Journal of
') Engincering for
/
/ Development

Journal of Engineering for Development Vol. 9, April (2010) pp.65-73

A GENETIC ALGORITHM FOR FLOW SHOP SCHEDULING
PROBLEM '

Odior.A.O%, Oyawale.F.A", and Orsarh.E.S°®
Department of Production Engineering, University of Benin, Nigeria, And
Department of Industrial and Production Engincering, University of Ibadan, Nigeria,
Email: waddnis@yahoo.com

ABSTRACT

This paper considers the problem of scheduling in flow-shop by Johnson's Algorithm
method and Genetic Algorithm method to find an optimal sequence for n jobs m-
machine based on minimum elapsed time. It has been shown that the method for
Jinding an optimal sequence for n jobs, m-machine based on minimum make span
using genetic algorithm provides a better resullt.

Keywords:Johnson’s Algorithm, Scheduling, Flow-Shop, Genetic Algorithm, Optimal
Scequence

65



A. O.Odior, F. A. Oyawale,and E.S. Orsarh [Journal of Engineering for Development [Vol. 9, April, 2010,

pp.65-73

1. INTRODUCTION

An important function of management is the coordination and control of complex
activities, including optimum allocation of resources in the performance of those
activities. In scheduling problems we must determine the order or scquence for
processing a set of jobs through several machines in optimal manner. The flow shop
problem is a scheduling problem which considers m different machines and all the jobs
are processed in the same processing order. Sequencing problems are most commonly
encountered in production shops where different products arc to be processed over
various combinations of machines. The selection of appropriate order in which jobs are to
be performed is called job sequencing. The objective is to determine an appropriate
sequence or order for jobs to be done on a finite number of service {acilities in some pre-
assigned order, so as to minimize the total involved resources. There are total (n!)m
possible ways by which n jobs can be processed on m-machines. Here, the aim is to find
oul one sequence out of (n!)m that minimizes the total elapsed time, (Smita and Paheli,
2009). According to Blazewicz, et al. (2005), Johnson’s Rule has been the basis of many
flow shops scheduling heuristics. Palmer first proposed a heuristic for the flow shop
scheduling problem to minimize makespan (Odior etal., 2010). The heuristic generates a
slope index for jobs and sequences them in a descending order of the index. Campbell et
al. (1970) proposed Campbell, Dudek, Smith (CDS) heuristic which is a generalization of
Johnson’s two machine algorithm; it generates a sct of m-1 artificial two-machine
problems from an original m-machine problem, then cach of the generated problems are
solved using Johnson’s algorithm.. Du (1993) proposed an AIS approach for solving the
permutation flow shop scheduling problem while Liaw, (2008) developed a two-phase
heuristic to solve the problem of scheduling two-machine no-wait job shops to minimize
makespan.

In many manufacturing and assembly facilitics, a number of operations have to be done
on every job. Often these operations have 1o be done on all jobs in the same order
implying that the jobs follow the same route. These machines are assumed to be set up in
series, and the environment is referred to as a flow-shop. The assumption of classical
flow-shop scheduling problems that each job visits each machine only once (Baker,
1974) is sometimes violated in practice. A new type ol manufacturing shop, the re-entrant
shop has recently attracted attention. The basic characteristic of a re-entrant shop is that a
job visits certain machines more than once. The re-entrant flow-shop (RFS) means that
there are n jobs to be processed on m machines in the shop and every job must be
processed on machines in the order of M1, M2, ..., M, M1, M2, ..., Mm, ..., and M1,
M2, ..., Mm, (Bispo and Tayur, 2001).

According to Smita and Paheli, (2009), Holland conceived of genetic algorithms in the
carly 1970 in order to solve optimization problems, by using random scarch. Genetic
algorithms are a class of adaptive heuristic scarch techniques which exploit gathered
information to dircet the search into regions of better performance within the scarch
space. In terms of time complexity, compared with other optimization techniques such as
integer lincar programming, branch and bound, tabu scarch, they may offer a good
approximation for the same big-O time when the state-space is large, (Golden, 1996).
Ilow shop problems are a distinet class of shop scheduling problems (Du and Leung,

66



A. Q.Odior, I. A. Oyawale,and E.S. Orsarh [Journal of Engineering for Development [vol. 9, April, 2010,

pp.65-73

1993), where n jobs (i=1 ... n) have to be performed on m machines (j =1, ...,m) as
follows. A job consists of m operations, the jth operation of each job must be processed
on machine j and has processing time pij . A job can start only on machine j if its
operation is completed on machine (j — 1) and if machine j is frec. The completion time
of job i, Ci, is the time when its last operation has completed. This problem is denoted in

o|Bly-notation as Fm)|| XC, , (Brucker, 2004).

2.0 FLOW SHOP SCHEDULING PROBLEM ;

Flow shop problems are a distinct class of shop scheduling problems , where n
jobs (i=1,...,n) haye to be performed on m machines, <My, ..., Mm>, wherem > 1,
as follows, (Gangadharan and Rajendran, 1993): A job consists of m operations; the jth
operation of each job must be processed on machine j and has processing time Tij, 1 £j <
n. A job can start only on machine j il its operation is completed on machine (j — 1) and il
machine j is free. The completion time of job i, Ti, is the time when its last operation has
completed. Each of n jobs J1,..., Jn has to be processed on.m machines My, ..., Mm in that
order. Job Ji for i=1... n, thus consists of a sequence of m Process Pil, ..., Pim; where Pik
corresponds to the processing of Ji on machine Mk during an uninterrupted processing
time Tik. This problem is denoted in the literature in « |  Jy - notation as Fm||PCi
(Gangadharan and Rajendran, 1993). s
Consider an example of {low shop with three machines with the following data presented
in Table 1.
Table 1. Three Machine Flow Shop

Job i Pj Pi Pi3
J1 | 2 3
J2 | 2 1
13 | I I

Figure 1 and Figure 2 show two feasible schedules for the three machine flow
shop presented in Table 1

I I3 Ji2 : !

Ja 13 Ji3

| 2 3 4 5 6 7 8 9
Figure 1. Flow Shop for 3 Machines: Case i.

Note that in both schedules the order of the jobs differs across machines. For the

67



A. 0.0dior, . A. Oyawale,and E.S. Orsarh [Journal of Engineering for Development [Vol. 9, April, 2010,

pp.65-73

case (i), we have Cmax =9 and XC, = 18. In casc (ii), Cmax = 8 and 2C, =21.
Note that 2C, is better than Cmax in case (i) whereas it is the opposite in case

(ii). The example suggests that jobs and their scheduling often very much depend
on the objective function.
Ju | Ja I

Ja J32 In

Jis Jas | J3s

1 2 3 4 5 O 7
Figure 2. Flow Shop for 3 Machines,
JOHNSON’S ALGORITHM
In order to schedule the processing of customers’ orders such that maximum

profit is obtained, the principles guiding flow shop scheduling are adopted as presented in
the mathematical frame work. In this case customers are {rec to bring their jobs at any
time. However, each customer’s order passes through the machines in the same order.
Single Machine Sequencing:
A single machine sequencing is a {low shop in which the jobs visit the machines in the
same sequence. The shop characteristics of a single machine shop is given as: n/m//F/
I
where n is the number of jobs in the shop

m is the number of machines in the shop

F is the flow shop

I is the mean flow time.
n/mis referred to as the hardware and I/ I is referred o as the software of the system.

Johnson’s 2- Machine Algorithm:

Johnson's 2 — machine algorithm is a process in which the jobs are scheduled in the
machines in such a sequence that gives the minimum makespan. A typical case of
Johnson’s 2-machine algorithm with n jobs is presented in Figure 3.

Ji J2 Jz  TTrmmmrmmmmossmssssees Jn
M
My X | eesameesnn He—
K position ——» «—— position

Fig. 3: A typical chart for johnson’s 2-machine. algorithm.

The flow time for job J in the kth position is given by
F(k)=P(1)+P2)+P3)+......... + P(k)

k

2 Fle)= Y PU)- (1)

iml

Where P(i) is the processing time for the job in the ith position in the sequence,

68



A. U.Odior, FF. A. Oyawale,and E.S. Orsarh [Journal of Engincering for Development [vol. 9, April, 2010,

pp.63-73

This algorithm supposes that we have (n) jobs to be scheduled on two machines i.e. J1,
J2: s di,

Then n positions are possible.

h nk
Total flow time Fy = )" F'(k)= ) > P(i)
k=1

k=l i=1
n k&
2w
Mean flow time F* = A==l (2)
n

Generally, for n position we have;

S (n—i+1)P()
=l
iZP(f) ‘i(n—ul)i’(n

k=1 =1 = _i=] (3)
n n

The optimizing sequence can be obtained from the following process: In this
case we have (n) jobs to be scheduled on two machines i.c. J1,J2, ..., Jn. The optimal
solution by Johnson algorithm is obtained as follows:

Step 1: Setk=1,1=n

Step 2: Set the list of unscheduled jobs = {J1, 12, ..., IJn}

Step 3: Find the smallest processing times on first and second machines for the currently
unscheduled jobs

Step 4: I the smallest processing time obtained in step 3 for Ji is on the first machine
then schedule Ji in kth position of proeessing sequence. Then delete the Ji job from the
list of unscheduled and decrease k by 1.

Step 5: Il the smallest processing time obtained in step 3 for Ji is on the second machine
then schedule Ji in the Ith position of processing sequence. Then delete the Ji job from the
current list of unscheduled jobs and decrease 1 by 1.

Step 6: Repeat steps 3 1o S for the remaining unscheduled jobs until all the J jobs are
scheduled.

Summing up the various processing times gives the makespan for the optimum
scheduling.

Assumptions AndProcedure \
The following assumptions are made while solving a sequencing problem:

(a) No machine can process more than one job at a time

(b) Each operation, once started, must be performed till completion

(¢) Each operation must be completed before any other operation, which it mustprecede,
can begin

() Al machines are of dilferent types

(¢) A job is processed as soon as possible subject to ordering requirements

(1) Processing times arc independent of order of performing the operations

(g) The time involved in moving a job from one machine to other is negligiblysmall

69



A. O.Odior, F. A. Oyawale,and E.S. Orsarh [Journal of Engineering for Development [vol. 9, April, 2010,

pp.65-73

(h) All jobs are completely known and arc ready for processing belore the periodunder
consideration begins

Johnson’s Rule And Extensions
Johnson’s rule which is the most well known optimal rule applicable to alarge

class of fTowshop problems says that job i precedes job j in an optimal sequence

if: min{s,, 1, <min {£,,, 1, }.Implementing Johnson’s rule, the flowshop-problem form =
2 and makespan as performance criterion or n/2/F/cpq can be optimally solvedby the
CONCWInE TATIOUY digUTTaan.

Step 1: Find min; {1,,,¢,,} .

Step 2a: If the minimum processing time requires machine 1, place the associatedjob in
the first available position in sequence. Go to Step 3.

Step 2b: If the minimum processing time requires machine 2, place the associatedjob in
the last available position in sequence. Go o Step 3.

Step 3: Remove the assigned job from consideration and return to Step 1 until allpositions
in sequence are filled. Another shape of this algorithm may bedescribed as follows:

Step 1: Let U= {j/t, <t ,}and V ={jlt,21,}.

Step 2: Arrange the members ol set U in non-decreasing order ol (j; and membersol set V
in non-increasing order of tj.

Step 3: An optimal sequence is the ordered sct U followed by the ordered set V.
Morcover, there are some extensions of Johnson’s rule, one is for m = 3 and
makespancriterion. He showed that a gencralization is possible when the seccond
machineis dominated (i.c. when no bottleneck could possibly occur on the second
machine).This extension is described below:

1. If min, {t,,} 2 max, {t,,} then job i precedes job j in an optimal schedule if:
min {6, g, 0, ey smindl, +1,,10, +1,}
2. Ifminmin, {#,;} 2 max, {f,,} then job i precedes job j in an optimal schedule if:
min, {£, + Loyt +Lysmin{l, 1,0, 1)
To apply these results in an algorithm, it is possible to use the main
algorithmimplenienting Johnson’s rule, desceribed previously, with first step of seeking a
minimumin the form of min min{t,, +1,,1,, +,} instead of secking minimum

processingtime. Additionally, if there is no dominance present, it is also known that i
thatmain algorithm implementing Johnson’s rule, yiclds the same optimal sequence for

two-machine sub problems represented by the set {/,,1,,} and min {{,,,,}. then that
sequence is optimal for the full three-machine problem.

GENETIC ALGORITHM

The Genetic Algorithm (GA) is an optimization and search technique based on
theprinciples of genelic and natural sclection. A GA allows a population composed
ofimay individuals to evolve under specific selection rules to a state that maximizes
thefitness (i.e., minimizes the cost function). John Holland et. al. [17] developed Genetic

70



A. O.Qdior, F. A. Oyawale,and E.S. Orsarh [Journal of Engineering for Development [Vol. 9, April, 2010,
pp.65-73

Algorithm (GA) as a search algorithm based on the mechanics of natural selection [18] in
order to find optimal or near optimal solution. The main idea of GA is that in order for a
population of individuals to adapt to some environment, it should behave like a natural
system [19]. This means that survival and reproduction of an individual is promoted by
the elimination of uscless or harmful traits and by rewarding uscful behavior. Genetic
algorithms are a class of adaptive heuristic search techniques which exploit gathered
information to direct the search into regions of better performance within the search
space. In terms of time complexity, compared with other optimization techniques (i.c.
integer lincar programming, branch and bound, tabu scarch), GA may offer a good
approximation for the same big-O time when the state-space is large [20 & 21]. GA
belongs to the family of evolutionary algorithms, along with genctic programming,
cvolution strategies, and cvolutionary programming. Evolutionary algorithms can be
considered as a broad class of stochastic optimization techniques. An evolutionary
algorithm maintains a population of candidate solutions for the problem at hand. The
population is then evolved by the iterative application of a set of stochastic operators.

Genetic Algorithm for Processing n-jobs through 2-machines:

The genetic algorithm for processing n-jobs through 2-machines begins by
reading the number of jobs and processing times for each job on first machine (m1) and
second machine (m2) as presented in Figure 4.

71



A. O.Odior, F. A. Oyawale,and E.S. Orsarh [Journal of Engineering for Development [Vol. 9, April, 2010,

pp.65-73

Read the number of jobs and processing times for each jobs on machine m1 and machine m2

Add the processing times of machine m1 and machine m2 .
Seleet the job with maximum processing time and put it into the centre of the sequence

Delete the particular job from further consideration

Select job with maximum processing time and put it on the left of central job already assigned

!

Delete the particular job from further consideration

'

Select job with maximum processing time and put it into the right of the central job

Is
this the last
job?

YES

NO

Repeat the process till the last job is assigned in the sequence
}

Calculate the overall clapsed time

}

Caleulate idle time for machine m1 and machine m2 .

!

[IPrint optimal sequence, idle time of machine m1 and machine

m

Fig. 4: Processing of n-jobs through 2-machines

CONCLUSION

This study developed a method for scheduling in flow-shop by Johnson’s
Algorithm method and Genetic Algorithm method to find an optimal sequence with
makespan as the criterion. For processing n-jobs through 3-machines, Johnson extended
the method by deriving a special condition that the smallest processing time for the first
machine is at least as great as the largest processing time for the second machine. The

72



A. O.Odior, F. A. Oyawale,and E.S. Orsarh [Journal of Engineering for Development [vol. 9, April, 2010,
pp.65-73

GA procedure mentioned above can also be appliced to the n-jobs three machine problem
or in general to the n-jobs m-machine problems.

REFERENCES?
Baker, K. R., (1974). Introduction to sequencing and scheduling, John Wiley & Sons,
ISBN: 0-471-04555-1, New York.

Bispo, C. I'. & Tayur, S. (2001). Managing simple re-entrant [low lines: theoretical
foundation

and experimental results. I1E Transactions, Vol. 33, No. 8, 609-623, ISSN: 0740-817X.
Blazewicz, J., Erwin P., Margozata S. and Frank W. (2005). The two-machine flow-shop

problem with weighted late work criterion and common due date, European Journal of
Operational Research, Vol. 165, pp.408—415,

Brucker, P. (2004). Scheduling algorithms (Fourth edition). Springer-Verlag, Heidelberg,
Germany.

Campbell, H G; Dudek, R A; Smith, M L (1970). A heuristic algorithm for n-job, m-
machine sequencing problem. J. Management Science. 16: 630-637.

Du, J. and Leung, G. R. (1993). Minimizing mean flow time in two-machine open shops
and flow shops. Journal of Algorithms. Vol. 14, pp. 24-44.

Gangadharan, R. and Rajendran, C., (193). Heuristic algorithms for scheduling in the no-
wait flowshop. Int. J. Prod. Econ., 32: 285-290.

Golden, R. M. (1996). Mathematical Methods for NeuralNetwork Analysis and Design.
MIT Press, Cambridge, Massachusetts.
Liaw C. I. (2008). An efficient simple metaheuristic for minimizing the makespan in

two-machine no-wait job shops. Journal of Computers and Operations Research, Vol. 35,
No.10, pp. 3276-3283.

Odior A.O., Charles-Owaba, O, E. and Oyawale, I.A., (2010): Application of Job

Scheduling in Small Scale Rice Milling Firm. ARPN Journal of Engineering and Applied
Sciences. Vol.5, No.1, ppl-S.

Smita V. and Paheli S. (2009). Flow-shop Sequencing Model using Genetic Algorithm.
International Journal of Computational and Applied Mathematics. 4(2): 111-114.

73



	ui_art_odior_genetic_201004 (63)-1.pdf
	ui_art_odior_genetic_201004 (63)-2.pdf
	ui_art_odior_genetic_201004 (63)-3.pdf
	ui_art_odior_genetic_201004 (63)-4.pdf
	ui_art_odior_genetic_2010_04.pdf
	ui_art_odior_genetic_201004 (63)-5.pdf
	ui_art_odior_genetic_201004 (63)-6.pdf
	ui_art_odior_genetic_201004 (63)-7.pdf
	ui_art_odior_genetic_201004 (63)-8.pdf
	ui_art_odior_genetic_201004 (63)-9.pdf


