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ABSTRACT

The analysis of a transient 2-Dimensional heat conduction problem by the
Finite Element Method is hereby presented The solution approach was
that of partial discretisation : 4-node isoparameiric elements were used in
the discretisation of the problem domain in the spatial coordinate, while
linear temporal elements are used in the discretisation of the time domain.
The Galerkin’s Weighted Residual Method was “ised in the development of
ihe'system equation in the space domain, and their transformation into the
time domain. The resulting system of equation, which is a two point”
recursive relation, was solved using the Gauss - Cholesky Method .The
developed algorithm was used on a linear, iransient 2-Dimensional
problem, and the resulls obtained were an improvement on those obtained
by Bruch, J.C . and Zyveloski , G .
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INTRODUCTION

Design calculations and safety considerations have made it important for the engineer to
have a precise knowledge of the temperature field .particularly non-stationary temperature
field, to be encountered in service by components and /or systems. The aftempt in this
project is to develop, using the Finite Element Method, an algorithm which can be used in
determining the non-stationary field of components, referred to as solution domain. The
focus here will be on problems which are best analyzed or can be approximated as 2-
Dimensional. Examples of such class of problems where the transient conduction of heat
is of particular inwerest are the cooling or heating of furnaces, heat treatment of metals,
thermo-structural analysis of space deployable Vehicles etc. Many engineering problems

45



Finite Element Analysis of a Transient 2-Dimensional Heat Conducticn Problem

in real life, including the examples given above preclude analytical or closed form
solutions. This may arise from any or combination of the following: irregular and varied
geometry, mixed boundary conditions, non-linear matenal behaviour, e.t.c. When such
situations arise, resort has to be made {0 numerical or approximate methods of solution.
Amongst the numerical methods are to be found the finite difference method (FDM) and
the finite element method (FEM). Thes: two being the most popular ones. However, the
FEM offers several advantages over the FDM. For example, the accuracy of the results
can be improved, without complicating ihe boundary conditions, by using higher order
elements the finite eiement analysis. *¥hile the same attempt in the FDM usually poses
some difficulty .For this and other reasc s, the FEM has been used in this work.

MATHEMATICAL FORMULATION OF THE TRARSIENT HEAT CONDUCTION
EQUATION FOR A 2-D CASE

In order to obtain the governing differc::tial equation, certain assumption have to be made:

(a) The maierial particles of the body are at rest, that is, convective heat iransfer within
the solution domain would not be considered.

(b) The thermophysical properties are ot temperature dependent.
(c) Nu phase change or latent heat eflect takes place.

(d) The analysis for heat conduciion is decoupled from the stress condition.

FORMULATION

From the basic equations of heat transfzr: (i) Energy balance equation, (i) Rate equations,
we have for arectangular domain:

Heat inflow in time dt + Heat generatod in time dt = Heat outflow in time dt + change
in internal energy in time dt.

Gyl +qyd! +qdxdydt=q,. , g dt+ podTaxdy (1.0)

Expressing x+ax and Qy+ay as a two-term Taylors' Series and substituting in equation (1 0)

0q,dy

= (e + gy} + Gabeaydt =) qu ‘-’x“”‘ O 1 g+ 5 N+ podTatdy 2.0)
45"7x)a5f quy Yt + G dedydt = pedTdxdy (3.0)
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= But = o =—kinAn e =%, 4.0)

. ?aa;(*"x“‘x%)dx“ 2 (k4 %,T 9Ty it + gdxdydt = pedTdedy (5.0)

Bquation (7.0) is the equation that governs the transient 2-D conduction of heat within the
confines of the assumptions made

_ @4 OF 0 (
_a—x({cx-gx—)dxajf +3)—)(k}, 5 )dxaj/dt+qudydt = pedTdxdy (6.0)

It would be seen that the equation is a second order partial differential equation, and as
such would require, in addition to the initial condition, two boundary conditions.

Initial condition: T (t=0) = T

<5 5D+ S ey S+ = pe L (7.0)

Boundary condition:

kn af+q 0—>on=1;

5
T-T=0=0n=1I,

FINITE ELEMENT ANALYSIS OF A TRANSIENT 2-D HEAT CONDUCTION PROBLEM

The application of the Finite Element Method is now made to the analysis of a transient 2-
D heat conduction problem. The concepts and procedure normally adopted when using

FEM are incorporated, particularly as they relate to this problem.

DISCRETEZATION

The solution domain is divided into sub-regions, using 4-node isoparametric elements. See
figure (3.0). The isoperimetric element discretization admits the simulation of solution
regions with curved boundaries, to a high degree of accuracy. Also they are well suited to
non-structural problems. The present problem under consideration is an example of non-
structural problem.
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INTERPOLATION FUNCTIONS

One of the characteristics of isoparametric element formulation is that the interpolation of
element coordinates and the element noda! field variable (iemperature) are done via the
same interpolaiion functions. These are usually defined in natural coordinate system. For
the 4-node isoparametric element used it takes the form:

N; = Va(1+1) (1-5)
Nz = Va(1+1) (1+s) TR (1 0 R S—— (1)
= Y4(1-1) (1+s)
N, = Vi(1-1) (1-5)
Where the element coordinates and field variable are interpolated as:
x=Hix1+ MNoxg + N3x3 .-!-N.a.}m
y=Niyi+ Noys + Nays +Nayva = coornoinn e e 2)
T=NiTi+ NaTp + N3 T3 +Ns Ty

However, since the nodal temperature are a function of the global or Cartesian
coordinates, and the interpolation functions.a function of the local natural coordinates, a
mapping 1s needed. This mapping i§ from the Cartesian coordinate and vice versa. For an
isoparametric element formulatior, this is achieved via the Jacobian. Which for a two
dimensional problem, is given as:

lox  dy

-z g
Os Os

ELEMENT CHARACTERISTICS MATRICES
Applying Galerkin's method to equation (6.0), with g = 0, we have,

}F{ e Zy+ Ly Iy polllac =0 e 10)

Applying the Green Gauss theorem to the derivatives of second order gives:

fINT x—a-—nxdr(e) 2N i 2L e)——j%[N]Tk %Zdn(e)

ox

N]YA nydr @ — [N} pe dn(”) ®)
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Rearranging,

[ A o v Ol + jﬂmTk %ff O joxle) 4 jjfﬂ pe L ac(® -
(

0le)

IV ki ©) + J’[N]T!c 9 el ) (8.1)
r(e) r®

Substituting

T =7 =[Nr)®

{e)
i_Ek _I_]dg(e)+ _[_]_k _[_ldq(f-’)} (e + ! N]T pC[N{ ] _

Q(e ox Q(e

W iy L yar©) (82)
) -

In matrix form,

clOfre)+ KOS = 7Y 9.0)

Where,

ke = _[_]T J—]dﬁ(")+ I Qg];rkx%’ﬂm@) ©.1)
Q(e) ole) ™~

QU I (9.2)
Q(e)

{F‘(e)_ JWFkxaj 7y () 4 J‘[N]Fkygﬁn ar(®) (9.3)
r©) o "7

In evaluating these integrals, numerical integration is required.

ASSEMEBLAGE OF THE GLOBAL MATRICES

The element characteristics matrices are now assembled to give the global matrices [C],
[K], and {F}. Thatis:

[]—E[J
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5
] %

e=l

v {€)
(i = SUFY m=no..of ... elements.

INCORPORATION OF THE TIME DOMAIN

This incorporation can either be done viz the finite elemeni méthod or the finite difference
method. Nevertheless, the finite elemént approach would bewwséd here as this lead to an
unconditionally stable scheme.

Using « linear temporal element, an approximate selutior would be:

(0} SN ) M Ther §  ovonvrvesonsn Nasd s oo st sossnssavasssions rimmros (10.1)
N, = 1-u

YoterpolBtion FUHTHIOMIS L. . i -cocmsrenmyussiiosing ssiiicomssssssnis ot s s s st (10.2)
Nisp = p
= f—f; (10.3)
o dT _dT du
di _ 1 (105
Y 580)
Substituting “equations (10.2), { 10.3 ), { 10.5 ) into ( 10.4)
_ NS , 1 1m, 1
= f_@[a— i+ ul g =—dre L1 (106)
F o P8 D Sl cossissssiisonsrstiimsscis comer neniAfarsn de sesm R Ty {10.7)

Using the Galerkin's method (10)

= j__j'f+1W[(C){T}+[K]{T}— {F}}dt:O. (10.8)

Substituting (10.1), (10.6), and (10.7)
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=] WH[C ](— { . G (T DHEIQ- )T+ pll 13- ﬁ){j,}+fz{f,,+1})ﬂ&kfﬂ (109)

[Ni Wi~ H)dﬂJ{/; J+ [ﬁf:{ Wﬂdﬁ]{ﬂ+1} (10.10)

dividing = through=> by = [\Wdp

[M e #}dﬂ]{ fit [AZIIWMJJ{?( 1) (10.10)
=[]+ ol&lardin g 3= [e]- G- o)& )+ [ - o))+ ol Jlve -
Where = 0= m

ey

For Galerkin's method W = N = shape functions

Choosing N = u , which gives a more stable and aceurate result

f(,u ;.m’p l: %]

J{ﬂ)d.u m

N e —

w |t

Hence,the final equation to be implemented on the computer is :

[]+__Km]1 HJ“{ [ )K]Af} [[ A +/{fm}] --------- (10.12)

Which is a two- point recursive scheme.

RESULTS AND CONCLUSIONS

The program was applied to a linear, 2-D transient heat conduction problem for which
both analytical and finite element solutions exist. The problem was taken from that solved
by Zyvoloski et al.

SAMPLE PROBLEM

The domain of the probh,m is a square one with no heat generation, and the boundary
conditions are specified. Only a quarter of the problem was considered because of the bi-
symmetric nature of the problem.
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Other specifications:

Thermal conductivity = 1.25 ( BTU/mhr °F)
Density x specific heat = 1.0 (BTU/m" °F)
Length of domain in the x-direction = 3.0 m
Length of domain in the y-direction = 3.0m
Initial temperature = 30.0 °F

The domain was divided into 100 elements with 121 nodes. In considering only one-
quarter of the domain, only twenty five isoparametric elements with-thirty six nodes were
considered.

It can be concluded that the Finite Element Analysis, using partial discretization, has been
applied successfully to the analysis of linear, transient 2-D heat conduction problem. This
is amplified by the results obtained which compare favourably with both analytical and
existing finite element solution.

REFERENCES

1. Barthe K. J. (1982), "Finite Element Procedure in Engineering Analysis",
Prentice Hall India.

2. Kohler W. and Pitter J/(1974), " Calculation of Transient Temperature Fields with
Finite Element in space and Time Dimeasions", DNME ,Vol.8,pp 625-631

L]

Nickell R. E. and Wilson E. L. (1966), "Apptication of the Finite Element Method to
Heat conduction Analysis”, Journal of Nuclear Engineering and Design, pp 276-286.

4. Bruch J. C: and Zyvoloski G. L. (1974), Transient 2-D Heat Ccaduction Problems
Solved by the Finite Element Method, IINME, Voi. 8, pp 481-494.

5. Chung K/8S. (1981), The Fourth-Dimension Concept in the Finite Element Analysis
of Transient Heat Transfer Problems, IINME, Vol. 17, pp 315-325.

6. . Hinton E. and Owen D. R. J. 1977, Finite Element Programming, Academic Press,
London.

7. Akpan U. O. 1988, Application of the Finite Element Method to Natural Convection
Heat Transfer in an Inclined Rectangular Duct, B.SC. Report, University of Ibadan,
Ibadan.

8. Stasa F. L. (1986), Applied Fimnite Element for Engineers, CBS
Publishing, Japan.

9. RaoS. S. 1986, Finite Element in Engineering, Pergamon Press, Oxford.

52



Giebal Journai of Mechanica! Engineering, Volume 3, Number 2, 2002
ISSIN 15957578

MAIN PROGRAM (THEFCAP)

START l
[ IS THIS LAST ELEMENT? |
CALLL DATIN
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