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Abstract

Grinding is one of the most important finishing operations and it is very useful
in our automobile industries. A grinding wheel is made of very small, sharp
and hard abrasive particles or grits held together by strong porous bond. The
paper presents, a control system for grinding process using neuro — fuzzy
technique. The grinding parameters include circumferential speed of a
grinding segment workpiece velocity and work depth of cut. The maximum
grinding teémperature is very important since too high temperature will lead to
surface burns and thermal damage to the grinding wheel as well as the
workpiece material. For fuzzy modeling, all the numerical values are replaced
with linguistic values. The research work can be applied to any other grinding
process, whether it is a wet or dry grinding process.

Introduction
A grinding wheel is an expendable wheel that carries an abrasive compound on its
periphery. They are made of small, sharp and very hard natural or synthetic abrasive
minerals, bonded together in a matrix to form a wheel. Each abrasive grain is a cutting
edge and as the grain passes over the workpiece, it cuts a small chip, leaving a
smooth, accurate surface. As the abrasive grain becomes dull, it breaks away from the
bonding material exposing new sharp grains (Odior and Oyawale, 2008a). The
abrasive particles or grits are held together by strong porous bond and during
grinding, a small tiny chip is cut by each of these active grains that comes in contact
with the work piece as the grinding wheel whirls past it. The size of the chip being cut
by each microseopic active grain is so small that it is less than 1 micgometer which is
on a nano scale, (Odior and Oyawale, 2008b).

Abrasive materials for grinding are classified into two groups: natural and
synthetic abrasive materials. Natural abrasive materials are those materials that are
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found existing naturally and among the important natural abrasive materials include;
aluminosilicate mineral, feldspar, calcined clays, lime, chalk and silica, flint,
kaolinite, diatomite and diamond, which is the hardest known natural material,
(Brecker, 2006). The use of natural abrasive materials goes back to early man who
used them to sharpen his tools. Early man shaped weapons and tools by rubbing them
against hard and rough stone. Pictographs also show ancient Egyptians using natural
abrasive stones to polish pottery and jewelry (Scott, 2010). Abrasive stones have been
used for ages to clean and sharpen everything from weapons and tools, and even for
cleaning the decks of English navy ships. The earliest form of sandpaper would have
been loose sand held in flexible bits of leather or rawhide. Crude adhesives were later
used to attach abrasive grit to flexible backings (Scott, 2010). Impurities in the natural
abrasive materizls make them less effective. As a result of this and with advancement
in technology, man began to search for better alternative abrasive materials and the
search led to the discovery of synthetic abrasive material by Acheson in 1891.

Synthetic abrasive materials are those abrasive materials that are usually
manufactured, and their qualities and compositions can easily be controlled. An
important characteristic of the synthetic abrasive materials is their purity which has an
important bearing in their efficiency (Arunachalam and Ramamoorthy, 2007). The
most commonly used synthetic abrasive materials include silicon carbide, aluminium
oxide, Cubic Boron Nitride (CBN), while aluminium oxide and silicon carbide are the
most common mineral in use today, (Zhong and Venkatesh, 2008). The Cubic Boron
Nitride (CBN) shows a great promise in the grinding of high speed steels and its
hardness approaches that of diamond. The various grades of each type of synthetic
abrasives are distinguishable by properties such as colour, toughness, hardness and
friability and the differences in properties are caused by variation in purity of
materials and method of processing.

The art of grinding dates back many centuries, since man first discovered that he
could brighten up and sharpen his tools by rubbing them against certain stones or by
plunging them jnto sand several times. The emery stone appeared when man found
that the softer sand stone did not work well on the newly discovered harder materials,
(Salmon, 1992). By the early nineteenth century, emery (a natural mineral containing
iron and corundum) was used to cut and shape metals. Acheson discovered silicon
carbide in 1891, while he was attempting to manufacture precious gems in an electric
furnace, and a few years later, Jacob developed aluminium oxide from claylike
mineral bauxite. Also, in 1897, Pulson made the first grinding wheel by combining
emery with potter’s clay and firing it in a kiln. He noted that emery was a natural
abrasive of non-uniform texture, so its quality as a grinding wheel varied gfeatly
(Salmon, 1992). However, emery's variable quality and problems with importing it
from India prior to its discovery in the United States prompted efforts to find a more
reliable abrasive mineral. By the 1890s, the search had yielded silicon carbide, a
synthetic abrasive mineral harder than corundum, (Theodore, (2009).

Grinding operation is complex since it is characterized by a number of delsxgn
parameters and variables such as grindability of workpiece material, particle size
distribution, material hold — up, rotational speed of the grinding wheel and work ';ége:}__
speed, (Li, er. al.. 2005). Conventional grinding is characterized by grindindjliyith?:‘
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small depth of cut and high work speed. The grinding processes consist ol three
stages: sliding stage, plow stage and chip — formation stage. These stages are energy
consuming with the corresponding specific grinding energy (U) consisting of sliding
energy (Ug), plow energy (Uy) and chip — formation energy (Ug,). The temperature
reached by the tip of the abrasive particles when cutting is extremely high and higher
than the melting point of steel which is 1,500°C. However, no melting of grains
oceurs due to briel time of contact, which is often less than 100x 10 sec. (Radford and
Richardson, 1978). The different depths of cut on work piece deformation had been
discovered to affect the hardness of the abrasive wheel. (Crawlord,1979). However,
the most generally recognized characteristic wheel hardness is the ability of the wheel
to retain dulled abrasive grains. The duller the retained grains, the harder the wheel,

Fuzzy set theory provides a remedy for any lack ol uncertainty in the data,
(Jagannath er al., 2007) while an artificial Newral Network — can capture the
relationship between input and output by adjusting weights on each link while
learning from data and they are becoming more useful in the areas of pattern
recognition angd prediction (Osofisan .and Afunlehin, 2007). Therefore, selection of
data pairs of input and output for training the network is-an essential step to ensure
sufficiency and integrity of the target function (Siwaporn, 2007). Attempts to blend
two artificial intelligence techniques have been made in the process of solving
problems like fuzzy system identification based on input-output data and fuzzy
controller parameters tuning (Benachaiba et al. 2006). To enable a system to deal with
cognitive uncertainties in a manner more like humans, one may incorporate the
concept of fuzzy logic into neural networks, (Barai and Nair, 2004). A neuro — fuzzy
model combines the fuzzy — logic and neural network principles o generate model
that will result in the evaluation of specified desired output. While fuzzy logic
performs an inference mechanism under cognitive uncertainty (Zadch, 1988),
compulational neural networks ofler exciting advantages. such as learing, adaptation,
fault-tolerance, parallelism and generalization (Wasserman, 1989). To enable a
system to deal with cognitive uncertaintics in a manner more like humans, we
incorporate the concept of fuzzy logic into neural networks to evaluate the
performance characteristics of a grinding wheel and the resulting hybrid system is
called fuzzy neural, neural fuzzy, neuro-fuzzy or fuzzy-neuro network.

The Structural Composition of a Grinding Wheel
A grinding wheel consists of abrasive grains (AyG,), the bonding material (B,M,), and
the pore (P,). Therefore the structure of a grinding wheel is the relationship of the
abrasive grain to the bonding material and the relationship of these two elements to
the spaces or voids that separate them. A grinding wheel consists of abrasive grains
(ALG)), the bonding material (B,M,), and the pore (P,). A grinding wheel is made
with the proportions of three major components, (Malkin and Ritter, 1989) as follows:
Gw=Py+Py+Py = 1.0
Where Py — volumelric proportion of grains;
P, = volumetric proportion of bonding material;
and Pp = volumetric proportion of pores.
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S0,Gyw = Pg+ P, +P;, and Py+Pp+Pp = 10.. (n
A neural network is now used for a typical grinding wheel as follows,

"iam>u

N
or D PW, <0 (2)
i

where W =weight,i= g, b,p and N=1to 3.
The model gives the following two different types of outputs:
output #1 = 1 if WPy + WPy + W, P, >0
output #2 = 0 if WPy + WPy + WP, <0
Therefore; for WyP, + Wy,P, + WP, > 0, output = |
And for il WP, + WPy, + WP, <0, output = 0.

The network adapts as follows:
Change the weight by an amount proportional to the dilference between the
desired output and the actual output. This leads to the following equation;
AW, =n*(D=Y)-P; (3)
where 1 is the learning rate,
D is the desired output
and 'Y is the actual output.

Since only two components; the grain and the bond are the major constifuents of a
grinding wheel, the neuro fuzzy model reduces to :
1 >{}
{WelPy + WPy + Wyl (4)

The neural network is given in Figure |, while the output from the model

becomes:
1. output#l =1 if WP, WP, +W,> 0

2..output #2 = 0 if WyPg+ WP, + W, <0 . (%)
Py
Wy
Wh Y=PgorPb

Pb O

Wp
Pp=1

Figure 1: The Neural Network for the Grinding Wheel Components.
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The components of the neural network model with the desired outputs are now
presented in Table | below:

Table 1: The Inputs and the Desired Output from the Neuro - fuzzy Model.

INPUTS
e Grain (Py) | Bond Material (Py) | DESIRED OUTPUT
0 0 0
0 | I
I 0 I
| | |

The Membership Function for the Abrasive Grain Size and Wheel Grade.
The membership function for the abrasive grain size is given i Figure 3.12, while
the membership function for wheel grade is presented in Figure 3.13.
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Maximum Grinding Temperature
The grinding parameters for evaluating the maximum acceptable grinding temperature
include, circumferential speed of a grinding segment (vy), workpiece velocity (vy,) and
work depth of cut (a). The circumferential speed of a grinding segment (v,) is close to
constant for a grinding machine for tool (Malkin and Ritter 1989). The parameters of
workpiece velocity (vy) and depth of cut (a) are input parameters of the grinding
process, so they are outputs of the fuzzy controller. Therefore, two grinding
parameters are obtained by fuzzy controller at time t, and are delined by Uj(a,8,) and
Uj(vy, 02) at this moment. . :

The empirical formula for maximum grinding temperature is (Malkin and Ritter,
1989),

ns ni7s .|| 5

_ L 3aa” v (= 0.450,) (6)

. ( (
f\d:_' -

i

ATt

where
Qm = the maximum temperature,
o= the thermal conductivity,
a = the depth of grinding,
vy = the workpiece velocity,
u = the specific grinding energy,
ugy, = the chip-formation energy,
k — the thermal dilTusivity,
d = the equivalent wheel diameter.

We define U = (u - 0.45u,), so U, o k are unknown parameters needed to be
estimated.
Taking the natural logarithm of botli sides of equation (6) above, we have;

13 S 7505
Ill‘me:ln(I l af_ ;:_35‘ - ) (7)
i vl

B
I I 75 'flﬁ

o InQp = In(—'—';ﬁ;—‘-“—) =05mha+InlU-Ink
E

« (H)
v de - = er :['I " — <| - — - [
Assume Y = Inw. =051 -1) and x=(Inac InU Ink)",
Equation 3.can be written in the form Y = dx (;))
According to the theorem of Recursive least-squares estimation (RLS), we have;
X =8y Ky (Pt — P (10)
k.\ul = PNWN-&I(] +WJ:+I]TN§0N+1J ) ([ l)
Py =B =Py, '*‘90;.1!),\ Prwi )-Iq’.iulp.\- (12)

in above formulae @], = (0.5 1 -1), Py = [®", &, In this way, we can obtain the

estimation at time ()
X, =(Ine, InU; Ink y! (13)
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Then with x, estimated by above formulae and defining Q,, = T°C, where T°C is
the given temperature for avoiding workpiece distortion in the grinding process.
Hence we can develop the following equation:

13a™a" ™ (1 —0.
1.1 A !:J‘}"[:: 0 45!!‘_,‘ ), <TC. (14)
W
A ]
which can be [urther expressed as:
nIs 05 ’r‘,fdlf"-l‘ ¥ "'(" = Al ( | S)

T L3a™ (u=0.45u,,),

This implics that we should maximize the metal removal rate (MRR) without
subjecting the grinding process to over — heating and distortion while the machine is
working with efficiency as high as possible.

But MRR = bavy 16

where b is the width of wheel.
We need to maximize the metal removal rate at an acceptable temperature level,

The controlwf above equation becomes;

MRR = max|Bav,| £
Such that; a’”v,’ < A, 18

s.t. ae Uy(a,04) 19

s.t. vye Ux(vy.02) 20
Solving above equations (3.11 — 3.14) gives the control laws as follows:

Ve S B 21

where a, = min{a € U(a,&)},

We reduce the control law vy, < Ala™? to the form V' < A'a” for the neuro —
fuzzy model. :
where V' =v,, A"= 47 and a = q,**"

The model gives three sets of conditions:
. Vi-A'a' =0

2. V-Aa
3. VI-A"D

0
0

IN IV

Considering.the output parameters from the model, we have the following
. V- A:a: = Zero (Z) = Optimistic (O,)

2. V -Aa = Negalive (N) = Normal (N)

3. V-A"a" = Positive (P) = Pessimistic (Pe)

The neuro — fuzzy model recognizes the above output parameters as input
parameters and then process them to arrive at the specified desired output of
maximum metal removal rate at acceptable temperature level in the grinding process.

The neuro — fuzzy model structure is now given in Figure 4.1t should be noted
that X, X,, X, represent input parameters, layers 1, 2, 3 and N;, Nz, N3 and Ny
represent connections between the input and output parameters, while yi, y2, y3
represent the output parameters and y, represent the desired output.
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Figure 4: The Structure ol'a Neuro — Fuzzy Model.

The neuro-fuzzy model in Figure 4 is now reduced to the following form for
simplicity.

)(1 > 2 yl

X2 »f  NEURONS |yz~ I o FE—sVa

X3 > b // .
VE

-Figure 5: A Simplified Layout of Neuro — FFuzzy Model.

To process the parameters to arrive at the specified desired output, the following
base rules are employed;
[. IF(V'-A"a")= Z,AND (V' -A"a") = Z continues, THEN output = Oy
2. IF(V'-A"a")= N, AND (V'-A"a") = N continues, THEN output = Nil .
3. IF (V' -A"a" )= P, AND (V' -A"a") = P, continues, THEN output =
Nil.

Our desired output is O, a condition of optimistic, where the metal removal rate is
maximized at an acceptable temperature level.

Performance Index of a Grinding Wheel
The performance index is used to characterize wheel wear resistance is the wheel
grinding ratio or G ratio and is defined as the ratio of the change in volume of the
workpiece ground (AVy), to the change in the volume of the grinding wheel removed
(AV), and is expressed as
G= 4% 2
AV,
It should be noted that a very high grinding ratio (G) is desirable for high grinding
efficiency and this means that grinding ratio should be much, much greater than one.
ic G>>>>>].
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Figure 6 shows the components of grinding wheel performance index for high
grinding efficiency.
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Figure 6: Component of Grinding Wheel Performance Index.

Three conditions are apparent in this case;

. V =y .
1. G>!  je 37‘ > | which is desirable.

r
i

: \V, B
2. G=1 .4e i *- = 1 which is normal.

3, G<1 e —= < | _which is not desirable.

Considering the output parameters from the model, we have the [ollow conditions:

A 5 1| Ldgh (1) = Optimistic (O
b igh (11) = Optimistic (O,),
o4
g Bl o A\ Normal (N) = Normal (N),
AV,
- AV;‘. < 1= Low (L) = Pessimistic (P.).

¢

The neuro - fuzzy model is now used for the above parameters and the model
recognizes the above output parameters as input parameters, which are processed to
arrive at the specified desired output of high grinding efficiency, which consists of
very high volugae of workpicce material removed with very low volume of grinding
wheel material removed.

In other to process the above paramelers to arrive at the specified desired output,
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the following base rules arc employed;

I. (AV,=AV,)
2" (AVu'“AV:')
3. (AV,-AV,)

Il

Ancrew O.

Ocdior and Festus A. Ovawale

Positive (P) = Iigh (H) = Optimistic (O,),
Zero (Z) = Normal (N) = Normal (N),
Negative (N) = Low (L) = Pessimistic (Pg).

So we have the following results:
1. IF (AV,=AV,) = P AND (AV,.-AV,) = P

2. IF (AV,-AV)

Nil.

3. IF (AV,-AV,)

Nil.

I

Z AND (AV,-AV.)

Il

N AND (AV, —-AV,) =

continues, THEN output O,.
N continues, THEN output

L continues, THEN output

Our desired output is O,, a condition of optimistic, where the change in volume of
workpiece material removed is higher than that of the grinding wheel material

removed.

The specified desired output of high grinding elficiency-1s not for just a high
grinding ratio but for a very high grinding ratio. In this case, we need to have the

following output param

eters:

l. (AV, —AV,) >>>>1 = Very High Positive (VHP).
2. (AV, =AV,) = 0 = Very High Normal (VHN).
3. (AV, —-AV,) <<<<1 = Very Low Negative (VLN).

So we have the following results:
. (AV, =AV,) = P« = Very High Positive (VHP) = Optimistic (Op);

Z = Very High Normal (VHN) = Most Likely (M));
N. = Very Low Negative (VLN) = Pessimistic (Pe).

2. (AV,-AV.)
3. (AV,~4V,)

il

The Components of Fuzzy Logic Model.
The components of the fuzzy logic control model of the grinding wheel performance
index can now be represented with membership functions as presented in Table 2.

Table 2: Components of Fuzzy Logic Model.

Level Number | Interpretation. | Fuzzy Output. | Linguistic Variables
I Pessimistic Negative (AV_—AV,)
2 Most Likely | Zero (AV_—AV,)
3 Optimistic Positive (AV, =AV.)
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The neuro — fuzzy model now uses the [ollowing output parameters as input
parameters to arrive at the specified desired output. -
. IF (A¥, ~AV,) P AND (AV, =AV,) = VHP continues, THEN output

O,p.

2. IF (AV, =AV.) = Z AND (AV, —=AV,) = VHN continues, THEN output
Nil.

3. IF (AV, =AV,) = N AND (AV, -AV,) = VLN continues, THEN output
Nil.

The Grinding Wheel System Operating Rules.

INPUT No I: {“Input™, Positive (O,), Negative (P.), Zero (N)].

INPUT No. 2 {GP- Gelling Positive (Op), GN- Gelling Negative (P.), GZ-
Getting Zero (N)}.

The system response with its output becomes:

Output Op'é“Oplimislic, P. = Nil, and N = Nil.

The degree of relationship between fuzzy output and membership function ranges
from 0 to 1.0. The graphical illustration of Table 1 is presented in Figure 7.

T e T oL +
= . - & g
K
xS =8
— =
¢ )

Figure 7: Graph of Fuzzy Logic Control Model.

The interpretation of the graph shows that:

1. When the change in volume of workpiece ground is higher than the change in
volume of grinding wheel removed the model prompts positive (optimistic
oultput).

2. When the change in volume of workpiece ground is lower than the change in
volume of grinding wheel removed the model prompts negative (pessimjstic
output); and

3. When the change in volume of workpicce ground and the change in volume of
grinding wheel removed are equal the model prompts zero (Most Likely
oulput) ‘
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Conclusion

Grinding is one of the most versatile methods of removing material from machine
parts by abrasion. It is an important finishing operation which is very useful in
industrial and Uomestic applications. As a result of the complexity of grinding
operation, it was more convenient to use neuro fuzzy models to control the grinding
process. The process was carefully controlled to get the desired output with maximum
metal removal rate at an acceptable temperature level that will not lead to workpiece
burns. Also the performance index which characterizes the wheel wear resistance was
also modeled and it was discovered that the wheel grinding ratio should never be less
than one for efficient grinding operation and it should always be very high for
effective control of the grinding process.

References

[1] Odior, A.O. and Oyawale, I'. A., 2008a, “Application of Neuro Fuzzy to
Component Elements ol a Grinding Wheel.” Global Journal of Engineering
and Technology. 1 (3): pp. 329-335. ‘

[2]  Odior, A.O., 2002. “Development ol a Grinding Wheel from Locally
Available Materials”. The Journal of Nigerian Institution of Production
Enginetes. 7(2): pp. 62 - 68,

[3] Odior, A.O. and Oyawale, F.A., 2008b.”'A Newro — Fuzzy Approach to
Grinding Process Control™ Global Journal of Engineering and Technology. |
(2): pp. 153 -159.

[4]  Brecker, J.N. 20006. “Analysis of Bond Formation in Vitrified Abrasive
Wheels™, Journal of the American Ceramic Society. 57: pp. 486 — 489.

[5]  Scott, G., (2010). Sandpaper: BeautilulWood.Net web site. Retrieved 27 May,
2010 from http://www.beautifulwood.net/html/sandpaper.html.

[6]  Arunachalam, N. and Ramamoorthy, B. 2007, “Texture Analysis for Grinding
Wheel Wear Assessment Using Machine Vision™ Journal of Engineering
Manufacture, 221(3): pp. 419-430,

[7)  Zhong, Z.W. and Venkatesh, V. C., 2008, “Recent Developments in Grinding
of Advanced Materials™ The International Journal of Advanced Manufacturing
Technology. 6(3): pp. 35-44.

[8]  Salmon, S.C. 1992, Modern Grinding Process Technology. McGraw-Hill,

New York.
[9]  Theodore L. G. 2009. "Grinding Wheel" How Products are Made. Ed. Stacey
Blachfogd. Gale Cengage. http://www.enotes.com/how-products-

encyclopedia/grinding-wheel.

[10]  Li, B., Ye, B, Jiang, Y. and Wang, T, 2005, “A Control Scheme for Grinding
Based on Combination of Fuzzy and Adaptive Control Techniques”.
International Journal of Information Technology. 11(11): pp. 70 — 77.

[T1]  RadfordJ.D. and Richardson, D.B., 1978, Production Technology. Second
Ldition. Edward Arnold, London.



Application of Neuro-Fuzzy Models 2787

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

Crawford, S., 1979. “Basic Lngineering Processes™ Rolls-Royce Technical
College, Bristol. Printed by W. J Arrowsmith. Ltd, Bristol.

Jagannath, R., Naresh, N. G and Pandey, K. M., 2007, “Studies on Pressure
Loss in Sudden Expansion in Flow through Nozzles: A Fuzzy Logic
Approach™ ARPN Journal of Engineering and Applied Sciences; 2 (2): pp.
50-61.

Osofisan, P.B. and Afunlehin, O. A., 2007, “Application of Neural Network to
Improve-Dynamic Branch Prediction of Superscalar Microprocessors™ Pacilie
Journal of Science and Technology. 8(1): pp. 80-97.

Siwaporn, K., 2007. “Optimal Sample Size Selection for Torusity Estimation
Using a PSO Based Neural Network™ Thammasat  International Journal of
Science and Technology. 12(2): pp. 64 - 77.

Benachaiba, C., Dib, S. and Abdelkhlek, O. 20006, “Genetic Algorithm-Based
Self-Learning Fuzzy Pl Controller for Shunt Active Filter” International
Journal of Applied Engineering Research 1 (2): pp. 203-216.

Barai, S.V and Nair, R.S., 2004, “Ncuro-Fuzzy Models for Constructability
Analysis™ I'Tcon 9: pp. 65 - 73.

Zadeh, L. A., 1988. “Fuzzy logic”, IEEL Computer,1988, April, 83-92.
Wasserman, P. D., 1989. Neural Computing, Van nostrand Reinhold, New
York.

Malkin, S. and Ritter, P.LE., 1989,  Grinding Technology: Theory and
Applications of Machining with Abrasives, Ellis Horwood Limited Publishers,
Chichester, Halsted Prtess: a division of John Wiley & Sons.



	ui_art_odior_application_2010 (47)-1.pdf
	ui_art_odior_application_2010 (47)-2.pdf
	ui_art_odior_application_2010 (47)-3.pdf
	ui_art_odior_application_2010 (47)-4.pdf
	ui_art_odior_application_2010 (47)-5.pdf
	ui_art_odior_application_2010 (47)-6.pdf
	ui_art_odior_application_2010 (47)-7.pdf
	ui_art_odior_application_2010 (47)-8.pdf
	ui_art_odior_application_2010 (47)-9.pdf
	ui_art_odior_application_2010 (47)-10.pdf
	ui_art_odior_application_2010 (47)-11.pdf
	ui_art_odior_application_2010 (47)-12.pdf
	ui_art_odior_application_2010 (47)-13.pdf

