

      1       2       3       4       5       6       7       8       9      10      11      12      13      14      15  

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 

2249626 2249626 2249626 2249626 2249626  

     16      17      18      19      20      21      22      23      24      25      26      27      28      29      30  

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 

2249626 2249626 2249626 2249626 2249626  

     31      32      33      34      35      36      37      38      39      40      41      42      43      44      45  

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 

2249626 2249626 2249626 2249626 2249626  

     46      47      48      49      50      51      52      53      54      55      56      57      58      59      60  
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2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 

2249626 2249626 2249626 2249626 2249626  

     61      62      63      64      65      66      67      68      69      70      71      72      73      74      75  

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 

2249626 2249626 2249626 2249626 2249626  

     76      77      78      79      80      81      82      83      84      85      86      87      88      89      90  

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 

2249626 2249626 2249626 2249626 2249626  

     91      92      93      94      95      96      97      98      99     100     101     102     103     104     

105  

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 

2249626 2249626 2249626 2249626 2249626  

    106     107     108     109     110     111     112     113     114     115     116     117     118     

119     120  

2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 2249626 

2249626 2249626 2249626 2249626 2249626  

    121     122     123  

2249626 2249626 2249626  

> sdWc=sqrt(varWc) 

> seWc=sdWc/sqrt(124) 

> t=Wc/seWc 

> t 
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            1             2             3             4             5             6             7             8  

 -0.321803170  -0.265530200  -0.293783600  -0.179024083  -0.214250035  -0.099606355  -

0.152234450  -0.041388984  

            9            10            11            12            13            14            15            16  

 -0.096796374  -0.034905713  -0.104974326  -0.039074784  -0.069779851   0.013415358  -

0.002738168   0.107773419  

           17            18            19            20            21            22            23            24  

  0.182911380   0.171185469   0.174464277   0.368023967   0.193332522   0.306590111   

0.205212625  -0.018688687  

           25            26            27            28            29            30            31            32  

  0.262191427   0.354508028   0.321814279   0.216652973   0.316661165   0.418002176   

0.497882929  -0.117291994  

           33            34            35            36            37            38            39            40  

  0.493196201   0.481349578   0.469680723   0.118219910   0.541243107   0.586587174   

0.449622855   0.315905274  

           41            42            43            44            45            46            47            48  

  0.593670894   0.824961093   0.783003332  -1.216371999   1.073503827   1.169330996   

0.949164764  -0.080410401  

           49            50            51            52            53            54            55            56  

  1.047603124   1.262715872   0.974963624  -0.245684276   0.765913502   1.213097887   

1.054575150   1.370492108  

           57            58            59            60            61            62            63            64  

 -7.861174064   1.510644239   1.275570670  -4.984032026   1.883961096   2.282890001   

1.558444959   2.228155203  

           65            66            67            68            69            70            71            72  

  1.746518984   2.383650332   2.031880173   5.323950264   1.416077353   2.272211375   

1.991254083  -0.662205701  

           73            74            75            76            77            78            79            80  

  1.655852290   2.510564852   2.118536460 -10.676688185   3.982426509   3.906637888   

2.293044396   2.725052395  

           81            82            83            84            85            86            87            88  

  2.680342237   3.371523729   2.654147019 -13.265912723  -0.520829812   1.687799262   

5.272678346  -6.847790372  

 

           89            90            91            92            93            94            95            96  

  0.913851457   2.778748263   5.442489361 -14.037540751   6.730326573  -9.929704871  -

2.573839194   7.344198446  

           97            98            99           100           101           102           103           104  



 

123 
 

 -2.784710042 -13.921530778 -33.728380168  47.177495135 -10.568408348 -13.966598066   

1.484083256  25.081614129  

          105           106           107           108           109           110           111           112  

  1.947260996 -19.420967141   6.693433321   7.458973444   0.264665261 -21.021723464   

3.968306912  51.922970921  

          113           114           115           116           117           118           119           120  

 -8.340066799 -20.366729431  -0.512643881 -12.941069957 -13.899026741 -28.435923342  

-3.767676884  56.686870019  

          121           122           123  

-22.013285808 -20.423106451  11.757377747  

 

 

 


