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ABSTRACT

This paper considers the problem of s¢heduling in flow-shop by Johnson’s Algorithm
method and Genetic Algorithm method to find an optimal sequence for n jobs m-machine
problem based on minimum elapsed time. In scheduling the two machine flow shop problem
F2l X C, one has to determine & schedule that minimizes the sum of finishing times of an

arbitrary number of jobs that néed to be executed on two machines. such that each job must
complete processing on machine [“before starting or machine 2. We propose a heuristic for
approximating the solution forthe F2[| 2 C, problem using a genetic algorithm.
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1.0 INTRODUCTION

Sequencing problems are most commonly encountered in production shops where different products
are to be processed over various combinations of machines. The selection of appropriate order in which jobs
are to be performed is called job sequencing. The objective is to determine an appropriate sequence or order

for jobs to be done on a finite number of service facilities in some pre-assigned order, so as to minimize the
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total involved resources. There are total (n!)m possible ways by.'_which 1 jobs can be processed on m-
machines. Here, the aim is to find out one sequence out of (n!)m that minimizes the total elapsed time.

According to Blazewicz, et al. (2005), Johnson’s Rule has been the basis of many flow shop
scheduling heuristics. Palmer first proposed a heuristicfor the flow shop scheduling problem to minimize
makespan. The heuristic generates a slope index for jobs and sequences them in a descending order of the
index. Campbell et al. (1970) proposed Campbell, Dudek, Smith (CDS) heuristic which is a generalization of
Johnson’s two machine algorithm; it generates a set of m-1 artificial two-machine problems from-.an original
m-machine problem, then each of the generated problems are solved using Johnson's algorithm.. Du (1993)
proposed an AIS approach for solving the permutation flow shop scheduling problem while Liaw, (20.08)
developed a two-phase heuristic to solve the problem of scheduling two-machine no-wait job shops to
minimize makespan..

Holland (1992) conceived of genetic algorithms in the early 1970 irrorder to solve optimization
problems, by using random search. Genetic algorithms are a class of adaptive heuristic search techniques
which exploit gathered information to direct the search into regions of better performance within the search
space. In terms of time complexity, compared with other optimization techniques such as integer linear
programming, branch and.Round, tabu search, they may offer 2 good approximation for the same big-O time
when the state-space is large. (Golden, 1996). Flow shop problems are a distinct class of shop scheduling
problems (Du, 1993), where n jobs (i =1, .. ., n)diave to be performed on m machines (j =1, ...,m) as
follows. A job consists of m operations, the jth operation of each job must be processed on machine j and has
processing time pij . A job can start only on machine j if its operation is completed on machine (j — 1) and if
machine j is free. The compietion zime of job i. Ci, 1s the time when its last operation has completed. This

problem is denoted in a|ffy-notation as Fm|| 2 C, (Brucker, 2004).

2.0 THEORY.

In a flow shop problem, there are m machines that should process n jobs. All jobs have the same processing
order through the machines. The order of the jobs on each machine can be different however the objective is
that of minimising the makespan.

- If there are m=2 machines, then the probiem can be solved in O(n logn) time by Johnson's algorithm.

- If there ‘arem=3 machines or more, then the problem is NP-hard. We discuss the properties of an optimal

schedulefor the general case with m machines and describe two approximation algorithms.
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2.1 Two Machine Flow Shop Problem.

The work here focuses on the case m = 2 where the objective is to minimize the sum of completion
time (XC,) or the'avérage' cﬁ_omp@ﬁon tit_nei:‘tﬁus we consider the flow shop problem F2|| X C, with n jobs.
Oulamara (2007) considered makespan mini’mization for no-wait flow shop problems on two batching
machines. (For Batcljing macﬁines the pognplet_ion time of a job is the completion time of the batch the job is
part of.), Independently, Liaw (2008) developed heuristic fdr minimizing the makespan for twe-machine no-
wait job shop problems, Indhis setting o:perations must be performed without any interruption or machines
and without any waiting in between machines, We als;) mention that Allaoui et al., (2008). studied the
problem of scheduling n immediately available jobs in a flow shop composed of two'machines in series with
the objective of minimizing the makespan. Blazewics er al. (2005) have studied the wariant of the problem
where a total weighted late work criterion and 2 common due date (F2[di =d|Yw) is given. Genefic
algorithms for shop probleﬁs were extensively studied by Wall (1996) in.the context of adaptive approaches
to resource-constrained scheduling. Thus an optimal schedule
may be represented by a job permutation and a permutation fully. describes the solution. Computing the order
is NP-hard (Garey ef al., 1976). Still, the fact that in the case of two machines the search space is restricted to
permutations makes the construction of effective genetie.Operators more feasible. It should be noted that the
problem of F2||Cmax is to find a schedule, which/minimizes the Cmax = max{Ci,i=1,...,n] (the so called
makespan). For arbitrary processing times, thissproblem is the only flow shop problem that is polynomially
solvable. The optimal solutton is given by Johnson’s algorithm (Johnson, 1954).

2.2. Using Johnson’s Algorithm

Johnson's algorithm gives an optimal solution to the F2||Cmax probiem and all the jobs are scheduled on the
same order for both machines: Tt creates two partial schedules, L and R. The final schedule T (the same for
the both machine) is obtained by concatenating L and R (see Algorithm 1).

In order to schedule the processing of customers® orders such that maximum profit is obtained, the
principles guiding flow.sliop scheduling are adopted as presented in the mathematical frame work. In this
case customers'are free to bring their jobs at any time. However, each customer’s order passes through the
machines inrthe same order.

2.3. Single Machine Sequencing
A single machine sequencing is a flow shop in which the jobs visit the machines in the same sequence. The
shop characteristics of a single machine shop is given as:

n/mlF/F
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where n is the number of jobs in the shop

m is the number of machines in the shop

F is the flow shop

7 is the s Hlow Gine:

n/m is referred 1o as the hardware and F / F is referred to as the software of the system.
Johnson's 2- Machine A{garﬁhm:
Johnson’s 2 — machine Ialgorithm is a process in which the jobs are scheduled in the machines in such a
sequence that gives the minimum makespan. A typical case of Johnson’s 2-machine algorithm with n jobs is

presented in Fig. 1.
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Fig. 1 A typical chart for johnson's 2-machine.

The flow time for job J in the kth position is given by
Fk)=P(1)+P2)+P3) +......... % Pk)
i
& Fk)= D P(i) (1)
i=l
where P(i) is the processing time for the jobiin‘the ith position in the sequence.

This algorithm supposes that we have(n) jobs to be scheduled on two machines i.e. 11, J2. ... Jn.

Then n positions are possible.
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The optilnizir;g sequence can be obtained from the following process:

In this case we have (n) jc;gs to be scheduled on two machines i.e. J1, J2, ..., Jn. The optimal solution by
Johnson algorithm is obtained as follows:

Step 1:Setk=1.1=n

Step 2: Set the list of unscheduled jobs = {11, J2, ..., In}

Step 3: Find the smallest processing times on first and second machines for the currentiy.unscheduled jobs
Step 4: If the smallest processing time obtained in step 3 for Ji is on the first machine then schedule Ji in kth
position of processing sequence. Then delete the Ji job from the list of unscheduled and decrease k by 1.
Step 5: If the smallest processing time o.btaincd in step 3 for Ji is on the secorid machine then schedule Ji in
the Ith position of processing sequence. Then delete the Ji job from the current list of unscheduled jobs and
decrease | by 1.

Step 6: Repeat-steps 3 to 5 for the remaining unscheduled jobs until-all the J jobs are scheduled.

Summing up the various processing times gives the makespan forthe optimum scheduling.

2.4 Algorithm 1: Johnson's Algorithm
LX={l,....,nl:L=¢g:R=¢
2.while X = ¢ do

BEGIN

. Find job i that has smallest pil orpil.

L2

4.if pil is the smallest then L ==L s ielse R ;=i R;
5. X =X\ {i}

END

6. T:=LoR

From algorithm 1, we have the set X of all jobs that are not scheduled yet, at time t consider the job i that has
the smallest processing timg for either machine: the smallest value of pil or pi2 wherei e {1,....n}.Ifjobi
has smallest'pil value then job i is removed from X and added to the tail of L i.e, L and if otherwise job i is

added toithe front of R i.e, i o R.
This is done until X becomes empty (all the jobs have been scheduled in T and R).
Initially let X = {1....,1,...,n} be the set of all jobs. The example in Figure 4 shows how Johnson’s

algorithm works for a set of 5 jobs, where i represents the job number and j represents the machine.
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Fig. 2 Johnson’s Algorithm for n =5 (Selecting the Jobs).

The optimal schedule for the set of 5 jobs, where i represents the job number and j represents the machine is

now presented in Fig. 3.
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Fig. 3 Johnson's Algorithm for n = 5, (Optimal Schedule T of the Jobs).

To show that Johnson's algorithm gives an arbitrarily large solution for the F2|| X C, problem, consider the

following flow shop that has n jobs given in Table 1. The value € is considered very small and the value k

very large. Wé'teferto the n job as the large” job.
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Table 1: A 2-Machine Flow Shop Problem.
Jobi  Pil Pi2

n el2 k

For the data given in Table 1, it is obvious that the optimal schedule for 3 C, would schedule the large job
last, after jobs 1,..., (n—1). Thus £ C, is equal to
ZC, = G+ Cy +i i+ Gy
=2¢ +3e +...+ne +(ne +e/2+k)

_ n(n-i—?r)-le
2

+k

lower order terms + k
Johnson’s algorithm schedules the large job first, followed by jobs 1. ..., (n—1). Thus 2 C, is equal to
sC,

]

CI+C2 +--A+Cn

(elR+k)+k +(e))+(k+ (e +e)yrRnS%k+(e+...+&)
n(n-v—!)—-rle

P

Fa

= nk +

=

= nk + lower order 1€rms

If n is arbitrarily large, then Johnson s.algorithm gives an arbitrarily bad solution.

2.5 Genetic Algorithms

In a genetic algorithm a fixed size set of individuals (called generation) is maintained within a search space,
each representing a'possible solution to the given problem. The individuals in the generation go through a
process of eyolution. A fitness score is assigned to each solution representing the abilities of an individual 1o
“compete™, The individual with the optimal (or near optimal) fitness score is sought (Kumar es a/., 2007). The
individuals with lower values are removed and newer ones, added by the “breeding™ process — by combining

information from the parents’ components — are added. After an initial population is randomly generated, the
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algorithm evolves through three operators: selection represents the paradigm of survival of the fittest,
crossover mimics mating between individuals, and mutation introduces random modifications.
A genetic algorithm has the following structure:
1. Randomly initialize population (at time t).
2. Determine fitness of population (at time t).
3. Repeat the following until the best individual is found:
(a) Select parents from population (at time t).
(b) Perform crossover on parents creating population (at time t + 1).
(c) Perform mutation of population (at time t + 1).
(d) Determine fitness of population (at time t + 1).
In the case of the 2-machiif flow shop problem, an individual is represented by a permutation. The fitness of

a permutation is the 3 C, -value of the corresponding schedule.

3.0 SIMULATIONS AND RESULTS

The following results are developed using Johnson's algorithm (JA) and a genetic algorithm (GA) for two
machine flow shop scheduling problem. Two assumptions are made:

I. When implementing the algorithms, we caleulate an initial feasible solution which is the sum of
completion time for all the processes in the ascending order.

2. When implementing a genetic algorithm, the mutation probability is 0.01 and the crossover probability is
0.85. These parameters were found afier extensive experimentation. Lower crossover probabilities slowed
convergence and other mutatiofi probabilities did not work well. The choice of these parameters was also
guided by our earlier work/on traveling salesman problems. The following results are obtained by applying
Johnson’s algorithm and E:kéenetic algorithm to randomly chosen pil and pi2 values. When more runs are
executed for a GA, the results are separated by commas. Table 2 contains randomly selected pil and pi2 for
up to 20 jobs.

Table 2. Random Pil and Pi2 for n up to 20

Jobi |[RJ2YS [4 (516 |7 |8 19 10|11 [12|13|14|15|16|17 |18 1920
il 612 |4 |V |7 (41712167 |8 |9 12 |4 |6 |3 |9 |4 |8 |8
P2 |39 43 |8 |1 [5 o 131442 |8 (3 |§ 13 [53:]6 12 |5 {5 |1
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Forn =5 and randomly selected pil and pi2 given in Table 2, by running JA (Johnson's Algorithm) and GA
(Genetic Algorithm), the iésults for the objective function 2.C, are presented in Table 3.

Table 3. £C, Results forn=35

n=35 JA GA with gen =150, pop=50
M o 97 83

Forn =7 and randomly selected pil and pi2 given in Table 3, by running JA and GA. algorithms the results

for the objective function X C, are presented in Table 4.

Table 4. C, Results forn=7

n=7 JA GA with gen =150, pop=50
>C, 182 150

Forn =10 and randomly selected pil and pi2 given in Table 3, by running JA and GA algorithms the results
.-&.

for the objective function 2 C, are presented in Table 5.

Table 5. 3 C, Results forn= 10

n=10 JA GA with gen =150, pop=50
3C 331 297,292, 294, 295

4.0 Conciusion

A heuristic model based on genetic algorithms to approximate the two machine flow shop problem F2|| X C,
has been proposed. To calibrate otr genetic algorithm we show that for smaller numbers of jobs (n) the
results are quite close Wwith the optimal schedule (obtained by using Johnson’s algorithm technique). Also in
our simulations and for larger values of n, the results obtained by our genetic algorithm and by Johnson’s

algorithm are different results for weighted average completion time, X C, for the F2|| £C, problem.
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