
UNIVER
SIT

Y O
F I

BADAN

COMPUTATIONAL INFERENCE TECHNIQUE FOR MINING

STRUCTURED MOTIFS

 BY

MAKOLO, ANGELA UCHE

(MATRIC NO.: 114866)

A Thesis in the Department of Computer Science

Submitted to the Faculty of Science

In partial fulfilment of the requirement for the Degree of

DOCTOR OF PHILOSOPHY

of the

UNIVERSITY OF IBADAN

SEPTEMBER 2012

UNIVER
SIT

Y O
F I

BADAN

2

CERTIFICATION

It is hereby certified that this work was carried out by MAKOLO, Angela, Uche in the

Department of Computer Science, Faculty of Science, University of Ibadan.

…………….…………………… ……………………...

Supervisor Date

Prof. Adenike Osofisan

B.Sc.(Hons) (Ife), M.Sc. (GIT), Ph.D. (Ife), MBA (Ibadan)

Computer Science Department

University of Ibadan.

 30th Sept 2012

…………….………………… ……………………. …

Co-Supervisor Date

Prof. Ezekiel Femi Adebiyi

B.Sc(Hons)(Ilorin),M.Sc.(Ilorin),Ph.D.(Tübingen).

CIS, CST, Covenant University, Otta.

UNIVER
SIT

Y O
F I

BADAN

3

Publications From this work

1. Conference papers

1. Makolo, Angela U, Osofisan Adenike, Adebiyi Ezekiel (2010): Computational Tool
for Characterizing Malaria Parasite Transcription Factor and DNA Binding Site In
proceeding of Research Consortium of the Nigerian Computer Society Pp 99 -106.

2. Makolo, Angela U, Osofisan Adenike, Adebiyi Ezekiel (2011): Mining Structured
Motifs in Malaria Parasite with Gene Enrichment Motif Searching on Suffix tree. In
proceeding of International Malaria Conference, Covenant University, Nigeria. Pp 15.

3. Makolo, Angela U, Osofisan Adenike, Adebiyi Ezekiel (2012): STGEMS: A
Computational Inference Algorithm For Motif Discovery. In proceeding of ICT for
Africa Conference, Uganda , Pp 800- 815

4. Makolo, Angela U, Osofisan Adenike, Adebiyi Ezekiel (2012): An inference Tool for
identifying Regulatory Elements in Plasmodium falciparum. In proceeding of Louisiana
Academy of Sciences Conference March 2012 Pp 34 -43.

5. Makolo, Angela U, Osofisan Adenike, Adebiyi Ezekiel (2012): Computational Tool
for mining structured motifs. Abstract accepted for ISCB Conference July 2012 .

2. Journal Articles

1. Makolo, Angela, Ezekiel Adebiyi and Osofisan Adenike (2011). STGEMS: Mining
Structured Motifs with Gene Enrichment Motif Searching on Suffix tree. Journal of
Computer Science and its Applications 18(1) : 79-91.

2. Makolo, Angela, Ezekiel Adebiyi and Osofisan Adenike (2012). Comparative
Analysis of Similarity Check Mechanism for Motif Extraction. Journal of Computer
Science and its Applications . IEEE Afr J Comp & ICT
2012.http://www.ajocict.net/uploads/Final_Makolo-Similarity_Comparism-paper.pdf

3. Makolo, Angela, Ezekiel Adebiyi and Osofisan Adenike (2012) .A Survey of
Computational Motif inference Algorithms. Oxford journal of Bioinformatics (In Press)

UNIVER
SIT

Y O
F I

BADAN

4

DEDICATION

This work is dedicated To Him in whom I Live and move and have my Being! The

ultimate Good.

UNIVER
SIT

Y O
F I

BADAN

5

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Professor Adenike Osofisan, her candid

encouragement, patience and tenacity in reading this work is note worthy. Working on

this thesis has been a great learning experience for me and I am grateful to her for giving

me the opportunity.

I equally want to thank Professor E.F Adebiyi for providing the desired technical

assistance and research direction needed for this study; being the only Professor of

Bioinformatics in the country at the moment, your contributions are invaluable.

My sincere gratitude to all the staff of Computer Science Department, University of

Ibadan for their immense contributions to the success of this work. Especially to Dr

Akinkumi for the technical assistance provided, Dr Onifade, for his patience in reading

through the thesis, Dr Longe, Dr Robert, Dr Adeyemo, Dr Akinola, Dr Okike, Dr

Osunade, Dr Folajimi, Dr Oladejo, Mrs Olamiti, Mrs Wumi. Adeyemo and Mrs Woods

for their constant encouragement.

To my colleagues in the Bioinformatics research group at Covenant University,

especially Dr S. Fatumo, Dr J. Oyelade, Dr G.Gbemi, Dr. Obi Eni, Itunu Isewon and

Marion Adebiyi.

I certainly will remain indebted to my academic mentors: Prof. Chantal Epie and Dr

Franca Ovadje of the Pan-African University Lagos, Prof. Helen Nwagwu, Prof. A.O.

Olorunnisola, Prof. V.O Adetimirin, Prof. J.A.O. Woods, Prof. Bola Udegbe, Dr Chiaka

Anumudu and Dr Awobode of the University of Ibadan, for their constant support.

UNIVER
SIT

Y O
F I

BADAN

6

My communication experts, Mr Ngozi Agbam and Ms Kemi Ogunyemi for taking time

to read this thesis and proffer a constructive criticism from a literary perspective.

I appreciate the constant encouragement and support of my parents and siblings. I cannot

thank you enough.

I cannot but acknowledge with deep appreciation, my immediate family, “Todos de la

Casa” for the love, care and understanding you showed especially, during the very

difficult moments of this work.

UNIVER
SIT

Y O
F I

BADAN

7

Table of Contents

Page

Title Page …………………………………………………………………… i

Certification ……………………………………………………………………… ii

Publications from this work …………………………………………………….. iii

Dedication ……………………………………………………………………….iv

Acknowledgement ………………………………………………………………… v

Table of Contents …………………………………………………………………. vii

List of Figures …………………………………………………………………….xi

List of Tables ………………………………………………………………………xii.

Abbreviations ……………………………………………………………………….xiii

Abstract……………………………………………………………………………xiv

Chapter One: Introduction ……………………………………………………..1

 Background to the Study …………………………………………………….....1

 Statement of the Problem …………………………………………………........6

 Aim and Objectives of the Study ……………………………………………....7

 Research Questions ………………………………………………………….....8

 Methodology ……………………………………………………………….......8

 Significance of the Study…………………………………………………….....11

 Limitation of the Study ……………………………………………………..... 12

UNIVER
SIT

Y O
F I

BADAN

8

 Organization of Work …………………………………………………………12

Chapter Two: Literature Review ..14

2.1 Theoretical Background ...4

2.1.1 Overview Of Clustering In Bioinformatics...18

2.1.2 Challenges Of Gene Clustering ..20

2.1.3 The Concept Of Motif Discovery ..21

2.1.6 Open Challenges In Motif Discovery ...24

2.1.7 Multi-Objective Genetic Algorithm (Ga) ...26

2.1.8 Overview Of Search Algorithms ...33

2.1.9 Computational Complexity Metrics For Motif Discovery Algorithms.........35

2.2 Related Works ..37

2.2.1 Motif Discovery Tools Based On Machine Learning Approach..................37

2.2.2 Pattern-Driven Based Motif Discovery Tools..40

2.2.2.1 Simple Motif Discovery Tools Using Pattern Driven-Based Approach....40

2.2.2.2 Structured Motif Discovery Tools Using Pattern Driven-Based Approach ..46

2.2.3 Statistical Based Motif Discovery Tools ... 49

2.2.3.1 Simple Motif Discovery Tools Based On Statistical Approach.49

2.2.4 Motif Discovery Tools Based On Combinatorial Approach ……….…… 52

2.2.5 Evaluation Of Motif Inference Tools…………………………………….…54

2.3 Establishment Of Gaps From Review Of Related Works. ……………….. ...60

2.4 Summary And Conclusion ………………………………………………… 61

UNIVER
SIT

Y O
F I

BADAN

9

Chapter Three : Research Methodology………………………………………….63

3.1 Derivation Of Stgems Algorithm ...63

3.2 Operating Principle Of Stgems ………………………………………… ...66

3.3 Architecture Of Stgems ...68

3.4 Construction Of Suffix Trees ...74

3.4.1 Complexity Analysis Of Suffix Tree Construction76

3.4.2 Traversal Of Suffix Tree With Suffix Links…………………………. 78

3.5 Algorithm For Motif Extraction On Suffix Tree80

3.5.1 Simple Motif Extraction Algorithm On Suffix Tree80

3.5.2 Structured Motif Extraction On Suffix Tree ..82

3.6 STGEMS Procedure For Extraction Of Simple And Structured Motifs....... 83

3.7 Gene Enrichment With Hypergeometric Scoring Function85

3.8 Analysis Of The Stgems Algorithm ..88

3.8.1 Time Complexity Analysis ...88

3.8.2 Predictive Accuracy ..88

3.9 Implementation Of Similarity Check Mechanism Of Mogamod.................. 90

3.10 STGEMS Analysis using Malaria Parasite Genomic Data…………………92

3.10.1 Transcription Associated Protein Extraction Analysis…………………… 93

3.10.2 Glycolysis Metabolic Pathway Analysis ...94

3.11 Discussion On The Implementation Of Stgems .. 95

Chapter Four: Results And Discussion …………………………………… 98

UNIVER
SIT

Y O
F I

BADAN

10

4.1 Empirical Runtime Comparison Of Stgems ……………………………….98

4.2 Performance Of Stgems In Mining Biologically Validated Motif …………102

 4.3 Evaluation Of Predictive Accuracy Of Stgems110

4.4 STGEMS And Mining Novel Motifs ..114

4.5 Application Of STGEMS And Gems To Metabolic Pathway Genes122

4.6 Comparison Of The Similarity Check Mechanism Of Gems And Mogamod ... 125

Chapter Five: Conclusion and Recommendations130

5.1 Conclusion …………………………………………………………………..130

5.2 Contribution To Knowledge ………………………………………………....133

5.3 Recommendation/Future Perspective………………………………………....133

References……………………………………………………………………………...135

Appendix

Appendix A ……………………………………………………………………………143

Appendix B…………………………………………………………………………….153

Appendix C ……………………………………………………………………........... 155

UNIVER
SIT

Y O
F I

BADAN

11

List of figures

Figure 1.1 Computational Framework for STGEMS algorithm………………………9

Figure 2.2: The suffix tree for DNA Sequence GTTAATTACTGAAT$ …………..43

Figure 2.3: A Taxonomy of Popular Motif Discovery Tools …………………………59

Figure 3.1: Derivation tree of STGEMS Algorithmry Tools …………………………65

Figure 3.2 Schematic Representation of the Operating Principle of STGEMS ………67

Figure 3.3 Architecture of STGEMS ……………………………………………… 69

Figure 3.4: Sequence Logo …………………………………………………………. 73

Figure 3.5: A Taxonomy of Popular Motif Discovery Tools ……………………… …59

Figure 3.6: Iterative Construction of Suffx Tree ……………………………….…….75

Figure 3.7 Suffix Tree with Suffix Links for String AGACAGGAGGC$. ………… 79

Figure 3.7 Suffix Tree with Suffix Links for String AGACAGGAGGC$. ………… .79

Figure 3.10 MOGAMOD Similarity Check Implementation …………………….. … 91

Figure 4.1: Empirical Run time for STGEMS and 5 motif discovery tools …………101

Figure 4.2: Performance Accuracy Comparison …………………………………… .113

Figure.4.3: Output of one of the modules of STGEMS …………………………… ...115

Figure 4.4: Sequence Logo of some of the optimal motifs predicted by STGEMS …..119

Figure 4.5: Similarity score of the optimal motifs predicted by STGEMS ………… 121

Figure 4.6: A sequence Logo of the common motifs extracted by GEMS and STGEM………124

Figure 4.7: Similarity Check of GEMS and MOGAMOD compared ………….128

UNIVER
SIT

Y O
F I

BADAN

12

List of Tables

Table 2.5 A List of popular Multi-objective Genetic Algorithms (Konak et al, 2006) ….. 31

Table 2.6 A List of some popular Motif Discovery Algorithms ………………………… 57

Table 4.1 Running Time of STGEMS compared with other Motif discovery tools ……….99

Table 4.2. Set of genes from Flueck et al.… ……………………………… ……. ………104

Table 4.3. Output from running the algorithms on the DNA sequences in table 4.2 ……..106

Table 4.4. Set of genes from the Mosquito invasive stage of malaria parasite……………..108

Table 4.5: Output from running the algorithms on the DNA sequences in table 4.4 ………..109

Table 4.6: Correlation Coefficient for STGEMS and the 5 Algorithms …………………….112

Table 4.7 The optimal novel motifs predicted by STGEMS from 3D7 P.falciparum genes….117

Table 4.9: Motif identification with GEMS and MOGAMOD’s similarity check mechanism..126

Table 4.10: Correlation Coefficient value of GEMS and MOGAMOD’s similarity check……127

UNIVER
SIT

Y O
F I

BADAN

13

ABBREVIATIONS

GO Gene Ontology

ATP Adenosine Triphosphate

PSSM Position Specific Scoring Matrix

PSWM Position Specific Weight Matrix

PWM Position Weight Matrix

NCBI National Centre for Biotechnology Information

UNIVER
SIT

Y O
F I

BADAN

14

ABSTRACT

One of the major challenges in bioinformatics is the development of efficient
computational tools for mining patterns. Structured motifs, like DNA binding sites in
organisms with peculiarities in their genomic sequence like malaria parasite,
Plasmodium falciparum have not been mined by existing structured motifs extraction
tools. There is a need to develop faster computational tools to mine these DNA binding
sites which are viable drug targets. This work was aimed at developing an algorithm for
mining structured motifs in the genome of P. falciparum.

 The Gene Enrichment Motif Searching (GEMS) method for mining simple motifs was
modified by incorporating the time efficient implementation of the suffix tree data
structure with suffix links. This enables an improved searching speed, while adding an
optimized position-weight matrix computation using the hypergeometric-based scoring
function. This algorithm, Suffix Tree Gene Enrichment Motif Searching (STGEMS) was
implemented in C programming language on Linux platform. An empirical evaluation of
the sensitivity of STGEMS was conducted by comparing the similarity check mechanism
of the GEMS algorithm for mining simple motifs with that used in another popular
algorithm for extracting structured motifs, a Multi-Objective Genetic Algorithm Motif
Discovery (MOGAMOD). The output of STGEMS algorithm was validated by
comparing the motifs discovered with those obtained using biological experiments. A
further validation was done by applying the STGEMS and GEMS algorithm to selected
metabolic pathways and the results were compared. The STGEMS algorithm was tested
with four sets of genes from the intraerythrocytic development cycle of P. falciparum.
The speed of execution was evaluated using three simple motif discovery tools:
Expectation Maximization Motif Elicitation(MEME), Gene Enrichment Motif Search
(GEMS), and WEEDER as well as two structured motif discovery tools: RISOTTO and
EXMOTIF on four different gene sizes.The high sensitivity of STGEMS in mining
structured motifs from sequences in P. falciparum was proven empirically by its ability
to identify 91% of the motifs in the sequences while MOGAMOD could not identify any
motif. This validated the high sensitivity of the similarity check mechanism employed, in
contrast with that used in MOGAMOD. The STGEMS algorithm identified 90% of the
binding sites in P. falciparum which were similar to those obtained in biological
experiments. On the selected metabolic pathways, STGEMS discovered all the simple
motifs identified by GEMS, in addition to the structured motifs which GEMS could not
identify. The empirical runtimes of STGEMS, MEME, WEEDER, GEMS, RISOTTO and
EXMOTIF were respectively 20, 35, 26, 25, 28, 30 seconds for 20,000 base pair (bp), 32,
43, 44, 45, 42, 40 seconds for 40,000 bp, 41, 55, 56, 55, 52, 50 seconds for 60,000 bp
and 54, 68, 69, 65, 67, 61 seconds for 80,000 bp respectively. The proposition resulted in
a linear asymptotic runtime of O(N) at each iteration of the algorithm.

The suffix tree gene enrichment motif searching algorithm developed was time efficient
and successful in mining structured motifs like DNA binding sites in Plasmodium

UNIVER
SIT

Y O
F I

BADAN

15

falciparum. This will aid a faster drug target discovery pipeline for the design of
effective anti malaria drugs.

Keywords: Structured motifs, DNA Binding Site, Suffix tree.

Word Count: 500.

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND INFORMATION

Pattern discovery or identification remains a concern to biologists and computer

scientists because of the challenges of developing efficient pattern mining tools for

sequence motifs that consists of patterns on any combination of the characters that make

up the DNA/RNA molecules, that is, {A,C,T,G) for DNA and {A,C,U,G}for RNA).

These patterns appear repeatedly either in the same sequence string or over a set of

sequences. Each of these patterns can be likened to a word in English language. Simple

motifs are made up of single patterns or words while structured motifs are made up of

several words with well defined gaps within a set of strings. For instance AATCGT is a

simple DNA motif while

UNIVER
SIT

Y O
F I

BADAN

16

AATCGT-----AGTCCG is a structured motif consisting of two patterns, each of length

six and five gaps. The need for efficient computational tools for mining these patterns

has led to an increasing number of researchers developing new algorithms for the

analysis of genomic data with the aim of extracting useful information from the patterns.

Their identification is called motif inference or motif discovery which is an application

area in data mining.

Data Mining is the process of automatically searching large volumes of data for hidden

patterns with little or no knowledge of the existing patterns while pattern mining

involves searching for patterns with a prior knowledge of the pattern of interest and

applies to motif discovery problem where the interest is in searching for repeated

patterns. (Daniels et al., 2011). They utilize computational techniques from statistics,

information retrieval, machine learning and pattern recognition to extract these patterns.

This area of pattern identification has applications in data compression, natural

languages, databases, basically, any activity or research requiring text mining. The

application of interest in this thesis is molecular biology and the motifs here may

correspond to functional elements in DNA, RNA or protein molecules. Data mining

algorithms have been widely used in molecular biology especially in protein structure

prediction, gene classification and prediction, clustering of gene expression data,

modeling of protein-protein interaction and motif discovery.

In biological applications, it is mandatory to allow for some mismatches between

different occurrences of the same motif. This naturally makes the problem difficult from

the computational point of view. In addition to this fundamental difficulty, this work also

targeted the mining of structured motifs from the deadly organism- the malaria parasite,

Plasmodium falciparum, with a peculiar genomic sequence. When the P. falciparum

genome sequence was published in 2002, it was revealed that the genomic composition

UNIVER
SIT

Y O
F I

BADAN

17

was unusually AT-rich, approximately 90% which is very high in comparison to other

organisms. For example, the entire genomes of the two popular model organisms, yeast

and fruit fly have AT contents of 62% and 65%, respectively (Gardner, 2002, Fatumo et

al, 2010). This peculiarity necessitates the development of a suitable structured motifs

inference algorithm that puts the malaria parasite genome in good perspective since none

of the existing algorithms is capable of mining its structured motifs.

The importance of this work was highlighted at the 'Functional Genomics Workshop

Group' meeting in Harvard, 2006, (Deitsch et al., (2007). The workshop identified the

challenges of understanding of the biology of the deadly malaria parasite, P.falciparum.

Key among these challenges is the identification of the proteins involved in its gene

regulatory mechanisms. The fact that these proteins interact with the genomic DNA to

bring the genome to life and that these interactions also define many functional features

of the genome Iyer et al., (2001), make them viable drug targets. Thus, mining

transcription associated proteins is a very important problem in malaria research.

Malaria is a tropical disease of great interest. It exacts a heavy toll of illness and death -

especially amongst children and pregnant women. In Africa alone, malaria is estimated

to kill a child, under the age of five every thirty seconds (Teklehaimanot, et al., 2005,

Fatumo et al, 2009, Oyelade et al, 2010). It also poses a risk to travelers and immigrants,

with imported cases increasing in non-endemic areas. The treatment and control of

malaria has become more difficult with the spread of drug-resistant strains of the parasite

and insecticide-resistant strains of mosquito vectors. Preventive measure such as health

education, better case management, better control tools and concerted action are required

to limit the scourge of the disease. (Bulashevska et al, 2007, Westenberger et al, 2009).

The dream of the global eradication of malaria, one of the millennium development

goals, is beginning to fade with the growing number of cases, rapid spread of drug

UNIVER
SIT

Y O
F I

BADAN

18

resistance in people and increasing insecticide resistance in mosquitoes. (Tuteja, 2007,

Oyelade et al, 2010). This global malaria challenge makes the understanding of the

biological mechanism of the malaria parasite very pertinent. The parasite inhabits two

hosts- human beings and mosquitos, its characteristic genomic makeup makes it capable

of adapting favourably in these two hosts, thereby making its eradication more

challenging.

The malaria parasite exhibits a rapid growth and multiplication rate during many stages

of its life cycle, this necessitates that the parasites, like all other organisms, acquire

nutrients and metabolize these various biological molecules in order to survive and

reproduce. It is expected that the parasite's metabolism will be intertwined with that of

the host's because of the intimate relationship between the host and the parasite. (Bischo,

E. and Vaquero, C.(2010)). These host-parasite interactions are further complicated by

the complex life cycle of the parasite involving vertebrate and invertebrate hosts as well

as different locations within each of these hosts. It is generally accepted that

P.falciparum is entirely dependent on glycolysis for energy during the asexual stages,

making this pathway an important drug target. One of the aims of this work is to discover

motifs in this pathway and thus provide information on the functional modules of the

glycolytic pathway genes. (Bozdech and Ginsburg, 2005).

The problem of understanding the transcription of genes is at the centre of interest in

bioinformatics research. One of the reasons is that gene regulation is fundamental in

determining the resulting functional protein. Transcription of genes serves as a substrate

for evolutionary changes, because the control of the timing, location, and the amount of

gene expression can have a profound effect on the functions of the genes in the

organism. Transcription associated proteins are made up of transcription factors, that are

master activators and inhibitors for sets of commonly regulated genes in each module. In

UNIVER
SIT

Y O
F I

BADAN

19

this study, we examined their binding sites, which are expected on the DNA sequences

of the genes that they regulate in the attempt to extract the binding sites. Since the

malaria parasite P. falciparum is eukaryotic, that is, organisms that have a defined

nucleus as opposed to prokaryotes which lack a nucleus, the binding sites are expected to

be structured motifs (Flueck et al.,2010). Therefore, our computational inference

technique mined these structured motifs as well as simple motifs in the challenging

genomic sequence of the malaria parasite.

There are many computational methods for predicting transcription factors and their

binding sites. These methods can be classified into three main categories, based on their

operating principles. They are

 The pattern-driven or word-based approach

 The statistical based approach and

 The machine learning based approach.

A review of the motif discovery tools based on these three categories is provided in

chapter two. Furthermore, there are experimental (wet lab) approaches for extracting

binding sites, for example, DNA footprinting and Chromatin Immuno-Precipitation

(chIP) methods; these approaches, however, are time consuming and very laborious.

These weaknesses justify the need for computational methods to complement them.

(Ponts et al., 2010). A repository of known transcription factors and their corresponding

binding sites can be found in the TRANSFAC (Heinemeyer et al., 1998) and JASPAR

(Sandelin et al., 2004) databases and these databases can be updated with novel

transcription factors and binding sites after biological validation.

The computational inference technique, Suffix Tree Gene Enrichment Motif Searching

(STGEMS) developed in this work, is a novel algorithm for mining motifs. The

algorithm is specifically tailored to organism with peculiarities in their genomic

UNIVER
SIT

Y O
F I

BADAN

20

sequence. STGEMS utilized the suffix tree, which has an inherent clustering technique

that returns all repeated patterns at a remarkable speed and extracts optimal structured

motifs by incorporating a highly sensitive similarity check mechanism using the

hypergeometric scoring function and position weight matrix to rank the gene enrichment

of the discovered motifs, thereby reporting only the optimal motifs. The suffix tree is a

data structure that is useful in representing a string or set of strings, they are well suited

to algorithms that require efficient access to substrings by content rather than by

position. The suffix tree construction reorganizes data into a form that facilitates

searching and exposes sections of the strings that are repeated. In view of the fact that the

core aim of this study is in searching for repeated patterns in a set of DNA sequences, the

choice of the suffix tree data structure in the framework of STGEMS algorithm is

appropriate.

1.2 STATEMENT OF THE PROBLEM

Two fundamental challenges in malaria research are the identification and understanding

of the complex proteins involved in the gene regulatory mechanism of P.falciparum.

These challenges are greatly influenced by the extraction of transcription associated

proteins (Transcription factors and DNA binding sites), which is cumbersome in the

highly repetitive and specific alphabet bias sequence of P.falciparum. Therefore there is

need for the development of computational tools for its effective mining, since existing

tools had failed to mine these successfully.

The work of Young et al., (2008) and Kaya (2009) provide a motivation for this research.

Young et al (2008) developed GEMS algorithm which extracted simple motifs in

P.falciparum, but it failed to extract structured motifs, which form the core of regulatory

element in eukaryotes. Kaya (2009) developed MOGAMOD algorithm, a multi-objective

genetic algorithm, which extracted structured motifs successfully in yeast and other

UNIVER
SIT

Y O
F I

BADAN

21

model organism but it failed when applied to the extraction of structured motifs in

P.falciparum due to the peculiarity in its genomic sequence resulting in AT-rich

sequence.

Our model, STGEMS, overcomes these limitations by extracting simple and structured

motifs from the challenging sequence of the malaria parasite. This was achieved by

implementing the similarity check mechanism used in MOGAMOD and GEMS,

comparing them in terms of sensitivity level and incorporating that of GEMS into the

framework of STGEMS while adding the suffix tree for improved speed.

1.3 AIM AND OBJECTIVES OF THE STUDY

The aim of this work is to develop a computational inference technique for mining

structured motif that results in improved runtime with a view of elucidating the DNA

binding site of transcription factors of the malaria parasite, P.falciparum. The specific

objectives of the study are :

i. To develop a computational tool for mining structured motifs with improved

running time with a high sensitivity or accuracy.

ii. To discover novel DNA binding sites, that is, viable drug targets to combat

resistant malaria strain of P.falciparum, on a large scale using the developed

tool.

iii. To compare the performance of the tool with the five popular motif

discovery tools namely : MEME, WEEDER, RISOTTO, EXMOTIF and

GEMS

iv. To compare the similarity check used in GEMS, that is hypergeometric

scoring function based, with that used in MOGAMOD, that is dominance

nucleotide value based.

UNIVER
SIT

Y O
F I

BADAN

22

v. To apply the novel algorithm to scan the glycolysis metabolic pathway genes

of P.falciparum. .

UNIVER
SIT

Y O
F I

BADAN

23

1.4 RESEARCH QUESTIONS

To accomplish the above research objectives, the following research questions are

addressed:

RQ1: How can an efficient motif discovery algorithm that would work for the

challenging repeat alphabet sequence of P.falciparum. be developed?

RQ2: To what extent would this computational technique work for extracting DNA

binding sites having a high correlation with those biologically extracted?

RQ3: To what extent would using a similarity check mechanism that employed a

hypergeometric based scoring approach achieve a high sensitivity over the similarity

check that does not use this approach?

RQ4: How would this new algorithm perform when compared to five standard motif

discovery algorithms already in existence?

RQ5: How would this algorithm behave when applied to the glycolysis metabolic

pathway genes?

1.5 METHODOLOGY

The overview of the research methodology is encapsulated in the figure 1.1:

The processes involved in STGEMS algorithm is depicted in steps

 STGEMS receives a list of DNA sequences as input, which contains unknown

motifs that needs to be identified. A generalized suffix tree is constructed with

the DNA sequences.

 The trees are traversed to output unique patterns or candidate motifs. In any

suffix tree construction, each traversal from the root node to a leaf node is a

unique pattern.

UNIVER
SIT

Y O
F I

BADAN

24

Figure 1.1 Computational Framework for STGEMS algorithm

UNIVER
SIT

Y O
F I

BADAN

25

 The next step is the computation of position weight matrix (PWM) for the

extracted unique patterns. The PWM is a matrix that shows the information

content of the motifs which depends on the frequency of occurrence of each of

the characters in the identified unique pattern.

 The biological significance of the candidate motif is computed. This is

determined by computing the similarity scores. The motifs with low similarity

scores are reported as better optimal motifs.

 The last step is the merging of similar motifs i.e. those with one or two variations

in the character that make up the motifs. These are merged using edit distance,

before returning them as optimal.

STGEMS’s methodology also involves the implementation of the similarity check

mechanisms based on the hypergeometric scoring function and the dominance nucleotide

value of the extracted pattern from the suffix tree. The two methods were compared; the

result of this comparison influenced the incorporation of the similarity check based on

the hypergeometric scoring function into STGEMS framework.

The asymptotic runtime analysis of our novel computational inference technique,

STGEMS was carried out by analyzing the time complexity of its various modules and

procedures. A performance evaluation was conducted, based on the empirical runtime of

STGEMS with three simple motif discovery tools (MEME, WEEDER and GEMS) and

two structured motif discovery tools (RISOTTO and EXMOTIF).

STGEMS was tested by running four experiments using different gene sets of P.

falciparum. The first experiment used the set of genes in the work of Flueck et al. (2010)

which experimentally extracted regulatory elements for P.falciparum, that is 1000 base

pairs upstream of gene start codons. The second experiment used the set of genes used

by Yuda et al. (2009) which identified transcription factors in the mosquito-invasive

UNIVER
SIT

Y O
F I

BADAN

26

stage of malaria parasite. The two experiments aimed at inferring the ability and

sensitivity of STGEMS in predicting correctly, the motifs already extracted by some

known biological experiments. The third experiment targeted predicting novel binding

sites by using the 3D7 gene clones of P. falciparum, this contains about 3,000 genes

from the Intraerythrocytic developmental cycle (which represents all the stages in the

development of P.falciparum, responsible for the symptom of malaria and is the target

for the vast majority of antimalaria drugs strategy). The fourth experiment utilized the

genes in the glycolytic pathway of P.falciparum. The twenty six genes that are known to

be involved at the glycolytic pathway of P.falciparum were harvested from

www.plasmodb.org. This experiment aimed at scanning the upstream regions for

conserved sequence motifs using our computational technique. They were then compared

with those extracted using the popular GEMS algorithm.

The implementation and testing of STGEMS was done in C, on a Dell computer,

INTEL® CORE™ DUO CPU T2300 @1.66GHz, 512 RAM, 80GB HDD running on

Suse Linux 11.2 operating system. This platform was adopted because it is an efficient

platform for development of Bioinformatics algorithms. Moreover, the five popular

motif discovery algorithms that STGEMS was compared with were implemented in C on

Linux operating system thus ensuring a standardized comparative metric.

1.6 SIGNIFICANCE OF THE STUDY

Generally, the knowledge of the biology of P.falciparum, that consists of :

 How its cells function

 How proteins organize into modules such as metabolic pathways

 And the DNA binding sites present in the genome,

 provides an invaluable resource for characterizing the complex roles of the

individual genes and ultimately the identification and validation of new drug and/or

UNIVER
SIT

Y O
F I

BADAN

27

vaccine targets for anti malaria strategies. The ability to discover these drugs or

vaccine targets can only be enhanced from the deep understanding of the detailed

biology of the parasite, which motivated this research.

This thesis addresses a significant need in our understanding of mining structured motifs

especially in organisms with peculiarities in their genomic sequence. In particular, this

work in developing a new motif discovery algorithm which efficiently mined biological

patterns in the malaria parasite genome, provides information that will enhance

understanding of malaria and development of drugs for its cure.

1.7 LIMITATION OF THE STUDY

This work focused on developing a motif discovery algorithm applied principally to

mining structured motifs from P.falciparum. This is to provide an in-depth understanding

of the organism. Despite the fact that other species of Plasmodium and other parasitic

organisms can cause disease of importance, this study is limited to human malaria caused

by P. Falciparum, because it is the most fatal and is considered to be of much economic

importance.

1.8 ORGANIZATION OF WORK

This write-up is structured in five chapters. Chapter one gives a brief introduction to

the work. It also includes statement of the problems, research questions,

methodology, aims and objectives, as well as scope and limitation of work.

Chapter two explains the theoretical background of the research, the principles of

sequence analysis algorithms, a review of related works in motif discovery

algorithms and the gaps identified.

UNIVER
SIT

Y O
F I

BADAN

28

Chapter three describes the research methodology proposed for solving the identified

gaps. The techniques used and model implementations were discussed. In addition,

the structure of the data (malaria parasite genomic data) used in validating the

algorithm was also expounded upon. Chapter four discusses the various results

generated from running the algorithm and the comparative analysis carried out while

chapter five gives the conclusion of the study and discusses future research directions

in this area.

UNIVER
SIT

Y O
F I

BADAN

29

CHAPTER TWO

LITERATURE REVIEW

This chapter contains the theoretical background of the study, a review of the related

concepts, principles and techniques used in this thesis. A review of related work is

provided based on a chronicle of some popular Motif Discovery tools- examining their

building paradigm, strengths and limitations. The basic data structures used in these

motif discovery tools were discussed. Finally, the application domain of this research is

highlighted, that is, mining patterns in molecular biology using malaria parasite,

Plasmodium falciparum as a case study.

2.1 THEORETICAL BACKGROUND

In the post-genomic era, the ability to predict the behavior, the function, or the structure

of biological entities (such as genes and proteins), as well as interactions among them,

play a fundamental role in the discovery of information to help biologists explain

biological mechanisms. (Pizzi, 2011).

Several functional and structural properties, and also evolutionary mechanisms, can be

predicted either by the comparison of new elements with already classified elements, or

by the comparison of elements with a similar structure or function and using it to infer

UNIVER
SIT

Y O
F I

BADAN

30

the common mechanism that is at the basis of the observed similar behavior. Such

elements are commonly called motifs.

Comparison-based methods for sequence analysis find their application in several

biological contexts, such as extraction of transcription factors, DNA binding sites,

identification of structural and functional similarities in proteins, and phylogeny

reconstruction1. Therefore, the development of adequate methodologies for genomic

sequence analysis is of paramount interest in computational biology. In other words

sequence analysis refers to the process of subjecting a DNA, RNA or protein sequence to

any of a wide range of analytical methods to understand its features, function, structure,

or evolution. Sequence analysis algorithms are basically classified into three:

 Gene finding Algorithms: These algorithms are used to predict gene structure.

Gene prediction or gene finding refers to the process of identifying the regions of

genomic DNA that encode genes. This includes protein-coding genes as well as

RNA genes, but may also include prediction of other functional elements such as

regulatory regions. Gene finding is the first step in sequence analysis procedure.

This is because the genes in the genome of any specie that had just been

sequenced had to be annotated before any further processing can take place. The

operating principle of gene finding algorithms is relatively simple; it is basically

based on an inference system that can decode the twenty amino acids using the

genetic code. Some popular gene finding tools are GENESCAN, GENEMAK,

GENIE, HMMGENE, PHAT etc. (Cawley et al, 2001).

 Sequence Alignment Algorithms: These are algorithms that align genomic

sequences to detect similarity. Sequence Alignment is a way of arranging the

sequences of DNA, RNA, or protein to identify regions of similarity that may be

1 Phylogenetic Reconstruction is a biological concept used in examining evolutionary relationship between
organisms.

UNIVER
SIT

Y O
F I

BADAN

31

a consequence of functional, structural, or evolutionary relationships between the

sequences. Aligned sequences of nucleotide or amino acid residues are typically

represented as rows within a matrix. Gaps are inserted between the residues so

that identical or similar characters are aligned in successive columns. The

building paradigm of Sequence Alignment algorithms is usually more complex

than gene finding algorithms. Popular sequence alignment tools include BLAST,

ClustalW, T-coffee, FASTA3x among others. (Ortet & Bastien, 2010).

 Motif Discovery Algorithms: These are algorithms that predict patterns from the

sequence data hypothesised to have biological functions such as gene regulation.

This class of algorithm is the most complicated of the three categories of

sequence analysis algorithm available. Primarily due to the complicated makeup

of the motifs been sought and therefore require exquisite methodologies to

effectively predict them. Some popular tools in this class include MEME,

WEEDER, MUSA among others.

Motif discovery algorithms are based on the biological theory of high conservation

which states that patterns repeated in a sequence data with high frequency is a potential

motif or pattern of interest and needs to be mined effectively (Gardener, 2002). The goal

of motif discovery algorithms is to enumerate these patterns repeated with high

frequency, since they have been established experimentally to have biological

significance. The task is to eliminate those randomly occurring patterns which could

result in false positive prediction and report only the best motifs.

The development of adequate methodologies for motif discovery is of unquestionable

interest for several different fields in computational biology.

UNIVER
SIT

Y O
F I

BADAN

32

Fig 2.1 Hierachical View of Sequence Analysis Algorithms

Sequence Alignment

Algorithms

Gene Finding

Algorithms

SEQUENCE ANALYSIS ALGORITHMS

Motif Discovery

Algorithms

Search mechanism

Inference Rule based

on the genetic code

Compare similarity

with existing sequence

Repeated patterns and

compute statistical

significance

outputs annotated

Genes in the sequence

outputs Aligned genes

in sequences

outputs Optimal Functional

Motif in the sequence

UNIVER
SIT

Y O
F I

BADAN

33

Different researchers have adopted several approaches to extract these patterns such as

word-driven or pattern-driven approach, statistical based approach and machine learning

based approach. All known motif discovery algorithms are based on one or a

combination of two or three of these approaches. Among the most popular methods are

those based on the pattern driven approach methods which uses several heuristics to

extract candidate motifs and thereafter performs a validation check using statistical

methods to extract candidate motifs with optimal features based on the statistical

significance analysis.

Motif discovery is an application area in the field of data mining in computer science. It

is concerned with identifying and extracting relevant patterns hypothesised to have

biological significance. Usually, a large data set is provided, then the data mining task

involves the use of efficient techniques to mine the relevant patterns contained in the

data set. A brief overview of data mining and its clustering techniques is provided in the

next session.

2.1.1 OVERVIEW OF CLUSTERING IN BIOINFORMATICS

Motif discovery is basically a pattern identification process which involves the use of

clustering techniques to extract biologically significant patterns from a given sequence

data.

Clustering is partitioning of data into groups of similar objects. Each group, called a

cluster, consists of objects that are similar to each other and dissimilar to objects of other

groups. The representation of data using fewer clusters necessarily results in loss of some

fine details while achieving simplification. Clustering is one of the most commonly used

UNIVER
SIT

Y O
F I

BADAN

34

computational methods for analyzing microarray2 and gene expression data of various

organisms. The results obtained from clustering have been used to support the

classification of genes into functional modules, such as regulatory elements, metabolisms

and metabolic pathways.

Clustering differs from the supervised classification since in clustering; there is no

information about the number of classes that are present before clustering begins.

The most typical example of clustering in bioinformatics is the clustering of genes in

expression data. In microarray essays, the expression value for thousands of genes is

obtained and interesting information that can be extracted from these data includes for

instance, genes that are co expressed in the different samples. This is a clustering

problem because here genes with similar expression level in all samples are grouped into

a cluster. Cluster analysis, also called data segmentation, has a variety of goals. All relate

to grouping or segmenting a collection of objects into subsets or ‘clusters’, such that

those within each cluster are more closely related to one another than objects assigned to

different clusters. Usually, the goal is to arrange the clusters into a natural hierarchy.

This involves successively grouping the clusters themselves so that, at each level of the

hierarchy, clusters within the same group are more similar to each other than those in

different groups. Fundamental to all of the goals of cluster analysis is the notion of the

degree of similarity (or dissimilarity) between the individual objects being clustered. A

clustering method attempts to group the objects based on the definition of similarity

supplied to it. Suffix tree clustering technique is widely used in motif discovery

algorithms due to its ability to return common strings using their order and proximity of

2 DNA Microarray is a collection of microscopic DNA spots attached to a solid surface. In molecular

biology, DNA microarrays are used to measure the expression levels of large numbers of genes

simultaneously or to genotype multiple regions of a genome.

UNIVER
SIT

Y O
F I

BADAN

35

reference in linear time. Other clustering methods used are partitioning based methods,

hierarchy based methods, density-based, grid-based, and model-based methods. (Daniel

et al., 2011, Naresh and Shrish , 2011). It is important to note that clustering in motif

discovery algorithms is actually a pattern mining problem since there is a preconception

about the patterns of interest (strings repeated with a high frequency) unlike clustering in

data mining where the focus is searching for patterns of interest arising from the data

without prior knowledge of the type or nature of the pattern. (Naresh and Shrish , 2011).

2.1.2 CHALLENGES OF GENE CLUSTERING

Gene-based clustering present many new challenges and problems that are still open due

to the unique features of gene expression data and the particular requirements from the

biological domain. Gene expression is the process by which information from a gene is

used in the synthesis of a functional gene product. The challenges of gene clustering

include the following:

 Cluster analysis is typically the first step in data mining since the purpose of

clustering gene expression data is to reveal the natural data structures and obtain

some initial insights regarding data distribution, a good clustering algorithm should

therefore, as little as possible, depend on prior knowledge that is not usually available

before cluster analysis.

 Due to the complex procedures of microarray experiments, gene expression data is

often plagued with a lot of noise. Therefore, clustering algorithms for gene

expression data must be capable of extracting useful information from a high level of

background noise.

 Empirical studies have demonstrated that gene expression data are often “highly

connected” (Jiang, et al, 2003) and clusters may be highly embedded in one another.

UNIVER
SIT

Y O
F I

BADAN

36

Therefore, algorithms for gene-based clustering should be able to effectively handle

this situation.

 The users of microarray data are not only interested in the clusters of genes, but also

in the relationship between the clusters and the genes within the same cluster. A

clustering algorithm, which can partition the data set and also provide some graphical

representations of the cluster structure (intra- and inter- relationship wise) is more

useful to the biologists.

All Motif discovery algorithms incorporate a specific type of clustering mechanism in its

design framework. The challenges of gene clustering discussed above are taking into

considerations while developing different methodologies for motif discovery. This

section has examined the main challenges that should be bore in mind while considering

a particular clustering technique for motif discovery tool. We shall hereafter, .provide a

definition of the motif discovery problem.

2.1.3 THE CONCEPT OF MOTIF DISCOVERY

Motif discovery in DNA sequences is a fundamental problem in computational biology

with important applications in understanding gene regulation. Biological approaches for

this problem are tedious and time-consuming. The availability of large amounts of

genome sequence data and gene expression micro-array data make it possible to solve

this problem computationally. However, most computer science problems of this sort are

NP-complete.

A motif is a pattern in a sequence, that is, a word and a representation of a set of such

words. In a more formal way, a motif can be defined as follows:

Let Σ represent the alphabet{A,C,G,T} of nucleotides.

An element u Є Σ+ is said to be a word in a sequence s Є Σ+

UNIVER
SIT

Y O
F I

BADAN

37

 if s=xuy for x, y Є Σ*.

An element m Є Σ+ , called a motif is said to have an e-occurrence in s for a non

negative integer if there is at least one word u in s

such that the minimum number of substitution between u and m is no more than

e. Given N sequences s1 , .. sN Є Σ* and an integer 1 ≤ q≤ N, an element m Є Σ+

is said to be a valid motif if it has at least an occurrence in at least q distinct

sequences of the set(q is called the quorum).

 Motif discovery has been applied to discover many types of patterns in DNA and amino

acid sequences. For example, motif discovery has been used extensively to identify

transcription factor binding sites and to discover protein-protein interaction domains. In

most cases, motif discovery algorithms accept as input a set of sequences hypothesized

to contain a biologically important sequence pattern, and search for patterns that are

repeated with high frequency, that is, patterns unlikely to occur by chance. However,

since motifs are usually short and can be highly variable sequence patterns, a challenging

problem for motif discovery algorithms is to distinguish functional motifs from random

patterns that are over-represented by chance. (MacIsaac et al., 2006). This problem is

addressed in some motif extraction algorithms by using the information content or

relative entropy of the motif. The relative entropy of a motif is defined as follows:

Suppose that a motif of length L, has approximate occurrences in a subset S of N input

sequences. Then the relative entropy or information content of this motif is defined to be

 r{A,C,G,T}

where Pr,j is the frequency of occurrence of the nucleotide or residue r in position j

among the motif occurrences in S, and br is the background frequency of the residue .

UNIVER
SIT

Y O
F I

BADAN

38

 Relative entropy provides a measure of frequency of occurrence and how unlikely a

motif is with respect to the background distribution. In particular, the more dissimilar the

distribution Pr,j from the background distribution br, the higher the relative entropy of

position j.

Relative entropy is a good criterion to use when comparing two motifs with the same

number of occurrences; however, it does not suffice if the two motifs occur in a vastly

different number of sequences. This is due to the fact that relative entropy does not take

into account the absolute number of occurrences; rather it depends on the relative

frequency of occurrence of each of the nucleotides. (Tompa M , 2005). The nucleotides

in a DNA sequence are made up of alphabets ‘A’,’C’,’T’,’G’ while in RNA sequence,

the alphabet ‘T’ is replaced by ‘U’. .

Motif discovery can also be seen as the problem of discovering promoter sequences and

binding sites for transcription factors, usually referred to as consensus sequences or

motifs, without any prior knowledge of their characteristics. These motifs can be sought

by analyzing regulatory regions taken from genes of the same organism or from related

genes of different organisms. Bock et al.,(2006).

Motif discovery can be formally defined as follows:

Assuming that G ={g1, ….gT } is a set of DNA sequences.

Let M be a motif of length L. M a motif that can occur in a sequence with

mutations up to F instances in the sequence. Assuming m1, m2…mT to be

instances of occurrence of M.

The motif finding problem of (L, F) is to find M such that P* P. Usually, we

assume P* < 3 to avoid discovering motifs with less significance called trivial

motifs.

It is important to note that typically several target (L, F) motifs may exist,

UNIVER
SIT

Y O
F I

BADAN

39

depending on P*.

In general, a computational algorithm cannot determine a priori the biological

significance of a motif with certainty, thus the aim will be to find all these motifs based

on their frequency of occurrence and to statistically validate the biological relevance of

the extracted motifs. This statistical validation is usually accomplished using a scoring

matrix. The most common scoring matrix model used for motif discovery tools is the

Position Specific Scoring Matrix (PSSM). (Pizzi et al. 2011).

2.1.6 OPEN CHALLENGES IN MOTIF DISCOVERY

There are many open challenges in motif discovery, one that is often overlooked,

involves the partitioning of the input set of sequences into target and background sets.

The target set is the cluster of interest suspected to have the motif, while the background

set is the remaining sequence set.

 Many methods rely on the user to provide these two sets and search for motifs that are

overabundant in the target set when compared with the background set. The question of

how to partition the data into target and background sets is left to the user. However, the

boundary between the sets is often unclear and the exact choice of sequences in each set

arbitrary. For example, suppose that one wishes to identify motifs within promoter

sequences that constitute transcription factor binding site, a strategy that can be adopted

would be to partition the set of promoter sequences into target and background sets

according to the transcription factor binding signal (as measured by ChIP–chip

experiments (Keich and Pezner, 2002). The two sets would contain the sequences to

which the transcription factor binds ‘‘strongly’’ and ‘‘weakly,’’ respectively. A motif

detection algorithm could then be applied to find motifs that are overabundant in the

UNIVER
SIT

Y O
F I

BADAN

40

target set compared with the background set. In this scenario, the positioning of the

cutoff between the strong and weak binding signal is somewhat arbitrary. Obviously, the

final outcome of the motif identification process can be highly dependent on this choice

of cutoff. A stringent cutoff will result in the exclusion of informative sequences from

the target set while a loose cutoff will cause inclusion of irrelevant sequences. It is

obvious that both extremes hinder the accuracy of motif prediction. This example

demonstrates a fundamental difficulty in partitioning most types of data.

There are five major challenges in motif discovery which require consideration, they are:

 The cutoff used to partition data into a target set and background set of sequences

is often chosen arbitrarily;

 The lack of an exact statistical score and p-value for motif enrichment. Current

methods typically use arbitrarily set thresholds or simulations, which are

inherently limited in precision and costly in terms of running time.

 The need for an appropriate framework that accounts for multiple motif

occurrences in a single promoter region. For example, how should one quantify

the significance of a single motif occurrence in a promoter against two motif

occurrences in a promoter? Linear models (Bussemaker et al, 2001) assume that

the weight of the latter is double that of the former. However, it is difficult to

justify this approach since biological systems do not necessarily operate in such a

linear form

 Another issue that is related to motif multiplicity is low complexity or repetitive

regions. These regions often contain multiple copies of degenerate motifs. Since

the nucleotide frequency underlying these regions substantially deviates from the

standard background frequency, they often cause false-motif discoveries.

UNIVER
SIT

Y O
F I

BADAN

41

Consequently, most methods mask these regions in the preprocessing stage and

thereby lose vital information that might reside therein.

 Some criticism has been made over the fact that motif discovery methods tend to

report presumably significant motifs even when applied on randomly generated

data (Habison et al, 2004). These motifs are clearly, cases of false positives and

thus should be avoided.

 The challenge of the multiple occurrence of motif in a single sequence is further

compounded by the fact that the there might not be an absolute optimal motif. It

usually occurs in multiples.

Several motif discovery tools tried to take this challenge into consideration when

building the motif extraction model.

A typical example is the motif discovery tool by Kaya, 2009 who developed

MOGAMOD(Multi) using multi-objective genetic algorithm approach to discover

optimal motifs in sequential data. The main advantage of this approach is that a large

number of tradeoff (i.e., nondominated) motifs can be obtained by a single run with

respect to conflicting objectives: similarity, motif length and support maximization.

Thereby reporting all the multiple optimal motifs present in the sequence data. A

discussion of multi-objective genetic algorithm and its implementation is discussed in the

sections below.

2.1.7 MULTI-OBJECTIVE GENETIC ALGORITHM (GA)

Multi-objective genetic algorithms are evolutionary algorithms which have become the

method of choice for optimization problems that are too complex to be solved using

deterministic techniques such as linear programming or gradient methods. It uses Multi-

UNIVER
SIT

Y O
F I

BADAN

42

objective optimization. Multi-objective optimization is the process of simultaneously

optimizing two or more conflicting objectives subject to certain constraints. For

multiple-objective problems, the objectives are generally conflicting, preventing

simultaneous optimization of each objective. Many, or even most, real engineering

problems actually do have multiple objectives, that is, minimize cost, maximize

performance, and maximize reliability, among others. These are difficult but realistic

problems. GA are a popular meta-heuristic that is particularly well-suited for this class of

problems. Traditional GA is customized to accommodate multi-objective problems by

using specialized fitness functions and introducing methods to promote solution

diversity. There are two general approaches to multiple-objective optimization. One is to

combine the individual objective functions into a single composite function and the other

involves moving all but one objective to the constraint set. In the former case,

determination of a single objective is possible with methods such as utility theory,

weighted sum method among others, but the problem lies in the proper selection of the

weights or utility functions to characterize the decision-maker’s preferences.

In practice, it can be very difficult to precisely and accurately select these weights, even

for someone familiar with the problem domain. Compounding this drawback is that

scaling amongst objectives is needed in order to be able to choose the best objective

criteria since a few alterations in the weights could result in different solutions. In the

latter case, the problem is that in moving objectives to the constraint set, a constraining

value must be established for each of these former objectives. This movement of

objectives could be arbitrary and thus the problem of consistency ensued. In both cases,

an optimization method would return a single solution rather than a set of solutions that

can be examined for trade-offs. For this reason, decision-makers often prefer a set of

good solutions considering the multiple objectives.

UNIVER
SIT

Y O
F I

BADAN

43

The second general approach is to determine an entire Pareto optimal solution set or a

representative subset. A Pareto optimal set is a set of solutions that are non dominated

with respect to each other. While moving from one Pareto solution to another, there is

always a certain amount of sacrifice in one objective to achieve a certain amount of gain

in the other. Pareto optimal solution sets are often preferred to single solutions because

they can be practical when considering real-life problems since the final solution of the

decision-maker is always a trade-off. Pareto optimal sets can be of varied sizes, but the

size of the Pareto set usually increases with the increase in the number of objectives.

A general minimization problem of N objectives can be stated mathematically as

Minimize f(x) = [fi(x), i = 1,..,N]

Subject to:

 gj(x) ≤ j =1.2…,J

 hk (h) = 0 k =1.2…,K

Where f i (x) is the ith –objective function, gj(x) is the jth inequality constraint. The multi

objective optimization problem is then reduced to finding x such that f(x) is optimized.

The ultimate goal of a multi-objective optimization algorithm is to identify solutions in

the Pareto optimal set. However, identifying the entire Pareto optimal set, for many

multi-objective problems, is practically impossible due to its size. In addition, for many

problems, especially for combinatorial optimization problems, proof of solution

optimality is computationally infeasible because of the search operations involved.

Therefore, a practical approach to multi-objective optimization is to investigate a set of

solutions (the best-known Pareto set) that represent the Pareto optimal set as much as

possible. With these concerns in mind, a multi-objective optimization approach should

achieve the following three conflicting goals (Zitzler et al, 2000)

UNIVER
SIT

Y O
F I

BADAN

44

 The best-known Pareto front should be as close as possible to the true

Pareto front. Ideally, the best-known Pareto set should be a subset of the

Pareto optimal set.

 Solutions in the best-known Pareto set should be uniformly distributed

and diverse over of the Pareto front in order to provide the decision-maker

a true picture of trade-offs.

 The best-known Pareto front should capture the whole spectrum of the

Pareto front. This requires investigating solutions at the extreme ends of

the objective function space.

For a given computational time limit, the first goal is best served by focusing the search

on a particular region of the Pareto front. On the contrary, the second goal demands the

search effort to be uniformly distributed over the Pareto front. The third goal aims at

extending the Pareto front at both ends, exploring new extreme solutions. (Konak et al.,

2006).

Usually, Genetic algorithms are well suited to solve multi-objective optimization

problems. A generic single-objective GA can be modified to find a set of multiple non-

dominated solutions in a single run. The ability of GA to simultaneously search different

regions of a solution space makes it possible to find a diverse set of solutions for difficult

problems with non-convex, discontinuous, and multi-modal solutions spaces. The

crossover operator of GA is capable of exploiting structures of good solutions with

respect to different objectives to create new non-dominated solutions in unexplored parts

of the Pareto front. In addition, most multi-objective GA does not require the user to

prioritize, scale, or weigh objectives. Therefore, GA has been the most popular heuristic

approach to multi-objective design and optimization problems. A survey by Jones et al.,

(2002) reported that 90% of the approaches to multi objective optimization are aimed at

UNIVER
SIT

Y O
F I

BADAN

45

approximating the true Pareto front for the underlying problem, majority of these used a

meta-heuristic technique, and 70% of all meta-heuristics approaches were based on

evolutionary approaches.

The first multi-objective GA, called vector evaluated GA, VEGA, was proposed by

Schaffer (1985). This was followed by Several Multi-objective Genetic

Algorithm(MOGA) such Niched Pareto Genetic Algorithm (NPGA), Weight-based

Genetic Algorithm (WBGA), Random Weighted Genetic Algorithm (RWGA), Non

dominated Sorting Genetic Algorithm (NSGA), Strength Pareto Evolutionary Algorithm

(SPEA), improved SPEA called SPEA2, Pareto-Archived Evolution Strategy (PAES),

Pareto Envelope-based Selection Algorithm(PESA), Region-based Selection in

Evolutionary Multiobjective Optimization, PESA-II, a fast Non dominated Sorting

Genetic Algorithm, (NSGA-II), Multi-objective Evolutionary Algorithm, Micro-GA,

Rank-Density Based Genetic Algorithm(RDGA), and Dynamic Multi-objective

Evolutionary Algorithm(DMOEA). It is important to note that although there are many

variations of multi-objective GA available, these cited GA are well-known and credible

algorithms that have been used in many applications and their performances were tested

in several comparative studies. Konak et al, (2006). A list of some popular multi-

objective GA is contained in table 2.6 below indicating their strengths and weaknesses.

UNIVER
SIT

Y O
F I

BADAN

46

Table 2.5 A List of popular Multi-objective Genetic Algorithms (Konak et al, 2006)

Algorithm
Fitness

assignment
Diversity

mechanism
Elitism

External
population

Advantages Disadvantages Author

VEGA

Each
subpopulation
is evaluated
with respect
to a different
objective

No No No
First MOGA
Straightforward
implementation

Trend converges
to the extreme
of each
objective

Schaffer J.D
(1985)

MOGA
Pareto
ranking

Fitness
sharing by
niching

No No

Simple
extension of
single objective
GA

Usually slow
convergence

Fonseca wt
al. (1993)

WBGA

Weighted
average of
normalized
objectives

Niching.
Predefined
weights

No No

Simple
extension of
single objective
GA

Difficulties in
nonconvex
objective
function space

Hajela
P.,Lin C-y.
(1992)

NPGA

No fitness
assignment,
tournament
selection

Niche count
as tie-
breaker in
tournament
selection

No No

Very simple
selection
process with
tournament
selection

Problems
related to niche
size parameter.
Extra parameter
for tournament
selection

Horn J.,
Nafplio N.
Goldberg
D.E. (1994)

RWGA

Weighted
average of
normalized
objectives

Randomly
assigned
weights

Yes Yes
Efficient and
easy implement

Difficulties in
nonconvex
objective
function space

Murata et
al (1995)

PESA

No fitness
assignment

Cell-based
density

Pure elitist Yes

Easy to
implement.
Computational
efficient

Performance
depends on cell
sizes. Prior
information
needed about
objective space

Corne
D.W.,
Knowles
J.D., Oates
M.J. (2000)

PAES

Pareto
dominance is
used to
replace a
parent if
offspring
dominates

Cell-based
density as tie
breaker
between
offspring and
parent

Yes Yes

Random
mutation hill-
climbing
strategy. Easy to
implement.
Computationally
efficient

Not a population
based approach.
Performance
depends on cell
sizes

Knowles J.
Corne D.
(1999)

NSGA

Ranking
based on non-
domination
sorting

Fitness
sharing
by niching

No No
Fast
convergence

Problem related
to niche size
parameter

Srinivas N.
Deb K.
(1994)

NSGA-II

Ranking
based on non-
domination
sorting

Crowding
distance

Yes No

Single
parameter (N).
Well tested.
Efficient

Crowding
distance works
in objective
space only

Deb K et al.
(2000)

SPEA

Ranking
based on the
external
archive of
non-
domination
solutions

Clustering to
truncate
external
population

Yes Yes
Well tested. No
parameter for
clustering

Complex
clustering
algorithm

Zitzler E.
Thiele
L.(1999)

SPEA-2
Strength of
dominators

Density
based on the
k-th nearest
neighbor

Yes Yes

Improved
SPEA. Make
sure extreme
points are
preserved

Computationally
extensive fitness
and density
calculation

Zitzler E.
Laumanns
M. Thiele
L.(2001)

RDGA

The problem
reduced to bi-
objective
problem with
solution rank

Forbidden
region cell-
based
density

Yes Yes

Dynamic cell
update. Robust
with respect to
the number of
objectives

More difficult to
implement than
others

Lu H. Yen
G.G. (2003)

DMOEA
Cell-based
ranking

Adaptive
cell-based
density

Yes
(implicitly)

No

 efficient
techniques to
update cell
density.
Adaptive
approaches to
set GA
parameters

More difficult to
implement than
others

Yen G.G.
Lu H.
(2003)

UNIVER
SIT

Y O
F I

BADAN

47

2.1.7.1 THE NON DOMINATED SORTING GENETIC ALGORITHM II (NSGA

II)

The multi-objective genetic algorithm adopted in STGEMS implementation is the Non

dominated Sorting Genetic Algorithm NSGA II. This is an improvement on the non

dominated sorting genetic algorithm (NSGA) proposed by Srinivas and Deb (1995). The

main criticisms of the NSGA approach are as follows:

 High computational complexity of non dominated sorting: The currently-used

non dominated sorting algorithm has a computational complexity of O(MN3)

where M is the number of objectives and N is the population size. This makes

NSGA computationally expensive for large population sizes. This large

complexity is due to the complexity involved in the non dominated sorting

procedure in every generation.

 Lack of elitism: The reports of Fonseca and Fleming(1998) and Coello and

Pulido(2001) showed that elitism can speed up the performance of GA

significantly, and at the same time prevent the loss of good solutions once they

are found.

 Need for specifying the sharing parameter: The traditional mechanisms of

ensuring diversity in a population so as to get a wide variety of equivalent

solutions have relied mostly on the concept of sharing. The main problem with

sharing is that it requires the specification of a sharing parameter and usually,

parameter-free diversity preservation is always preferred.

NSGA II procedure basically consists of creating a random parent population at first;

then the population is sorted based on the non domination. Each solution is assigned a

UNIVER
SIT

Y O
F I

BADAN

48

fitness (or rank) equal to its non domination level. Thus, minimization of fitness is

assumed.

In general, motif discovery algorithms employ a search algorithm to obtain the initial

cluster, since the first step in any clustering technique is the search for the items to be

clustered. However, the search scheme in motif discovery algorithms differ considerably

from other search schemes especially the web search where the search item is specified

before the search begins but not the same with the search scheme of motif discovery

tools since the items are not known before the search begins. An overview of search

algorithms is discussed below.

2.1.8 OVERVIEW OF SEARCH ALGORITHMS

A search algorithm is an algorithm for finding an item with specified properties among a

collection of items. The items may be stored individually as records in a database; or

may be elements of a search space defined by a mathematical formula or procedure.

There are basically two classes of search algorithms. The informed search and the

uninformed search algorithm. An informed search algorithm looks for a specific answer

to a specific problem in a data, that is, the particular item being search for is known

before the search commences. A typical example of this is searching for items on the

web. While for uninformed search, the item is not known before the search begins. For

example, the search involved in motif discovery, since the patterns are not known before

hand and therefore, they usually search for high occurring patterns.

The different types of search algorithms are:

List search – A list search algorithm searches through specified data looking for a single

key. The data is searched in a very linear, list-style method. The result of a list search is

usually a single element.

UNIVER
SIT

Y O
F I

BADAN

49

Graph Search

Graph searches can be either depth-first or breadth-first. These two kinds of searches

visit the nodes in different orders. A depth-first search is most often implemented with a

recursive algorithm. A depth-first search follows one path of the graph until it can no

longer proceed. It then backs up until it finds a path that has not been visited and

proceeds down that path until it comes to the end. The process continues until all

reachable nodes have been visited. The breadth-first search algorithm is very different. A

breadth-first search visits all nodes that are one node away from the starting node first. It

then visits all nodes that are two nodes away from the starting node and continues until

all reachable nodes have been visited.

To search a graph (directed or not) in breadth first; this is done by using a queue where

the vertices found are stored. Unlike binary trees, graphs do not have a root, so the search

can begin at any node. Also, because graphs can contain cycles, it is necessary to mark

each node as it is visited to prevent an endless loop around the cycle.

SQL search - One of the difficulties with a tree search is that it is conducted in a

hierarchical manner, which implies that the search is conducted from one point to

another, according to the ranking of the data being searched. A SQL search allows data

to be searched in a non-hierarchical manner, which gives the advantage of searching for

data from any subset of data.

 Adversarial search - An adversarial search algorithm looks for all possible solutions to

a problem. It is similar to finding all the possible solutions in a game. This algorithm is

found useful in most genomic data set, since we want all the possible patterns or

combinations to be reported, however, its implementation is involving.

UNIVER
SIT

Y O
F I

BADAN

50

Constraint satisfaction search - In this type of search algorithm, the solution is

discovered by meeting a set of constraints, and the data set can be searched in a variety

of different ways that do not have to be linear.

Tree search – A tree search algorithm works by searching a data set from the broadest to

the narrowest, or from the narrowest to the broadest. Data sets are like trees; a single

piece of data can branch to many other pieces of data. Tree searches are more useful

when conducting searches on a large data sets and speed rather than space is of

paramount importance. There are different types of trees with various search capabilities

for instance the binary tree, prefix tree, and suffix tree among other.

The performance of algorithms are measured based on the computational metrics of time

and space. The section below provides a brief description of these metrics.

2.1.9 COMPUTATIONAL COMPLEXITY METRICS FOR MOTIF

DISCOVERY ALGORITHMS

The efficiency of algorithms is a measure of the time and space complexity, these

metrics are important when comparing algorithms. Estimation of complexity metric for

motif discovery algorithms is a necessary benchmark for the efficiency of the

methodology adopted in the design of motif discovery tool. For tasks, such as searching,

that are repeated frequently, the choice among alternative algorithms becomes important

because they differ in complexity. The complexity of an algorithm can be measured in

three different ways: best-case complexity, average-case complexity and worse-case

complexity. Best-case complexity is the measure of the complexity of solving the

problem for the best size of input. Average-case complexity measure is the complexity of

solving the problem on an average input size while the worst-case complexity is that of

solving the problem for the worst size of input.

UNIVER
SIT

Y O
F I

BADAN

51

The time complexity of an algorithm is a measure of the amount of time taken by the

algorithm to run as a function of the size of the input to the problem. It measures the

running time of the algorithm which is the number of machine instructions it executes

when the algorithm is run on a particular instance. The time complexity of an algorithm

is commonly expressed using big O notation, which suppresses a multiplicative constants

and lower order terms. When it is expressed this way, the time complexity is said to be

described asymptotically, that is, as the input size goes to infinity. For example, if the

time required by an algorithm on all inputs of size n is at most 8n3 + 5n, the asymptotic

time complexity is O (n3). (Hopcroft et. al., 2007).

Time complexity is commonly estimated by counting the number of elementary

operations performed by the algorithm, where an elementary operation takes a fixed

amount of time to perform. Thus the amount of time taken and the number of elementary

operations performed by the algorithm differ by at most a constant factor.

Since an algorithm may take a different amount of time even on inputs of the same size,

the most commonly used measure of time complexity, is the worst-case time complexity

of an algorithm, denoted as T(n). It is the maximum amount of time taken on any input of

size n. Time complexities are classified by the nature of the function T(n). For instance,

an algorithm with T(n) = O(n) is called a linear time algorithm, and an algorithm with

T(n) = O(2n) is said to be an exponential time algorithm. It is said to take logarithmic

time if T(n) = O(log n). The better the time complexity of an algorithm is, the faster the

algorithm will carry out its work in practice. (Flum et al, 2006).Time complexity

measurement is crucial for motif discovery algorithms which aim at extracting patterns

from very large data sets. It is very essential that the algorithm is adequately tuned to

speed up the search process and thereby achieve a favourable runtime.

UNIVER
SIT

Y O
F I

BADAN

52

The space complexity of a program is the number of elementary objects that the program

needs to store during its execution. It is essentially the number of memory cells which an

algorithm needs and a good algorithm keeps this number as minimal as possible. This

number is computed with respect to the size n of the input data.

In space and time complexity management, there is usually a trade-off between storage

space and computing time, consequently, there is need for a compromise between the

choice of computing time and memory consumption . This however, depends on the

choice of algorithm and the parameters specified. (Naresh and Shrish , 2011).

The performance of an algorithm is also influenced by the choice of data structures used

in the implementation of the algorithm. Researchers involved in the development of

motif discovery tools realising the importance of these data structures have employed the

different structures in an attempt to improve the performance of their algorithm. Some

popular data structures used include suffix tree, suffix array, hash tables and link lists.

2.2 RELATED WORKS

There are several approaches proposed in literature for the discovering of simple and

structured motifs. This review of related work is based on the three main approaches

used in the literature namely the Pattern Driven Approach, Statistical Based Approach

and Machine Learning Approach.

2.2.1 MOTIF DISCOVERY TOOLS BASED ON MACHINE LEARNING

APPROACH

Several motif discovery algorithms used different machine learning techniques as their

operating principle. The most common machine learning technique used in motif

inference tool is the genetic algorithm. The advantage of such genetic algorithm based

UNIVER
SIT

Y O
F I

BADAN

53

methods is that they are likely to locate the global optimum in a typically difficult search

space. On the other hand, they are stochastic and so they may fail to report consistent

results in different runs. They also require a large population of solutions and the

computation time is usually high. The other machine learning techniques that have been

used in motif discovery are the Artificial neural Network and Support Vector machine .

In general, machine learning techniques requires a large data set to adequately train the

learning tool in order to achieve relevant predictions and that can limit its use when the

required data size is not available.

A survey of motif discovery tools by Kaya, 2009 reported that MOGAMOD (Multi-

Objective Genetic Algorithm Motif Discovery), outperformed the existing motif

discovery tools that used pattern driven or statistical approach in terms of accuracy of

predicted motifs. However, this success was limited to model organisms with a generic

genomic structure, since it failed to identify any motif from the challenging sequence of

the malaria parasite genome.

 MOGAMOD used the multi-objective genetic algorithm to discover optimal simple

motifs in sequential data. Multi-objective optimization involves having a solution which

is a family of pareto-optimal set or non dominated solutions. The optimal motif

discovery problem was converted into three conflicting optimization problems of

maximizing similarity, increase motif length and support for candidate motifs. The

implementation of MOGAMOD was based on a well known high performance multi-

objective Genetic Algorithm called NSGA II(Non- dominated Sorting Genetic

Algorithm) by Deb et al (2002).

The sensitivity of MOGAMOD was enhanced by its flexibility in choice of similarity

measures for finding motifs. The user can analyze the obtained optimal motifs, and can

make a decision on the tradeoff between the different objectives.

UNIVER
SIT

Y O
F I

BADAN

54

In 2009, the same author extended MOGAMOD to extract structured motif. Kaya

(2009). The objective function optimizations used were similarity maximization, total

gap minimization and support maximization. The performance of the algorithm was

compared with two well known structured motif extraction methods: ExMOTIF and

RISOTTO and it showed a good performance with respect to speed and accuracy.

Nevertheless, it could not identify structured motifs from malaria parasite genome

(Makolo et al., 2012).

Another popular tools based on genetic algorithm is FMGA (Finding Motif with Genetic

Algorithm) by Liu et al. (2004). In FMGA, the mutation in GA is performed by using

position weight matrices to reserve the completely conserved positions. The crossover is

implemented with specially designed gap penalties to produce the optimal child pattern.

This algorithm also uses a rearrangement method based on position weight matrices to

avoid the presence of a very stable local minimum, which may make it quite difficult for

the other operators to generate the optimal pattern. The authors reported that FMGA

performs better in comparison to MEME and Gibbs sampler algorithms.

 GAME (Genetic Algorithm Motif Elicitation) by Wei and Jensen (2006) is also a

common motif discovery tool based on genetic algorithm. GAME is an optimization

algorithm for motif discovery capable of an exhaustive search of the space of possible

motifs. It used position weight matrix based optimization to find an optimal motif in the

search space. GAME outperformed MEME and BioProspector when used on both

simulation and real-data sets.

UNIVER
SIT

Y O
F I

BADAN

55

2.2.2 PATTERN-DRIVEN BASED MOTIF DISCOVERY TOOLS

Pattern-driven method enumerates all the patterns in order to determine those appearing

with a high frequency in the input sequence. It also considers the number of possible

substitutions and thereafter provides a ranking for the extracted patterns according to

some statistical measure of significance. The drawback in this approach is that they can

have many false predictions, since they are not good at discriminating the relevant

extracted motifs from the potentially numerous false hits. In addition, this method

requires a large number of parameters to be specified. (Apostolico et al, 2008)

The techniques used in Pattern driven include enumeration (listing items in an order),

suffix tree, graph, hash table and link list. The review of motif discovery tools based on

the tools that utilized suffix tree and Enumeration techniques that are more relevant to

this study is the subject next section. The review is grouped under simple and structured

motif discovery tools.

As stated earlier, simple motifs are made up of a single pattern that is made up of

different characters while Structured motif consists of a subsequence of intermittent

characters interspersed with spaces and appearing frequently in an input sequence.

(Apostolico et al, 2008).

2.2.2.1 Simple Motif Discovery Tools using Pattern Driven-based Approach

The first simple motif discovery algorithms developed using enumeration technique - a

pattern-driven approach was by Van Helden et al. (1998). The algorithm – Oligo-

Analysis was conceptually simple and could not detect motifs with mutation. This

problem was resolved by Tompa (1999) using the same enumeration method. The

algorithm identified motifs with mutations by considering both the absolute number of

occurrences and the background distribution, while creating a table that records for each

UNIVER
SIT

Y O
F I

BADAN

56

sequence length, the number of sequences containing the repeated sequence, where an

occurrence allows for a small, fixed number of substitutions. Sinha and Tompa(2000)

also used enumeration method but incorporated statistical validation and developed the

algorithm YMF (Yeast Motif Finder). The statistical validation used is the z-scores,

which is the number of standard deviations by which its observed number of instances in

the actual input sequences exceeds its expected number of instances, supposing the input

sequences had been random. This validation improved the accuracy of the YMF, and

when the authors compared YMF with MEME and AlignACE, they reported an

outstanding performance.

Another popular clustering technique in the pattern-driven approach is suffix tree. A

Suffix tree is a lexicographically interconnected data structure built over all the suffixes

of a string. It provides efficient access to all substrings of the string and can be

constructed in linear time and space while exposing the internal structure of a sequence

in a deeper way than any other data structure. Due to its versatility, no other data

structure exists with diverse applications in string processing as the suffix tree.

(Carlvalho et al, 2004, Apostolico et al, 2008, Pizzi et al, 2011).

A Suffix tree for a string S is a tree whose edges are labeled with strings, such that each

suffix of S corresponds to exactly one path from the tree's root to a leaf. (Adebiyi and

Kaufmann, 2002). By definition, a suffix tree ST of an n-character string S is a rooted

directed tree with exactly n leaves, numbered from 1 to n. Each internal node, other than

the root R, has at least two children and each edge is labeled with a nonempty substring

of S. No two edges out of a node can have edge-labels beginning with the same

character. The key feature of the suffix tree is that for any leaf i, the label of the path

from the root to the leaf i spells out exactly the suffix of S that starts at position i.

UNIVER
SIT

Y O
F I

BADAN

57

It has been applied to fundamental string problems such as finding the longest repeated

substring, finding all squares or repetitions in a string, computing substring statistics and

string comparison. It is particularly useful for finding a small sequence of symbols in a

large one, a common ancestor of two different strings and common substrings of two

different strings. The suffix tree of a string S is a tree with O(n) nodes and edges and n

leaves. Each leave in the suffix tree is associated with an index i(1≤i≤n). This is made

possible by the concatenation of a special character $ usually called the sentinel which

does not occur in the string S. Thus ensuring that no Si is a proper prefix of Sj and there

is a one-to-one correspondence between S$ and the leaf of the suffix tree (Adebiyi,

2002).

The construction of a suffix tree in linear time is a problem already addressed by

Weiner(1973), McCreight(1976) and Ukkonen (1992). Kurtz(1999), improved on this

design by implementing the space efficient construction using the suffix links and hash

table.

UNIVER
SIT

Y O
F I

BADAN

58

A

AT

TACTGAATS

CTGAATS

CTGAATS

TACTGAATS

AATS TTAATTACTGAATS

GAATS

ATTACTGAATS

CTGAATS

ATTACTGAATS CTGAATS

T

TA

$

AT

$ $

G

51 62

010

8

412
11 3

13 9

7

Figure 2.2: The suffix tree for DNA Sequence GTTAATTACTGAAT$

UNIVER
SIT

Y O
F I

BADAN

59

Some basic properties of the suffix tree are enumerated below:

1. The suffix tree is an acyclic tree, and a path of a node is a string from root to that

node

2. A branch of the suffix tree may represent any nonempty substring of S.

3. Every suffix of the string S is represented by a leaf in the suffix tree

4. Each node of the suffix tree that is not a leaf, except the root, must have at least

two offspring branches.

5. The length of an edge label of the suffix tree can be found in O(1) time

6. If a leaf of the suffix tree represents a string U, then every suffix of U is also

represented by another leaf in the suffix tree.

7. If a node w is an ancestor of another node x, then the string that w represents is

the prefix of the string that x represents.

8. If nodes x1,x2,…xk represent the strings X1,X2,..Xk respectively, then the lowest

common ancestor of x1, …, xk represents the longest common prefix of V1, ..,Vk

9. If two suffixes of S share a prefix, y, then they must share the path leading to the

extended locus of y, the common prefix.

 The suffix tree construction for a set of N input sequences, called a generalized suffix

tree, can be easily achieved by consecutively building the suffix tree for each string of

the set. The resulting suffix tree is built in time proportional to the sum of all the string

lengths.

The first simple motif algorithm to use the suffix tree was developed by Sagot (1998).

The suffix tree was constructed and used to represent the sequences, returning all the

traversal from the root node to the leaf node as unique patterns. The use of the suffix tree

UNIVER
SIT

Y O
F I

BADAN

60

for preprocessing and organizing the input data resulted in an accelerated search for

motifs. This implementation addressed to a large extent the speed bottleneck inherent in

pattern-driven based methods. The algorithm was tested on DNA sequences of Yeast.

This was followed by Apostolico et al.(2001) who developed the VERBUMCULUS

algorithm and applied it to protein sequences. Eskin and Pevzner (2001) used a variant of

the suffix tree called a mismatch tree to develop the MITRA algorithm which detected

complex motifs with mutation successfully.

A very popular simple motif discovery tool that also used the suffix tree is the WEEDER

algorithm by Pavesi et al.,(2001). WEEDER successfully identified motifs of unknown

length in DNA and protein sequences. A recent survey of Motif discovery tool by

Mandas et al., (2007) revealed that WEEDER outperformed many other motif discovery

tools such as MEME, AlignACE, ANN-Spec, Consensus, MITRA and MotifSampler.

This success was attributed to its flexibility of parameter specification. Users are allowed

to estimate apriori the probability of finding a given motif according to its length and the

maximum number of mutations allowed for its occurrences. It also allows users to

choose an optimal trade-off between time and accuracy: this ensured a judicious choice

of prediction of motifs found in the data set, since only the strongest motifs would be

reported as optimal.

The motif discovery tool developed in this research, STGEMS was compared with

WEEDER in terms of speed and accuracy of identifying simple motifs. STGEMS

outperformed it.

UNIVER
SIT

Y O
F I

BADAN

61

2.2.2.2 Structured Motif Discovery Tools using Pattern Driven-based

Approach

Structured motifs are complex patterns with spaces separating them. The first structured

motif extraction tool was developed by Marsan and Sagot (2000). They extended the

simple motif extraction algorithm developed by Sagot(1998) to extract structured

motifs. Their algorithm, SMILE proposed two solutions for extracting structured motifs

on the suffix tree. In the first solution, the structured motif template consists of two

components with a gap range between them. The algorithm starts by building a

generalized suffix tree for the input sequences and then extracting the first component. In

order to extract the other component, a jump is made in the sequences from the end of

the first component to the second within the gap range. In the second solution, the suffix

tree is modified temporarily so as to extract the second component from the modified

suffix tree directly. SMILE proved inefficient in terms of its time and space complexity

which were exponential in the number of gaps between the two components. The detail

algorithm of Sagot(1998) for simple and structured motif mining on the suffix tree is

provided in section 3.5.1.

Carvalho et al., (2004) attempted to reduce the time complexity during the extraction of

the structured motifs by SMILE and developed a parallel algorithm, called PSMILE.

PSMILE used the technique of partitioning the structured motif searching space, that is,

the most demanding part of the algorithm was decomposed into a number of

subprocesses that were loosely coupled and therefore could be executed simultaneously

on different processors. This achieved a time speedup which is linear on the number of

available processing units.

UNIVER
SIT

Y O
F I

BADAN

62

A year later, the same authors developed the RISO algorithm, an improvement on the

SMILE algorithm. (Carvalho et al., (2005). This improvement is in twofold: the first,

instead of constructing the whole suffix tree for the input sequence, it built a suffix tree

only up to a certain level, which was called the factor tree, this resulted in saving

appreciable space. Secondly, a new data structure called box-link was introduced to store

the information about how to jump within the DNA sequences from one simple motif

component to the subsequent one in the structured motif. This accelerated the extraction

process and avoided the exponential time and space consumption that prevailed in the

case of SMILE. In RISO, after the generalized factor tree was built, the box-links were

constructed by exhaustively enumerating all the possible structured motifs in the

sequences and they were added to the leaves of the factor tree. Then the extraction

process began, during which the factor tree was temporarily and partially modified in

order to extract the subsequent simple motifs. RISO needed a lot of computation at this

stage since the box-link construction, the structured motif occurrences were exhaustively

enumerated and the threshold of the sequences was never used to prune the candidate

structured motifs.

Pisanti et al., (2006) provided an improvement on the RISO algorithm by developing the

RISOTTO algorithm. RISOTTO incorporated boxlinks data structure with the suffix

tree. While traversing the tree, RISOTTO adopted a depth-first visit of the motif tree and

does not attempt to extend the node if the maximal length was determined or the quorum

was no longer satisfied. The main improvement of RISOTTO on RISO was its ability to

store information concerning maximal extensibility of factors. This was done in order to

avoid extending motifs that are unlikely candidates. RISOTTO was shown to

outperform RISO in terms of computational speed. However, it incurred an extra cost

UNIVER
SIT

Y O
F I

BADAN

63

due to the space required to store the extensibility information. RISOTTO successfully

identified structured motifs in yeast and bacteria respectively.

Another popular structured motif extraction tool is EXMOTIF by Yongqiqng Zang et al.,

(2006). EXMOTIF used a variant of the suffix tree, consisting of inverted index of

symbol positions. This was used to enumerate all structured motifs by positional joins

over the index. By considering the variable gap constraints at the same time as the joins

were considered, an appreciable speed was achieved. The algorithm utilized a structured

motif template defined based on some desired parameters such as length of motif and the

gap range allowed. It used a hash table to store the computed motifs thus facilitating a

speedy lookup and extracted all the repeated patterns after statistically validating them.

EXMOTIF was reported to outperform RISO in both approximate and exact matching

and superior to RISSOTO in showing the actual occurrences of the structured motifs

instead of the relative frequency of the occurrence as obtained using RISOTTO.

Zare-Mirakaba et al, (2009) presented another structured motif discovery algorithm

based on the suffix tree called MotifST (Motif finding using Suffix Trie). The algorithm

uses a depth first search scheme to search for relevant motifs in a DNA sequence

returning gapped motifs and motifs with mutations. The algorithm ran in linear time and

when compared to other popular motif discovery tools like MEME and WEEDER, it had

a better speed performance.

It is clear from this review that there is a need for structured motif discovery tool for the

challenging sequence of P.falciparum and that influenced the STGEMS algorithm which

when compared with these two popular structure motif discovery tools described above

UNIVER
SIT

Y O
F I

BADAN

64

((RISOTTO and EXMOTIF) had a better speed of execution and it also mined structured

motifs from the challenging genomic sequence of the malaria parasite.

2.2.3 STATISTICAL BASED MOTIF DISCOVERY TOOLS

Statistical based method uses a two-phase iterative procedure where in the first step the

likeliest occurrences of the motif are identified, and the second step adjusts the model for

the motif which is usually represented by a position scoring weight matrix(PSWM)

model based on the occurrences of the motifs determined in the previous step. In the first

iteration the parameters of the initial model are usually set randomly. The limitation in

this method is sensitivity to noise in the data and the fact that they are not guaranteed to

converge to a global maximum since they employ some form of local search, such as

Gibbs sampling, expectation maximization (EM) or greedy algorithms that may converge

to a locally optimal solution.

There is no record of statistical based method for structured motif discovery in the

literature; this is attributed to the complexity of the process involved in identifying the

spaces that occur in structured motifs.

2.2.3.1 Simple Motif Discovery Tools based on statistical Approach.

The first simple motif tool based on statistical approach was developed by Hert et

al.,(1990). The implementation was a greedy probabilistic model-based algorithm for

discovering a matrix representation of sequences by finding the site with the highest

information content. This algorithm has been fundamentally improved upon over the

years and the latest implementation is called CONSENSUS by Hertz and Stormo(1999).

The researchers provided a method to estimate the statistical significance of a given

information content score based on large deviation statistics. They extracted DNA and

UNIVER
SIT

Y O
F I

BADAN

65

protein patterns with statistically significant alignments of multiple sequences, stating

that valuable insights could be obtained by aligning a set of related DNA, RNA or

protein sequences and that such alignment could be useful in determining functional or

evolutionary relationships.

An improvement on the greedy probability method is the Expectation Maximization

which was introduced by Lawrence and Reilly (1990) and used Bailey and Elkan

(1995) in developing MEME (Expectation Maximization Motif Elicitation). MEME is

a popular simple motif discovery tool developed with the aim of discovering new motifs

in a set of sequences where limited knowledge about the motif that could be present is

available. MEME introduced three main novel ideas for discovering motifs: It used as

starting point for the EM algorithm, the subsequences that actually occur in the

sequences thus, increasing the probability of finding globally optimum motifs. It

removed the assumption that each sequence contains exactly one occurrence of the

shared motif and incorporated a method for erasing shared motifs after they are found,

this ensures that several distinct motifs could be found in the same set of sequences. This

is especially crucial in situations when different motifs appear in different sequences or

when a single sequence contains multiple motifs. STGEMS was compared with MEME

and it outperformed it.

An improvement on the MEME algorithm is the PHYME (Phylogenetic Motif

Elicitation) by Sinha et al.,(2004). PHYME used EM technique and improved on it by

the incorporation of an evolutionary model trained using Hidden Markov model. This

combination increased the sensitivity of the algorithm appreciably. In addition, the

phylogenetic tree output of the algorithm makes it easier to trace the genetic relationship

of the sequences at a glance.

UNIVER
SIT

Y O
F I

BADAN

66

Gibb Sampling technique is another popular statistically method that has been used as

the operating principles of many motif extraction algorithms. Roth et al., (1998)

implemented AlignACE (Aligns Nucleic Acid Conserved Elements) based on the Gibbs

Sampling probability technique. Liu et al.,(2001) used a variant of Gibbs Sampling to

design the BioProspector algorithm which is another variant of the Gibbs Sampling

algorithm and an improvement on the algorithm of Roth et al., (1998).

Gene Enrichmnent analysis is a potent statistical approach introduced by Eden et al

(2007) and used to develop DRIM (Discovery of Rank Imbalanced motifs) algorithm.

Gene enrichment analysis is the use of some statistical test (for example standard

deviation, geometric mean, hypergeometric mean among others) to measure how

enriched a particular set of gene is, in terms of its functional annotation compared to the

other set of genes in the genome. DRIM incorporated the gene enrichment concept

using the geometric mean and identified sequence motifs in lists of ranked DNA

sequences. DRIM successfully identified simple motifs in the yeast genome, that is,

novel transcription factor binding sites.

Young et al (2008) also used the gene enrichment technique and developed the GEMS

algorithm (Gene Enrichment Motif Searching) incorporating the statistical test of

hypergeometric mean instead of the geometric mean used by Eden et al. (2007). GEMS

also introduced the position weight matrix optimization principle which improved the

accuracy of the motifs discovered.

GEMS algorithm is not an ab-initio motif discovery tool, it requires an already existing

cluster as candidate motif to perform gene enrichment analysis on. Therefore, it obtained

the cluster for its analysis from the online Gene Ontology(GO) database.

UNIVER
SIT

Y O
F I

BADAN

67

www.geneontology.org. Gene Ontology is an online repository of sequence genes of

different organisms maintained by the National Centre for Biotechnology Information

(NCBI). www.ncbi.org.

GEMS algorithm is the only algorithm that had successfully identified simple motifs

from the challenging sequence of malaria parasite, all the other algorithms had been able

to identify motifs from the other model organisms3 such as yeast and bacteria but not

from malaria parasite. Nevertheless, GEMS’s inability to identify structured motifs is a

major concern. This is because important proteins in eukaryotic organisms like the

malaria parasite exist as structured motifs. Moreover, GEMS could not obtain the initial

gene cluster it needs as a starting cluster (candidate motif). It depends solely on the gene

ontology database for this initial cluster. Consequently, GEMS is incapable of identify

optimal simple motifs for organisms that do not have an entry in the gene ontology

database.

Some motif discovery algorithm combine pattern-driven approach with statistical based

approach while others combine machine learning and statistical methods. This is

because the hybrid is capable of inheriting the desired features of the two approaches.

(Modan et al, 2007, Pizzi et al, 2011, Makolo et al., 2011).

2.2.4 MOTIF DISCOVERY TOOLS BASED ON COMBINATORIAL

APPROACH

A number of motif discovery algorithms combine two or more approaches to get a

hybrid approach, which inherits desired features of the various approaches. This concept

was reported by Modan et al., (2007) in their study on survey of motif discovery tools.

 (Kellis et al, 2004, Modan et al, 2007).

3 A model organism is a non human specie that is extensively studied to understand particular biological
phenomena, with the expectation that discoveries made in the organism model will provide insight into the
workings of other organisms

UNIVER
SIT

Y O
F I

BADAN

68

A popular motif discovery tool in this category is MUSA (Motif finder with

UnSupervised Approach) based on a combination of machine learning and statistical

technique. (Mende et al, 2006). MUSA used a bi-clustering algorithm that operates on a

matrix of co-occurrences of simple motifs and computed the statistical significance using

position weight matrix. MUSA successfully identified complex biologically significant

motifs with a performance that was independent of the composite structure of the motifs

being sought. MUSA could be used as a standalone tool or as a tool to determine the

parameters required to run other motif discovery tools already available because of its

effective statistical significance assessment method. MUSA was validated both with

synthetic and real data from yeast, and it was able to discover new biologically

significant motifs that had eluded searches performed using other motif finders such as

MEME and AlignAce. Mendes et al (2006).

 BioProspector by Liu et al.,(2001) also combined Gibbs sampling statistical technique

with a machine learning markvov model.

A common choice among researchers of motif discovery tools is a combination of

pattern-driven and statistical-based methods since this approach guarantees that the

sensitivity of the statistical based method be complemented with the speed efficiency of

pattern-driven techniques. An example of this is the STEME (Suffix Tree and

Expectation Maximization for Motif Elicitation) algorithm by Reid and Wernisch

(2011). It combined the suffix tree, a pattern-driven approach with Expectation

Maximization, a statistical approach. The incorporation of the Suffix Tree improved the

speed limitation of the expectation maximization based algorithms (such as MEME).

STEME was demonstrated to have a better empirical run time than MEME for the same

data set.

UNIVER
SIT

Y O
F I

BADAN

69

2.2.5 EVALUATION OF MOTIF INFERENCE TOOLS

It is evident from the review of motif inference tools provided in the session above that a

large number of motif inference algorithms are available and it would be beneficial to

users to have some guidance in choosing the best tools for their motif finding endeavor.

However, performance comparison of different motif finding tools and identification of

the best tools have proven to be a difficult task because tools are designed based on

algorithms and motif models that are diverse and complex and the incomplete

understanding of the biology of regulatory mechanism makes adequate evaluation a

challenge.

A common practice among authors of various motif inference tools is to test their

algorithm against a few available algorithms using both biological sequence data and

synthetic data sets with planted motifs or some known experimentally extracted motifs.

Thus, a comparative evaluation of the performance of the new algorithm compared with

existing algorithms is reported. In the same vein, our novel computational inference

technique was compared with five popular motif inference tools. In addition to

comparing the predicted motifs with those extracted from biological experiments.

Since transcription associated proteins control gene expression, their identification is

important in understanding the biology of the organism. Therefore, biologists and

computer scientists have been very interested in identifying efficient computational tools

for their prediction. This is the crux of this research. We therefore investigated different

experiments and performance comparisons to guide our research. Below are some of

such experiments and comparison.

Hu et al, 2005 conducted a comprehensive benchmark experiment for performance

comparisons of five sequence-based motif finding algorithms using large datasets

generated from the biological database (RegulonDB). Their study differs from the

UNIVER
SIT

Y O
F I

BADAN

70

benchmark experiments of Tompa et al.(2005) in that Tompa et al.2005, allowed the

algorithm developers to fine-tune the running parameters and reported the best results

while Hu et al.2005 allowed minimal parameter tuning during performance evaluation.

They also suggested that performance evaluation based only on the predictions with the

highest score has the risk of penalizing some practically effective algorithms, since in

many cases the predicted motifs with the highest score are not the motif with highest

accuracy. The Five algorithms assessed by the authors were AlignACE, MEME,

BioProspector, MDScan and MotifSampler. The authors defined a set of prediction

performance indexes for the algorithms and conducted comparative evaluations of the

algorithms in terms of their prediction accuracy, scalability and the reliability of their

significance scores with the existing biological database. The prediction accuracy

measures used by these authors were nucleotide level accuracy, binding site level

accuracy and sequence and motif level accuracy. The study showed that the performance

of the algorithms tested was low, with around 15 to 25% accuracy at the nucleotide level

and 25 to 35% at the binding site level for sequences of 400 nucleotides long. However,

the algorithms were capable of predicting at least one binding site correctly more than

90% of the time. Among the factors that affect the prediction accuracy, the sequence

length was found to be the most critical; the performance of all algorithms degraded

significantly as the sequence length increased.

We conclude this review of motif inference tools, by reporting that there is no evidence

as to which category of motif inference algorithm performs better than the other. Pattern

driven methods might perform well on some data set but poorly on another type of data

set. The same applies to statistical based approach and machine learning approach.

However, a better performance is achieved when a combination of two or more

approaches are employed, since the algorithm will inherit the benefits of these

UNIVER
SIT

Y O
F I

BADAN

71

approaches while reducing their limitations (Pizzi, 2011.). This recommendation

informed the design framework of our novel motif inference algorithm STGEM, which

incorporates the benefit of pattern driven approach using suffix tree data structures for

improved speed, with the statistical approach of gene enrichment using hypergeometric

function as well as with the machine learning component of implementing the similarity

check mechanism of a multiobjective genetic algorithm to further confirm the

effectiveness of our technique in mining structured motif from the challenging sequence

of P. falciparum. The table 2.6 below shows a summary of the motif discovery tools

reviewed in this research.

UNIVER
SIT

Y O
F I

BADAN

72

Table 2.6: A list of some popular Motif Discovery Tools

S/
N

Algorithm Category Operating
Principle

Strengths Weakness Reference

1. By Hert et al SBA Greedy
Algorithm

Simple to
implement

It is not time
efficient

Hertz and
Stormo(1990)

2. MEME SBA Expectation
maximization

Prior
knowledge of
the sequence is
not required

It cannot run
large data set at
once

Bailey and Elkan (1995)

3. AlignACE SBA Gibbs Sampling Displays
frequency of
non site
sequence at a
glance

Not time
efficient

Roth et al, (1998)

4. CONSENSU
S

SBA Weight Matrix Detects
evolutionary
relationship

Building the
evolution tree
takes time

Hertz and
Stormo(1999)

5. PhyME SBA EM Shows
evolutionary
relationship at a
glance

Extra time to
construct the
evolution tree

Sinha et al., (2004)

6. Oligo-
Analysis

PDA Enumeration Easy to
implement

It cannot handle
motifs with
mutation

Van Helden et al.
(1998).

7. WEEDER PDA Suffix Tree Allow flexible
parameter
specification

It can only
return simple
motif

Pavesi(2001)

8. By Sagot PDA Suffix Tree Improved speed It can only
return simple
motifs

Sagot(1998)

9. By Tompa
(1999)

PDA Enumeration Good at
discriminating
randomly
occurring motif

Cannot handle
motifs with
mutations

Tompa (1999)

10
.

Verbumculus PDA Suffix tree Improved speed
of execution

It can only
return simple
motifs

Apostolico et al. (2000)

11
.

SMILE PDA Suffix Tree It can identify
complex
structured
motifs

Space
inefficient

Marsan and Sagot(2000)

12
.

YMF PDA Enumeration Allow flexible
parameter
specification

It can only
return simple
motif

Sinha and Tompa(2000)

13
.

BioProspecto
r

SBA &
MLA

Gibbs Sampling
and hidden
markcov

Allows
Multiple
optimal motif
detection

Very slow with
large data set

Liu et al.,(2001)

14
.

DRIM SBA Hyper
geometric
Framework

Added feature
of Ranking
motifs

Too slow
especially for
large data set

Eden et al (2007)

15
.

GEMS SBA Gene
Enrichment

Identified
simple motifs in
the malaria
parasite

Cannot identify
structure motifs

Young et al (2008)

16
.

 MITRA PDA PrefixTree/Mis
match tree and
Graph

Allow
preprocessing
of sequences

Space
inefficient

Eskinand Pevzner(2002)

17
.

PSMILE PDA Suffix Tree Partitioning of
search space
that can run on
parallel systems

Extra cost of
space due to the
partitioning

Carvalho et al (2004)

18
.

RISO PDA Box links and
suffix tree

Additional
speed gain due
to boxlinks

Additional
Space
requirement for
the box link

Carvalho et al (2005)

19
.

RISOTTO PDA Box links and
suffix tree

Good for long
complex motifs

Extra space
need to store
Extensibility
information

Pisanti et al., (2006)

20 EXMOTIF PDA Inverted index
of symbols and

actual
occurrences of

Additional
space

Zang and Zaki (2006)

UNIVER
SIT

Y O
F I

BADAN

73

hash table the structured
motifs instead
of the relative
frequency

requirement for
storing the
symbols

21
.

FMGA MLA Genetic
Algorithm

Can handle
difficult search
space

Time
consuming

Liu et al. (2004)

22
.

GAME MLA Genetic
Algorithm

Return high
fitness motif

Inconsistent in
multiple runs

Wei and Jensen (2006)

23
.

MUSA MLA &
SBA

Biclustering
and PSSM

No need to
specify
parameter and
can be used to
determine the
parameter
needed for
other
algorithms

The speed is
unacceptable
especially for
large data set

Mendes et al(2006)

24
.

MOGAMOD MLA Multi Objective
Genetic
Algorithm

Handles
multiple
optimal motifs
efficiently

It is time
consuming

Mehmet Kaya (2007)

25
.

By Mehme
Kaya

MLA Multi-objective
GA

Can identify
structured
motifs

It is time
consuming

Mehmet Kaya (2009)

26 MOTIFST PDA Suffix Tree Fast It cannot
identify motif
in the malaria
parasite genome

Zare-Mirakaba et al.
(2009)

27
.

STEME PDA
&SBA

Suffix tree ,
Expectation
maximization

Fast and very
sensitive

Can only
identify simple
motifs

John E. Reid and
Lorenz
Wernisch (2011)

PDA stands for Pattern Driven Approach SBA stands for Statistical Based Approach, MLA
stands for Machine Learning Approach.

UNIVER
SIT

Y O
F I

BADAN

74

Figure 2.3: A Taxonomy of Popular Motif Discovery Tools

UNIVER
SIT

Y O
F I

BADAN

75

2.3 ESTABLISHMENT OF GAPS FROM REVIEW OF RELATED WORKS

Some of gaps identified in our review of existing motif discovery algorithms are as

follows:

1. The need for a holistic motif discovery tool that takes input sequence

from any organism and returns a viable list of optimal motifs. This is a

limitation inherent in the popular GEMS algorithm by Young et al.,

2008, which can only return optimal motifs based on candidate motifs

with clusters in the gene ontology database.

2. The absence of motif discovery algorithm that can mine structured motifs

from organisms with peculiarity in their genomic structure, for example

the malaria parasite genome. Important genomic components such as the

DNA binding site in eukaryotic organism occur as structured motif and

needs to be mined.

3. The need for a motif discovery tool that in addition to handling genomic

structure peculiarities incorporates the phylogenetic relationship. This

will involve developing an evolutionary tree of the motifs from different

organisms with the aim of providing evolutionary information.

4. The need for an integrated sequence analysis tool that combines gene

finding, sequence alignment and motif discovery task.

This research, attempts to fill the gaps in 1 and 2 above which are the main limitations

identified in the GEMS algorithm. The motivation for this research springs from these

identified limitations and therefore proposed a computational inference technique for

mining structures motif, an improvement on the GEMS algorithm.

UNIVER
SIT

Y O
F I

BADAN

76

2.4 SUMMARY AND CONCLUSION

In this chapter, we started by presenting the main concepts and theories of sequence

analysis algorithms. We highlighted the three main classes which are Gene Prediction,

Sequence Alignment and Motif Discovery Algorithms. We expounded the basic

principles behind each class of algorithm, while focusing on motif discovery algorithms,

our interest in this research. Our review of related works on motif discovery tools was

based on the three main approaches adopted by most motif discovery tools namely: the

pattern-driven, statistical and machine learning approach and we reviewed some simple

and structured motif discovery tools based on these various approaches.

 The variety of techniques adopted in the design paradigm of the various motif inference

tools shows an increasing effort of researchers to develop efficient algorithms for

genomic functions predictions. The efficiency of these algorithms is measured in terms

of their time and space complexity. The important role played by the choice of data

structure in the performance of the algorithm was also shown.

In the last part of the chapter, we explored the application domain of the research which

is the malaria parasite, providing an insight into its genomic composition and the

challenge of the malaria disease . Key among these challenges is the parasite’s high

adaptability enabling it to survive in the host in spite of the adverse conditions.

In the past, large-scale genomic data were not as available as in present times. The

increasing rate of current availability necessitated the study of how to develop efficient

tools for mining sequenced data with the aim of elucidating important information

needed to understand the complex biological makeup of organisms. The understanding

of the regulatory mechanism of the malaria parasite, attained through knowledge of the

transcription associated protein provides an insight into the development of drug targets

required to combat the various strains of drug resistant malaria in existence.

UNIVER
SIT

Y O
F I

BADAN

77

This research, which was motivated by the lack of existing motif discovery algorithm for

mining structured motifs in the challenging sequence of the malaria parasite, proposed a

new methodology that combined the suffix tree clustering technique with gene

enrichment analysis using hypergeometric scoring function. The detailed methodology is

discussed in chapter three.

UNIVER
SIT

Y O
F I

BADAN

78

CHAPTER THREE

RESEARCH METHODOLOGY

In the previous chapter of this write up, we have reviewed extensively the operating

principles or approaches used in motif discovery systems. These include the pattern-

driven, statistical and machine learning. We emphasized that tools based on a

combination of approaches usually yield better results. This notion informed the

methodology adopted in the design of STGEMS which in an attempts to fill the gap

identified in the review of existing motif discovery tools, proposed a holistic algorithm

for mining simple and structured motifs particularly suited for organisms with peculiarity

in their genomic structure.

The other feature of this research is our attempt to capture motifs in the glycolytic

metabolic pathway of the P.falciparum, which is the core of the malaria parasite’s high

adaptability and consequently, its high resistance to the existing anti-malaria drugs. We

hope to bring to notice the importance of identifying these genomic elements responsible

for understanding the vital biological processes of the deadly malaria parasite.

3.1 DERIVATION OF STGEMS ALGORITHM

STGEMS algorithm has its roots in sequence analysis algorithm. It belongs to the class

of motif discovery algorithms. Basically, Motif discovery tools adopt one or more of

these three approaches namely pattern-driven, statistical and machine learning. STGEMS

UNIVER
SIT

Y O
F I

BADAN

79

is a combinatorial approach based on pattern-driven and statistical approach. Figure 3.1

below shows the derivation of STGEMS.

UNIVER
SIT

Y O
F I

BADAN

80

Figure 3.1 Derivation Tree of STGEMS Algorithm

Operating Principle

Gene Finders Motif Discovery Algorithms (MDA) Sequence Alignment Algorithms

SEQUENCE ANALYSIS ALGORITHMS IN BIOINFORMATICS

PDA SBA MLA

Suffix Tree EMHash Table GA ANN SVM Gene Enrichment PSSM Graph

SMILE (2000)

PSMILE (2002)

RISO (2004)

RISOTTO (2005)

EXMOTIF (2006)

MEME (1995)

PHYME(2004)

STGEMS(2011)

FMGA (2004)

GAME (2006)

MOGAMOD (2007)
GEMS(2008)

DRIM(2007)

Dominance Value based Similarity

Check mechanism

Operating Principle Operating Principle

MOTIFST (2009)

STEME (2011)

MOGAMOD for Structured Motifs

(2009)

UNIVER
SIT

Y O
F I

BADAN

81

STGEMS combined the clustering technique of the suffix tree with gene enrichment

analysis, hence the origin of its name Suffix Tree Gene Enrichment Motif Searching.

(STGEMS). STGEMS is an improvement on the popular GEMS algorithm. It adopted

the hypergeometric scoring function which is capable of identifying motifs from

organisms with peculiar genomic structure such as the P.falciparum genome. STGEMS

addressed the limitations inherent in GEMS by providing a holistic framework capable

of predicting simple and structured motifs from any sequence data. It accepts any

sequence data as input and outputs the optimal motifs present within the sequence.

Unlike GEMS, STGEMS generates its own initial clusters using the suffix tree clustering

technique. In addition, STGEMS is also capable of identifying simple and structured

motifs from any organism especially, organisms with peculiarity in their genomic

structure while GEMS only identified simple motifs. STGEMS also adopted the

technique used by successful structured motif tools such as SMILE, EXMOTIF. This

enabled it to successfully mine structured motifs.

As part of our research methodology, two popular similarity check mechanisms were

implemented. The first is the similarity check mechanism based on position specific

scoring matrix (PSSM) construction using hypergeometric scoring function (for

example GEMS). The second constructed PSSM using dominance value of nucleotide

(for example, MOGAMOD). The two methods were compared. The result of this

comparison influenced the incorporation of the similarity check based on the

hypergeometric scoring function into STGEMS’ framework.

3.2 OPERATING PRINCIPLE OF STGEMS

The operating principle of the STGEMS algorithm is based on a combinatorial approach

of pattern-driven using the suffix tree and the statistical approach of gene enrichment

UNIVER
SIT

Y O
F I

BADAN

82

Figure 3.2 Schematic Representation of the Operating Principle of STGEMS

Pattern‐Driven Approach Statistical Based Approach

Suffix Tree

Gene Enrichment
Analysis

PSSM
Optimization

STGEMS

Similarity Check

Hypergeometric Value Dominance Value

UNIVER
SIT

Y O
F I

BADAN

83

The suffix tree, has an inherent clustering mechanism that returns all repeated patterns

(candidate motifs) at a remarkable speed. The justification for using the suffix tree data

structure is because of its speed efficiency in searching for items that are subsets of an

entire list. The suffix tree implementation adopted is the space efficient construction

introduced by (Kurt et al, 1999) using suffix links.

The statistical significance of the extracted candidate motifs identified is computed by a

gene enrichment analysis using the similarity check base on the hypergeometric scoring

function which was complemented with position weight matrix optimization. This was

used to rank the gene enrichment of the discovered motifs, thereby reporting only the

optimal motifs. Similarity check is a measure of the degree of closeness of two strings.

This is useful in computational biology where two slightly different patterns can

represent the same motif due to the presence of a number of mismatches or mutation. For

instance motifs AAAATGC, AACATGC, AAATTGC are similar motifs with one

mismatch. Similarity score is used to filter off spurious motifs so that only optimal

unique motifs are reported in the output. An implementation of similarity check

mechanism based on dominance value of nucleotide could not identify relevant motifs

from the challenging sequence of P.falciparum. This is due to its repetitive AT rich

sequence which could result in the same motif being represented as multiple variants

having the AT character repeated. The hypergeometric scoring function uses permutation

and combination formula to eliminate the duplicates and reports only unique optimal

motifs.

3.3 ARCHITECTURE OF STGEMS

The architecture of STGEMS is captured in the fig 3.3 and details of the logical flow of

the process involve is described in fig 3.4.

UNIVER
SIT

Y O
F I

BADAN

84

INPUT CONSTRUCT TRAVERSE SEARCH OUTPUT

COMPUTE
EXTRACTOUTPUT

GST with the
sequence data

The tree nodes
For unique strings
on the GST

Repeated strings
as candidate motifs

P-value of PWM and Similarity Scores with
hypergeometric formula, sort candidate motifs
based on p-value using Hash Table

Optimal Motifs and
merge similar motifs
using similarity metric

A large set of
Genomic data

Figure 3.3 Architecture of STGEMS

UNIVER
SIT

Y O
F I

BADAN

85

Figure 3.4 Logical Flow of STGEMS

Construct a

Generalised suffix

Tree using the input

Sequence

Traverse each tree

from root node to

leave node

Return the output, it

is a unique pattern

Perform Gene

Enrichment Analysis

and PSSM

optimization

Return motifs with

low scores as

optimal motifs.

Construct a PSSM of

all the candidate

motifs

Merge non‐unique
motifs by including

positional
information using
the edit distance

metric

Compute P‐value of

matrix using

hypergeometric

Each is a candidate
motif or initial cluster
from the tree

Compute Similarity

score of the matrix

and sort with a hash

table

Construct a

Sequence Logo to

represent the

UNIVER
SIT

Y O
F I

BADAN

86

STGEMS receives a list of DNA sequences as input, which contains unknown motifs

that needs to be identified. This is used in the construction of a generalized suffix tree.

The suffix tree is a data structure that is useful in representing a string or set of strings,

they are well suited to algorithms that require efficient access to substrings by content

rather than by position. (Adebiyi, 2002) The suffix tree construction reorganizes data

into a form that facilitates searching and exposes sections of the strings that are repeated.

In view of the fact that the core aim of this study is in searching for repeated patterns in a

set of DNA sequences, the choice of the suffix tree data structure in the framework of

STGEMS algorithm is adequate.

The tree is traversed to output unique patterns or candidate motifs. In the suffix tree

construction, each traversal from the root node to a leaf node is a unique pattern. This is

followed by the computation of position weight matrix (PWM) for the extracted unique

patterns. The PWM or Position specific scoring matrix(PSSM) is a scoring matrix that

shows the information content of the motifs, which depends on the frequency of

occurrence of each of the characters in the identified pattern. Subsequently, the

computation of the biological significance of the candidate motif is done by computing

the similarity scores of the different motifs. The motifs with low similarity scores are

reported as best optimal motifs.

The merging of similar motifs, that is, those with one or two variations in the character

that make up the motifs is effected. These are merged using edit distance, before

returning them as optimal motifs. The final output is the optimal motifs represented

using a sequence logo.

A sequence logo is one of the standard output format for representing DNA or Proteins

UNIVER
SIT

Y O
F I

BADAN

87

in Bioinformatics. Sequence logos are a graphical representation of an amino acid or

nucleic acid multiple sequence alignment. It was first introduced by Schneider and

Stephens (1990).

Each logo consists of stacks of symbols, one stack for each position in the sequence. The

overall height of the stack indicates the sequence occurrence at that position, while the

height of symbols within the stack indicates the relative frequency of each amino or

nucleic acid at that position. To create sequence logos, related DNA, RNA or protein

sequences, or DNA sequences that have common conserved binding sites, are aligned so

that the most occurring parts create good alignments. A sequence logo can then be

created from the conserved multiple sequence alignment. The sequence logo will show

how well the nucleotides are conserved at each position: the fewer the number of

nuleotides, the higher the letters will be, because the better the conservation is at that

position. Different nucleotides at the same position are scaled according to their

frequency. The height of the entire stack is the information measured in bits. Sequence

logos can be used to represent conserved DNA binding sites.

Figure 3.5 shows a sequence logo diagram derived from counts of the nucleotide (the

letters that made up the genes) in the translation initiation region of P.falciparum genes.

Each letter is written in proportion to its frequency of occurrence. The letters are stacked

together, If a nucleotide were used in all 25,000 genes it would be fully conserved and be

drawn two bits tall. The most significantly biased nucleotides are -3 (A) and +4 (G).

UNIVER
SIT

Y O
F I

BADAN

88

Figure 3.5: Sequence Logo

UNIVER
SIT

Y O
F I

BADAN

89

3.4 CONSTRUCTION OF SUFFIX TREES

The suffix tree implementation adopted in this research is the space efficient linked list

construction by Kurtz(1999) . The algorithm for constructing the suffix tree ST is

generally a successively insertion of suffixes of S$ from the longest to the shortest, into

an initially empty tree ST0 (which consist of the root only), in the following sequence of

compact Σ+ -trees: ST1,ST2,...,STn,1,STn +1, where words(STi)={ w Є Σ* such that w is a

prefix of Sj for some j Є [1, i] }.

Usually, a suffix tree is represented using head which is the longest prefix of the suffix

tree STi while tail is the remainning suffix of STi such that , headitaili = STi . Their

locations and pointers on the tree can be denoted by headloc, tailloc and tailptr.

The heads and tails are represented by pointers into the tree and the input string S. An

example of a successive construction of suffix trees for S = Tata is shown in fig 3.6

below and the procedure that encapsulate these processes are also given in fig 3.7

UNIVER
SIT

Y O
F I

BADAN

90

 Figure 3.6: Iterative Construction of a Suffix Tree

ST2

tata$ ata$

ST1

 tata$

ST 4

$
ta

$

t
ta$

ta$

ta$ $

ata$ ta$

ST3

 $ ta$

a

ta

ta$

 $

ST5

$

UNIVER
SIT

Y O
F I

BADAN

91

3.4.1 COMPLEXITY ANALYSIS OF SUFFIX TREE CONSTRUCTION

The complexity analysis is achieved by examining the various components and processes

involved in the construction of the suffix tree. The tree is constructed successively, by

first inserting into the empty tree, then a decision is made based on whether the string

exist on the tree or not, if it exist, it is not inserted, but if string is not already in existence

on the tree, it is inserted, that is, a new leaf or branch node is appended in such a way

that repetition is avoided. It follows that the best case scenario will be when the strings

are not in existence and all that is needed is to insert leaf in depth first format while the

worst case will be when there is need to search through the tree before inserting a leaf.

Figure 3.6, shows that ST1 is a compact Σ+ -tree with only one edge from the root, that

is, root+ S$= . This can be constructed in constant time since it does not involve any

iteration. The implementation algorithm for the suffix tree construction is shown in

figure 3.7. Although the construction is involving, it is however, simple to implement. It

is obvious that headloci and tailptri can be computed in constant amortized time. For the

if-case, where headloci = , then u = ε or is a branching node in STi-1 such that u =

headi = headj for some j Є (2, i – l). This implies node exists there already and what

remains is to insert a new leaf edge labelled with taili. Therefore, it follows that

operation insertleaf can be done in constant time. For the if-case where head1oci = (ū,

av) for some node in STi- 1, some character a Є Σ, and some string v Є Σ*, then i

= does not exist in STi- 1. Therefore, the a-edge +avw = that exist in STi- 1

for some w Є Σ+ has to be split into two, one representing the old a-edge +avw =

and the new edge +av = , will be updated by insertleaf with taili. Operations

required in splitedges involve only change of references and the creation of a new Tbranch.

It then simply follows, that operation splitedge can also be performed in constant time.

UNIVER
SIT

Y O
F I

BADAN

92

Therefore, the total running time of executing the for loop is O(n) since the iteration is a

function of n. We can therefore infer that constructing a suffix tree can be carried out in

linear time of the length of the input string.

It is important to note that, the node i is created with its head position i. This means

that the branching nodes in ST are created in the order of their head position, and this is

the order in which they are stored in table Tbranch. Ultimately, a decision is made whether

a branching node is small or large and then set the distance of a small node in operation

split edge.

1. Procedure Construct(S)

2. Construct tree ST1

3. For i = 2 to n + 1 do//Construct STi as follows

4. Compute Headloci

5. Compute tailoci

6. If (headloc1 == ū), where ū is a node in STi-1

7. Insertleaf (ū, tail)Si, where Si = ūtail

8. If (head1oci == (ū, av)),

 There Exist an a-edge ū+ avw = uavw in STi- 1

9. Splitedge(ū, avw) ,

10. Insert leaf (, taili) Si

Figure 3.7 Kurtz(1999) algorithm for constructing a suffix tree ST.

Usually, a suffix tree is represented using head which is the longest prefix of the suffix

tree STi while tail is the remainning suffix of STi such that , headitaili = STi . Their

locations and pointers on the tree can be denoted by headloc, tailloc and tailptr.

The heads and tails are represented by pointers into the tree and the input string S.

UNIVER
SIT

Y O
F I

BADAN

93

3.4.2 TRAVERSAL OF SUFFIX TREE WITH SUFFIX LINKS

The suffix link is an auxiliary structure that accounts for the most important acceleration

element in the construction and traversal of a suffix tree. The suffix tree construction

algorithm is based on the observation that constructing the suffix tree can be performed

by iteratively expanding the leaves of a partially constructed suffix tree. Through the use

of suffix links, which provide a mechanism for quickly traversing across sub-trees, the

suffix tree can be expanded by simply adding the j+1 character to the leaves of the suffix

tree built on the previous j characters. The algorithm thus relies on suffix links to

traverse through all of the sub-trees in the main tree, expanding the outer edges for each

input character.

Adding a new prefix to the tree is done by walking through the tree and visiting each of

the suffixes of the current tree. The starting point is the longest suffix and then proceeds

down to the shortest suffix, which is the empty string. Starting at the end of string S[j - 1

..i] in the current tree, walk up at most one node to either the root or to a node v that has a

suffix link from it; let � be the edge-label of that edge; assuming v is not the root, then

traverse the suffix link from v to s(v); and walk down the tree from s(v), following a path

labeled �to the end of S[1..j]; finally, extend the suffix to S[1..j+1] . Figure 3.8 shows a

suffix tree with the connecting suffix links.

UNIVER
SIT

Y O
F I

BADAN

94

Figure 3.8 Suffix Tree with Suffix Links for String AGACAGGAGGC$.

UNIVER
SIT

Y O
F I

BADAN

95

Let string S[l..i] be x ε, where x is a single character and εis a (possibly empty) substring,

and let (v, 1) be the tree-edge that enters leaf 1. The algorithm must find the end of string

S[2..i] εin the current tree derived from v. The key is that node v is either the root or it is

an interior node . If it is the root, then to find the end of ε the algorithm needs to walk

down the tree following the path labeled ε but if v is an internal node, then v has a suffix

link out of it to node s(v). Furthermore, since s(v) has a path-label that is a prefix of

string ε the end of string a must end the subtree of s(v). Consequently, in searching for

the end of ε in the current tree, the algorithm need not walk down the entire path from

the root, but can instead begin the walk from node s(v). This is the main advantage of

including suffix links in the algorithm.

3.5 ALGORITHM FOR MOTIF EXTRACTION ON SUFFIX TREE

Simple motifs as well as structured motifs can be extracted using the suffix tree. Pisanti

et al. (2006) presented algorithms with novel techniques for the extraction of simple and

structured motifs using Suffix tree under the Hamming distance. However the speed of

the algorithm was not remarkable. It is important to note that this has been done under

the Edit distance by Adebiyi and Kaufmann (2002). The algorithms for simple and

structured motif extraction are described below.

3.5.1 SIMPLE MOTIF EXTRACTION ALGORITHM ON SUFFIX TREE

The single motif extraction problem takes N sequences as input, q<N quorum, with a

maximal number of error rate allowed and a minimal and maximal length for the motifs,

kmin and kmax, respectively. The problem consists in identifying all motifs that occur in at

least q input sequences. Such motifs are said to be valid. Sagot (1998) introduced an

UNIVER
SIT

Y O
F I

BADAN

96

efficient exact algorithm based on a suffix tree for extracting single motifs with

mismatches. Usually, motifs are considered in lexicographical order starting from the

empty word, and they are extended to the right as long as the quorum is satisfied until

either a valid motif of maximal length is found, or the quorum is no longer satisfied. In

both cases, a new motif is attempted. At each step, all nodes spelling e-occurrences of

the current motif are taken into account.

A formal representation of a sketch of the algorithm of Sagot (1998) is shown in

algorithm A below, where motif m is the one whose extension is being tried. At the

beginning, ExtractSimpleMotif is evoked on the empty word. The algorithm recursively

calls itself for longer motifs built by adding letters (step 4) and considers new ones

(step1) when the extension fails (step2). A valid motif is spelled out whenever a motif

whose length lies within the required minimal and maximal length is being considered

(step 3). The order of generation of the motif is a depth-first visit of a complete tree M of

all words of length Kmax on the alphabet ∑. M is referred to as the motif tree and the

algorithm does not need to allocate memory to it, only the suffix tree needs memory

allocation. If we assume that the required length of the motif is k (that is kmin = kmax = k),

and that at most e mismatches are allowed, the algorithm has worst case time complexity

in O(Nnk٧(e, k) where nk is the number of tree nodes at depth k, and ٧(e, k) is the number

of words of length k that differ in at most e letters from a word m of length k. This value

does not depend on m, and it holds that ٧(e, k) ≤ Ke |∑ |e. This upper bound is in practice

not tight. However, a better bound cannot be obtained and therefore the time complexity

is linear in the input size, but possibly exponential in the number e of mismatches. Since

reasonable values for e are proportional to the value of k, this really places a practical

bound on the length required for the motifs.

Algorithm A. Simple motif extraction

UNIVER
SIT

Y O
F I

BADAN

97

ExtractSimpleMotif(motif m)

1. for all ∑ do

2. if m is valid then

3. if |m | ≥ kmin then spell out the valid motif (m)

4. if |m | < kmax then ExtractSimpleMotif (m)

3.5.2 STRUCTURED MOTIF EXTRACTION ON SUFFIX TREE

A structured motif can be defined as an order of collection of simple motifs with gap

constraint between each pair of adjacent simple motifs. For example the structured motif

AT[115,136]GTCTATCG[121, 151]GTCGATGAC, has AT, GTCTATCG and

GTCGATGAC as simple motifs and [115,136] and [121,151] as variable gap

constraints, that is, ([minimum gap, maximum gap]) allowed between the adjacent

simple motifs. More formally,

a structured motif is a pair (m, d) where m = (mi)1≤i≤p is a p-tuple of single motifs and d=

1≤i<p is a (p-1)-tuple of pairs, denoting p-1 intervals of distance between

the p single motifs. Each element mi of a structured motif is called a box and its minimal

and maximal length denoted by respectively.

The structured motif extraction problem takes as parameters N input sequences, a

quorum q≤ N, p maximal error rate (ei)i≤1≤p (one for each of the p boxes), p minimal and

maximal lengths ()i≤1≤p and ())i≤1<p (one for each of the p boxes), and p-1

intervals of distance

With these parameters given, the problem involves searching for the contents of the

boxes, which is the motifs, that have the structure defined by the parameters above and

UNIVER
SIT

Y O
F I

BADAN

98

that satisfy the quorum. The algorithm for single motif extraction introduced in Sagot

(1998) is the ancestor of a couple of others that infer structured motifs.

The optimization that was introduced can be applied to any of them.

In summary, the algorithm first builds the factor tree T of the input sequences, then it

searches for all valid motifs of length at least kmin and up to kmax and after updating the

data structure checks whether there is a second valid motif with the required interval

between them.

From a formal perspective, the algorithm is described by Algorithm B assuming for

simplicity that p = 2, where the motif m is the one whose extension is being attempted,

and the value i indicates whether we are dealing with the first or the second box. Finally,

٨ denotes the empty word.

Algorithm B. Structured motif extraction

ExtractStructuredMotif(motif m)

1. for all ∑ do

2. if m is valid then

3. if |m | ≥ kmin then spell out the valid motif (m)

4. if i = 2 then spell out the valid motif

5. else update T ExtractStructuredMotif(λ, 2)

6. if |m | < then ExtractStructuredMotif (m ,i)

3.6 STGEMS PROCEDURE FOR EXTRACTION OF SIMPLE AND

STRUCTURED MOTIFS

The procedure below shows the extraction of simple and structured motifs. Following the

extraction of Simple motif (SIM) with significant speed-up on the generalized suffix tree,

UNIVER
SIT

Y O
F I

BADAN

99

it was then extended for the extraction of Structured motif (STM).

Procedure STGEMS(N)

1. For all ∑ do

2. For i = 1 to N

3. GST Construct tree(N)

4. SIM ExtractSimpleMotif(N)

5. While q > 2

6. STM ExtractStructuredMotif(N)

7. ValSIMs P-value(GEA)

8. ValSTMS P-Value(GEA)

Where

 GST: Generalised suffix tree;

 SIM: Simple motif;

 STM:Structured Motif;

 q: quorum specif ied for valid structured motifs

 ValSIMs: The valid simple motifs;

 ValSTMS: valid candidate structured motifs

Line 2 to 4 mined all unique length of strings . In GST(Generalised Suffix Tree), these

are words ending at the leave node. Line 7 and 8 among other things, implemented the

GEA(Gene Enrichment Analysis) on GST output by the computation of PWMs from

candidate the motifs and computing the similarity of any given motif in a promoter

region to the PWM. Next, a similarity threshold was selected to determine how similar

any motif in a promoter region must be to the PWM to be considered an actual instance

UNIVER
SIT

Y O
F I

BADAN

100

of the motif or regulatory element. And lastly, this threshold was used with PWMs to

extract optimal motifs. It is important to note that the computation of PWM from a seed

demands the identification of all sequences differing from the seed word by one

mismatch.

Since STMs are combination of boxes (SIMs), line 6 implemented the connection of

these boxes on the suffix to determine STMs based on the quorum specified.

3.7 GENE ENRICHMENT WITH HYPERGEOMETRIC SCORING

FUNCTION

STGEMS implementation details involves the extraction of all unique words of 5-8

length occurring in the sequence space, this was done by outputting all unique SEED

from the root node of suffix tree to the leaf node, then a p-value enrichment score is

computed using a hypergeometric formula below.

Where X is the total set of genes, that is, positive and negative set, x a subset of the gene

of interest, Y is the total promoter sequence that matches the genes, y is the subset of the

promoters which fall within the cluster of interest. The hypergeometric formula is a

standard statistical test used for gene enrichment analysis. It is a test that specifies

whether a particular gene set is enriched for any functional annotations out of the full set

of genes in the genome. The hypergeometric p-value equals the probability of finding y

matches if one randomly select Y genes out of the total X gene collection. The smaller the

p-value score for a candidate motif, the higher the likelihood of it being an optimal motif.

The computation result produced a long list of words with associated p-values

representing the probability of word enrichment in the entire sequence. The next stage

UNIVER
SIT

Y O
F I

BADAN

101

consist in listing the words in ascending order with the most enriched candidates (lowest

p-values) serving to seed the construction of PWMs one at a time. The hash table data

structure was used in implementing the sorting of the words with the aim of achieving an

improved speed. All sequences differing from the seed word by one mismatch were

then identified and re-listed by ascending p-value, before generating a PWM by

individually weighing each word by its p-value score into the PWM.

The resulting PWM represents the probability of any given nucleotide occurring at a

corresponding location in the candidate motif. The similarity of any sequence can be

compared to the PWM through the calculation of a similarity score, which is the

geometric mean of the corresponding matrix elements associated with the sequence. The

similarity threshold selected determines the level of similarity that any given candidate

motif must be to the PWM for it to be considered a true motif. The algorithm also adopts

an optimal similarity threshold approach instead of using trial and error to guess the

threshold for each candidate motif. This was achieved by first sorting all words by

similarity to the PWM, then the p-values were re-calculated as more dissimilar words to

the PWM were considered as motif instances using the hypergeometric scoring function

and eventually identifying the similarity threshold that led to the lowest possible p-value.

This entire process was repeated from the original seed word using two and three

mismatches up to 40% of the word size to optimize mismatch levels in addition to

similarity thresholds. The similarity and mismatch parameters that resulted in the lowest

p-value were considered the best representation of a candidate motif. In addition,

positional information using the edit distance metric was applied to merge non-unique

candidate motifs, thus preventing repeated sequences being represented as new motifs.

UNIVER
SIT

Y O
F I

BADAN

102

 Process Output Process

 Figure 3.9 Gene Enrichment Process

Construct a generalized suffix tree, traverse the nodes and

output 5‐8 length string (SEED) from the root node to a leaf node

as candidate motifs

AATTGG_ACTTGG

AAGTGG_ACTTGG

Compute p‐value for each candidate motif using the

Hypergeometric formula . i.e the gene enrichment of motif

relative to the whole set

SEED p‐value

ATTGG_ACTTGG 0.02

AATTGG_ACTTGG 0.05

Sort SEEDS according to p‐value using the hash table for

improved sorting speed

A reordered list of all SEEDS and other motifs that differ by 1 to

3 mismatches is obtained

A reordered list of all SEEDS ranked by similarity scores to the

generated PWM. The similarity score for any SEED is computed

using the hypergeometric formula as a function of the PWM

element associated with each motif

Hash

Table

01

02

A Position Weight Matrix (PWM) is generated using the ordered

list based on the p‐value

SEED p‐value

AATTGG_ACTTGG 0.02

AATTGG_ACTTGG 0.05

1 Mismatch p‐value

AATTGG_ACTTGG 0.02

AACTGG_ACTTGG 0.04

A PWM for the SEED

0.3 0.5 0.2 0.4 0.3

0.5 0.2 0.4 0.3 0.2

Optimal motifs are those whose similarity scores had very low p‐

values. In order to merge non‐unique candidate motifs, positional

information is included using the edit distance metric

Sequence Similarity Score p‐value

AATTGG_ACTTGG 0.02 ‐0.2

AACTGG_ACTTGG 0.04 ‐0.3

Two motifs with edit distance less than 0.2

represent the same motif and the PWM with a

lower p‐value is the optimal motif

UNIVER
SIT

Y O
F I

BADAN

103

3.8 ANALYSIS OF THE STGEMS ALGORITHM

The STGEMS algorithm was analysed based on the time complexity, predictive accuracy

and its sensitivity. The three sections below describes the techniques used in this analysis

3.8.1 TIME COMPLEXITY ANALYSIS

The analysis of STGEMS is done in terms of the time complexity involved in the

running of the algorithm. In figure 3.8 above, it is clear that Line 2 can be run in O(N). It

is important to point out that when the extraction of the seed is not implemented using

the suffix tree it results into a O(N2) run time. Assuming the number of unique seeds is

O(N), then from Sagot (1998), the computation of PWMs from seeds can be done in

O(NK|∑|).

Where N is the length of the string, k is the size of the alphabets and ∑ is finite ordered

set of alphabets.

In the worst case, the asymptotic run time of the functions embedded in Line 3 will cost

O(N2), while on the average case (which is the situation in practice), this can be done in

O(N). Line 4 also can be done in the worst case, O(N2), and in the average case O(N).

Therefore, the average case run time of STGEMS is O(NK|∑|), while on the worst case,

it is O(N2).

3.8.2 PREDICTIVE ACCURACY

The predictive accuracy of motif inference algorithms are usually determined by

computing the correlation coefficient as defined originally by Mathews (1975) and later

adapted to the problem of gene finding evaluation by Burset and Guigo (1996) as

UNIVER
SIT

Y O
F I

BADAN

104

Mathew Correlation Coefficient (MCC) which can be calculated directly from the

confusion matrix using the formula below:

Where TP is true positive, TN is the true negative, FN false negative and FP is false

positive. The correlation coefficient was computed over four different data sizes.

The Matthews correlation coefficient is used as a measure of the quality of binary

classifications. It takes into account true and false positives and negatives and is

generally regarded as a balanced measure which can be used especially when the classes

are of very different sizes. The MCC is in essence a correlation coefficient between the

observed and predicted binary classifications; it returns a value between −1 and +1. A

coefficient of +1 represents a perfect prediction, 0 an average random prediction and −1

an inverse prediction.

A confusion matrix is a table that contains information about actual and predicted

classifications done by a classification system. Performances of such systems are usually

evaluated using the data in the matrix. It shows the relationships between true and

predicted classes and it is used in evaluating the performance of a predictive algorithm in

a supervised learning system. Our computational inference technique, STGEM is similar

to a supervised classification in its output. The patterns or motifs predicted are compared

with those obtained using biological experiments to confirm the authenticity of the

algorithm in mining biologically relevant motifs. The confusion matrix returns 1 for

true positive in cases where the predicted motif by STGEMS is the same as that extracted

by the biological experiment and 0 if it is not the same. It returns 1 for true negative if

the motif considered was not found either by STGEMS and the biological experiments

and 0 otherwise.

UNIVER
SIT

Y O
F I

BADAN

105

The sensitivity of STGEMS was demonstrated by implementing a system using the

method used in MOGAMOD as a benchmark to show the accuracy of STGEMS.

3.9 IMPLEMENTATION OF SIMILARITY CHECK MECHANISM OF

MOGAMOD

The similarity check used in MOGAMOD measures similarity among all motif instances

defining an individual solution using the dominance value of the nucleotides. In our

implementation of the similarity mechanism, we started by first generating a position

weight matrix from the motif patterns found by our generalized suffix tree in every

sequence. Then, the dominance value (dv) of the dominant nucleotide in each column is

found using this formula: dv(i) = max{f(b,i)} , 1,…., l where f(b, i) is the score of the

nucleotide b on column i in the position weight matrix, dv(i) is the dominance value of

the dominant nucleotide on column i, and l is motif length. The similarity objective

function of motif M is the average of the dominance values of all columns in the position

weight matrix.

 The likelihood of the candidate motif been discovered as a real motif depends on the

value of the similarity score. In other words, the closer the value of the similarity M is to

one, the greater the probability that the candidate motif M will be discovered as a true

motif.

This similarity check approach used here differs from that used in GEMS algorithm and

it proved ineffective in extracting optimal motif for the base-biased sequence of

P.falciparum. The process in the implementation of the similarity check mechanism is

encapsulated in figure 3.10 below

UNIVER
SIT

Y O
F I

BADAN

106

Figure 3.10 MOGAMOD Similarity Check Implementation

Compute Position Weight Matrix (PWM) using the

standard method i.e, compute the frequency of

occurrence of each alphabet in the matrix and then

followed by its loglikelihood computation

Compute dominant value using the formula dv(i) =

max{f(b,i)} , 1,…., l }

Compute similarity threshold which is the average

of the dominant value computed for each SEED.

Output optimal motif which is the motif with

similarity score closest to 1.

 Output SEED from the generalised suffix tree and

rank them using the following

UNIVER
SIT

Y O
F I

BADAN

107

3.10 STGEMS ANALYSIS USING MALARIA PARASITE GENOMIC DATA

Two different types of data set from the malaria parasite genome were used in running

STGEMS in an attempt to extract useful information about the biology of P.falciparum.

The first aims at identifying transcription associated proteins while the second identifies

motifs in the glycolytic metabolic pathway. A brief description of the structure of

genomic data and the importance of the biological elements mined in this research is

provided in the sections below. We also provides an overview of the glycolytic

metabolic pathway, an essential pathway in malaria parasite since it is fundamental to the

survival of the parasite in the two hosts it depends on.

We recall that, in vivo(wet lab experiment) methods for DNA binding site predictions

are very expensive and labour intensive. In addition the methods could not identify all

the binding sites of a transcription factor (Barash et al., 2003, Pizzi et al., 2011), making

computational methods a good alternative.

Genomic data consist of a sequence of the alphabet {A, C, G, T} for DeoxyriboNucleic Acid

(DNA) and {A, C, G, U} for RiboNucleic Acid (RNA). Each alphabet stands for a biological

molecule. These sequences are called genes and they are the unit of information storage and

transfer in living organisms.

It is important to note that the malaria parasite genome has a peculiar genomic sequence.

Its genome has an AT content of about 90%. This AT composition is very high in

comparison to other organisms. This peculiarity necessitates the development of a

suitable motifs inference algorithm that puts the malaria parasite genome in good

perspective. This is necessary to prevent false motifs which are copies of the same motif

repeated with high ‘AT’ pattern being returned as valid motifs. STGEMS in

incorporating the hypergeometric scoring function was able to mine valid transcription

factors and DNA binding site from malaria parasite.

UNIVER
SIT

Y O
F I

BADAN

108

Transcription factors are proteins that bind to particular sequences upstream of genes

called DNA binding sites. They either activate the transcription by assisting RNA

polymerase binding or they inhibit it by blocking RNA polymerase binding. Through this

process they control and regulate gene expression.

DNA binding sites are very short sequences (structured motifs of 6-20 base-pairs). Such

sequences can appear anywhere in the genome without having the regulatory

functionality. Only a small fraction of these sequences are actually bona fide targets of

the transcription factor. Schneider et al., (2007). Hence, methods to determine binding

site suffer from a high false positive rate. The actual true positive prediction can only be

verified by conducting some experiments such as, DNA footprinting, Chromatin

Immuno-Precipitation (chIP), DNA-protein crosslinking (DPC), or X-ray crystallography

(Miller et al., 2002) where each binding site is verified individually (Del et al., 2007).

STGEMS was also applied to the glycolytic metabolic pathway, with the aim of

identifying relevant motifs responsible for gene interactions at that level. This pathway is

of special interest in the malaria parasite since it provides the energy needed for the

survival of the parasite in the two hosts it inhabits. (Planes and Beasley, 2009). Thus, a

great deal of research has been directed at characterizing the genes and proteins of the

glycolytic pathway in an attempt to gain a better understanding of the pathway and to

develop effective inhibitors to destroy the parasite. (Health et al.,2010, Huthmacher et

al.,2010).

3.10.1 TRANSCRIPTION ASSOCIATED PROTEIN EXTRACTION ANALYSIS

The identification of transcription factors (simple motifs) and binding sites (structured

motif) was effected by running three sets of experiments using different gene sets of P.

UNIVER
SIT

Y O
F I

BADAN

109

falciparum. The first experiment used the set of genes in the work of Flueck et al. (2010)

which experimentally extracted regulatory elements for P.falciparum, that is, 1000 base

pairs upstream of gene start codons. The second experiment used the set of genes used

by Yuda et al. (2009) which identified transcription factors in the mosquito-invasive

stage of malaria parasite. The two experiments aimed at inferring the ability and

sensitivity of STGEMS in predicting correctly, the motifs already extracted by some

known biological experiments. The third experiment targeted predicting new binding

sites by using the 3D7 gene clones of P. falciparum, this contains about 3,000 genes

from the intraerythrocytic developmental cycle.

3.10.2 GLYCOLYSIS METABOLIC PATHWAY ANALYSIS

The extraction of motifs in the glycolysis pathway was accomplished by running

STGEMS on the twenty six genes known to be involved in the glycolysis pathway of

P.falciparum harvested from .www.plasmodb.org.The genes involved in glycolysis

metabolic pathways were extracted, by including all information of the annotation for

each gene in P. falciparum. We applied STGEMS to scan their upstream regions for

conserved sequence motifs involved in the regulation of gene. STGEM’s output ranks

the extracted motifs by comparing the similarity score with the p-value of the position

weight matrix for each of the motifs, thus reporting only the optimal motifs. The

glycolysis pathway genes used are PF10_0122, PF10_0155, PF11_0157, PF11_0208,

PF11_0294, PF11_0338, PFL0780w, MAL13P1.40, PF13_0141, PF13_0144,

PF13_0269, MAL13P1.324, PF14_0341, PF14_0378, PF14_0425, PF14_0598,

PFB0210c, PFB0465c, PFC0275w, PFC0831w, PFD0660w, PFF1155w, PFF1300w,

PFI0755c, PFI1105w and PFI1295c. STGEM program was executed with the DNA

sequences of these genes as input with the aim of discovery relevant motifs. In order to

UNIVER
SIT

Y O
F I

BADAN

110

validate the authenticity of the motifs identified by STGEMS, the popular GEMS

algorithm was also applied to the same set of genes as a benchmark. This method of

validation was motivated by the fact that the work of Young et al.,(2008) which

developed GEMS algorithm, reported that the motifs discovered by GEMS had been

biologically validated with follow up biological experiments, therefore, the biological

relevance of the motif identified by STGEMS can be inferred based on its correlation

with those identified by GEMS. The correlation coefficient was computed as the basis of

comparison.

3.11 DISCUSSION ON THE IMPLEMENTATION OF STGEMS

The implementation of STGEMS algorithm consist of two main modules as shown in

Appendix B. Module st.c implemented the space efficient construction of the suffix tree

using suffix links. The suffix tree was constructed successively starting from the root

node and moving down the depth of the tree inserting new leaves that are not already in

existence. If a part of the sequence string already exists on the tree, it is not inserted

again. The tree construction continues until all the strings in the input is evaluated and

added to the tree. Suffix links points to the next location to inset a new leaf and makes

traversal faster.

The improved efficiency in using the suffix tree in STGEMS is achieved as follows: By

using a suffix tree to enumerate all the initial clusters (SEEDS), if any two SEEDS are

identical, they are not repeated; it suffices to choose one of the SEEDS. Also, while

descending the suffix tree to enumerate the SEED, partial evaluations are made of the

current motif based on the strings that are in the enumerated SEED so far. These partial

evaluations are shared across all the SEEDS below the current node in the tree, thus there

is no need to visit all the nodes. This is in contrast to other techniques that do not use the

UNIVER
SIT

Y O
F I

BADAN

111

suffix tree in which case, they have to evaluate every base in each SEED thus leading to

additional cost in time spent in traversing and returning the repeated pattern.

To extract the structured motif which is made up of two boxes of simple motifs and gaps,

the motifs are considered in lexicographical order by a depth-first visit of the motif tree

M. Every time we stop extending a motif, that is, when we backtrack in M, it is either

because we found a valid motif of the maximal length, or because the quorum is no

longer satisfied and we start to consider the next one in lexicographical order. The two

connected boxes are returned as the structured motif with the gap specified in the

parameter.

The SEED which is the output of the tree obtained by traversing from the root node to a

leaf node is a unique pattern. This is fed as the input to stgems.c program which takes

this seed and then computes the gene enrichment based on the hypergeometric scoring

function. The position weight matrix is generated for each candidate motif which shows

the frequency of occurrence of each alphabet in a specific position in the motif sequence.

The p-value of each motif is computed using the hypergeometric formula. Then the motif

is ranked by sorting it in ascending order relative to the computed p-value. The hash

table was introduced to achieve an optimized sorting and ordering of the motifs. The

hash function maps each possible occurrence of the motif to a unique slot index on the

hash table. Collision in the hash table was handled using the overflow method which

involves creating a second table for collisions and placing the motif at the first empty

location.

The incorporation of these data structures in the development of STGEMS contributed

immensely to its improved efficiency in terms of speed.

The implementation of the similarity mechanism used in MOGAMOD was relatively

straightforward. The similarity check mechanism is based on the dominance value of the

UNIVER
SIT

Y O
F I

BADAN

112

nucleotides which is computed using the standard method of generating position weight

matrix. The position frequency matrix is first computed, that is the frequency of

occurrence of each of the characters in a specific position. Then the dominance value of

the nucleotide is computed as a measure of the similarity score. The implementation was

not enhanced in any way since the purpose of this part of the research is to establish a

comparative benchmark for the evaluation of the improved similarity mechanism used in

STGEMS.

The final outputs of STGEMS are optimal motifs represented using sequence logos.

The performance of any new motif discovery tools is evaluated by comparing the tool

with existing tools using the same data set on and the same system specification.

STGEMS was compared with several popular motif discovery tools. The results of these

comparisons are discussed in chapter four.

UNIVER
SIT

Y O
F I

BADAN

113

CHAPTER FOUR

 RESULTS AND DISCUSSION

We applied the methodology described in chapter three above to mine simple and

structured motifs such as Transcription factors and DNA binding sites in P. falciparum

and examined the speed of execution of the algorithm. Our findings are contained in the

sections below. In addition, we report the result of running GEMS and STGEMS on the

glycolytic metabolic pathways genes of P. falciparum.

4.1 EMPIRICAL RUNTIME COMPARISON OF STGEMS

In chapter three, we demonstrated the asymptotic runtime of STGEMS, In addition to

that, we will show the comparison of the empirical runtime of STGEMS with the five

motif discovery algorithms used in this research work. The set of genes used were

downloaded from PlasmoDB. (An online database of P.falciparum genes maintained by

National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov).

The running time of STGEMS compared with the five popular motif discovery tools is

shown in the table below and the graph thereafter.

UNIVER
SIT

Y O
F I

BADAN

114

Table 4.1 Running Time of STGEMS compared with other Motif discovery tools

Size of Data

Running
Time in
Seconds

In BP MEME
WEEDER GEMS RISOTTO EXMOTIF

STGEMS
20,000 36 15 26 12 10 05
40,000 43 23 34 22 20 16
60,000 55 35 56 31 30 27
80,000 68 45 69 47 41 39

UNIVER
SIT

Y O
F I

BADAN

115

Four different sizes of genes were used in the analysis i.e. 20,000 , 40,000, 60,000 and

80,000bp, this variation in gene sizes is chosen to enable a classification of the

performance of the algorithms as a function of input size. The empirical runtime of the

different algorithms was obtained by including a time stamp in the execution of the

algorithm so that its output displayed the execution time. From table 4.1 above, it is

obvious that the empirical run time of all the algorithms tested increased as the size of

input increased as expected. The run time of the MEME algorithm which is a statistical

based motif discovery tool was higher than all other algorithms. This is followed by

GEMS which is also based on a statistical model. The pattern-driven methods WEEDER,

RISOTTO and EXMOTIF are much faster than the statistical based tools; this speed

performance gain is attributed to the fact that they all used the suffix tree data structure,

which is known to enhance searching speed. EXMOTIF performed better than

RISOTTO and WEEDER because it incorporated the use of suffix links in its

implementation of the suffix tree. Our computational technique, STGEMS outperformed

all the five algorithms compared with in improved runtime. This is because the

framework of STGEMS was built on an efficient implementation of the suffix tree using

linked list and hash table data structures unlike the other algorithms that did not

incorporate these combined features.

UNIVER
SIT

Y O
F I

BADAN

116

Emperical Runtime Analysis

0

10

20

30

40

50

60

70

80

20,000 bp 40,000 bp 60,000bp 80,000bp

Gene Size in Base pairs(bp)

 R
u

n
ti

m
e

 in
 S

e
c

o
n

d
s

STGEMS

MEME

WEEDER

GEMS

RISOTTO

EXMOTIF

a

Figure 4.1: Empirical Run time for STGEMS and 5 motif discovery tools

UNIVER
SIT

Y O
F I

BADAN

117

In figure 4.1 above, which is the graph of the empirical runtime of STGEMS compared

with those of MEME, WEEDER, GEMS, EXMOTIF and RISOTTO, It can be seen that

MEME had the lowest performance among all the other tools compared since its running

time over the set of the selected input was the highest, that is, the execution time of

MEME in all instances was higher than the other tools. On the other hand, STGEMS had

the lowest empirical run time which implied that it is a time efficient algorithm. The

more efficient an algorithms is, the lower its empirical runtime.

4.2 PERFORMANCE OF STGEMS IN MINING BIOLOGICALLY

VALIDATED MOTIFS

In addition to the empirical and asymptotic running time of STGEMS, it is also very

effective in mining biologically motivated motifs in P.falciparum. To demonstrate this,

two sets of sample genes in P.falciparum, which had been experimentally proven to co-

regulate via structured motifs were used for testing. The implementation and testing of

STGEMS was done in C programming language on Linux. The first experiment used the

set of genes in the work of Flueck et al. (2010) which experimentally extracted binding

sites for P.falciparum. i.e. 100 base pairs upstream of gene start codons as shown in

table 4.2. Table 4.3 shows the result obtained running them on five popular motif

discovery tools: RISOTTO, EXMOTIF, WEEDER, MEME and GEMS.

The second experiment used the set of genes used by Yuda et al. (2009) which identified

transcription factors in the mosquito-invasive stage of malaria parasite shown in table

4.4. The resulting output using the five algorithms is depicted in table 4.5.

Flueck et al. (2010), showed experimentally, that the set of genes in table 4.2 co-regulate

using the following motif: N(C/G/A)TGCA-4to5-(A/G/C)GTGC(A/G). ‘N’ indicates any

of the four nucleotides A/C/G/T can occur at this position, while four to five gaps are

UNIVER
SIT

Y O
F I

BADAN

118

between the two boxes.

Yuda et al. (2009) also show that experimentally, TAGCTA-100 to1500-TAGCCA and

TAGCTA-100 to1500-TGGCTA are those structured motifs used in their co-regulation.

UNIVER
SIT

Y O
F I

BADAN

119

Table 4.2. Set of genes from Flueck et al.

Accession No Description
PFF0645c
PFI0265c
PFE0075c
PFE0080c
PFC0120w
MAL7P1.208
PFI1730w
PF14_0102
PFD0295c
MAL7P1.119
PFI1445w

Plasmodium falciparum 3D7 , integral membrane protein,
putative
Plasmodium falciparum 3D7, high molecular weight rhoptry
protein
Plasmodium falciparum 3D7, rhoptry-associated protein 3
Plasmodium falciparum 3D7, rhoptry-associated protein 2
Plasmodium falciparum 3D7 , cytoadherence linked asexual
protein 3.1
Plasmodium falciparum 3D7, rhoptry-associated membrane
antigen
Plasmodium falciparum 3D7, cytoadherence linked asexual
protein 9
Plasmodium falciparum 3D7, rhoptry-associated protein 1
Plasmodium falciparum 3D7 , apical sushi protein
Plasmodium falciparum 3D7 , rhoptry-associated leucine zipper-
like protein 1
Plasmodium falciparum 3D7, high molecular weight rhoptry
protein 2

UNIVER
SIT

Y O
F I

BADAN

120

Table 4.2 shows the accession number of the genes and their equivalent description. The

accession numbers are unique and they uniquely identify each gene in all the gene

databases, such as http://geneontology.org, http://plasmodb.org, http://genebank.org etc.

The standard NCBI format for naming genes accession numbers is the short name of the

organism as the first character and then a sequence generated number. For example in

PFI1445w, the PF stands for Plasmodium Falciparum.

The gene accession numbers starting with MAL stands for Malaria, the old format for

naming gene accession number uses the disease caused by the organism instead of the

organism’s short name.

UNIVER
SIT

Y O
F I

BADAN

121

Table 4.3. Output from running the algorithms on the DNA sequences in table 4.2

 IDENTIFIED BY

Motifs RISOTTO EXMOTIF WEEDER MEME GEMS STGEMS

GGTGCG YES NO NO NO NO NO

CGTGCG NO NO NO NO NO NO

CTGCA YES NO NO NO YES YES

GTGCA YES YES YES YES YES YES

ATGCA NO YES YES YES YES YES

AGTGCG NO NO NO NO YES YES

UNIVER
SIT

Y O
F I

BADAN

122

Table 4.3 shows the output of running the six algorithms using a data set which has been

biologically proven to contain consensus motifs or potential binding sites. The output of

each algorithm was scanned for the occurrence of these consensus motifs shown in the

first column of table 4.3. that is the consensus motifs. These consensuses have been

shown by Flueck et al. (2010) to be valid binding sites in P.falciparum using biological

experimental methods. The result of the analysis revealed that MEME,WEEDER and

EXMOTIF are similar both in the number and type of motif discovered, For instance, out

of the six motifs scanned for, only two were discovered by the three tools i.e. ‘GTGCA’,

‘ATGCA’ while ‘GGTGCG’, ‘CGTGCG’, ‘CTGCA’ and ‘AGTGCG’ were not found.

RISOTTO exhibited a unique behaviour, the type and number of motifs discovered did

not correspond to those discovered by the other tools. It found three motifs out of the six

scanned for. GEMS and STGEMS were similar in the type and number of motifs found,

they both discovered ‘CTGCA’, ‘GTGCA’, ‘ATGCA’ and ‘AGTGCG’. This similarity

between STGEMS and GEMS is because they both utilized the same mechanism in their

methodology, that is, the hypergeometric motif enrichment search mechanism. The main

advantage STGEMS has over GEMS is in the speed of execution and in its ability to

mine both simple and structured motifs for the challenging genome of P.falciparum.

UNIVER
SIT

Y O
F I

BADAN

123

Table 4.4. Set of genes from the Mosquito invasive stage of malaria parasite.

Accession No Description
PF08_0136b
PFC0905c
PFL0550w
PFC0640w
PFD0425w
PF08_0030
PFL2135c
MAL13P1.203
PF10_0027
PFL2510w
PF13_0355
 PFD0435c
PFE0360c
PF14_0040
PFF0975c
PF10_0302
PF10_0303
PFC0420w
PFI1145w

Plasmodium falciparum 3D7 , von Willebrand factor A-domain related
protein
Plasmodium falciparum 3D7, oocyst capsule protein
Plasmodium falciparum 3D7, HSP20-like chaperone
Plasmodium falciparum 3D7,CSP and TRAP-related protein
Plasmodium falciparum 3D7 , sporozoite invasion-associated protein
1, putative
Plasmodium falciparum 3D7, conserved Plasmodium protein,
unknown function
Plasmodium falciparum 3D7, conserved Plasmodium protein,
unknown function
Plasmodium falciparum 3D7 , secreted ookinete protein, putative
Plasmodium falciparum 3D7,conserved Plasmodium protein, unknown
function
Plasmodium falciparum 3D7, chitinase
Plasmodium falciparum 3D7, secreted ookinete protein
Plasmodium falciparum 3D7, conserved Plasmodium protein
Plasmodium falciparum 3D7, conserved Plasmodium protein
Plasmodium falciparum 3D7, secreted ookinete adhesive protein
Plasmodium falciparum 3D7, conserved Plasmodium protein
Plasmodium falciparum 3D7, 28 kDa ookinete surface protein
Plasmodium falciparum 3D7, 25 kDa ookinete surface antigen
precursor
Plasmodium falciparum 3D7, calcium dependent protein kinase 3
Plasmodium falciparum 3D7, perforin like protein 3

UNIVER
SIT

Y O
F I

BADAN

124

Table 4.5: Output from running the algorithms on the DNA sequences in table 4.4

 IDENTIFIED BY

Motifs RISOTTO

EXMOTIF WEEDER MEME GEMS STGEMS

TAGCTA YES NO YES NO NO NO

TGGCTA NO NO NO NO NO NO

TAGCCA NO NO NO NO NO NO

UNIVER
SIT

Y O
F I

BADAN

125

From table 4.3, it is can be observed that many of the experimentally extracted motifs

were also mined by GEMS and by extension, our novel algorithm, STGEMS. This was

not the same finding in table 4.5, as none of the two structured motifs was found by

GEMS nor by STGEMS. Only RISOTTO and WEEDER discovered one motif each that

is, ‘TAGCTA’ and ‘TAGCTA’ respectively. The other three tools, that is, MEME,

GEMS and EXMOTIF could not also detect any of the motifs.

The observation recorded in table 4.5 gave the understanding that a number of fine

tunings, which are not necessarily algorithmic, are needed to effectively mine the desired

structured motifs in the set of table 4.4.

4.3 EVALUATION OF PREDICTIVE ACCURACY OF STGEMS

The predictive accuracy of STGEMS was evaluated by computing its correlation

coefficient and comparing it with that of the other five algorithms used as benchmark in

this research.

Table 4.6 below shows the prediction accuracy of STGEMS and five motif discovery

tools. The dataset are averaged over four cross-validated test set produced from the set of

biologically validated motifs. The result shows that STGEMS has a relatively high and

stable correlation coefficient with varying sizes of input. For gene sizes of 20,000,

40,000, 60,000 and 80,000 respectively, the correlation coefficient remained as close to 1

as possible that is, 0.86, 0.87, 0.9 and 0.91 respectively. This shows the high accuracy of

our computational technique. The correlation coefficient of GEMS algorithm is similar

to that of STGEMS. This ability of STGEMS and GEMS to achieve a high predictive

ability in predicting biologically relevant motif in the challenging sequence of

P.falciparum is due to the hypergeometric mechanism employed. The predictive

UNIVER
SIT

Y O
F I

BADAN

126

accuracy of MEME and WEEDER were similar, it can be categorized as an average

performance while EXMOTIF had the worst performance, having a negative correlation

coefficient for the 20,000bp gene size.

UNIVER
SIT

Y O
F I

BADAN

127

Table 4.6: Correlation Coefficient for STGEMS and the 5 Algorithms

Tools Data sets

 20,000BP 40,000BP 60,000BP 80,0000BP

STGEMS 0.86 0.87 0.9 0.91

MEME 0.3 0.4 0.45 0.5

WEEDER 0.4 0.5 0.45 0.53

GEMS 0.86 0.87 0.9 0.91

RISOTO 0.6 0.48 0.5 0.6

EXMOTIF -0.3 0.24 0.37 0.41

UNIVER
SIT

Y O
F I

BADAN

128

Figure 4.2: Performance Accuracy Comparison

UNIVER
SIT

Y O
F I

BADAN

129

4.4 STGEMS AND MINING NOVEL MOTIFS

STGEMS was run using the 3D7 genes from P.falciparum downloaded from PlasmoDB

in an attempt to mine novel binding sites. An exhaustive listing of the genes and the

extracted motif are found in Table 1 in appendix A. A snapshot of some of the results is

shown in 4.3.

UNIVER
SIT

Y O
F I

BADAN

130

Figure.4.3: Output of one of the modules of STGEMS

UNIVER
SIT

Y O
F I

BADAN

131

This is a snapshot of running one of the modules of STGEMS to extract motifs with their

computed similarity score. The second column shows the candidate motif, the third

column shows the number of the sequences in which the motif appears while the fourth

column is the total number of occurrence of that motif. The fifth column shows the

mismatches allowed while the last column is the similarity score for each candidate

motif. These extracted motifs reported are the optimal motifs since the hypergeometric

based similarity check mechanism employed, provided a ranking of all candidate motifs

in such a way that only those with low similarity threshold relative to the position weight

matrix generated are reported as optimal motifs. Based on that proposition, the following

ten motifs were identified as optimal motifs by STGEMS: ‘TCTAT’ occurring in five

sequences and having similarity value of 0.571429; ‘TCTAA’ occurred in three

sequences with a value of 0.685714; ‘TATCA’ occurred in five sequences with a

similarity value of 0.571429; ‘TAACA’ occurred in five sequences with a similarity

value of 0.571429; ‘GAGTA’ occurred in three sequences and has a similarity value of

0.685714; ‘TTATC’ occurred in four sequences and have a value of 0.685714; ‘TACAC’

occurred in five sequences and has a similarity value of 0.571429; ‘GATGA’ occurred in

four sequences with a similarity value of 0.685714; ‘ATCAA’ occurred in four

sequences with a similarity value of 0.685714 and ‘ACCTG’ occurred in three sequences

with a similarity value of 0.685714.

UNIVER
SIT

Y O
F I

BADAN

132

Table 4.7 The optimal novel motifs predicted by STGEMS from 3D7 P.falciparum

genes.

Optimal motif Similarity Score
TCTAT 0.571429
TCTAA 0.685714
TATCA 0.571429
TAACA 0.571429
GAGTA 0.685714
TTATC 0.685714
TACAC 0.571429
GATGA 0.685714
ATCAA 0.685714
ACCTG 0.685714

UNIVER
SIT

Y O
F I

BADAN

133

It can be observed from table 4.7 that row 1 to four are similar in the type of nucleotide

and also the positional information, that is, they all have the’ T’, ‘A’ and ‘C’ nucleotide

with ‘A’ and ‘T’ having a higher occurrence than ‘C’(Reiterating the AT rich nature of

P.falciparum) although they vary slightly. For instance,

Optimal motif Similarity

TCTAT 0.571429

TCTAA 0.685714

 Are very similar with a mismatch at the fifth position, thus can represent the same motif

and

Optimal motif Similarity

TATCA 0.571429

TAACA 0.571429

are also very similar with one mismatch at the third position and can represent the same

motif. In chapter two, the importance of representing motifs graphically using sequence

logo was explored. The primary purpose being that it shows at a glance, the relationship

between motifs of interest in terms of their positional information. Figure 4.4 below

shows the sequence logo representation of the four motifs above.

UNIVER
SIT

Y O
F I

BADAN

134

Figure 4.4: Sequence Logo of some of the optimal motifs predicted by STGEMS

UNIVER
SIT

Y O
F I

BADAN

135

The sequence logo representation of TCTAT, TCTAA, TATCA, TAACA is a multiple

alignment of the sequences showing positional information. It is obvious from the

diagram that ‘T’ and ‘A’ are dominant. In position 1, ‘T’ is present in all the four

sequences and that explains why the logo of T is highest in that position. In position 2,

‘A’ and ‘C’ have equal distributions that is, two occurrences of ‘A’ and ‘C’ respectively.

In position 3, ‘T’ occurred in three of the motifs while ‘A’ occurred in one. In position 4,

‘A’ and ‘C’ have equal occurrences while in position five, ‘A’ has three occurrences and

‘T’ has one occurrence.

UNIVER
SIT

Y O
F I

BADAN

136

T
C

T
A

T

T
C

T
A

A

T
A

T
C

A

T
A

A
C

A

G
A

G
T

A

T
T

A
T

C

T
A

C
A

C

G
A

T
G

A

A
T

C
A

A

A
C

C
T

G

S1

0.5
0.52
0.54
0.56
0.58
0.6

0.62
0.64
0.66
0.68
0.7

S
im

il
a

ri
ty

 S
c

o
re

Motifs

STGEMS Predicted Motifs

Figure 4.5: Similarity score of the optimal motifs predicted by STGEMS

UNIVER
SIT

Y O
F I

BADAN

137

From figure 4.5, it can be observed that the motifs with the lowest similarity score are

TCTAT, TATCA ,TAACA and TACAC and they are the best motifs according to the

gene enrichment method implored in the design framework of STGEMS. However, the

biological validation of these predicted motifs is outside the scope of this project.

The structured motif was obtained by connecting two or more simple motifs and some

spaces as indicated in the structured motif algorithm in chapter three. That is, e

TCTAT_TAACA is an example of a structured motif.

4.5 APPLICATION OF STGEMS AND GEMS TO METABOLIC PATHWAY

GENES

Having explained in chapter two, the importance of the metabolic pathway in

understanding the biology of P.falciparum especially its role in drug target discovery,

our computational inference technique, STGEMS was used on the glycolytic metabolic

pathway genes. This glycolysis pathway shows the interactions involved in producing

the necessary energy needed by the parasite to survive while in the two host it depends

on, thus understanding the genes involved in this process will aid the design of effective

drug target to terminate the organisms source of energy and invariably, lead to its

eventual destruction. STGEMS was used to scan the regulatory genes in this pathway

with a view to predicting conserved motifs which have biological significance.

In order to validate the relevance of the motifs identified by STGEMS, the popular

GEMS algorithm was used in running the same set of genes as a benchmark. This

method of validation was motivated by the fact that in the work of Young et al.,(2008)

which developed GEMS algorithm, reported that the motifs discovered by GEMS had

been biologically validated with follow up biological experiments, therefore, the

biological relevance of the motif identified by STGEMS can be inferred based on its

UNIVER
SIT

Y O
F I

BADAN

138

correlation with those identified by GEMS. The motifs discovered by GEMS and

STGEMS in the glycolytic pathways were the same. The computation of the correlation

value of the comparison of the motifs discovered by the two algorithms relative to

biologically validated motifs gave a correlation value of 0.98 which is very close to 1,

the perfect prediction value. The sequence logo representation of some of the common

motifs are shown in the sequence logo diagram in figure 4.6.

UNIVER
SIT

Y O
F I

BADAN

139

Figure 4.6: A sequence Logo of the common motifs extracted by GEMS and

STGEMS.

UNIVER
SIT

Y O
F I

BADAN

140

4.6 COMPARISON OF THE SIMILARITY CHECK MECHANISM OF GEMS

AND MOGAMOD

In chapter three, the implementation of the similarity check mechanism employed in the

designs of GEMS and MOGAMOD algorithms were explored. We now present the

result of the implementation by providing a comparative analysis of the motifs

discovered using the two mechanisms. A graph of the value of the correlation coefficient

of the motif discovered using the mechanism of GEMS and MOGAMOD compared with

the experimentally identified motifs in Flueck et al.,(2010) is shown in figure 4.7 below.

UNIVER
SIT

Y O
F I

BADAN

141

Table 4.9: Motif identification with GEMS and MOGAMOD’s similarity check

mechanism

 IDENTIFIED BY

Motifs MOGAMOD GEMS

GGTGCG NO NO

CGTGCG NO NO

CTGCA NO YES

GTGCA NO YES

ATGCA NO YES

AGTGCG NO YES

UNIVER
SIT

Y O
F I

BADAN

142

Computing correlation coefficient as a measure of prediction ability, we obtain the table

4.10

Table 4.10: Correlation Coefficient value of GEMS and MOGAMOD’s similarity

check

Motifs MOGAMOD GEMS

Sample 1 -0.01 0.6

Sample 2 -0.01 0.72

Sample 3 -0.1 0.78

Sample 4 -0.01 0.81

Sample 5 -0.1 0.84

Sample 6 -0.11 0.85

UNIVER
SIT

Y O
F I

BADAN

143

GEMS Similarity Mechanism Vs MOGAMOD's

-0.2

0

0.2

0.4

0.6

0.8

1

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Data Set

C
o

rr
el

at
io

n
 V

al
u

e

GEMS

MOGAMOD

Figure 4.7: Similarity Check of GEMS and MOGAMOD compared

UNIVER
SIT

Y O
F I

BADAN

144

The correlation value of the MOGAMOD’s mechanism was very low; all the values are

negative which indicate a poor predictive accuracy or inverse prediction. On the other

hand, the result obtained using GEMS’s mechanism show a high correlation value of 0.6,

0.72, 0.78 and 0.87 respectively. We can therefore conclude that the implementation that

incorporated the similarity mechanism of MOGAMOD performed very poorly in

predicting relevant motifs as opposed to the implementation that incorporated GEMS

similarity mechanism. This success as we explained in chapter one is attributed to the

hypergeometric scoring function incorporated into the similarity mechanism of GEMS

and made it possible to mine relevant biologically motivated motifs from the challenging

genome of P.falciparum.

 In spite of the reported remarkable performance of MOGAMOD, STGEMS

outperformed MOGAMOD in terms of accuracy and runtime when tested with the same

data set. Moreover, MOGAMOD could only identify motifs from other model organisms

like yeast and bacteria but not from the malaria parasite, while STGEMS identified

simple and structured motifs in these organisms.

UNIVER
SIT

Y O
F I

BADAN

145

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

Motif discovery is presented in this research as the process of identifying and extracting

patterns believed to have biological importance and therefore necessary for

understanding the complex biological mechanisms of living organisms. The availability

of efficient motif discovery algorithms to mine these patterns is crucial to the acquisition

of this vital knowledge. The consideration of the peculiarity of the data set is an

important factor in developing efficient algorithms to extract these complex genomic

patterns. In this regard, we proposed a combinatorial model using the suffix tree, a

pattern-driven approach and gene enrichment analysis, a statistical approach which we

tagged STGEMS. This combinatorial approach guaranteed the incorporation of the

speed efficiency of pattern-driven method with the improved sensitivity of statistical

based methods. STGEMS utilized the suffix tree and the hypergeometric scoring

function as a similarity check mechanism in its gene enrichment analysis. This enabled it

to identify simple and structured motifs from organisms with peculiar genomic structures

such as the malaria parasite. The key role played by these transcription associated

proteins which are simple motifs (transcription factors) and structured motifs (DNA

binding site) identified by STGEMS in malaria research was highlighted.

UNIVER
SIT

Y O
F I

BADAN

146

We stressed that the importance of a good choice of data structures in the design

paradigm of motif discovery tools cannot be overemphasized. Considering the

exponential growth of genomic data availability, the accessibility of high performance

algorithms for efficient analysis of these sequence data is paramount. This research

presents the criteria for choosing data structures for motif discovery algorithms and the

justification for the data structures used in STGEMS.

The linear run time algorithm developed proved effective in mining transcription factors

and binding sites from the challenging genome of the malaria parasite, P.falciparum.

This was demonstrated by comparing motifs identified by STGEMS with those extracted

from biological experiments. The high correlation obtained by this comparison reveals

the high sensitivity of STGEMS.

We proved the speed performance of STGEMS by comparing its empirical runtime with

that of five popular motif discovery tools. The average runtime for the three categories of

data set used (small, medium and large) revealed that STGEMS ensures timely efficient

performance over the popular algorithms we compared with. That is three simple motifs

tools :WEEDER, MEME, and GEMS and two structured motifs tools: RISSOTO and

EXMOTIF.

The research demonstrated the accuracy of STGEMS in extracting biologically

motivated structured motifs in the challenging sequence of P. falciparum which existing

algorithms could not. DNA binding sites in P. falciparum, a eukaryotic organism exist

as structured motifs and necessary for identifying the viable drug targets to eliminate the

drug resistant strains of the parasite.

The research employed STGEMS in scanning the glycolytic metabolic pathway genes of

P.falciparum for relevant motifs and it identified biologically motivated motifs in the

pathway. Thus providing a better understanding of the functional genes responsible for

UNIVER
SIT

Y O
F I

BADAN

147

the high adaptability of the malaria parasite, which makes it able to survive in two

different hosts in spite of the adverse condition introduced by anti malaria drug action. In

providing a deeper understanding of the various gene interactions involved in the

adaptability, this forms the basis of discovering efficient drug therapies to destroy this

deadly parasite

In the same vein, STGEMS and GEMS were tested with the glycolytic metabolic

pathway genes and they discovered the same motifs. This result further confirms the high

sensitivity of our computational inference technique, since it had a high correlation with

the biologically validated motifs discovered by GEMS.

We developed a computational tool for mining both simple and structured motifs with an

improved runtime demonstrated by computing its asymptotic runtime which is linear in

the length of sequence. Our computational tool also has a high accuracy in mining

biologically motivated motifs. This was revealed by its ability to identify similar motifs

extracted using experimental methods. In addition, novel DNA binding sites, which are,

viable drug targets were extracted on a large scale from the P.falciparum genome.

We also implemented and compared two popular similarity check mechanisms. The first

was based on hypergeometric scoring function while the second was based on the

dominance value of nucleotides occurring in the candidate motifs. The result of the

comparison influenced our choice of the hypergeometric based similarity check

mechanism. This consequently enabled STGEM to mine relevant optimal motifs from

P.falciparum while the other implementation based on dominance value could not.

Our results showed that STGEMS is a valuable tool that can enable malaria researchers

and other biologists to effectively produce anti-malarial drugs given that the tool

identifies the relevant drug targets (binding sites and transcription factors). With this new

UNIVER
SIT

Y O
F I

BADAN

148

tool, a great step can be taken in confronting the challenge to eradicate malaria in Nigeria

and other countries to which the disease is endemic.

5.2 CONTRIBUTION TO KNOWLEDGE

Our contribution to knowledge is two-fold:

We implemented an efficient and effective algorithm for mining simple motifs on the

suffix tree. This led to a significant speed up in the run time of the algorithm. We

then extended this to mine structured motifs. The resulting algorithm runs in linear

time. Following this, we empirically proved the high sensitivity of the resulting

algorithm to mining motifs from sequences like we have in P. falciparum and

compared the similarity check mechanism of GEMS against that used in another

popular algorithm for extracting structured motifs, a multi-objective genetic

algorithm, MOGAMOD.

 The results obtained validated the high sensitivity of the similarity check mechanism

employed in GEMS and also showed that a careful deployment of this mechanism

improved the sensitivity level of the resulting algorithm, STGEMS. The end results

gave us room to exhaustively mine structured motifs.

Secondly, we successfully identified motifs in the glycolytic metabolic pathway of P.

falciparum

5.3 RECOMMENDATIONS/FUTURE PERSPECTIVE

This present work has given lead to some future studies. The need to formalize a number

of fine tunings to exhaustively extract biologically motivated structured motifs was

identified. Such fine tunings include the determination of biological motivated gaps

UNIVER
SIT

Y O
F I

BADAN

149

between the boxes (simple motifs) of structured motifs and the size of the boxes. This

biological validation will be done as a future work.

One of the gaps identified in our review of motif discovery algorithms is the need for a

motif discovery tools which incorporate phylogenetic relationships in its framework and

at the same time puts sequences with peculiar genomic structure in good perspective.

This is crucial in revealing evolutionary insights among the different organisms. This

will be examined in a future work.

The need to develop an integrated sequence analysis tool was observed. This tool will

incorporate adequate methodology for gene prediction, motif discovery and sequence

alignment in a holistic framework. We hope to take this up as a future work.

UNIVER
SIT

Y O
F I

BADAN

150

REFERENCES

Adebiyi, E. and Kaufmann, M.(2002). Extracting common motifs under the levenshtein
measure: Theory and Experimentation. WABI.

Adebiyi, E. F.(2003) Pattern discovery in biology and strings sorting: theory and

experimentation. PhD Thesis Tubingen, Shaker Publishing Company Inc.

Apostolico, A., Parida, L. & Rombo,S.E. (2008). Motif patterns in 2D, Theoretical

Computer Science 390(1): 40–55
Apostolico A, Bock M E, Lonardi S, Xu X. (2001). Efficient detection of unusual words.

J. Comput. Bio., 7(1/2): 71-94.

Barash, Y. et al (2003). Modeling dependencies in protein-DNA binding sites. In

Proceedings of RECOMB-03, pp. 28–37.

Bailey, T. and Elkan, C. (2000). MEME: discovering and analyzing DNA and protein

sequence motifs. Nucleic Acids Research Vol. 34, Web Server issue W369–
W373.

Bischo, E. and Vaquero, C.(2010) In silico and biological survey of transcription-

associated proteins implicated in the transcriptional machinery during the
erthrocyctic development of Plasmodium falciparum, BMC Genomics, 11:34.

Bock, C., Paulsen, M,, Tierling, S., Mikeska, T. and Lengauer T. (2006) CpG island

methylation in human lymphocytes is highly correlated with DNA sequence,
repeats, and predicted DNA structure. PLoS Genetics 2: 243–252.

Bozdech, Z., and Ginsburg, H. (2005). Data mining of the transcriptome of Plasmodium

falciparum: the pentose phosphate pathway and ancillary processes. Malar. J., 4
(1), 17–29.

Bulashevska, S., Adebiyi, E., Brors, B., and Eils, R.(2007). New insights into the genetic

regulations of Plasmodium falciparum obtained by Bayesian probabilistic
modelling. Gene Regulation and System Biology, 1, 137-149.

Bussemaker, H., Li, H., Siggia, E. (2001) Regulatory element detection using correlation

with expression. Nat Genet 27: 167–71.

Burset, M. and Guigo, R. (1996). Evaluation of gene structure prediction programs.

Genomics 34(3), 353-67.

Carvalho, A., Freitas, A., Oliveira, A., Sagot, M. (2004) A parallel algorithm for the

extraction of structured motifs. 19th ACM Symposium on Applied Computing.
pp. 147–153.

Carvalho, A., Freitas, A., Oliveira, A., Sagot, M. (2004). Efficient Extraction of

Structured Motifs Using Box-links. String Processing and Information Retrieval
Conference. pp. 267–278.

UNIVER
SIT

Y O
F I

BADAN

151

Cawley, S., Wirth, A., Speed, T.(2001). PHAT: A gene finding program for Plasmodium
falciparum. Mol Biochem Parasitol. 2001;118:167–174.

Coello, C.A.C. and Pulido, G.T.(2001). A micro-genetic algorithm for multiobjective

optimization. In Proceedings of Evolutionary multi-criterion optimization, First
international conference, pp 120-128.

Corne, D.W., Knowles, J.D., Oates, M.J (2000). The Pareto envelope-based selection

algorithm for multiobjective optimization. In Proceedings of sixth international
conference on parallel problem solving from Nature, pp 18–20..

Crooks, G.E, Hon, G., Chandonia, J.M., Brenner, S.E. (2004). WebLogo: A sequence

logo generator, Genome Research, 14:1188-1190.

Cui, L. and Miao, J. (2010) Chromatin-mediated epigenetic regulation in the malaria

parasite Plasmodium falciparum. Eukar Cell, 10:1128.

Daniel I. Morariu, Radu G. CreŃulescu, Lucian N. VinŃan (2011). Using Suffix Tree

Document Representation in Hierarchical Agglomerative Clustering. Journal of
World Academy of Science, Engineering and Technology Vol.59 pp 16-34.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.(2002). A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–97.

Del, V., Ernst, P., Falkenhahn, M., Fladerer, C., Glatting, K., Suhai, S. and Hotz-

Wagenblatt, A. (2007). ProtSweep, 2Dsweep and DomainSweep: protein analysis
suite at DKFZ. Nucleic Acids Res. 35, W444–W450.

Deitsch, K. et al.(2007) Mechanisms of gene regulation in Plasmodium. Am J. Trop.

Med. Hyg. 77(2), 201-8.

Dyer, M.D, Murali, T.M. and Sobral, B.W. (2007) Computational prediction of host-

pathogen protein interactions BMC Bioinformatics; Vol. 23; 159-166.

Eden, E., Lipson, D., Yogev, S. and Yakhini, Z. (2007) Discovering motifs in ranked

lists of DNA sequences. PLoS Comput Biol 3(3): 239-243.

Eskin, E. and Pevzner, P. (2002) Finding composite regulatory patterns in DNA

sequences. BMC Bioinformatics, 18 Suppl 1:S354,63-70.

Fatumo, S., Plaisma, K., Mallm, J.P., Schramm, G., Adebiyi, E., Oswald, M., Eils, R.

and Koenig, R.(2009). Estimating novel potential drug targets of Plasmodium
falciparum by analysing the metabolic network of knock-out strains in silico.
ScienceDirect Infection, Genetics and Evolution, 9(3), 351-358.

Fatumo, S., Kitiporn, P., Adebiyi, E., and Koenig, R.(2010). Comparing metabolic

network models based on genomic and automatically inferred enzyme
information from Plasmodium and its human host to define drug targets in-silico.
ScienceDirect Infection, Genetics and Evolution, 10(4), 1-9.

UNIVER
SIT

Y O
F I

BADAN

152

Flueck, C., Bartfai, R., Niederwieser, I., Witmer, K., Alako, B., Moes, S., Bozdech, Z.,
Jenoe,P., Stunnenberg, H. and Voss, T. (2010) A major Role for the Plasmodium
falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology. PLoS Pathog
6(2): e1000784.

Flum, Jörg; Grohe, Martin (2006). Parameterized Complexity Theory. Springer. p. 417.

http://www.springer.com/east/home/generic/search/results?SGWID=5-40109-22-
141358322-0. Retrieved 2010-03-05

Fonseca, C.M. and Fleming, P.J. (1993). Multiobjective Genetic Algorithms. In IEEE

colloquium on ‘Genetic Algorithms for Control Systems Engineering’ (Digest No.
1993/130).

Gardner, M., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R., Carlton, J.M.,

Pain, A. (2002). Genome sequence of the human malaria parasite Plasmodium
falciparum. Nature 419 (6906): 498–511.

Ginsburg, H. (2006) Progress in in-silico functional genomics: the malaria Metabolic

Pathways database. Trend Parasitol. 22, 238-240.

 Hajela, P. lin, C. (1992) Genetic search strategies in multicriterion optimal design.

Struct Optimization;4(2):99–107.

Hertz, F., Hartzell, G. and Stormo, G. (1990) Identification of consensus patterns in

unaligned DNA sequences known to be functionally related. Comput Appl Biosci
6:81-92.

Hertz, F. and Stormo, G. (1999): Identifying DNA and protein patterns with statistically

significant alignments of multiple sequences. BMC Bioinformatics, 15:563-577.

Health, A.P et al. (2010) Finding metabolic pathways using atom tracking. BMC

Bioinformatics, 26 (12), 1548-1555.

Heinemeyer, T. et al., (1998). Databases on transcriptional regulation: TRANSFAC,

TRRD, and COMPEL. Nucl. Acids Res., 26:364–370.

 Holland J.H (1975). Adaptation in Natural and Artifcial Systems. MIT Press.
Hopcroft, J.E., Motwani, R. and Ullman, J.D. (2007) Introduction to Automata Theory,

Languages, and Computation, Addison Wesley, Boston/San Francisco/New York
(page 368)

Horn, J., Nafpliotis, N., Goldberg, D. (1994) A niched Pareto genetic algorithm for

multiobjective optimization. In Proceedings of the first IEEE conference on
evolutionary computation. IEEE world congress on computational intelligence,
27–35.

Hu, J., Li, B., Kihara, D. (2005) Limitations and potentials of current motif discovery

algorithms. Nucleic Acids Res, 33:4899-4913.

Huthmacher et al.(2010). Antimalarial drug target in Plasmpdium falciparum predicted

UNIVER
SIT

Y O
F I

BADAN

153

by stage specific metabolic networks. BMC Systems Biology, 4:120, 1186-1704

Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., Brown, P.O (2001)

Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF.
Nature, 409(6819):533-8.

Jiang, D., Pei, J., Zhang, A. (2003) DHC: A Density-based Hierachical Clustering

Method for Time-series Gene Expression Data. In Proceeding of BIBE2003: 3RD
IEE International Symposium on Bioinformatics and Bioengineering,10-12.

Kaya, M. (2009) MOGAMOD: Multi-Objective Genetic Algorithm for Motif Discovery,

Expert Systems with Applications, 36 (2): 1039-1947.

Keich, U. and Pevzner, P. A. (2002). Finding motifs in the twilight zone BMC

Bioinformatics, 18(10):1374-1381.

Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E.S. 2004. Sequencing

and comparison of yeast species to identify genes and regulatory elements.
Nature 423, 241–254.

Knowles, J.D. and Corne, D.W.(2000). Approximating the nondominated front using the

Pareto archived evolution strategy. Evol Comput;8(2):149–72.

Konak, A., David, W., Coitb, A., Smith, E. (2006). Multi-objective optimization using

genetic algorithms: A tutorial. Reliability Engineering and System Safety 91 pp
992–1007.

Kurtz, S. Reducing the space requirement of suffix trees. Software Practice and

Experience, 29(13):1149-1171, 1999.

Lawrence, C.E. and Reilly, A.A(1990) : An expectation maximization algorithm for the

identification characterization of common sites in unaligned biopolymer
sequences. Proteins, 7:41-51.

Liu, X., Brutlag, D.L., Liu, J.S. (2001). BioProspector: discovering conserved DNA

motifs in upstream regulatory regions of co-expressed genes. Pac. Symp.
Biocomput. 2001;6:127–138.

Liu, F.M., Tsai, J.J., Chen, R.M., Chen, S.N. and Shih, S.H. (2004). FMGA: finding

motifs by genetic algorithm. Fourth IEEE Symposium on Bioinformatics and
Bioengineering , 459.

.Lu, H., Yen, G.G.(2003). Rank-density-based multiobjective genetic algorithm and

benchmark test function study. IEEE Trans Evol Comput ;7(4):325–43.

MacIsaac, K., Wang, T., Gordon, B., Gifford, D., Stromo G, et al. (2006) An improved

map of conserved regulatory sites for Saccharomyces cerevisiae.
BMC Bioinformatics 7.

UNIVER
SIT

Y O
F I

BADAN

154

Makolo, Angela, Ezekiel Adebiyi and Osofisan Adenike (2011). Mining Structured
Motifs with Gene Enrichment Motif Searching on Suffix tree. Journal of
Computer Science and its Applications 18(1) : 71-78.

Makolo, Angela, Ezekiel Adebiyi and Osofisan Adenike (2012). Comparative Analysis

of Similarity Check Mechanism for Motif Extraction. IEEE African Journal of
Computing & ICT. 5(1) : 23-40.

Marsan L, Sagot, M. (2000). Algorithm for extraction of structured motif using a suffix

tree with an application to promoter and regulatory site consensus identification.
J Comput Biol, 7:345-362.

Mendes, N.D., Casimiro, A.C., Santos, P.M., Correia, I.S, Oliveira, A.L., Freitas, A.T.

(2006). MUSA: A Parameter Free Algorithm For the Identification of
Biologically Significant Motifs. Bioinformatics (Oxford Journals) 22(24): 2996-
3002.

Miller, L.H., Baruch, D.I., Marsh, K. and Doumbo, O.K. (2002). The pathogenic basis of

malaria. Nature 415, 673–679.

Modan, K. D. and Ho-Kwok, D. (2007). A survey of DNA motif finding algorithms. In

Proceedings of the Fourth Annual MCBIOS Conference on Computational
Frontiers in Biomedicine. 4(6): 234-248.

Murata, T., Ishibuchi, H. (1995) MOGA: multi-objective genetic algorithms. In

Proceedings of the 1995 IEEE international conference on evolutionary
computation, pp 29-36.

Naresh K.N and Shrish V. (2011).Software Bug Classification using Suffix Tree

Clustering (STC) Algorithm. CiiT International Journal of Data Mining
Knowledge Engineering, Vol. 1, No. 7, pages 28 – 37.

Ortet P, Bastien O (2010). "Where Does the Alignment Score Distribution Shape Come

from?". Evolutionary Bioinformatics 6: 159–187.

Oyelade, J., Ewejobi, I., Brors, B., Eils, R. and Adebiyi, E.(2010): Computational

identification of signaling pathways in Plasmodium falciparum. Elsevier Journal
Infect Genet Evol., 7(10), 991-996

Pavesi, G., Manke, T and Martin, V.(2001). An algorithm for finding sequence of

unknown length . Bioinformatics (Oxford Journals). 17(2), pages S207-S214.

Pevzner P, Sze S. (2000): Combinatorial approaches to finding subtle signals in DNA

sequences. In Proceedings of the Eighth International Conference on Intelligent
Systems on Molecular Biology, San Diego, CA, 269-278.

Pisanti, N., Carvalho, A., Marsan, L. and Sagot, M.F.(2006). RISOTTO: Fast extraction

of motifs with mismatches. In seventh latin American theoretical information
symposium.231-241.

UNIVER
SIT

Y O
F I

BADAN

155

Pizzi, C., Rastas, P. & Ukkonen, E. (2011). Motif Discovery with Compact Approaches -

Design and Applications, IEEE/ACM Trans. Comput. Biology Bioinform. 8(1):
69–79.

Planes, F.J and Beasley, J.E.(2009) Path finding approaches and metabolic pathways.

Discrete Applied Mathematics, 157, 2244-2256.

Ponts, N. et al.(2010). Nucleosome occupancy at transcription start sites in the human

malaria parasite: A hard-wired evolution of virulence? Infect Genet Evol,
10:1016.

Reid J.E. and Wernisch L. (2011). STEME: efficient EM to find motifs in large data sets.

Nucleic Acids 10.1093, 1–10.

Roth, F.P., Hughes, J.D., Estep, P.W. and Church, G.M.(1998) Finding DNA regulatory

motifs within unaligned noncoding sequences clustered by whole-genome mRNA
quantitation. Nature Biotechnology, 16:939-945.

Sandelin, A., et al (2004). Jaspar: an open access database for eukaryotic transcription

factor binding profiles. Nucl. Acids Res., 32:D91–D94

Sagot, M.(1998). Spelling approximate repeated or common Motifs, PLoS

Computational Biology, 18:931-941

Schaffer, J.D.(1985). Multiple objective optimization with vector evaluated genetic

algorithms. In Proceedings of the international conference on genetic algorithm
and their applications, 6:93-98.

Schneider, T.D and Stephens RM. (1990). Sequence Logos: A New Way to Display

Consensus Sequences. Nucleic Acids Res. 18:6097-6100

Schneider, A.G., Mercereau-Puijalon, O.(2005). A new Apicomplexa-specific protein

kinase family: multiple members in Plasmodium falciparum, all with an export
signature. BMC Genomics 6(1),30.

Sinha, S., Tompa, M.(2000). A statistical method for finding transcription factor binding

site. In Proceedings of the Eighth International Conference on Intelligent Systems
on Molecular Biology, San Diego, CA 2000, 344-354.

Sinha S, Blanchette M, Tompa M: PhyME: A probabilistic algorithm for finding
 motifs in sets of orthologous sequences. BMC Bioinformatics 2004 , 5:170.

Srinivas, N. and Deb, K.(1995). Multiobjective optimization using nondominated

sorting in genetic algorithms. J Evol Comput 1994;2(3):221–48.

Teklehaimanot, A., Singer, B., Spielman, A., Tozan, Y., & Schapira, A. (2005). Coming to grips

with malaria in the new millennium. Earthscan. 23-27.

UNIVER
SIT

Y O
F I

BADAN

156

Tompa, M. (2001). Identifying functional elements by comparative DNA sequence

analysis. Genome Res, 11:1143-1144.

Tompa, M., Li, N., Bailey, T., Church, G., De Moor, B., Eskin, E., Favorov, A., Frith,

M., Fu, Y., Kent, W., Makeev, V., Mironov, A., Noble, W., Pavesi, G., Pesole,
G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., Van Helden, J.,
Vandenbogaert, M., Weng, Z., Workman, C., Ye, C. and Zhu, Z. (2005).
Assessing computational tools for the discovery of transcription factor binding
sites. Nat Biotechnol , 23:137-144.

Tomovic, A. and Oakeley, E. J. (2005), Position dependencies in transcription factor

binding sites. Bioinformatics 23(8):933-941

Tompa, M.(1999) An Exact Method for Finding Short Motifs in Sequences with

Application to the Ribosome Binding Site Problem 7th Intl. Conf. Intelligent
Systems for Molecular Biology, 23:33-41.

Tuteja, R. (2007). Malaria - an overview. FEBS Journal, 274, 4670-9.

Vanet, A., Marsan, L., Labigne, A., Sagot, M. (2000). Inferring regulatory elements from

a whole genome. An analysis of Helicobacter pylori σ80 family of promoter
signals. J.Mol.Biol, 297:335.

Van, H. , Andre, B., Collado-Vides, J. (1998). Extracting regulatory sites from the

upstream region of yeast genes by computational analysis of oligonucleotide
frequencies. J Mol Biol , 281:827-842.

Weiner, P.(1973). Linear pattern matching algorithm. Proc. 14th IEEE Symposium on

Switching and Automata Theory 1-11. 190, 193

Wei, Z. and Jensen, S.(2006). GAME: detecting cis-regulatory elements using a genetic

algorithm. Bioinformatics, 22:1577-1584.

Westenberger, S. et al.(2009). Genome-wide nucleosome mapping of Plasmodium

falciparum reveals histone-rich coding and histone-poor intergenic regions and
chromatin remodelling of core and subtelomeric genes. BMC Genomics, 10:610.

Yen, G., and Lu, H. (2003). Dynamic multiobjective evolutionary algorithm: adaptive

cell-based rank and density estimation. IEEE Trans Evol Comput 7(3):253–74.

Young, J., Johnson, J., Benner, C., Yan, F., Chen, K., Roch, K., Zhou, Y., Winzeler, E.

(2008): In silico discovery of transcription regulatory elements in Plasmodium
falciparum. BMC Genomics ,9:70

Yuda, M., Iwanaga, S., Shigenubu, S., Mair, G., Janse, C., Waters, A., Kato, T. and

Kaneko, I.(2009) Identification of a transcription factor in the mosquito-invasive
stage of malaria parasite. Molecular Microbilogy, 71, 1402-1414.

UNIVER
SIT

Y O
F I

BADAN

157

Zang, Y., and Zaki, M. (2006). EXMOTIF: Efficient structured motif extraction.
Algorithms for Molecular Biology. BMC Bioinformatics, 1:21.

Zare-Mirakabad F, Davoodi, P, Ahrabian, H, Nowzari-Dalini, A Sadeghi, M, Goliaei.B

(2009): Finding Motifs Based on Suffix Trie. Journal of Advanced Modelling
Optimization Vol 23: page 20-31.

Zhou Y, Young JA, Santrosyan A, Chen K, Yan SF, Winzeler EA(2005): In silico gene

function prediction using ontology-based pattern identification. Bioinformatics,
21(7):1237-1245.

Zitzler, E., Deb, K., Thiele, L.(2000). Comparison of multiobjective evolutionary

algorithms: empirical results. Evol Comput ;8(2):173–95.
Zitzler, E., Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative

case study and the strength Pareto approach. IEEE Trans Evol Comput .
3(4):257–71.

Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: improving the strength Pareto

evolutionary algorithm. IEEE Trans Evol Comput . 2(3):267–71.

UNIVER
SIT

Y O
F I

BADAN

158

APENDIX A

The predicted motifs

Result of STGEMS for novel motif discovered

Motif Seq
present

No.of occu mismatch Similarity value

GGGGA 1 1 0 5.714286
AACAG 1 1 1 5.142857
ACGAT 2 1 1 5.142857
AGAGT 1 1 1 5.142857
ATTAC 1,2,3,7 4 3 0.685714
GAAGT 1,3,4 3 2 2.742857
TGATG 1,6 2 1 6.857143
ATTAG 1,5 2 1 6.857143
GCTAC 5 1 0 5.714286
AATCA 5 1 0 5.714286
GTCAA 6,7 2 0 7.142857
AGAGG 1,5 2 1 6.857143
ATACC 1,7 2 1 6.857143
GCCTG 4 1 0 5.714286
AGAGC 4 1 0 5.714286
AGAGA 1,3,7 3 2 2.742857
ATACT 6 1 0 5.714286
GTGCA 5,6 2 0 7.142857
ATGAC 2,7 2 1 6.857143
TCTCA 5 1 0 5.714286
TCTCC 1,5 2 1 6.857143
ATGAG 3 1 1 5.142857
TCCAA 4 1 0 5.714286
TCTCG 5 1 0 5.714286
GTGCT 1 1 1 5.142857

UNIVER
SIT

Y O
F I

BADAN

159

TGTGC 3,4,5,6 4 1 2.057143
CAGAA 1 1 1 5.142857
ATGAT 1,5,7 3 1 3.771429
TCTCT 3,5,7 3 1 3.771429
TGTGG 5,6 2 0 7.142857
CCATG 6 1 0 5.714286
CGCTA 5 1 0 5.714286
CAACT 1,4,7 3 1 3.771429
TCCAT 7 1 0 5.714286
TAGGT 2,3 2 2 3.428571
CAACG 4 1 0 5.714286
CATTA 5 1 0 5.714286
TAGGG 6 1 0 5.714286
CGCTT 3 1 1 5.142857
CAACA 1,2,4,5 4 2 1.714286
CGTAC 1 1 1 5.142857
CATTG 2,4,5 3 1 3.771429
TAGGA 2,4,5 3 1 3.771429
TAGGC 6 1 0 5.714286
CGTAA 7 1 0 5.714286
CGACA 1 1 1 5.142857
CACTT 7 1 0 5.714286
CGACC 2 1 1 5.142857
TCGCT 3 1 1 5.142857
TGGGG 6 1 0 5.714286
TTTCC 2,3,7 3 2 2.742857
CACTG 3,4 2 1 6.857143
TTCAA 4 1 0 5.714286
TTCAC 2,4 2 1 6.857143
TGGGT 1 1 1 5.142857
CCTGA 4,6 2 0 7.142857
TTCAG 4 1 0 5.714286
CACTA 7 1 0 5.714286
CTATA 1,4 2 1 6.857143
CTATG 2,6 2 1 6.857143
CCTGT 1,2,3 3 3 0.685714
ACTTA 1,2 2 2 3.428571
ACTTC 5,7 2 0 7.142857
CTATT 1,5,6 3 1 3.771429
TTGCC 2 1 1 5.142857
ACTTT 1,3,4,6 4 2 1.714286
GTTCG 3 1 1 5.142857
GTTCC 1,4 2 1 6.857143
GTTCA 5,6 2 0 7.142857
TTGCT 2 1 1 5.142857
ACGTA 1,7 2 1 6.857143
CTTGA 6 1 0 5.714286
ACAAG 1 1 1 5.142857
TAATG 5 1 0 5.714286
TAATC 5,6 2 0 7.142857

UNIVER
SIT

Y O
F I

BADAN

160

GGTGT 3 1 1 5.142857
ACGTT 2,4,5 3 1 3.771429
CTTGT 1,6,7 3 1 3.771429
GACAA 1,2,4,5,7 5 2 1.142857
GACAC 6 1 0 5.714286
AACCT 2 1 1 5.142857
GGTGC 1 1 1 5.142857
ACCGA 4,5 2 0 7.142857
GGTGA 5 1 0 5.714286
AAAGG 5,6 2 0 7.142857
AGGCA 6 1 0 5.714286
CTGGA 1 1 1 5.142857
GATCT 7 1 0 5.714286
AACCG 5 1 0 5.714286
GACAT 1,7 2 1 6.857143
GTCTT 2 1 1 5.142857
GCTCA 1,5 2 1 6.857143
ACCGT 5 1 0 5.714286
GAGCA 4 1 0 5.714286
GTACC 7 1 0 5.714286
ATAAC 1,4,7 3 1 3.771429
GTACG 1,2 2 2 3.428571
ATGTC 6,7 2 0 7.142857
ATAAG 2,3,4,5,6 5 2 1.142857
ATGTG 1,2,5,7 4 2 1.714286
TCCTA 1,3,6,7 4 2 1.714286
TCCTG 6 1 0 5.714286
GTACT 1,3,4,7 4 2 1.714286
TCTAA 1,2,3 3 3 0.685714
TCCTT 2,4 2 1 6.857143
TCACA 5 1 0 5.714286
TCACC 4 1 0 5.714286
TCACG 2 1 1 5.142857
CGTTA 2,6 2 1 6.857143
TCTAT 1,2,3,4,7 5 3 0.571429
CGTTC 2 1 1 5.142857
TGCCC 2 1 1 5.142857
CGTTG 3,4 2 1 6.857143
TGAGA 3,7 2 1 6.857143
AGATT 1,6,7 3 1 3.771429
ATCGT 3 1 1 5.142857
TCACT 5,7 2 0 7.142857
TGAGG 7 1 0 5.714286
TATCA 1,2,3,4,5 5 3 0.571429
CGTTT 3 1 1 5.142857
TATCC 3,6 2 1 6.857143
TGCCT 4 1 0 5.714286
TCGAA 5,7 2 0 7.142857
TTCTC 1,7 2 1 6.857143
AGATA 1,6 2 1 6.857143

UNIVER
SIT

Y O
F I

BADAN

161

CACAC 1,7 2 1 6.857143
TGAGT 3 1 1 5.142857
CACAA 1 1 1 5.142857
CGAAA 1,7 2 1 6.857143
CGGTA 4 1 0 5.714286
TATCT 1,2,6,7 4 2 1.714286
CGAAC 7 1 0 5.714286
TACGT 1,2,7 3 2 2.742857
TCGAT 7 1 0 5.714286
CGAAG 1 1 1 5.142857
TTTAC 1,7 2 1 6.857143
TTTAG 7 1 0 5.714286
TACGG 3 1 1 5.142857
TTACA 1,3,7 3 2 2.742857
CGAAT 4,5 2 0 7.142857
TTACC 1,3,5 3 2 2.742857
CCCCA 2 1 1 5.142857
TTACG 3,7 2 1 6.857143
TTACT 1,3,4,6,7 5 2 1.142857
TAGTT 1,2,4,5,7 5 2 1.142857
ACATC 1,4,6,7 4 1 2.057143
TTGAG 3 1 1 5.142857
CATGA 3,4 2 1 6.857143
ACATG 3,4,7 3 1 3.771429
TAAAG 5 1 0 5.714286
CATGC 5,7 2 0 7.142857
TAGTA 3,4,6 3 1 3.771429
CATGG 5,6 2 0 7.142857
TTGAT 3,4,6 3 1 3.771429
CATGT 1,5 2 1 6.857143
AAGGT 3,6 2 1 6.857143
AGTAC 4,5 2 0 7.142857
GGCAC 6 1 0 5.714286
AGTAG 1 1 1 5.142857
CTCCC 1,5 2 1 6.857143
CTAGA 4 1 0 5.714286
AAGGA 3,5 2 1 6.857143
AGTAT 1,6,7 3 1 3.771429
GATAA 2,7 2 1 6.857143
GACTT 3,6 2 1 6.857143
GATAC 7 1 0 5.714286
ACTGA 3 1 1 5.142857
CTCCT 5 1 0 5.714286
GAACA 1,6 2 1 6.857143
GAACC 1 1 1 5.142857
ATATC 1 1 1 5.142857
GCAGA 1 1 1 5.142857
GCCCC 2 1 1 5.142857
AGGAA 3,4,7 3 1 3.771429
ACTGT 4 1 0 5.714286

UNIVER
SIT

Y O
F I

BADAN

162

AATGG 1,3,5 3 2 2.742857
GAACT 7 1 0 5.714286
AGCGT 6 1 0 5.714286
GAGAA 1,3 2 2 3.428571
AGGAT 2 1 1 5.142857
GTGTA 4 1 0 5.714286
GTAAC 5 1 0 5.714286
TCTTA 2,6,7 3 1 3.771429
GTAAG 7 1 0 5.714286
TCTTC 5,6 2 0 7.142857
TCTTG 6 1 0 5.714286
ACGGG 3 1 1 5.142857
GTAAT 1,2,4 3 2 2.742857
GTGTT 3,4,6 3 1 3.771429
GGTTT 2,3,5,7 4 2 1.714286
ACGGT 4 1 0 5.714286
AGAAT 1,6 2 1 6.857143
ATTGA 3,7 2 1 6.857143
ATTGG 3,7 2 1 6.857143
TCAAA 1,2 2 2 3.428571
TCGTA 5 1 0 5.714286
TCAAC 1,4 2 1 6.857143
GGTTA 1,6 2 1 6.857143
TCGTC 6 1 0 5.714286
TCGTG 2 1 1 5.142857
AGAAC 6 1 0 5.714286
TGCAC 1,3,4,5 4 2 1.714286
CGATA 2,5 2 1 6.857143
CACCT 4 1 0 5.714286
TCAAT 3 1 1 5.142857
TCGTT 2,3 2 2 3.428571
TGTCT 2 1 1 5.142857
ATGGA 1 1 1 5.142857
CAAGA 1 1 1 5.142857
ATGGG 1 1 1 5.142857
ATGGC 3 1 1 5.142857
CAAGC 6 1 0 5.714286
CACCA 1,5,7 3 1 3.771429
CGATT 7 1 0 5.714286
TGGCG 3 1 1 5.142857
ATGGT 3,5,6 3 1 3.771429
TCCGT 3 1 1 5.142857
TAGAT 1,4,6 3 1 3.771429
CCTCA 1,3 2 2 3.428571
TTAAC 1,3,6 3 2 2.742857
TTGTC 2,7 2 1 6.857143
TTAAG 2,4 2 1 6.857143
TTGTG 1,3,4 3 2 2.742857
TAGAG 1,3 2 2 3.428571
TAGAC 1,4 2 1 6.857143

UNIVER
SIT

Y O
F I

BADAN

163

TAACT 1,6 2 1 6.857143
CCCAT 1,2 2 2 3.428571
GTTGT 1,6 2 1 6.857143
CGTGT 2 1 1 5.142857
AGTTA 2,3 2 2 3.428571
AGTTC 1 1 1 5.142857
TAACG 5 1 0 5.714286
GTTGG 7 1 0 5.714286
TAACC 2,5,6 3 1 3.771429
TTCGC 3 1 1 5.142857
TAACA 1,2,3,4,7 5 3 0.571429
GATTA 1,3,6,7 4 2 1.714286
TACTT 1,2,6,7 4 2 1.714286
GATTC 4,7 2 0 7.142857
AGTTT 5,7 2 0 7.142857
TTCGT 5,6 2 0 7.142857
GATTG 4,6 2 0 7.142857
CTTCA 6 1 0 5.714286
CTTCC 6 1 0 5.714286
CTCAA 1 1 1 5.142857
GGACA 5 1 0 5.714286
CGGGT 3 1 1 5.142857
TACTC 1,4,6 3 1 3.771429
GATTT 1,3,7 3 2 2.742857
AGGTA 2 1 1 5.142857
TACTA 4,7 2 0 7.142857
AGGTG 6 1 0 5.714286
CTTCT 7 1 0 5.714286
AACGT 1,4 2 1 6.857143
GAGTA 1,2,3 3 3 0.685714
GAAAC 1,2,5 3 2 2.742857
AGGTT 1 1 1 5.142857
GTATC 4 1 0 5.714286
GAAAG 1,6,7 3 1 3.771429
GTATG 4,7 2 0 7.142857
GGGAA 6 1 0 5.714286
GGGAC 6 1 0 5.714286
ACAGA 7 1 0 5.714286
AACGG 4 1 0 5.714286
AACGC 5 1 0 5.714286
AACGA 2 1 1 5.142857
GGTAT 4 1 0 5.714286
ACAGT 1,4 2 1 6.857143
AAGTT 3 1 1 5.142857
GACGA 1 1 1 5.142857
GGTAC 3 1 1 5.142857
GGTAA 2,3,7 3 2 2.742857
AAGTG 1,3,5,6,7 5 2 1.142857
TCATG 1 1 1 5.142857
TGCTA 2 1 1 5.142857

UNIVER
SIT

Y O
F I

BADAN

164

TGCTC 1 1 1 5.142857
GCATT 1 1 1 5.142857
AGACT 3 1 1 5.142857
TCATT 5,6,7 3 0 3.885714
ATCCA 7 1 0 5.714286
TGTAA 1,4 2 1 6.857143
AGACA 1,4,7 3 1 3.771429
TGCTT 1,2,6 3 2 2.742857
AGACG 1 1 1 5.142857
TGACA 2,7 2 1 6.857143
ATCCT 1,3,6 3 2 2.742857
AATTG 1,5,6 3 1 3.771429
ATAGT 1 1 1 5.142857
GTGGA 5 1 0 5.714286
GTGGG 6 1 0 5.714286
TCTGG 1 1 1 5.142857
TTATC 1,2,3,7 4 3 0.685714
AGCTC 5 1 0 5.714286
TGGAA 1,3,5 3 2 2.742857
CCCTC 1,3 2 2 3.428571
TGGAC 5 1 0 5.714286
TTATG 6,7 2 0 7.142857
GTGGT 4 1 0 5.714286
TAGCT 5 1 0 5.714286
CCTAA 1,5,6 3 1 3.771429
TGGAT 1,3,7 3 2 2.742857
CCCTT 5 1 0 5.714286
TAGCA 7 1 0 5.714286
CCTAT 3,7 2 1 6.857143
CAATT 5,6,7 3 0 3.885714
CGAGA 3 1 1 5.142857
CATCA 4 1 0 5.714286
CCGAA 4 1 0 5.714286
CATCC 1 1 1 5.142857
TTTGG 2,4,6 3 1 3.771429
TACAG 4,7 2 0 7.142857
CTCTA 5,7 2 0 7.142857
CGAGT 2 1 1 5.142857
CTCTC 3 1 1 5.142857
TACAC 1,2,3,5,7 5 3 0.571429
CATCG 7 1 0 5.714286
CATCT 6 1 0 5.714286
CCGAT 5 1 0 5.714286
CTTAA 3 1 1 5.142857
CTCTT 3,4,5,6 4 1 2.057143
CTTAC 3,5 2 1 6.857143
GGAAA 1,3,4,6,7 5 2 1.142857
CTTAG 3,6 2 1 6.857143
GAATG 1,3,4 3 2 2.742857
TTGGA 3 1 1 5.142857

UNIVER
SIT

Y O
F I

BADAN

165

CTACA 7 1 0 5.714286
GGAAG 5 1 0 5.714286
GGGTG 1,5 2 1 6.857143
CTACG 5 1 0 5.714286
CTTAT 1 1 1 5.142857
GAATT 1,3,4,5 4 2 1.714286
ACTCA 1 1 1 5.142857
GGAAT 3 1 1 5.142857
GGGTT 3 1 1 5.142857
TTGGT 2,4,6 3 1 3.771429
ACTCC 5 1 0 5.714286
GTTTT 1,6 2 1 6.857143
AAGAT 1,2,4,6 4 2 1.714286
AGTGA 1 1 1 5.142857
AGTGC 3,4,6 3 1 3.771429
GGCGA 3 1 1 5.142857
ACTCT 3,4,5,6 4 1 2.057143
GTTTG 2 1 1 5.142857
AGTGG 4 1 0 5.714286
ACCAT 1 1 1 5.142857
GTTTA 2,4,5,7 4 1 2.057143
AAGAC 1,3,7 3 2 2.742857
GATGA 1,2,3,6 4 3 0.685714
AGTGT 5,7 2 0 7.142857
ACGCA 2,7 2 1 6.857143
AAACT 3,7 2 1 6.857143
GATGG 3 1 1 5.142857
AAACG 1,2,4 3 2 2.742857
GCAAA 3,4,5,7 4 1 2.057143
GATGT 3 1 1 5.142857
TGTTG 1,3,4,6,7 5 2 1.142857
AAACC 2 1 1 5.142857
ACGCT 5 1 0 5.714286
AGGGA 6 1 0 5.714286
ATTCC 3,4 2 1 6.857143
AGCAT 6 1 0 5.714286
AATAC 1,6 2 1 6.857143
ATCAA 1,2,3,5 4 3 0.685714
AACTT 1 1 1 5.142857
TGTTT 1,5,6,7 4 1 2.057143
ATTCG 5,6 2 0 7.142857
GAGGG 5 1 0 5.714286
AGCAG 1 1 1 5.142857
GCTTG 1 1 1 5.142857
AGCAC 4 1 0 5.714286
AACTC 3 1 1 5.142857
AACTA 1,5 2 1 6.857143
CACGT 1 1 1 5.142857
GAGGT 1 1 1 5.142857
TGGTG 3,6 2 1 6.857143

UNIVER
SIT

Y O
F I

BADAN

166

GCTTC 6 1 0 5.714286
GTAGT 7 1 0 5.714286
TGGTA 7 1 0 5.714286
ATGCC 4 1 0 5.714286
TGGTT 2,5,6,7 4 1 2.057143
CACGC 2,7 2 1 6.857143
TCCCA 1 1 1 5.142857
CCTTG 7 1 0 5.714286
ATGCT 1,2 2 2 3.428571
CCTTT 2,3 2 2 3.428571
TCCCT 1,3,5 3 2 2.742857
TCAGT 4 1 0 5.714286
CAAAG 5,6 2 0 7.142857
CAAAC 1,2 2 2 3.428571
CAGTA 1 1 1 5.142857
TATGG 1,3,7 3 2 2.742857
CCAAC 2 1 1 5.142857
CGTCA 6 1 0 5.714286
CCAAG 7 1 0 5.714286
CGCAA 7 1 0 5.714286
TAAGT 4,5 2 0 7.142857
TACCT 1,5 2 1 6.857143
CCAAT 4,5 2 0 7.142857
CCGTT 3,5 2 1 6.857143
CTTTA 1 1 1 5.142857
CTTTC 1,5 2 1 6.857143
TTCCC 1,3 2 2 3.428571
CATAG 3 1 1 5.142857
TAAGA 3,4,5,6 4 1 2.057143
TTAGA 1,3 2 2 3.428571
TTCCG 3 1 1 5.142857
CTTTG 4,5 2 0 7.142857
TTAGC 6,7 2 0 7.142857
TACCA 1 1 1 5.142857
GGATG 2,3 2 2 3.428571
TTAGG 2,4,5,6 4 1 2.057143
TAAGC 7 1 0 5.714286
TTCCT 2,4,5,7 4 1 2.057143
GGATT 1,7 2 1 6.857143
TTAGT 4,6 2 0 7.142857
ACCTA 5 1 0 5.714286
GTTAT 1,3,4,7 4 2 1.714286
ACCTG 1,2,3 3 3 0.685714
CTGTA 1,2,5 3 2 2.742857
CTAAC 5 1 0 5.714286
CTAAG 5,7 2 0 7.142857
CTGTG 4 1 0 5.714286
GTTAC 1,4,7 3 1 3.771429
ACTAA 2 1 1 5.142857
GTTAA 1,3,6,7 4 2 1.714286

UNIVER
SIT

Y O
F I

BADAN

167

ACCTT 4 1 0 5.714286
ACTAC 7 1 0 5.714286
CTAAT 2,6 2 1 6.857143
ACACC 5 1 0 5.714286
ACACG 1,7 2 1 6.857143
ACTAT 1,2,5 3 2 2.742857
GCGAG 3 1 1 5.142857
CTCGA 5 1 0 5.714286
ACACT 3,5,6,7 4 1 2.057143
AAGCA 1,4,6,7 4 1 2.057143
GCACT 4,6 2 0 7.142857
ACGAC 1,2 2 2 3.428571
GACCA 2 1 1 5.142857
ATCTA 2,7 2 1 6.857143
GAAGC 1,4 2 1 6.857143
ATCTG 1 1 1 5.142857
GCACC 1,4,5,7 4 1 2.057143
AATCT 4,6,7 3 0 3.885714
GCACA 3,7 2 1 6.857143

APENDIX B

Some of the predicted structured motifs by STGEMS

Structured Motif

GGGGA_ACGAT

AACAG_ATTAG

ACGAT_GCTAC

AGAGT_ATTAG

ATTAC_GCTAC

UNIVER
SIT

Y O
F I

BADAN

168

GAAGT_AATCT

TGATG_ATTAG

ATTAG_GCCTG

GCTAC_TCTCC

AATCA_ATACT

GTCAA_GAAGT

AGAGG_GCCTG

ATACC_GCCTG

GCCTG_ATACT

AGAGC_GAAGT

AGAGA_TCTCC

ATACT_GAAGT

GTGCA_GCGAG

ATGAC_GAAGT

TCTCA_ACACT

TCTCC_GCGAG

ATGAG_GCCTG

TCCAA_ATACT

TCTCG_ACACT

GTGCT_TCTCC

TGTGC_GCCTG

UNIVER
SIT

Y O
F I

BADAN

169

APPENDIX C

APENDIX C : SOURCE PROGRAM

UNIVER
SIT

Y O
F I

BADAN

170

APENDIX C : SOURCE PROGRAM

Program Extract Gene-Id

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>

#define LINE 80

void main(){
 FILE *fp1;
 char buffer[LINE], hold[LINE];
 int len, i, j;
 //strcpy(input, "TAATATTATTCTTTATTCGGTG");
 //strcpy(input2, "TAATAAAGCTCTTCGCTCGGTC");

 if((fp1 = fopen("Pf3D7genes-fasta.txt", "r")) == NULL)
 fprintf(stderr, "Error opening file\n");

 while(fgets(buffer, LINE-1, fp1) != NULL){
 len=strlen(buffer);
 if(buffer[0]=='>'){
 i=5; j=0;
 while(buffer[i]!=' '){
 hold[j++]=buffer[i];
 i++;
 }
 hold[j]='\0';
 printf("%s\n", hold);
 }
 }
 fclose(fp1);
}

UNIVER
SIT

Y O
F I

BADAN

171

/*
Author: Makolo, June 2011
This program implements suffix tree part of STGEMS. It
modified the original program by Stefan Kurtz (C) 1998
 * This ST construction use Linked list to acomplish
space afficiency as proposed by Kurtz
 * It construct the ST for any input submitted
*/

//\FILEINFO{mcc.c}

//\Ignore{
#include "bool.h"
#include "intbits.h"
#include "choice.h"
#include "mccdbg.pr"
#include "space.pr"
#include "showstr.pr"
#include "showibit.pr"
#define DEBUGDEFAULT(X)
DEBUG1(4,">%s\n",X);\DEBUGCODE(5,SHOWSTATE(state))
#define MEGABYTES(V) ((double) (V)/((1 << 20) - 1))
#define VALIDINIT 0
#ifdef DEBUG
static void showvalues(void)
{
 SHOWVAL(SMALLINTS);
 SHOWVAL(LARGEINTS);
 SHOWVAL(MAXDISTANCE);
#if defined(MCCLG) || defined(MCCST)
 SHOWVAL(SMALLDEPTH);
#endif
 SHOWVAL(MAXTEXTLEN);
}
#endif
//}
/*
 This file contains code for the improved linked list
implementation,
 as described in \cite{KUR:1998,KUR:BAL:1999}. It can be
compiled with two options:
 \begin{itemize}\item for short strings of length \(\leq
2^{21}-1=2\) megabytes,we recommend the option

UNIVER
SIT

Y O
F I

BADAN

172

\texttt{MCCST}. This results in a representation which
requires
 \(2\) integers for each small node, and three integers for
each large node.
 See also the header file \texttt{mccdefST.h}. \item
 for long strings of length \(\leq 2^{27}-1=12\) megabytes,
we
 recommend the option \texttt{MCCLG}. This results in a
representation which requires
 \(2\) integers for each small node, and four integers for
each large node.
 See also the header file \texttt{mccdefLG.h}.
 \end{itemize}
*/
//\subsection{Space Management}
/*
 For a string of length \(n\) we initially allocate space
for
 \(\texttt{STARTFACTOR}\cdot\texttt{SMALLINTS}\cdot n\)
integers to store
 the branching nodes. This usually suffices for most cases.
In case we need
 more integers, we allocate space for
\(\texttt{ADDFACTOR}\cdot n\)
 (at least 16) extra branching nodes.
*/
#define STARTFACTOR 0.5
#define ADDFACTOR 0.05
#define MINEXTRA 16
/*
 These variables allow to check how many integers are
allocated for
 the branching nodes, without referring to \texttt{struct
MccState}.
 \texttt{firstallocated} refers to the last address, such
that at
 least \texttt{LARGEINTS} integers are available. So a
large node can
 be stored in the available amount of space.
*/

static Uint currentbranchtabsize = 0,
 *firstnotallocated;

/*
 \texttt{ALLOCFUNC} calls the functions which initially
allocate the space
 for the branching nodes and for the leafs of the suffix
tree. This function
 is exported.
*/

UNIVER
SIT

Y O
F I

BADAN

173

void ALLOCFUNC(Uint maxblocksize)
{
 if((currentbranchtabsize = (STARTFACTOR *
MULTBYSMALLINTS(maxblocksize+1))) < MINEXTRA)
 {
 currentbranchtabsize = MULTBYSMALLINTS(MINEXTRA);
 }
 DEBUG1(2,"#malloc(%u)\n",currentbranchtabsize);
 allocspace(LEAFBLOCK,sizeof(Uint),maxblocksize+2);

allocspace(ROOTCHILDRENBLOCK,sizeof(Uint),LARGESTCHARINDEX
+ 1);

allocspace(BRANCHBLOCK,sizeof(Uint),currentbranchtabsize);
}
/*
 Before a new node is stored, we check if there is enough
space available.
 If not, the space is enlarged by a small amount. Since
some global pointers
 directly refer into the table, these have to be adjusted
after reallocation.
*/
static void spaceforbranchtab(struct MccState *state)
{
 Uint extra, tmpheadnode, tmpchainstart;
 if(state->nextfreebranch >= firstnotallocated)
 {
 if((extra = (ADDFACTOR * (MULTBYSMALLINTS(state-
>textlen+1)))) < MINEXTRA)
 {
 extra = MULTBYSMALLINTS(MINEXTRA);
 }
 DEBUG1(2,"#all suffixes up to suffix %u have been
processed\n",state->nextfreeleafnum);
 DEBUG1(2,"#current space peak
%f\n",MEGABYTES(getspacepeak()));
 DEBUG1(2,"#to get %u extra space do ",extra);
 currentbranchtabsize += extra;
 DEBUG1(2,"realloc(%u)\n",currentbranchtabsize);

allocspace(BRANCHBLOCK,sizeof(Uint),currentbranchtabsize);
 tmpheadnode = NODEADDRESS(state->headnode);
 tmpchainstart = NODEADDRESS(state->chainstart);
 state->branchtab = (Uint *) reusespace(BRANCHBLOCK);
 state->undefchainstart = state->branchtab + LARGEINTS *
state->textlen;
 state->nextfreebranch = state->branchtab + state-
>nextfreebranchnum;
 state->headnode = state->branchtab + tmpheadnode;

UNIVER
SIT

Y O
F I

BADAN

174

 state->chainstart = state->branchtab + tmpchainstart;
 firstnotallocated = state->branchtab +
currentbranchtabsize - LARGEINTS;
 }
}

//\subsection{Initializing and Retrieving Headpositions,
Depth, and Suffixlinks}

/*
 We have three functions to initialize and retrieve head
positions, depth, and
 suffix links. The implementation depends on the bit
layout.
 \begin{enumerate}
 \item
 The function \emph{setdepthnum} stores the \emph{depth}
and the
 \emph{head position} of a new large node.
 \item
 The function \emph{setsuffixlink} stores the
\emph{suffixlink}
 of a new large node.
 \item
 The function \emph{getlargelink} retrieves the
\emph{suffixlink}
 of a large node, which is referenced by \emph{headpos}.
 \end{enumerate}
*/

#ifdef MCCST

static void setdepthheadpos(struct MccState *state,Uint
depth,Uint headpos)
{
 DEBUG2(4,"setdepth(%u)=%u\n",state-
>nextfreebranchnum,depth);
 DEBUGCODE(1,state->maxset = state->nextfreebranch + 2;
 if(ISSMALLDEPTH(depth))
 {
 *(state->nextfreebranch+1) |= SMALLDEPTHMARK;
 } else
 {
 *(state->nextfreebranch)
 = (*(state->nextfreebranch) & (MAXINDEX | LARGEBIT)) |
 ((depth << 11) & (7 << 29));
 *(state->nextfreebranch+1)
 = (*(state->nextfreebranch+1) & (MAXINDEX | NILBIT)) |
 ((depth << 14) & (127 << 25));
 }
 *(state->nextfreebranch+2) = (depth << 21) | headpos;

UNIVER
SIT

Y O
F I

BADAN

175

}

static void setsuffixlink(struct MccState *state,Uint
slink)
{
 (state->setlink) = ((state->setlink) & (255 << 24)) |
(slink | NILBIT);
 if(ISSMALLDEPTH(state->currentdepth))
 {
 *(state->nextfreebranch+1) |= (slink << 25);
 if(state->nextfreebranchnum & (~((1 << 7) - 1)))
 {
 *(state->nextfreebranch) |= ((slink << 17) & (255 <<
24));
 if(state->nextfreebranchnum & (~((1 << 15) - 1)))
 {
 state->leafbrother[state->nextfreeleafnum-1] |=
 ((slink << 9) & (255 << 24));
 }
 }
 }
}

static Uint getlargelink(struct MccState *state)
{
 SYMBOL secondchar;
 Uint succ, slink, headnodenum;
 DEBUGCODE(1,state->largelinks++);
 if(state->headnodedepth == 1)
 {
 return ROOT; // link refers to the root
 }
 if(state->headnodedepth == 2) // determine second
character of edge
 {
 if(state->headend == NULL)
 {
 secondchar = *(state->tailptr-1);
 } else
 {
 secondchar = *(state->tailptr - (state->headend -
state->headstart + 2));
 }
 return GETBRANCHINDEX(state->rootchildren[(Uint)
secondchar]); // this leads to the suffix link node
 }
 if(ISSMALLDEPTH(state->headnodedepth)) // retrieve link
in constant time
 {
 slink = *(state->headnode+1) >> 25;
 headnodenum = NODEADDRESS(state->headnode);

UNIVER
SIT

Y O
F I

BADAN

176

 if(headnodenum & (~((1 << 7) - 1)))
 {
 slink |= ((*(state->headnode) & (255 << 24)) >> 17);
 if(headnodenum & (~((1 << 15) - 1)))
 {
 slink |= ((state->leafbrother[GETHEADPOS(state-
>headnode)]
 & (255 << 24)) >> 9);
 }
 }
 return slink;
 }
 succ = state->onsuccpath; // start at node on successor
path
 DEBUGCODE(1,state->largelinklinkwork++);
 while(!NILPTR(succ)) // linear retrieval of suffix
links
 {
 DEBUGCODE(1,state->largelinkwork++);
 if(ISLEAF(succ))
 {
 succ = LEAFBROTHERVAL(state-
>leafbrother[GETLEAFINDEX(succ)]);
 } else
 {
 succ = GETBROTHER(state->branchtab +
GETBRANCHINDEX(succ));
 }
 DEBUGCODE(1,state->largelinkwork++);
 }
 return succ & MAXINDEX; // get only the index
}
#endif

#ifdef MCCLG

static void setdepthheadpos(struct MccState *state,Uint
depth,Uint headpos)
{
 if(ISSMALLDEPTH(depth))
 {
 *(state->nextfreebranch+2) = depth | SMALLDEPTHMARK;
 } else
 {
 *(state->nextfreebranch+2) = depth;
 }
 *(state->nextfreebranch+3) = headpos;
}

static void setsuffixlink(struct MccState *state,Uint
slink)

UNIVER
SIT

Y O
F I

BADAN

177

{
 Uint slinkhalf = slink >> 1;
 (state->setlink) = ((state->setlink) & EXTRAPATT) |
(slink | NILBIT);
 if(ISSMALLDEPTH(state->currentdepth))
 {
 *(state->nextfreebranch+2)
 |= ((slinkhalf << SMALLDEPTHBITS) & LOWERLINKPATT);
 if(state->nextfreebranchnum & (~LOWERLINKSIZE))
 {
 *(state->nextfreebranch+3) |= ((slinkhalf <<
SHIFTMIDDLE) & MIDDLELINKPATT);
 if(state->nextfreebranchnum & HIGHERSIZE)
 {
 state->leafbrother[state->nextfreeleafnum-1] |=
 ((slinkhalf << SHIFTHIGHER) & EXTRAPATT);
 }
 }
 }
}

static Uint getlargelink(struct MccState *state)
{
 SYMBOL secondchar;
 Uint succ, slinkhalf, headnodenum;
 DEBUGCODE(1,state->largelinks++);
 if(state->headnodedepth == 1)
 {
 return ROOT; // link refers to root
 }
 if(state->headnodedepth == 2) // determine second char
of egde
 {
 if(state->headend == NULL)
 {
 secondchar = *(state->tailptr-1);
 } else
 {
 secondchar = *(state->tailptr - (state->headend -
state->headstart + 2));
 }
 return state->rootchildren[(Uint) secondchar];
 }
 if(ISSMALLDEPTH(state->headnodedepth)) // retrieve link
in constant time
 {
 slinkhalf = (*(state->headnode+2) & LOWERLINKPATT) >>
SMALLDEPTHBITS;
 headnodenum = NODEADDRESS(state->headnode);
 if(headnodenum & (~LOWERLINKSIZE))
 {

UNIVER
SIT

Y O
F I

BADAN

178

 slinkhalf |= ((*(state->headnode+3) & MIDDLELINKPATT)
>> SHIFTMIDDLE);
 if(headnodenum & HIGHERSIZE)
 {
 slinkhalf
 |= ((state->leafbrother[GETHEADPOS(state-
>headnode)] & EXTRAPATT)
 >> SHIFTHIGHER);
 }
 }
 return slinkhalf << 1;
 }
 succ = state->onsuccpath;
 DEBUGCODE(1,state->largelinklinkwork++);
 while(!NILPTR(succ)) // linear retrieval of suffix link
 {
 DEBUGCODE(1,state->largelinkwork++);
 if(ISLEAF(succ))
 {
 succ = LEAFBROTHERVAL(state-
>leafbrother[GETLEAFINDEX(succ)]);
 } else
 {
 succ = GETBROTHER(state->branchtab +
GETBRANCHINDEX(succ));
 }
 DEBUGCODE(1,state->largelinkwork++);
 }
 return succ & MAXINDEX; // get only the index
}
#endif

//\subsection{Insertion of Nodes}

/*
 The function \emph{insertleaf} inserts a leaf and a
corresponding leaf
 edge outgoing from the current \emph{headnode}.
 \emph{insertprev} refers to the node to the left of the
leaf to be inserted.
 If the leaf is the first child, then \emph{insertprev} is
\texttt{UNDEFINED}.
*/

static void insertleaf (struct MccState *state)
{
 Uint *ptr, newleaf = MAKELEAF(state->nextfreeleafnum);
 DEBUGDEFAULT("insertleaf");
 DEBUGCODE(1,state->insertleafcalls++);
 if(state->headnodedepth == 0) // head is
the root

UNIVER
SIT

Y O
F I

BADAN

179

 {
 if(state->tailptr != state->sentinel) // no \$-
edge initially
 {
 state->rootchildren[(Uint) *(state->tailptr)] =
newleaf;
 *(state->nextfreeleafptr) = VALIDINIT;
 DEBUG2(4,"%c-edge from root points to leaf
%u\n",*(state->tailptr),state->nextfreeleafnum);
 }
 } else
 {
 if (state->insertprev == UNDEFINED) // newleaf = first
child
 {
 *(state->nextfreeleafptr) = GETCHILD(state-
>headnode);
 SETCHILD(state->headnode,newleaf);
 } else
 {
 if(ISLEAF(state->insertprev)) // previous node is
leaf
 {
 ptr = state->leafbrother + GETLEAFINDEX(state-
>insertprev);
 *(state->nextfreeleafptr) = LEAFBROTHERVAL(*ptr);
 SETLEAFBROTHER(ptr,newleaf);
 } else // previous node is branching node
 {
 ptr = state->branchtab + GETBRANCHINDEX(state-
>insertprev);
 *(state->nextfreeleafptr) = GETBROTHER(ptr);
 SETBROTHER(ptr,newleaf);
 }
 }
 }
 RECALLSUCC(newleaf); // recall node on successor path
of \emph{headnode}
 state->nextfreeleafnum++;
 state->nextfreeleafptr++;
}
/*
 The function \emph{insertbranch} inserts a branching node
and splits
 the appropriate edges, according to the canonical
location of the current
 head. \emph{insertprev} refers to the node to the left of
the branching
 node to be inserted. If the branching node is the first
child, then

UNIVER
SIT

Y O
F I

BADAN

180

 \emph{insertprev} is \texttt{UNDEFINED}. The edge to be
split ends
 in the node referred to by \emph{insertnode}.
*/

static void insertbranchnode(struct MccState *state)
{
 Uint *ptr, *insertnodeptr, *insertleafptr,
insertnodeptrbrother;
 DEBUGDEFAULT("insertbranchnode");
 spaceforbranchtab(state);
 if(state->headnodedepth == 0) // head is the root
 {
 state->rootchildren[(Uint) *(state->headstart)] =
MAKEBRANCHADDR(state->nextfreebranchnum);
 *(state->nextfreebranch+1) = VALIDINIT;
 DEBUG2(4,"%c-edge from root points to branch node with
address %u\n",*(state->headstart),state-
>nextfreebranchnum);
 } else
 {
 if(state->insertprev == UNDEFINED) // new branch =
first child
 {
 SETCHILD(state->headnode,MAKEBRANCHADDR(state-
>nextfreebranchnum));
 } else
 {
 if(ISLEAF(state->insertprev)) // new branch = right
brother of leaf
 {
 ptr = state->leafbrother + GETLEAFINDEX(state-
>insertprev);
 SETLEAFBROTHER(ptr,MAKEBRANCHADDR(state-
>nextfreebranchnum));
 } else // new branch = brother of
branching node
 {
 SETBROTHER(state->branchtab + GETBRANCHINDEX(state-
>insertprev),
 MAKEBRANCHADDR(state-
>nextfreebranchnum));
 }
 }
 }
 if(ISLEAF(state->insertnode)) // split edge is leaf
edge
 {
 DEBUGCODE(1,state->splitleafedge++);
 insertleafptr = state->leafbrother +
GETLEAFINDEX(state->insertnode);

UNIVER
SIT

Y O
F I

BADAN

181

 if (state->tailptr == state->sentinel ||
 *(state->headend+1) < *(state->tailptr))
 {
 SETNEWCHILDBROTHER(MAKELARGE(state->insertnode), //
first child=oldleaf
 LEAFBROTHERVAL(*insertleafptr));
// inherit brother
 RECALLNEWLEAFADDRESS(state->nextfreeleafptr);
 SETLEAFBROTHER(insertleafptr,MAKELEAF(state-
>nextfreeleafnum)); // new leaf = right brother of old leaf
 } else
 {
 SETNEWCHILDBROTHER(MAKELARGELEAF(state-
>nextfreeleafnum), // first child=new leaf
 LEAFBROTHERVAL(*insertleafptr));
// inherit brother
 *(state->nextfreeleafptr) = state->insertnode; //
old leaf = right brother of of new leaf
 RECALLLEAFADDRESS(insertleafptr);
 }
 } else // split edge leads to branching node
 {
 DEBUGCODE(1,state->splitinternaledge++);
 insertnodeptr = state->branchtab +
GETBRANCHINDEX(state->insertnode);
 insertnodeptrbrother = GETBROTHER(insertnodeptr);
 if (state->tailptr == state->sentinel ||
 *(state->headend+1) < *(state->tailptr))
 {
 SETNEWCHILDBROTHER(MAKELARGE(state->insertnode), //
first child new branch
 insertnodeptrbrother); //
inherit right brother
 RECALLNEWLEAFADDRESS(state->nextfreeleafptr);
 SETBROTHER(insertnodeptr,MAKELEAF(state-
>nextfreeleafnum)); // new leaf = brother of old branch
 } else
 {
 SETNEWCHILDBROTHER(MAKELARGELEAF(state-
>nextfreeleafnum), // first child is new leaf
 insertnodeptrbrother); //
inherit brother
 *(state->nextfreeleafptr) = state->insertnode; //
new branch is brother of new leaf
 RECALLBRANCHADDRESS(insertnodeptr);
 }
 }
 SETNILBIT;
 RECALLSUCC(MAKEBRANCHADDR(state->nextfreebranchnum)); //
node on succ. path

UNIVER
SIT

Y O
F I

BADAN

182

 state->currentdepth = state->headnodedepth + (Uint)
(state->headend-state->headstart+1);
 SETDEPTHHEADPOS(state->currentdepth,state-
>nextfreeleafnum);
 SETDEPTHSTAT(state->currentdepth);
 state->nextfreeleafnum++;
 state->nextfreeleafptr++;
 //DEBUGCODE(1,
 state->nodecount++;
}
//\subsection{Finding the Head-Locations}
/*
 The function \emph{rescan} finds the location of the
current head.
 In order to scan down the tree, it suffices to look at
the first
 character of each edge.
*/
static void rescan (struct MccState *state)
{
 Uint *nodeptr, *largeptr = NULL, distance = 0, node,
prevnode,
 nodedepth, edgelen, wlen, leafindex, headpos;
 SYMBOL headchar, edgechar;
 DEBUGDEFAULT("rescan");
 if(state->headnodedepth == 0) // head is the root
 {
 headchar = *(state->headstart); // headstart is
assumed to be not empty
 node = state->rootchildren[(Uint) headchar];
 //printf("follow %c-edge from root to
",headchar);SHOWINDEX(node);
 //printf("\n");
 if(ISLEAF(node)) // stop if successor is leaf
 {
 state->insertnode = node;
 return;
 }
 nodeptr = state->branchtab + GETBRANCHINDEX(node);
 GETONLYDEPTH(nodedepth,nodeptr);
 wlen = (Uint) (state->headend - state->headstart + 1);
 if(nodedepth > wlen) // cannot reach the successor
node
 {
 state->insertnode = node;
 return;
 }
 state->headnode = nodeptr; // go to successor
node
 state->headnodedepth = nodedepth;

UNIVER
SIT

Y O
F I

BADAN

183

 if(nodedepth == wlen) // location has been
scanned
 {
 state->headend = NULL;
 return;
 }
 (state->headstart) += nodedepth;
 }
 while(True) // \emph{headnode} is not the root
 {
 headchar = *(state->headstart); // \emph{headstart} is
assumed to be nonempty
 prevnode = UNDEFINED;
 node = GETCHILD(state->headnode);
 while(True) // traverse the list of
successors
 {
 if(ISLEAF(node)) // successor is leaf
 {
 leafindex = GETLEAFINDEX(node);
 edgechar = state->text[state->headnodedepth +
leafindex];
 if(edgechar == headchar) // correct edge found
 {
 state->insertnode = node;
 state->insertprev = prevnode;
 return;
 }
 prevnode = node;
 node = LEAFBROTHERVAL(state-
>leafbrother[leafindex]);
 } else // successor is branch node
 {
 nodeptr = state->branchtab + GETBRANCHINDEX(node);
 GETONLYHEADPOS(headpos,nodeptr);
 edgechar = state->text[state->headnodedepth +
headpos];
 if(edgechar == headchar) // correct edge found
 {
 break;
 }
 prevnode = node;
 node = GETBROTHER(nodeptr);
 }
 }
 GETDEPTHAFTERHEADPOS(nodedepth,nodeptr); // get
info about succ node
 edgelen = nodedepth - state->headnodedepth;
 wlen = (Uint) (state->headend - state->headstart + 1);
 if(edgelen > wlen) // cannot reach the succ node
 {

UNIVER
SIT

Y O
F I

BADAN

184

 state->insertnode = node;
 state->insertprev = prevnode;
 return;
 }
 state->headnode = nodeptr; // go to the successor
node
 state->headnodedepth = nodedepth;
 if(edgelen == wlen) // location is
found
 {
 state->headend = NULL;
 return;
 }
 (state->headstart) += edgelen;
 }
}

/*
 The function \emph{taillcp} computes the length of the
longest common prefix
 of two strings. The first string is between pointers
\emph{start1} and
 \emph{end1}. The second string is the current tail, which
is between the
 pointers \emph{tailptr} and \emph{sentinel}.
*/

static Uint taillcp(struct MccState *state,SYMBOL *start1,
SYMBOL *end1)
{
 SYMBOL *ptr1 = start1, *ptr2 = state->tailptr + 1;
 DEBUG0(4,">taillcp\n");
 DEBUG0(5,"[");
 DEBUGCODE(5,showstr(state->sentinel,ptr1,end1));
 DEBUG0(5,",");
 DEBUGCODE(5,showstr(state->sentinel,ptr2,state->sentinel-
1));
 while(ptr1 <= end1 && ptr2 < state->sentinel && *ptr1 ==
*ptr2)
 {
 ptr1++;
 ptr2++;
 }
 DEBUG1(5,"]=%u\n",(Uint) (ptr1-start1));
 return (Uint) (ptr1-start1);
}
/*
 The function \emph{scanprefix} scans a prefix of the
current tail
 down from a given node.
*/

UNIVER
SIT

Y O
F I

BADAN

185

static void scanprefix(struct MccState *state)
{
 Uint *nodeptr = NULL, *largeptr = NULL, leafindex,
nodedepth, edgelen, node,
 distance = 0, prevnode, prefixlen, headpos;
 SYMBOL *leftborder = (SYMBOL *) NULL, tailchar, edgechar
= 0;
 DEBUGDEFAULT("scanprefix");
 if(state->headnodedepth == 0) // headnode is root
 {
 if(state->tailptr == state->sentinel) // there is no
\$-edge
 {
 state->headend = NULL;
 return;
 }
 tailchar = *(state->tailptr);
 if((node = state->rootchildren[(Uint) tailchar]) ==
UNDEFINED)
 {
 state->headend = NULL;
 return;
 }
 if(ISLEAF(node)) // successor edge is leaf, compare
tail and leaf edge label
 {
 leftborder = state->text + GETLEAFINDEX(node);
 prefixlen = 1 + taillcp(state,leftborder+1,state-
>sentinel-1);
 (state->tailptr) += prefixlen;
 state->headstart = leftborder;
 state->headend = leftborder + (prefixlen-1);
 state->insertnode = node;
 return;
 }
 nodeptr = state->branchtab + GETBRANCHINDEX(node);
 GETBOTH(nodedepth,headpos,nodeptr); // get info for
branch node
 leftborder = state->text + headpos;
 prefixlen = 1 + taillcp(state,leftborder+1,leftborder +
nodedepth - 1);
 (state->tailptr)+= prefixlen;
 if(nodedepth > prefixlen) // cannot reach the
successor, fall out of tree
 {
 state->headstart = leftborder;
 state->headend = leftborder + (prefixlen-1);
 state->insertnode = node;
 return;
 }

UNIVER
SIT

Y O
F I

BADAN

186

 state->headnode = nodeptr;
 state->headnodedepth = nodedepth;
 }
 while(True) // \emph{headnode} is not the root
 {
 prevnode = UNDEFINED;
 node = GETCHILD(state->headnode);
 if(state->tailptr == state->sentinel) // process \$-
edge
 {
 do // there is no \$-edge, so find last successor, of
which it becomes right brother
 {
 prevnode = node;
 if(ISLEAF(node))
 {
 node = LEAFBROTHERVAL(state-
>leafbrother[GETLEAFINDEX(node)]);
 } else
 {
 node = GETBROTHER(state->branchtab +
GETBRANCHINDEX(node));
 }
 } while(!NILPTR(node));
 state->insertnode = NILBIT;
 state->insertprev = prevnode;
 state->headend = NULL;
 return;
 }
 tailchar = *(state->tailptr);

 do // find successor edge with firstchar = tailchar
 {
 if(ISLEAF(node)) // successor is leaf
 {
 leafindex = GETLEAFINDEX(node);
 leftborder = state->text + (state->headnodedepth +
leafindex);
 if((edgechar = *leftborder) >= tailchar) // edge
will not come later
 {
 break;
 }
 prevnode = node;
 node = LEAFBROTHERVAL(state-
>leafbrother[leafindex]);
 } else // successor is branch node
 {
 nodeptr = state->branchtab + GETBRANCHINDEX(node);
 GETONLYHEADPOS(headpos,nodeptr);

UNIVER
SIT

Y O
F I

BADAN

187

 leftborder = state->text + (state->headnodedepth +
headpos);
 if((edgechar = *leftborder) >= tailchar) // edge
will not come later
 {
 break;
 }
 prevnode = node;
 node = GETBROTHER(nodeptr);
 }
 } while(!NILPTR(node));
 if(NILPTR(node) || edgechar > tailchar) // edge not
found
 {
 state->insertprev = prevnode; // new edge will
become brother of this
 state->headend = NULL;
 return;
 }
 if(ISLEAF(node)) // correct edge is leaf edge, compare
its label with tail
 {
 prefixlen = 1 + taillcp(state,leftborder+1,state-
>sentinel-1);
 (state->tailptr) += prefixlen;
 state->headstart = leftborder;
 state->headend = leftborder + (prefixlen-1);
 state->insertnode = node;
 state->insertprev = prevnode;
 return;
 }
 GETDEPTHAFTERHEADPOS(nodedepth,nodeptr); // we already
know headpos
 edgelen = nodedepth - state->headnodedepth;
 prefixlen = 1 + taillcp(state,leftborder+1,leftborder +
edgelen - 1);
 (state->tailptr) += prefixlen;
 if(edgelen > prefixlen) // cannot reach next node
 {
 state->headstart = leftborder;
 state->headend = leftborder + (prefixlen-1);
 state->insertnode = node;
 state->insertprev = prevnode;
 return;
 }
 state->headnode = nodeptr;
 state->headnodedepth = nodedepth;
 }
}

//\subsection{Completion and Initialization}

UNIVER
SIT

Y O
F I

BADAN

188

/*
 The function \emph{completelarge} is called whenever a
large node
 is inserted. It basically sets the appropriate distance
values of the small
 nodes of the current chain.
*/

static void completelarge(struct MccState *state)
{
 Uint distance, *backwards;
 if(state->smallnotcompleted > 0)
 {
 backwards = state->nextfreebranch;
 for(distance = 1; distance <= state->smallnotcompleted;
distance++)
 {
 backwards -= SMALLINTS;
 SETDISTANCE(backwards,distance);
 }
 state->smallnotcompleted = 0;
 state->chainstart = state->undefchainstart;
 }
 state->nextfreebranch += LARGEINTS;
 state->nextfreebranchnum += LARGEINTS;
 DEBUGCODE(1,state->largenode++);
}

/*
 The function \emph{linkrootchildren} constructs the
successor chain
 for the children of the root. This is done at the end of
the algorithm
 in one sweep over table \emph{rootchildren}.
*/

static void linkrootchildren(struct MccState *state)
{
 Uint *rcptr, *prevnodeptr, prev = UNDEFINED;
 for(rcptr = state->rootchildren; rcptr <= state-
>rootchildren + LARGESTCHARINDEX; rcptr++)
 {
 if(*rcptr != UNDEFINED)
 {
 if(prev == UNDEFINED)
 {
 SETCHILD(state->branchtab,MAKELARGE(*rcptr));
 } else
 {
 if(ISLEAF(prev))

UNIVER
SIT

Y O
F I

BADAN

189

 {
 state->leafbrother[GETLEAFINDEX(prev)] = *rcptr;
 } else
 {
 prevnodeptr = state->branchtab +
GETBRANCHINDEX(prev);
 SETBROTHER(prevnodeptr,*rcptr);
 }
 }
 prev = *rcptr;
 }
 }
 if(ISLEAF(prev))
 {
 state->leafbrother[GETLEAFINDEX(prev)] =
MAKELEAF(state->textlen);
 } else
 {
 prevnodeptr = state->branchtab + GETBRANCHINDEX(prev);
 SETBROTHER(prevnodeptr,MAKELEAF(state->textlen));
 }
 state->leafbrother[state->textlen] = NILBIT;
}

/*
 \newpage
 \emph{initMccState} allocates and initializes the data
structures for
 McCreight's Algorithm.
*/

static void initMccState(struct MccState *state,SYMBOL
*text,Uint textlen)
{
 Uint i, *ptr;

 state->text = state->tailptr = text;
 state->textlen = textlen;
 state->sentinel = text + textlen;
 state->branchtab = (Uint *) reusespace(BRANCHBLOCK);
 firstnotallocated = state->branchtab +
currentbranchtabsize - LARGEINTS;
 state->leafbrother = (Uint *) reusespace(LEAFBLOCK);
 state->headnode = state->nextfreebranch = state-
>branchtab;
 state->headend = NULL;
 state->headnodedepth = 0;
 state->rootchildren = (Uint *)
reusespace(ROOTCHILDRENBLOCK);
 for(ptr=state->rootchildren; ptr<=state-
>rootchildren+LARGESTCHARINDEX; ptr++)

UNIVER
SIT

Y O
F I

BADAN

190

 {
 *ptr = UNDEFINED;
 }
 for(i=0; i<LARGEINTS; i++)
 {
 state->branchtab[i] = 0;
 }
 state->nextfreebranch = state->branchtab;
 state->nextfreebranchnum = 0;
 SETDEPTHHEADPOS(0,0);
 SETNEWCHILDBROTHER(MAKELARGELEAF(0),0);
 SETBRANCHNODEOFFSET;
 state->rootchildren[(Uint) *text] = MAKELEAF(0);
 state->leafbrother[0] = VALIDINIT;
 DEBUG2(4,"%c-edge from root points to leaf
%u\n",*text,0);
 state->nextfreeleafnum = 1;
 state->nextfreeleafptr = state->leafbrother + 1;
 state->nextfreebranch = state->branchtab + LARGEINTS;
 state->nextfreebranchnum = LARGEINTS;
 state->insertnode = state->insertprev = UNDEFINED;
 state->smallnotcompleted = 0;
 state->chainstart = state->undefchainstart = state-
>branchtab + LARGEINTS * state->textlen;
 state->nodecount = 1;
 //state->maxset = state->branchtab + LARGEINTS - 1;
//\Ignore{

#ifndef SPACEOPT
 state->multitab[0] = 0;
 for(ptr = state->multitab+1; ptr <= state->multitab +
MAXDISTANCE; ptr++)
 {
 *ptr = SMALLINTS + *(rcptr-1);
 }
#endif
#ifdef DEBUG
 state->nodecount = 1;
 state->splitleafedge =
 state->splitinternaledge =
 state->largenode =
 state->smallnode =
 state->artificial =
 state->multiplications = 0;
 state->insertleafcalls = 1;
 state->maxset = state->branchtab + LARGEINTS - 1;
#ifdef MCCLG
 state->largelinks = state->largelinkwork = state-
>largelinklinkwork = 0;
 for(ptr = state->depthstat; ptr <=state-
>depthstat+MAXDEPTH; ptr++)

UNIVER
SIT

Y O
F I

BADAN

191

 {
 *ptr = 0;
 }
#endif
#endif

//}

}
//\subsection{Computing the Suffix Tree}

/*
 \emph{MCCFUNC} implements McCreight Algorithm compute the
suffix tree
 for a \texttt{text} of length \texttt{textlen}. For
explanations, see
 \cite{KUR:1998}. The number \((i)\) refers to the cases
of Section 6 in
 \cite{KUR:1998}.
*/

//@void MCCFUNC(struct MccState *state,SYMBOL *text,Uint
textlen)

//\Ignore{

void MCCFUNC(struct MccState *state,SYMBOL *text,Uint
textlen,void(*processhead)(struct MccState *,void *),void
*globalstruct)

//}

{

//\Ignore{

 if(textlen > MAXTEXTLEN)
 {
 fprintf(stderr,"Sorry, textlen = %u is larger than
maximal textlen = %u\n",
 textlen,MAXTEXTLEN);
 exit(EXIT_FAILURE);
 }

//}

 DEBUGCODE(3,showvalues());
 initMccState(state,text,textlen);
 while(state->tailptr < state->sentinel || state-
>headnodedepth != 0 || state->headend != NULL)
 {

UNIVER
SIT

Y O
F I

BADAN

192

 if(state->headnodedepth == 0 && state->headend == NULL)
// case (1): headloc is root
 {
 (state->tailptr)++;
 scanprefix(state);
 } else
 {
 if(state->headend == NULL) // case (2.1): headloc is
a node
 {
 FOLLOWSUFFIXLINK;
 scanprefix(state);
 } else // case (2.2)
 {
 if(state->headnodedepth == 0) // case (2.2.1): at
the root do not use links
 {
 if(state->headstart == state->headend) // rescan
not necessary
 {
 state->headend = NULL;
 } else
 {
 (state->headstart)++;
 rescan(state);
 }
 } else
 {
 FOLLOWSUFFIXLINK; // case (2.2.2)
 rescan(state);
 }
 if(state->headend == NULL) // case (2.2.3):
headloc is a node
 {
 SETSUFFIXLINK(state-
>nextfreebranch,NODEADDRESS(state->headnode));
 completelarge(state);
 scanprefix(state);
 } else
 {
#ifdef SPACEOPT
 if(state->smallnotcompleted == MAXDISTANCE) //
insert artifical large node
 {
 DEBUGCODE(1,state->artificial++);
 DEBUG1(3,"#insert artifical large node
%u\n",state->nextfreebranchnum);
 SETSUFFIXLINK(state->nextfreebranch,state-
>nextfreebranchnum + LARGEINTS);
 completelarge(state);
 } else

UNIVER
SIT

Y O
F I

BADAN

193

 {
#endif
 if(state->chainstart == state->undefchainstart)
 {
 state->chainstart = state->nextfreebranch;
// begin a new chain
 }
 (state->smallnotcompleted)++;
 (state->nextfreebranch) += SMALLINTS; //
case (2.2.4)
 (state->nextfreebranchnum) += SMALLINTS;
 DEBUGCODE(1,state->smallnode++);
#ifdef SPACEOPT
 }
#endif
 }
 }
 }

//\Ignore{

#ifdef APPLYSOMEFUNCTION

 if(globalstruct != NULL)
 {
 processhead(state,globalstruct);
 }

#endif

//}
 if(state->headend == NULL)
 {
 insertleaf(state); // case (a)
 } else
 {
 insertbranchnode(state); // case (b)
 }
 DEBUGCODE(5,SHWTABLE(state,False));
 }
 state->chainstart = state->undefchainstart;
 linkrootchildren(state);
//\Ignore{

 DEBUG1(2,"#integers for branchnodes %u\n",state-
>nextfreebranchnum);
 DEBUG4(2,"#small %u large %u textlen %u all %u ",
 state->smallnode,state->largenode,
 state->textlen,
 state->smallnode+state->largenode);
 DEBUG1(2,"ratio %f\n",

UNIVER
SIT

Y O
F I

BADAN

194

 (double) (state->smallnode+state-
>largenode)/state->nextfreeleafnum);
 DEBUG1(2,"#splitleafedge = %u\n",state->splitleafedge);
 DEBUG1(2,"#splitinternaledge = %u\n",state-
>splitinternaledge);
 DEBUG1(2,"#insertleafcalls = %u\n",state-
>insertleafcalls);
 DEBUG1(2,"#artificial = %u\n",state->artificial);
 DEBUG1(2,"#multiplications = %u\n",state-
>multiplications);
 DEBUGCODE(4,SHOWTABLE(state,True));
 DEBUGCODE(3,SHOWTREE(state));
#ifdef DEBUG
#ifdef SPACEOPT
 {
 Uint longchain = 0, chainsum = 0;
#if defined(MCCLG) || defined(MCCST)
 DEBUG3(2,"#largelinks %u largelinklinkwork %u
largelinkwork %u ",
 state->largelinks,state-
>largelinklinkwork,state->largelinkwork);
 DEBUG2(2,"#ratio1 %.4f ratio2 %.4f\n",
 (double) state->largelinkwork/state-
>largelinks,
 (double) state->largelinkwork/state-
>textlen);
#endif
 DEBUG1(2,"#longchain: %.7f\n",(double)
longchain/chainsum);
 }
#endif
#endif
 DEBUG2(1,"#%6u %6u\n",state->smallnode,state->largenode);
 DEBUGCODE(2,showspace());
 DEBUGCODE(1,CHECKTREE(state));
#ifdef DEBUG
#ifdef MCCLG
 {
 Uint i;
 for(i=0; i<MAXDEPTH; i++)
 {
 if(state->depthstat[i] > 0)
 {
 DEBUG2(2,"#Depth %u %u\n",i,state->depthstat[i]);
 }
 }
 DEBUG2(2,"#Depth>=%u %u\n",MAXDEPTH,state-
>depthstat[MAXDEPTH]);
 }
#endif
#endif

UNIVER
SIT

Y O
F I

BADAN

195

//}
}
//\Ignore{
#include "callfunc-gem.c"

//}

/*
Program callfunc-gem
This program implements Gene Enrichment using
Hypergeometric function
Author: Makolo June 2011.
*/
#ifndef BRJDIR
#include "my_header.h"
#include <time.h>
#include <stdlib.h>

int slidingwinlen=4;
//char substrxx[slidingwinlen];
//---
long N;
BOOL xx[FILESIZE]; // to further sort out exact maximal
repeats used as seeds

void bkread(struct MccState *state){
 Uint i;

 printf("\ntext len=%u and init char is %c\n", state-
>textlen, *state->text);
 N = state->textlen;
 for(i=0; i<state->textlen; i++){
 mineT[i]=*state->text++;
 xx[i]=false;
 }
 mineT[state->textlen]='\0';
 //printf("\n %s \n", mineT);
}
void displaytable(struct MccState *state)
{
 Uint *largeptr, *btptr, *succptr, *rcptr, i,
 succdepth, distance,
 nodeaddress, succ, depth, child, brother,
 headpos, suffixlink;
 Uint leafindex, edgelen;
 SYMBOL *leftpointer;

 printf(" Root:[");
 for(rcptr = state->rootchildren;
 rcptr <= state->rootchildren + LARGESTCHARINDEX;
 rcptr++)

UNIVER
SIT

Y O
F I

BADAN

196

 {
 if(*rcptr != UNDEFINED)
 {
 putchar('(');
 if(ISLEAF(*rcptr))
 {
 leftpointer = state->text + GETLEAFINDEX(*rcptr);
 showstr(state->sentinel,leftpointer,state-
>sentinel);
 printf(",Leaf %u)",GETLEAFINDEX(*rcptr));
 } else
 {
 succptr = state->branchtab +
GETBRANCHINDEX(*rcptr);
 GETBOTH(succdepth,headpos,succptr);
 leftpointer = state->text + headpos;
 showstr(state->sentinel,leftpointer,leftpointer +
succdepth - 1);
 printf(",%s %u)",ISLARGE(*succptr) ? "Large" :
"Small",
 GETBRANCHINDEX(*rcptr));
 }
 fflush(stdout);
 }
 }
 printf(",(~,Leaf %u)]\n",state->textlen);
 //remove state->nodecount
 btptr = state->branchtab + LARGEINTS; // skip the root
 for(i=1; i < state->nodecount; i++)
 {
 nodeaddress = NODEADDRESS(btptr);
 child = GETCHILD(btptr);
 brother = GETBROTHER(btptr);
 GETBOTH(depth,headpos,btptr);
 if(ISLARGE(*btptr))
 {
 printf(" L-Node %u\"",nodeaddress);
 suffixlink = GETSUFFIXLINKAC(btptr,depth);
 btptr += LARGEINTS;
 } else
 {
 printf(" S-Node %u\"",nodeaddress);
 suffixlink = nodeaddress + SMALLINTS;
 btptr += SMALLINTS;
 }
 showstr(state->sentinel,state->text + headpos,
 state->text + headpos + depth -
1);

printf("\"(D=%u,SN=%u,SL=%u,C=",depth,headpos,suffixlink);
 SHOWINDEX(child);

UNIVER
SIT

Y O
F I

BADAN

197

 printf(",B=");
 SHOWINDEX(brother);
 printf(")[");
 fflush(stdout);
 succ = child;
 do
 {
 putchar('(');
 if(ISLEAF(succ))
 {
 leafindex = GETLEAFINDEX(succ);
 leftpointer = state->text + depth + leafindex;
 showstr(state->sentinel,leftpointer,state-
>sentinel);
 printf(",Leaf %u)",leafindex);
 indexcounter+=1;

 succ = LEAFBROTHERVAL(state-
>leafbrother[leafindex]);
 } else
 {
 succptr = state->branchtab + GETBRANCHINDEX(succ);
 GETBOTH(succdepth,headpos,succptr);
 leftpointer = state->text + depth + headpos;
 edgelen = succdepth - depth;
 showstr(state->sentinel,leftpointer,leftpointer +
edgelen - 1);
 printf(",%s %u)",ISLARGE(*succptr) ? "Large" :
"Small",
 GETBRANCHINDEX(succ));
 succ = GETBROTHER(succptr);
 }
 } while(!NILPTR(succ));
 printf("]\n");

 printf("indexcounter is %d\n", indexcounter);
 indexcounter=0;

 fflush(stdout);
 }
}
void listoccpos(Uint *btptr, struct MccState *state, Uint
patternlen,\
char mineT[DOUFILESIZE], BOOL allind)
{
 register Uint *succptr, succ, child, leafindex, i, k;
 char indexnum[SUPINDEXDIGITS];

 child = GETCHILD(btptr);
 succ = child;
 do

UNIVER
SIT

Y O
F I

BADAN

198

 {
 if(ISLEAF(succ))
 {
 leafindex = GETLEAFINDEX(succ);
 if(allind){
 numhits+=1;
#ifdef DEBUG
 printf("%u,",leafindex);
#endif
 }else{
 k=0;
 for(i=leafindex+1; !isdigit(mineT[i]); i++);
 for(i=i; isdigit(mineT[i]);
indexnum[k++]=mineT[i++]);
 indexnum[k]='\0';
 indexnumi=atoi(indexnum);
 //printf(" %d,%s;",indexnumi,
superstr[indexnumi].string);
 break;
 }
 succ = LEAFBROTHERVAL(state-
>leafbrother[leafindex]);
 } else
 {
 succptr = state->branchtab + GETBRANCHINDEX(succ);
 listoccpos(succptr, state, patternlen, mineT,
allind);

 succ = GETBROTHER(succptr);
 }
 } while(!NILPTR(succ));
}
//getting a unique pattern equal to the pattern ends at a
leaf.
//all return zero except at ending at a leaf
BOOL finduniquepattern(char *pattern, struct MccState
*state,\
 char mineT[DOUFILESIZE], BOOL listocc, BOOL
allind)
{
 Uint *largeptr, *btptr, *rcptr, i, distance, nodeaddress,
child, brother,
 leafindex, edgelen, headpos, suffixlink;
 register Uint j, k, depth, succ, *succptr, succdepth,
leftpointer;
 BOOL seekpattern = false;
 short textptr = -1;
 Uint patternpos;
 register char auxchar;
 char indexnum[SUPINDEXDIGITS];
 register Uint patternlen, lencount=0;

UNIVER
SIT

Y O
F I

BADAN

199

 patternlen=strlen(pattern);
 auxchar=*pattern++;

 for(rcptr = state->rootchildren;
 rcptr <= state->rootchildren + LARGESTCHARINDEX;
 rcptr++)
 {
 if(*rcptr != UNDEFINED)
 {
 if(ISLEAF(*rcptr)) continue;
 else
 {
 succptr = state->branchtab +
GETBRANCHINDEX(*rcptr);
 GETBOTH(depth,headpos,succptr);
 //printf("headpos is %u\n", headpos);
 if(mineT[headpos]==auxchar){
 lencount+=1;

 //printf(",%s %u)\n",ISLARGE(*succptr) ? "Large" :
"Small",
 // GETBRANCHINDEX(*rcptr));
 // print show next char if *pattern is used
 //printf("mine[headpos] is %c, pattern is
%c\n",mineT[headpos], auxchar);
 for(j=headpos+1; j < headpos+depth &&
mineT[j]==(auxchar=*pattern++);\
 j++, lencount+=1){
 //printf("mine[j] is %c, pattern is
%c\n",mineT[j], auxchar);
 }// ends at a node (2)
 if(j==headpos+depth){
 seekpattern=true;
 //printf("headpos is %u\n", headpos);
 break;
 }// end in btw nodes (3)
 // depth > patternlen
 else if(patternlen==lencount){
 //printf("The index of the occurrence are\n");
 if(listocc) listoccpos(succptr, state, patternlen,
mineT, allind);
 //printf("\n");
 return 0;

 }else break;

 }
 }
 }
 }

UNIVER
SIT

Y O
F I

BADAN

200

 // finish checking the root children
 //printf("seekpattern is %d and depth is %u\n",
seekpattern, depth);
 // pattern is pointing presented to end of string so len
is 0
 //printf("len of pattern is %u\n", patternlen);

 btptr = succptr;
 //ends at a node just below the root
 if(seekpattern == true && depth==patternlen){
 //printf("The index of the occurrence are\n");
 if(listocc) listoccpos(succptr, state, patternlen,
mineT, allind);
 //printf("\n");

 return 0;
 }
 else if(seekpattern == true && depth < patternlen){
 for(; ;){
 child = GETCHILD(btptr);
 succ = child;
 //printf("C=%u\n");
 //SHOWINDEX(child);
 //printf("\n");

 auxchar=*pattern++;
 do
 {
 if(ISLEAF(succ)){// ends at a leave (1)
 leafindex = GETLEAFINDEX(succ);
 leftpointer = leafindex + depth;
 //printf("deciding %c, %c, %d\n",
mineT[leftpointer], auxchar,\
 leftpointer);
 if(mineT[leftpointer]==auxchar){// comes to dead
end.
 lencount+=1;
 for(j=leftpointer+1; j<state->textlen &&
mineT[j]==*pattern++;\
 j++, lencount+=1);
 // ends at the end of leaf or in btw
 if(j==state->textlen || lencount==patternlen){
 //printf("The index of the occurrence are\n");
 //printf("%u,", leafindex);
 k=0;
 for(i=leafindex+1; !isdigit(mineT[i]); i++);
 for(i=i; isdigit(mineT[i]);
indexnum[k++]=mineT[i++]);
 indexnum[k]='\0';
 indexnumi=atoi(indexnum);

UNIVER
SIT

Y O
F I

BADAN

201

 //printf("%s,%s;",indexnum,
superstr[indexnumi].string);
 return 1;
 }
 return 0;
 }
 //printf("is Leaf %u\n",leafindex);
 succ = LEAFBROTHERVAL(state-
>leafbrother[leafindex]);
 if(NILPTR(succ)) return 0;

 }else
 {
 succptr = state->branchtab +
GETBRANCHINDEX(succ);
 GETBOTH(succdepth,headpos,succptr);
 edgelen = succdepth - depth;
 leftpointer = headpos + depth;
 //printf("at child level, headpos is %u\n",
headpos);
 //printf("deciding %c, %c, %d\n",
mineT[leftpointer], auxchar,\
 leftpointer);
 //getchar();

 if(mineT[leftpointer]==auxchar){
 lencount+=1;

 for(j=leftpointer+1; j<edgelen + leftpointer &&
mineT[j]==*pattern++;\
 j++, lencount+=1);
 //printf("here is %u, %u, %u\n",
j,edgelen+leftpointer,succdepth);
 // ends at a node (2)
 if(j==edgelen + leftpointer &&
succdepth==patternlen){
 //printf("The index of the occurrence are\n");
 if(listocc) listoccpos(succptr, state,
patternlen, mineT,allind);
 //printf("\n");
 //printf("The index of the occurrence are
%u\n", headpos);
 return 0;
 }// has not end
 else if(j==edgelen + leftpointer && succdepth <
patternlen){
 btptr = succptr, depth = succdepth;
 break;
 }
 // ends in btw node and node. (3)
 else if(lencount==patternlen){

UNIVER
SIT

Y O
F I

BADAN

202

 //printf("The index of the occurrence are\n");
 if(listocc) listoccpos(succptr, state,
patternlen, mineT,allind);
 //printf("\n");

 //printf("The index of the occurrence are
%u\n", headpos);
 return 0;
 }
 return 0;
 };// end if
 succ = GETBROTHER(succptr);
 }
 }while(!NILPTR(succ));
 if(NILPTR(succ)) return 0;

 };// infinite for loop end
 }
 return 0;
}

BOOL findpattern(char *pattern, struct MccState *state,\
 char mineT[DOUFILESIZE], BOOL listocc, BOOL
allind)
{
 Uint *largeptr, *btptr, *rcptr, i, distance, nodeaddress,
child, brother,
 leafindex, edgelen, headpos, suffixlink;
 register Uint j, k, depth, succ, *succptr, succdepth,
leftpointer;
 BOOL seekpattern = false;
 short textptr = -1;
 Uint patternpos;
 register char auxchar;
 char indexnum[SUPINDEXDIGITS];
 register Uint patternlen, lencount=0;

 patternlen=strlen(pattern);
 auxchar=*pattern++;

 for(rcptr = state->rootchildren;
 rcptr <= state->rootchildren + LARGESTCHARINDEX;
 rcptr++)
 {
 if(*rcptr != UNDEFINED)
 {
 if(ISLEAF(*rcptr)) continue;
 else
 {
 succptr = state->branchtab +
GETBRANCHINDEX(*rcptr);

UNIVER
SIT

Y O
F I

BADAN

203

 GETBOTH(depth,headpos,succptr);
 //printf("headpos is %u\n", headpos);
 if(mineT[headpos]==auxchar){
 lencount+=1;

 //printf(",%s %u)\n",ISLARGE(*succptr) ? "Large" :
"Small",
 // GETBRANCHINDEX(*rcptr));
 // print show next char if *pattern is used
 //printf("mine[headpos] is %c, pattern is
%c\n",mineT[headpos], auxchar);
 for(j=headpos+1; j < headpos+depth &&
mineT[j]==(auxchar=*pattern++);\
 j++, lencount+=1){
 //printf("mine[j] is %c, pattern is
%c\n",mineT[j], auxchar);
 }// ends at a node (2)
 if(j==headpos+depth){
 seekpattern=true;
 //printf("headpos is %u\n", headpos);
 break;
 }// end in btw nodes (3)
 // depth > patternlen
 else if(patternlen==lencount){
 //printf("The index of the occurrence are\n");
 if(listocc) listoccpos(succptr, state, patternlen,
mineT, allind);
 //printf("\n");
 return 1;

 }else break;

 }
 }
 }
 }
 // finish checking the root children
 //printf("seekpattern is %d and depth is %u\n",
seekpattern, depth);
 // pattern is pointing presented to end of string so len
is 0
 //printf("len of pattern is %u\n", patternlen);

 btptr = succptr;
 //ends at a node just below the root
 if(seekpattern == true && depth==patternlen){
 //printf("The index of the occurrence are\n");
 if(listocc) listoccpos(succptr, state, patternlen,
mineT, allind);
 //printf("\n");

UNIVER
SIT

Y O
F I

BADAN

204

 return 1;
 }
 else if(seekpattern == true && depth < patternlen){
 for(; ;){
 child = GETCHILD(btptr);
 succ = child;
 //printf("C=%u\n");
 //SHOWINDEX(child);
 //printf("\n");

 auxchar=*pattern++;
 do
 {
 if(ISLEAF(succ)){// ends at a leave (1)
 leafindex = GETLEAFINDEX(succ);
 leftpointer = leafindex + depth;
 //printf("deciding %c, %c, %d\n",
mineT[leftpointer], auxchar,\
 leftpointer);
 if(mineT[leftpointer]==auxchar){// comes to dead
end.
 lencount+=1;
 for(j=leftpointer+1; j<state->textlen &&
mineT[j]==*pattern++;\
 j++, lencount+=1);
 // ends at the end of leaf or in btw
 if(j==state->textlen || lencount==patternlen){
 //printf("The index of the occurrence are\n");
 //printf("%u,", leafindex);
 k=0;
 for(i=leafindex+1; !isdigit(mineT[i]); i++);
 for(i=i; isdigit(mineT[i]);
indexnum[k++]=mineT[i++]);
 indexnum[k]='\0';
 indexnumi=atoi(indexnum);
 //printf("%s,%s;",indexnum,
superstr[indexnumi].string);
 return 1;
 }
 return 0;
 }
 //printf("is Leaf %u\n",leafindex);
 succ = LEAFBROTHERVAL(state-
>leafbrother[leafindex]);
 if(NILPTR(succ)) return 0;

 }else
 {
 succptr = state->branchtab +
GETBRANCHINDEX(succ);
 GETBOTH(succdepth,headpos,succptr);

UNIVER
SIT

Y O
F I

BADAN

205

 edgelen = succdepth - depth;
 leftpointer = headpos + depth;
 //printf("at child level, headpos is %u\n",
headpos);
 //printf("deciding %c, %c, %d\n",
mineT[leftpointer], auxchar,\
 leftpointer);
 //getchar();

 if(mineT[leftpointer]==auxchar){
 lencount+=1;

 for(j=leftpointer+1; j<edgelen + leftpointer &&
mineT[j]==*pattern++;\
 j++, lencount+=1);
 //printf("here is %u, %u, %u\n",
j,edgelen+leftpointer,succdepth);
 // ends at a node (2)
 if(j==edgelen + leftpointer &&
succdepth==patternlen){
 //printf("The index of the occurrence are\n");
 if(listocc) listoccpos(succptr, state,
patternlen, mineT,allind);
 //printf("\n");
 //printf("The index of the occurrence are
%u\n", headpos);
 return 1;
 }// has not end
 else if(j==edgelen + leftpointer && succdepth <
patternlen){
 btptr = succptr, depth = succdepth;
 break;
 }
 // ends in btw node and node. (3)
 else if(lencount==patternlen){
 //printf("The index of the occurrence are\n");
 if(listocc) listoccpos(succptr, state,
patternlen, mineT,allind);
 //printf("\n");

//printf("The index of the occurrence are %u\n", headpos);
 return 1;
 }
 return 0;
 };// end if
 succ = GETBROTHER(succptr);
 }
 }while(!NILPTR(succ));
 if(NILPTR(succ)) return 0;

 };// infinite for loop end

UNIVER
SIT

Y O
F I

BADAN

206

 }
 return 0;
}

/*
void chopoutstr(int b, int e){
 int i, j=0;
 for(i=b; i<=e; i++)
 substrxx[j++]=mineT[i];
 substrxx[j]='\0';
}
*/
// added by Makolo&Adebiyi to return d SEED in form of
sliding window
void slidingwinfn(struct MccState *state){
int i, j, k=0;
char substr[slidingwinlen+1];

 for(i=0; i<=(state->textlen)-slidingwinlen; i++){
 k=0;
 for(j=i; j<=i+slidingwinlen-1; j++)
 printf("%c", substr[k++]=mineT[j]);
 substr[k]='\0';
 printf("...%s\n", substr);
 //chopoutstr(i, i+slidingwinlen-1);
 //printf("%s\n", substrxx);
 }
 //printf("%d\n", findpattern("TA", &state, mineT, false,
false));
}
#ifdef WITHCALLMCC

void CALLMCC(SYMBOL *text, Uint textlen)
{
 struct MccState state;
#ifdef DEBUG
 addspace(sizeof(struct MccState));
 addspace(textlen+1);
#endif
 ALLOCFUNC(textlen);
 MCCFUNC(&state,text,textlen,NULL,NULL);
 DEBUG0(2,"#");
#ifdef DEBUG
 showspace();
 DEBUG0(2,"\n");
 subtractspace(sizeof(struct MccState));
#endif
 currentbranchtabsize = 0;
 wrapspace();
}

UNIVER
SIT

Y O
F I

BADAN

207

#else
void mccsplit(char *filename,Uchar *text,Uint textlen,Uint
maxlen)
{
 Uint i, startpos, optlen;
 struct MccState state;
 SYMBOL *symboltext;
 short jj=0, k = 0;

 if(sizeof(SYMBOL) != sizeof(Uchar))
 {
 CALLOC(symboltext,SYMBOL,textlen);
 for(i=0; i<textlen; i++)
 {
 symboltext[i] = (SYMBOL) text[i];
 }
 } else
 {
 symboltext = (SYMBOL *) text;
 }

 if(maxlen == 0 || maxlen >= textlen)
 {
 optlen = textlen;
 } else
 {
 optlen = 1 + textlen/(textlen/maxlen+1);
 }
 for(startpos = 0; startpos < textlen; startpos += optlen)
 {
 if(startpos + optlen > textlen)
 {
 optlen = textlen - startpos;
 }
 ALLOCFUNC(optlen);
 DEBUG3(2,"#mcc of
%s[%u,%u]\n",filename,startpos,startpos+optlen-1);
 MCCFUNC(&state,symboltext+startpos,optlen,NULL,NULL);
 }
 if(sizeof(SYMBOL) != sizeof(Uchar))
 {
 free(symboltext);
 }

 displaytable(&state);
 bkread(&state);

 slidingwinfn(&state);

 wrapspace();
 // the suffix tree is built

UNIVER
SIT

Y O
F I

BADAN

208

}

#endif
#endif

// STGEMS Program
//
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>

#define HASHSIZE 1111
#define slidingwinlen 5
#define winsize 6//slidingwinlen + 1
#define promoterlen 1000
#define LINE 80
#define NN 30
/*
This program implements STGEMS, by doing the following:
It extracts motif from submited input seq, returns the SEED
i.e d branch from
 root to leaf which is d unique pattern or SEED.
It use HASH table to store d position of the SEED, sorts it
and returns no of occurence
 of d SEED in each seq.
It implements the Hypergeometric distribution used in GEMS
i.e d combination function of N,n,M,m
It creates PWM of d SEEDs.
It computes P-Value and PWM of d SEEDs.
It computes similarity thresholh
It incorporates positional information by implementing Edit
distance
*/
static int occ[HASHSIZE], occ2[HASHSIZE];
char input[promoterlen], input2[promoterlen],
hashtab[HASHSIZE][winsize], patloc[HASHSIZE][NN];
char hashtab2[HASHSIZE][winsize], patloc2[HASHSIZE][NN];
char buffer[LINE];
double pvalue[HASHSIZE], pvalue2[HASHSIZE];

int hash_function(char *p){
 int hash_val=0;
 for(; *p; p++)
 hash_val = hash_val*6559+(*p);
 hash_val %= HASHSIZE;
 return abs(hash_val);
}
void chopoutstr(int b, int e){
 int i, j=0, index, found=0;

UNIVER
SIT

Y O
F I

BADAN

209

 char substr[winsize];

 for(i=b; i<=e; i++)
 substr[j++]=input[i];
 substr[j]='\0';
 index=hash_function(substr);
 printf("%s, %d\n", substr, index);

 if(!occ[index]){
 strcpy(hashtab[index], substr);//if hashtab loc
is empty
 occ[index]=1; strcpy(patloc[index], "1");
 //printf("%s (%s), %d\n", substr, hashtab[index],
occ[index]);
 //getchar();
 }else if(!strcmp(hashtab[index], substr))//if hashtab
loc string is same with substr
 occ[index]+=1;
 else{//resolve collision
 //printf("%d\n", index);
 //getchar();
 for(i=index+1; i<HASHSIZE; i++){
 if(occ[i]==0){
 strcpy(hashtab[i], substr); found=1;
 strcpy(patloc[i], "1");
 occ[i]=1;
 break;
 }else if(!strcmp(hashtab[i], substr)){//if
hashtab loc string is same with substr
 occ[i]+=1; found=1;
 break;
 }
 }
 if(found==0){//start from the begin of the
hashtab
 for(i=0; i<index; i++){
 if(occ[i]==0){
 strcpy(hashtab[i], substr);
 strcpy(patloc[i], "1");
 occ[i]=1;
 break;
 }else if(!strcmp(hashtab[i],
substr)){//if hashtab loc string is same with substr
 occ[i]+=1;
 break;
 }
 }
 }
 }
}
void chopoutstr2(int b, int e, int pronr){

UNIVER
SIT

Y O
F I

BADAN

210

 int i, j=0, index, found=0;
 static char substr[winsize];

 for(i=b; i<=e; i++)
 substr[j++]=input2[i];
 substr[j]='\0';
 index=hash_function(substr);
 printf("%s, %d\n", substr, index);

 if(!occ2[index]){
 strcpy(hashtab2[index], substr);//if hashtab loc
is empty
 occ2[index]=1; sprintf(patloc2[index], "%d",
pronr);
 //printf("%s (%s), %d\n", substr, hashtab[index],
occ[index]);
 //getchar();
 }else if(!strcmp(hashtab2[index], substr))//if hashtab
loc string is same with substr
 occ2[index]+=1;
 else{//resolve collision
 //printf("%d\n", index);
 //getchar();
 for(i=index+1; i<HASHSIZE; i++){
 if(occ2[i]==0){
 strcpy(hashtab2[i], substr); found=1;
 sprintf(patloc2[i], "%d", pronr);
 occ2[i]=1;
 break;
 }else if(!strcmp(hashtab2[i], substr)){//if
hashtab loc string is same with substr
 occ2[i]+=1; found=1;
 break;
 }
 }
 if(found==0){//start from the begin of the
hashtab
 for(i=0; i<index; i++){
 if(occ2[i]==0){
 strcpy(hashtab2[i], substr);
 sprintf(patloc2[i], "%d", pronr);
 occ2[i]=1;
 break;
 }else if(!strcmp(hashtab2[i],
substr)){//if hashtab loc string is same with substr
 occ2[i]+=1;
 break;
 }
 }
 }
 }

UNIVER
SIT

Y O
F I

BADAN

211

}

void mergetables(){
 int index, i, j, insdone=0;

 for(i=0; i<HASHSIZE; i++){
 if(occ2[i]==1){
 //printf("%s\n", hashtab2[i]);
 //getchar();
 insdone=0;
 index=hash_function(hashtab2[i]);
 if(occ[index]==0){ occ[index]=occ2[i];
strcpy(hashtab[index], hashtab2[i]);
 strcpy(patloc[index], patloc2[i]);
 }else if(occ[index]==1 &&
0==strcmp(hashtab[index], hashtab2[i])){
 strcat(patloc[index], ",");
strcat(patloc[index], patloc2[i]);
 }else if(occ[index]==1 &&
0!=strcmp(hashtab[index], hashtab2[i])){
 //resolve collision and insert
 for(j=index+1; j<HASHSIZE; j++){
 if(occ[j]==0){ //cell empty
 strcpy(hashtab[j],
hashtab2[i]); insdone=1;
 occ[j]=1;
 strcpy(patloc[j],
patloc2[i]);
 break;
 }else if(!strcmp(hashtab[j],
hashtab2[i])){//if hashtab loc string is same
 strcat(patloc[j], ",");
strcat(patloc[j], patloc2[i]);
 insdone=1;
 break;
 }
 }
 if(insdone==0){//start from the begin
of the hashtab
 for(j=0; j<index; j++){
 if(occ[j]==0){ //cell empty
 strcpy(hashtab[j],
hashtab2[i]);
 occ[j]=1;
 strcpy(patloc[j],
patloc2[i]);
 break;
 }else if(!strcmp(hashtab[j],
hashtab2[i])){//if hashtab loc string is same
 strcat(patloc[j], ",");
strcat(patloc[j], patloc2[i]);

UNIVER
SIT

Y O
F I

BADAN

212

 break;
 }
 }
 }//
 }
 }
 }
}

int fact(int n){
 if(n <= 1)
 return 1;
 return n * fact(n - 1);
}

int editdistance(char firststr[slidingwinlen], char
secondstr[slidingwinlen]){
 int i, dist=0;
 for(i=0; i<slidingwinlen; i++)
 if(firststr[i]!=secondstr[i]) dist+=1;
 return dist;
}

void main(){
 int i=1, j=1, k, M, m, len, segnr=1, pattnr=0, dist;
 char hold[slidingwinlen]; //holding to thousand or
temp hold
 //for this test
 int N=7, n=3; //n=3 indicates first three sequences
constitute the positive set
 double p_value=0, temp_pvalue=0;
 int minnM;
 double NM, A, B, minpvalue=0;

 FILE *fp1, *fp2;
 //strcpy(input, "TAATATTATTCTTTATTCGGTG");
 //strcpy(input2, "TAATAAAGCTCTTCGCTCGGTC");

 if((fp1 = fopen("gene-sample1.seq", "r")) == NULL)
 fprintf(stderr, "Error opening file\n");

 fgets(buffer, 160, fp1);// move from the ">" tag line
 while(fgets(buffer, LINE-1, fp1) != NULL){
 len=strlen(buffer);
 if(buffer[0]!='>' && i==1){ buffer[len-1]='\0';
strcpy(input, buffer); i++;}
 else if(buffer[0]!='>' && i!=1){ buffer[len-
1]='\0'; strcat(input, buffer);
 }else break;
 }
 //for first input

UNIVER
SIT

Y O
F I

BADAN

213

 len=strlen(input);
 printf("%d\n%s\n", len, input);
 //getchar();

 for(i=0; i<(len-slidingwinlen+1); i++){
 chopoutstr(i, i+slidingwinlen-1);
 }

 for(i=0; i<=HASHSIZE; i++)
 if(occ[i]==1) printf("%d\t%s\t%s\n", occ[i],
hashtab[i], patloc[i]);// print all unique pattern

 fgets(buffer, 160, fp1);// move from the ">" tag line
 printf("%s\n", buffer);
 //getchar();
 while(fgets(buffer, LINE-1, fp1) != NULL){
 len=strlen(buffer);
 if(buffer[0]!='>' && j==1){ buffer[len-1]='\0';
strcpy(input2, buffer); j++;}
 else if(buffer[0]!='>' && j!=1){ buffer[len-
1]='\0'; strcat(input2, buffer);
 }else{
 segnr+=1;

 //for subsequence input
 len=strlen(input2);

 for(i=0; i<(len-slidingwinlen+1); i++){
 chopoutstr2(i, i+slidingwinlen-1,
segnr);
 }

 for(i=0; i<=HASHSIZE; i++)
 if(occ2[i]==1) printf("%d\t%s\t%s\n",
occ2[i], hashtab2[i], patloc2[i]);// print all unique
pattern

 //getchar();
 mergetables();
 printf("merge result..............\n");
 for(i=0; i<=HASHSIZE; i++)
 if(occ[i]==1) printf("%d\t%s\t%s\n",
occ[i], hashtab[i], patloc[i]);// print all unique pattern

 //getchar();
 fgets(buffer, 160, fp1);// move from the ">"
tag line

 // initialize occ2, hashtab2, patloc2, etc
 j=1;

UNIVER
SIT

Y O
F I

BADAN

214

 for(i=0; i<=HASHSIZE; i++){
 occ2[i]=0;
 strcpy(hashtab2[i], " ");
strcpy(patloc2[i], " ");
 }
 }
 }
 fclose(fp1);
 //for the last sequence
 segnr+=1;

 len=strlen(input2);

 for(i=0; i<(len-slidingwinlen+1); i++){
 chopoutstr2(i, i+slidingwinlen-1, segnr);
 }

 for(i=0; i<=HASHSIZE; i++)
 if(occ2[i]==1) printf("%d\t%s\t%s\n", occ2[i],
hashtab2[i], patloc2[i]);// print all unique pattern

 //getchar();
 mergetables();
 printf("merge result..............\n");
 for(i=0; i<=HASHSIZE; i++)
 if(occ[i]==1){

 p_value=0;
 //compute M and m
 len=strlen(patloc[i]);
 j=0, k=0, M=0, m=0;
 while(j<len){
 if(patloc[i][j]==','){
 hold[k]='\0'; k=0;
 M+=1; if(atoi(hold) <= n) m+=1;
 }else hold[k++]=patloc[i][j];
 j++;
 }
 hold[k]='\0';
 M+=1; if(atoi(hold) <= n) m+=1;

 //compute p-value using the hypergeometric
distribution
 if(n<M) minnM=n; else minnM=M;

 NM=((double)fact(N))/((double)(fact(M)*fact(N-M)));
 for(j=m; j<=minnM; j++){

 A=((double)fact(n))/((double)(fact(j)*fact(n-j)));
 B=((double)fact(N-n))/((double)(fact(M-
j)*fact(N-n-M-j)));

UNIVER
SIT

Y O
F I

BADAN

215

 p_value+=(A*B)/NM;
 }
 pvalue[i]=p_value;
 printf("%d\t%s\t%s\t%d\t%d\t%f\n", occ[i],
hashtab[i], patloc[i], M, m, pvalue[i]);// print all unique
pattern
 occ2[pattnr]=occ[i];
strcpy(hashtab2[pattnr], hashtab[i]);
pvalue2[pattnr]=pvalue[i];
 pattnr++;
 }
 //sort the content of hashtab in ascending order
pvalue
 minpvalue=1;
 for(i=0; i<pattnr-1; i++){
 minpvalue=pvalue2[i];
 for(j=i+1; j<pattnr; j++)
 if(pvalue2[j]<minpvalue){
minpvalue=pvalue2[j]; k=j; }//k locate the current lowest

 temp_pvalue=pvalue2[i];
 strcpy(hold, hashtab2[i]);
 pvalue2[i]=pvalue2[k];
 strcpy(hashtab2[i], hashtab2[k]);
 pvalue2[k]=temp_pvalue;
 strcpy(hashtab2[k], hold);
 }
 for(i=0; i<pattnr; i++)
 printf("%d\t%s\t%f\n", occ2[i], hashtab2[i],
pvalue2[i]);// print all unique pattern

 printf("printing PWMs\n");
 //create PWM
 for(i=0; i<pattnr-1 && occ2[i]==1; i++){
 printf("%s\n", hashtab2[i]);
 for(j=i+1; j<pattnr && occ2[j]==1; j++){
 //printf("%d, %s\n", j, hashtab2[j]);
 if(1==(dist=editdistance(hashtab2[i],
hashtab2[j]))){
 printf("%s\n", hashtab2[j]);
 occ2[j]=0;
 }
 //printf("%d, %s(%d)\n", j, hashtab2[j],
dist);
 //getchar();
 }
 printf("printing next PWMs\n");
 }
}

UNIVER
SIT

Y O
F I

BADAN

216

