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ABSTRACT 

One of the major challenges in bioinformatics is the development of efficient 
computational tools for mining patterns. Structured motifs, like DNA binding sites in 
organisms with peculiarities in their genomic sequence like malaria parasite, 
Plasmodium falciparum have not been mined by existing structured motifs extraction 
tools. There is a need to develop faster computational tools to mine these DNA binding 
sites which are viable drug targets. This work was aimed at developing an algorithm for 
mining structured motifs in the genome of P. falciparum. 

 The Gene Enrichment Motif Searching (GEMS) method for mining simple motifs was 
modified by incorporating the time efficient implementation of the suffix tree data 
structure with suffix links. This enables an improved searching speed, while adding an 
optimized position-weight matrix computation using the hypergeometric-based scoring 
function. This algorithm, Suffix Tree Gene Enrichment Motif Searching (STGEMS) was 
implemented in C programming language on Linux platform. An empirical evaluation of 
the sensitivity of STGEMS was conducted by comparing the similarity check mechanism 
of the GEMS algorithm for mining simple motifs with that used in another popular 
algorithm for extracting structured motifs, a Multi-Objective Genetic Algorithm Motif 
Discovery (MOGAMOD). The output of STGEMS algorithm was validated by 
comparing the motifs discovered with those obtained using biological experiments. A 
further validation was done by applying the STGEMS and GEMS algorithm to selected 
metabolic pathways and the results were compared. The STGEMS algorithm was tested 
with four sets of genes from the intraerythrocytic development cycle of P. falciparum. 
The speed of execution was evaluated using three simple motif discovery tools: 
Expectation Maximization Motif Elicitation(MEME), Gene Enrichment Motif Search 
(GEMS), and WEEDER as well as two structured motif discovery tools: RISOTTO and 
EXMOTIF on four different gene sizes.The high sensitivity of STGEMS in mining 
structured motifs from sequences in P. falciparum was proven empirically by its ability 
to identify 91% of the motifs in the sequences while MOGAMOD could not identify any 
motif. This validated the high sensitivity of the similarity check mechanism employed, in 
contrast with that used in MOGAMOD. The STGEMS algorithm identified 90% of the 
binding sites in P. falciparum which were similar to those obtained in biological 
experiments. On the selected metabolic pathways, STGEMS discovered all the simple 
motifs identified by GEMS, in addition to the structured motifs which GEMS could not 
identify. The empirical runtimes of STGEMS, MEME, WEEDER, GEMS, RISOTTO and 
EXMOTIF were respectively 20, 35, 26, 25, 28, 30 seconds for 20,000 base pair (bp), 32, 
43, 44, 45, 42, 40 seconds for 40,000 bp, 41, 55, 56, 55, 52, 50 seconds for 60,000 bp 
and 54, 68, 69, 65, 67, 61 seconds for 80,000 bp respectively. The proposition resulted in 
a linear asymptotic runtime of O(N) at each iteration of the algorithm. 

The suffix tree gene enrichment motif searching algorithm developed was time efficient 
and successful in mining structured motifs like DNA binding sites in Plasmodium 
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falciparum. This will aid a faster drug target discovery pipeline for the design of 
effective anti malaria drugs. 

 

Keywords: Structured motifs, DNA Binding Site, Suffix tree. 

Word Count: 500. 

 

 

 

 

 

 
 
 
 

CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND INFORMATION 
 

Pattern discovery or identification remains a concern to biologists and computer 

scientists because of the challenges of developing efficient pattern mining tools for 

sequence motifs that consists of patterns on any combination of the characters that make 

up the DNA/RNA molecules, that is, {A,C,T,G) for DNA and {A,C,U,G}for RNA). 

These patterns appear repeatedly either in the same sequence string or over a set of 

sequences. Each of these patterns can be likened to a word in English language.  Simple 

motifs are made up of single patterns or words while structured motifs are made up of 

several words with well defined gaps within a set of strings. For instance AATCGT is a 

simple DNA motif while  
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AATCGT-----AGTCCG is a structured motif consisting of two patterns, each of length 

six and five gaps.  The need for efficient computational tools for mining these patterns 

has led to an increasing number of researchers developing new algorithms for the 

analysis of genomic data with the aim of extracting useful information from the patterns. 

Their identification is called motif inference or motif discovery which is an application 

area in data mining. 

Data Mining is the process of automatically searching large volumes of data for hidden  

patterns with little or no knowledge of the existing patterns while pattern mining  

involves searching for patterns with a prior knowledge of the pattern of interest and 

applies to motif discovery problem where the interest is in searching for repeated 

patterns. (Daniels et al., 2011).  They utilize computational techniques from statistics, 

information retrieval, machine learning and pattern recognition to extract these patterns. 

This area of pattern identification has applications in data compression, natural 

languages, databases, basically, any activity or research requiring text mining. The 

application of interest in this thesis is molecular biology and the motifs here may 

correspond to functional elements in DNA, RNA or protein molecules.   Data mining 

algorithms have been widely used in molecular biology especially in protein structure 

prediction, gene classification and prediction, clustering of gene expression data, 

modeling of protein-protein interaction and motif discovery.  

In biological applications, it is mandatory to allow for some mismatches between 

different occurrences of the same motif. This naturally makes the problem difficult from 

the computational point of view. In addition to this fundamental difficulty, this work also 

targeted the mining of structured motifs from the deadly organism- the malaria parasite, 

Plasmodium falciparum, with a peculiar genomic sequence. When the P. falciparum 

genome sequence was published in 2002, it was revealed that the genomic composition 
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was unusually AT-rich, approximately 90% which is very high in comparison to other 

organisms. For example, the entire genomes of  the two popular model organisms, yeast 

and fruit fly have AT contents of 62% and 65%, respectively (Gardner, 2002, Fatumo et 

al, 2010). This peculiarity necessitates the development of a suitable structured motifs 

inference algorithm that puts the malaria parasite genome in good perspective since none 

of the existing algorithms is capable of mining its structured motifs.  

The importance of this work was highlighted at the 'Functional Genomics Workshop 

Group' meeting in Harvard, 2006, (Deitsch et al., (2007). The workshop identified the 

challenges of understanding of the biology of the deadly malaria parasite, P.falciparum. 

Key among these challenges is the identification of the proteins involved in its gene 

regulatory mechanisms. The fact that these proteins interact with the genomic DNA to 

bring the genome to life and that these interactions also define many functional features 

of the genome Iyer et al., (2001), make them viable drug targets. Thus, mining 

transcription associated proteins is a very important problem in malaria research. 

Malaria is a tropical disease of great interest. It exacts a heavy toll of illness and death - 

especially amongst children and pregnant women. In Africa alone, malaria is estimated 

to kill a child, under the age of five every thirty seconds (Teklehaimanot, et al., 2005, 

Fatumo et al, 2009, Oyelade et al, 2010). It also poses a risk to travelers and immigrants, 

with imported cases increasing in non-endemic areas. The treatment and control of 

malaria has become more difficult with the spread of drug-resistant strains of the parasite 

and insecticide-resistant strains of mosquito vectors. Preventive measure such as health 

education, better case management, better control tools and concerted action are required 

to limit the scourge of the disease. (Bulashevska et al, 2007, Westenberger et al, 2009). 

The dream of the global eradication of malaria, one of the millennium development 

goals, is beginning to fade with the growing number of cases, rapid spread of drug 
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resistance in people and increasing insecticide resistance in mosquitoes. (Tuteja, 2007, 

Oyelade et al, 2010).  This global malaria challenge makes the understanding of the 

biological mechanism of the malaria parasite very pertinent. The parasite inhabits two 

hosts- human beings and mosquitos, its characteristic genomic makeup makes it capable 

of adapting favourably in these two hosts, thereby making its eradication more 

challenging. 

The malaria parasite exhibits a rapid growth and multiplication rate during many stages 

of its life cycle, this necessitates that the parasites, like all other organisms, acquire 

nutrients and metabolize these various biological molecules in order to survive and 

reproduce. It is expected that the parasite's metabolism will be intertwined with that of 

the host's because of the intimate relationship between the host and the parasite. (Bischo, 

E. and Vaquero, C.(2010)).  These host-parasite interactions are further complicated by 

the complex life cycle of the parasite involving vertebrate and invertebrate hosts as well 

as different locations within each of these hosts. It is generally accepted that 

P.falciparum is entirely dependent on glycolysis for energy during the asexual stages, 

making this pathway an important drug target. One of the aims of this work is to discover 

motifs in this pathway and thus provide information on the functional modules of the 

glycolytic pathway genes. (Bozdech  and Ginsburg, 2005). 

The problem of understanding the transcription of genes is at the centre of interest in 

bioinformatics research. One of the reasons is that gene regulation is fundamental in 

determining the resulting functional protein. Transcription of genes serves as a substrate 

for evolutionary changes, because the control of the timing, location, and the amount of 

gene expression can have a profound effect on the functions of the genes in the 

organism. Transcription associated proteins are made up of transcription factors, that are 

master activators and inhibitors for sets of commonly regulated genes in each module. In 
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this study, we examined their binding sites, which are expected on the DNA sequences 

of the genes that they regulate in the attempt to extract the binding sites. Since the 

malaria parasite P. falciparum is eukaryotic, that is, organisms that have a defined 

nucleus as opposed to prokaryotes which lack a nucleus, the binding sites are expected to 

be structured motifs (Flueck et al.,2010). Therefore, our computational inference 

technique mined these structured motifs as well as simple motifs in the challenging 

genomic sequence of the malaria parasite. 

There are many computational methods for predicting transcription factors and their 

binding sites. These methods can be classified into three main categories, based on their 

operating principles. They are  

 The  pattern-driven or word-based approach 

 The statistical based approach and  

 The machine learning based approach.   

A review of the motif discovery tools based on these three categories is provided in 

chapter two. Furthermore, there are experimental (wet lab) approaches for extracting 

binding sites, for example, DNA footprinting and Chromatin Immuno-Precipitation 

(chIP) methods; these approaches, however, are time consuming and  very laborious. 

These weaknesses justify the need for computational methods to complement them. 

(Ponts et al., 2010). A repository of known transcription factors and their corresponding 

binding sites can be found in the TRANSFAC (Heinemeyer et al., 1998) and JASPAR 

(Sandelin et al., 2004) databases and these databases can be updated with novel 

transcription factors and binding sites after biological validation.   

The computational inference technique, Suffix Tree Gene Enrichment Motif Searching 

(STGEMS) developed in this work, is a novel algorithm for mining motifs. The 

algorithm is specifically tailored to organism with peculiarities in their genomic 
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sequence. STGEMS utilized the suffix tree, which has an inherent clustering technique 

that returns all repeated patterns at a  remarkable speed and extracts optimal structured 

motifs by incorporating a highly sensitive similarity check mechanism using the 

hypergeometric scoring function and position weight matrix to rank the gene enrichment 

of the discovered motifs, thereby reporting only the optimal motifs.  The suffix tree is a 

data structure that is useful in representing a string or set of strings, they are well suited 

to algorithms that require efficient access to substrings by content rather than by 

position. The suffix tree construction reorganizes data into a form that facilitates 

searching and exposes sections of the strings that are repeated. In view of the fact that the 

core aim of this study is in searching for repeated patterns in a set of DNA sequences, the 

choice of the suffix tree data structure in the framework of STGEMS algorithm is 

appropriate. 

 
1.2 STATEMENT OF THE PROBLEM 
 

Two fundamental challenges in malaria research are the identification and understanding 

of the complex proteins involved in the gene regulatory mechanism of P.falciparum. 

These challenges are greatly influenced by the extraction of transcription associated 

proteins (Transcription factors and DNA binding sites), which is cumbersome in the 

highly repetitive and specific alphabet bias sequence of P.falciparum. Therefore there is 

need for the development of computational tools for its effective mining, since existing 

tools had failed to mine these successfully. 

The work of Young et al., (2008) and Kaya (2009) provide a motivation for this research. 

Young et al (2008) developed GEMS algorithm which extracted simple motifs in 

P.falciparum, but it failed to extract structured motifs, which form the core of regulatory 

element in eukaryotes. Kaya (2009) developed MOGAMOD algorithm, a multi-objective 

genetic algorithm, which extracted structured motifs successfully in yeast and other 
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model organism but it failed when applied to the extraction of structured motifs in 

P.falciparum due to the peculiarity in its genomic sequence resulting in AT-rich 

sequence.  

Our model, STGEMS, overcomes these limitations by extracting simple and structured  

motifs from the challenging sequence of the malaria parasite. This was achieved by 

implementing the similarity check mechanism used in MOGAMOD and GEMS, 

comparing them in terms of sensitivity level and incorporating that of GEMS into the 

framework of STGEMS while adding the suffix tree for improved speed.   

 
1.3       AIM AND OBJECTIVES OF THE STUDY 

The aim of this work is to develop a computational inference technique for mining 

structured motif that results in improved runtime with a view of elucidating the DNA 

binding site of transcription factors of the malaria parasite, P.falciparum. The specific 

objectives of the study are : 

i. To develop a computational tool for mining structured motifs with improved 

running time with a high sensitivity or accuracy. 

ii. To discover novel DNA binding sites, that is, viable drug targets to combat 

resistant malaria strain of P.falciparum,  on a large scale using the developed 

tool. 

iii. To compare the performance of the tool with the five popular  motif 

discovery tools namely : MEME,  WEEDER, RISOTTO, EXMOTIF and 

GEMS 

iv. To compare the similarity check used in GEMS, that is hypergeometric 

scoring function based, with that used in MOGAMOD, that is dominance 

nucleotide value based.  
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v. To apply the novel algorithm to scan the glycolysis  metabolic pathway genes 

of P.falciparum. . 
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1.4 RESEARCH QUESTIONS 
 

To accomplish the above research objectives, the following research questions are 

addressed: 

RQ1:  How can an efficient motif discovery algorithm that would work for the 

challenging repeat alphabet sequence of P.falciparum. be developed?  

RQ2:  To what extent would this computational technique work for extracting DNA 

binding sites having a high correlation with those biologically extracted? 

RQ3: To what extent would using a similarity check mechanism that employed a 

hypergeometric based   scoring approach achieve a high sensitivity over the similarity 

check that does not use this approach?  

RQ4:  How would this new algorithm perform when compared to five standard motif 

discovery algorithms already in existence?   

RQ5:   How would this algorithm behave when applied to the glycolysis metabolic 

pathway genes?  

 

1.5 METHODOLOGY 
 
The overview of the research methodology is encapsulated in the figure 1.1: 
 
The processes involved in STGEMS algorithm is depicted in steps 

  STGEMS receives a list of DNA sequences as input, which contains unknown 

motifs that needs to be identified. A generalized suffix tree is constructed with 

the DNA sequences. 

 The trees are traversed to output unique patterns or candidate motifs. In any 

suffix tree construction, each traversal from the root node to a leaf node is a 

unique pattern.  
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Figure 1.1 Computational Framework for STGEMS algorithm 
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 The next step is the computation of position weight matrix (PWM) for the 

extracted unique patterns. The PWM is a matrix that shows the information 

content of the motifs which depends on the frequency of occurrence of each of 

the characters in the identified unique pattern.  

 The biological significance of the candidate motif is computed. This is 

determined by computing the similarity scores. The motifs with low similarity 

scores are reported as better optimal motifs.  

 The last step is the merging of similar motifs i.e. those with one or two variations 

in the character that make up the motifs. These are merged using edit distance, 

before returning them as optimal. 

STGEMS’s methodology also involves the implementation of the similarity check 

mechanisms based on the hypergeometric scoring function and the dominance nucleotide 

value of the extracted pattern from the suffix tree.  The two methods were compared; the 

result of this comparison influenced the incorporation of the similarity check based on 

the hypergeometric scoring function into STGEMS framework.    

The asymptotic runtime analysis of our novel computational inference technique, 

STGEMS was carried out by analyzing the time complexity of its various modules and 

procedures. A performance evaluation was conducted, based on the empirical runtime of 

STGEMS with three simple motif discovery tools (MEME, WEEDER and GEMS) and 

two structured motif discovery tools (RISOTTO and EXMOTIF). 

STGEMS was tested by running four experiments using different gene sets of P. 

falciparum. The first experiment used the set of genes in the work of Flueck et al. (2010) 

which experimentally extracted regulatory elements for P.falciparum,   that is 1000 base 

pairs upstream of gene start codons. The second experiment used the set of genes used 

by Yuda et al. (2009) which identified transcription factors in the mosquito-invasive 
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stage of malaria parasite. The two experiments aimed at inferring the ability and 

sensitivity of STGEMS in predicting correctly, the motifs already extracted by some 

known biological experiments.  The third experiment targeted predicting novel binding 

sites by using the 3D7 gene clones of P. falciparum, this contains about 3,000 genes 

from the Intraerythrocytic developmental cycle (which represents all the stages in the 

development of P.falciparum, responsible for the symptom of malaria and is the target 

for the vast majority of antimalaria drugs strategy). The fourth experiment utilized the 

genes in the glycolytic pathway of P.falciparum. The twenty six genes that are known to 

be involved at the glycolytic pathway of P.falciparum were harvested from 

www.plasmodb.org.  This experiment aimed at scanning the upstream regions for 

conserved sequence motifs using our computational technique. They were then compared 

with those extracted using the popular GEMS algorithm. 

The implementation and testing of STGEMS  was done in  C,  on a Dell computer, 

INTEL® CORE™ DUO CPU T2300 @1.66GHz, 512 RAM, 80GB HDD running on 

Suse Linux 11.2 operating system. This platform was adopted because it is an efficient 

platform for development of Bioinformatics algorithms. Moreover, the five popular 

motif discovery algorithms that STGEMS was compared with were implemented in C on 

Linux operating system thus ensuring a standardized comparative metric. 

 
1.6 SIGNIFICANCE OF THE STUDY 
 
Generally, the knowledge of the biology of P.falciparum, that consists of : 

 How its cells function 

 How proteins organize into modules such as metabolic pathways  

 And the DNA binding sites present in the genome, 

 provides an invaluable resource for characterizing the complex roles of the 

individual genes and ultimately the identification and validation of new drug and/or 
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vaccine targets for anti malaria strategies.  The ability to discover these drugs or 

vaccine targets can only be enhanced from the deep understanding of the detailed 

biology of the parasite, which motivated this research. 

This thesis addresses a significant need in our understanding of mining structured motifs 

especially in organisms with peculiarities in their genomic sequence. In particular, this 

work in developing a new motif discovery algorithm which efficiently mined biological 

patterns in the malaria parasite genome, provides information that will enhance 

understanding of malaria and development of drugs for its cure. 

 

1.7 LIMITATION OF THE STUDY 
 

This work focused on developing a motif discovery algorithm applied principally to 

mining structured motifs from P.falciparum. This is to provide an in-depth understanding 

of the organism. Despite the fact that other species of Plasmodium and other parasitic 

organisms can cause disease of importance, this study is limited to human malaria caused 

by P. Falciparum, because it is the most fatal and is considered to be of much economic 

importance.  

 

1.8 ORGANIZATION OF WORK  
 

This write-up is structured in five chapters. Chapter one gives a brief introduction to 

the work. It also includes statement of the problems, research questions, 

methodology, aims and objectives, as well as scope and limitation of work. 

Chapter two explains the theoretical background of the research,  the principles of 

sequence analysis algorithms, a review of related works in motif discovery 

algorithms and the gaps identified. 
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Chapter three describes the research methodology proposed for solving the identified 

gaps. The techniques used and model implementations were discussed. In addition, 

the structure of the data (malaria parasite genomic data) used in validating the 

algorithm was also expounded upon. Chapter four discusses the various results 

generated from running the algorithm and the comparative analysis carried out while 

chapter five gives the conclusion of the study and discusses future research directions 

in this area. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter contains the theoretical background of the study, a review of the related 

concepts, principles and techniques used in this thesis. A review of related work is 

provided based on a chronicle of some popular Motif Discovery tools- examining their 

building paradigm, strengths and limitations. The basic data structures used in these 

motif discovery tools were discussed. Finally, the application domain of this research is 

highlighted, that is, mining patterns in molecular biology using malaria parasite, 

Plasmodium falciparum as a case study.  

 

2.1 THEORETICAL BACKGROUND  
 

In the post-genomic era, the ability to predict the behavior, the function, or the structure 

of biological entities (such as genes and proteins), as well as interactions among them, 

play a fundamental role in the discovery of information to help biologists explain 

biological mechanisms. (Pizzi, 2011). 

Several functional and structural properties, and also evolutionary mechanisms, can be 

predicted either by the comparison of new elements with already classified elements, or 

by the comparison of elements with a similar structure or function and using it to infer 
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the common mechanism that is at the basis of the observed similar behavior. Such 

elements are commonly called motifs. 

Comparison-based methods for sequence analysis find their application in several 

biological contexts, such as extraction of transcription factors, DNA binding sites, 

identification of structural and functional similarities in proteins, and phylogeny 

reconstruction1. Therefore, the development of adequate methodologies for genomic 

sequence analysis is of paramount interest in computational biology.  In other words 

sequence analysis refers to the process of subjecting a DNA, RNA or protein sequence to 

any of a wide range of analytical methods to understand its features, function, structure, 

or evolution.  Sequence analysis algorithms are basically classified into three: 

 Gene finding Algorithms: These algorithms are used to predict gene structure. 

Gene prediction or gene finding refers to the process of identifying the regions of 

genomic DNA that encode genes. This includes protein-coding genes as well as 

RNA genes, but may also include prediction of other functional elements such as 

regulatory regions. Gene finding is the first step in sequence analysis procedure. 

This is because the genes in the genome of any specie that had just been 

sequenced had to be annotated before any further processing can take place.  The 

operating principle of gene finding algorithms is relatively simple; it is basically 

based on an inference system that can decode the twenty amino acids using the 

genetic code.  Some popular gene finding tools are GENESCAN, GENEMAK, 

GENIE, HMMGENE, PHAT etc.  (Cawley et al, 2001).  

 Sequence Alignment Algorithms: These are algorithms that align genomic 

sequences to detect similarity. Sequence Alignment is a way of arranging the 

sequences of DNA, RNA, or protein to identify regions of similarity that may be 

                                                            
1 Phylogenetic Reconstruction is a biological concept used in examining evolutionary relationship between 
organisms. 
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a consequence of functional, structural, or evolutionary relationships between the 

sequences. Aligned sequences of nucleotide or amino acid residues are typically 

represented as rows within a matrix. Gaps are inserted between the residues so 

that identical or similar characters are aligned in successive columns. The 

building paradigm of Sequence Alignment algorithms is usually more complex 

than gene finding algorithms. Popular sequence alignment tools include BLAST, 

ClustalW, T-coffee, FASTA3x among others. (Ortet & Bastien, 2010). 

 Motif Discovery Algorithms: These are algorithms that predict patterns from the 

sequence data hypothesised to have biological functions such as gene regulation. 

This class of algorithm is the most complicated of the three categories of 

sequence analysis algorithm available. Primarily due to the complicated makeup 

of the motifs been sought and therefore require exquisite methodologies to 

effectively predict them. Some popular tools in this class include  MEME, 

WEEDER, MUSA among others. 

Motif discovery algorithms are based on the biological theory of high conservation 

which states that patterns repeated in a sequence data with high frequency is a potential 

motif or pattern of interest and needs to be mined effectively (Gardener, 2002). The goal 

of motif discovery algorithms is to enumerate these patterns repeated with high 

frequency, since they have been established experimentally to have biological 

significance. The task is to eliminate those randomly occurring patterns which could 

result in false positive prediction and report only the best motifs. 

The development of adequate methodologies for motif discovery is of unquestionable 

interest for several different fields in computational biology. 
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Fig 2.1 Hierachical View of  Sequence Analysis Algorithms 

 

 

Sequence Alignment  

Algorithms  

Gene Finding 

Algorithms  

SEQUENCE ANALYSIS ALGORITHMS 

Motif Discovery  

Algorithms  

Search mechanism

Inference Rule based 

on the genetic code  

Compare similarity 

with existing sequence  

Repeated patterns and 

compute statistical 

significance  

outputs annotated 

Genes in the sequence

outputs Aligned  genes 

in sequences

outputs Optimal Functional 

Motif in the sequence 



UNIVER
SIT

Y O
F I

BADAN

 
 

33

Different researchers have adopted several approaches to extract these patterns such as 

word-driven or pattern-driven approach, statistical based approach and machine learning 

based approach. All known motif discovery algorithms are based on one or a 

combination of two or three of these approaches.  Among the most popular methods are 

those based on the pattern driven approach methods which uses several heuristics to 

extract candidate motifs and thereafter performs a validation check using statistical 

methods to extract candidate motifs with optimal features based on the statistical 

significance analysis.  

Motif discovery is an application area in the field of data mining in computer science. It 

is concerned with identifying and extracting relevant patterns hypothesised to have 

biological significance. Usually, a large data set is provided, then the data mining task 

involves the use of efficient techniques to mine the relevant patterns contained in the 

data set.   A brief overview of data mining and its clustering techniques is provided in the 

next session. 

 

2.1.1  OVERVIEW OF CLUSTERING IN BIOINFORMATICS 

Motif discovery is basically a pattern identification process which involves the use of 

clustering techniques to extract biologically significant patterns from a given sequence 

data. 

Clustering is partitioning of data into groups of similar objects. Each group, called a 

cluster, consists of objects that are similar to each other and dissimilar to objects of other 

groups. The representation of data using fewer clusters necessarily results in loss of some 

fine details while achieving simplification. Clustering is one of the most commonly used 
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computational methods for analyzing microarray2 and gene expression data of various 

organisms. The results obtained from clustering have been used to support the 

classification of genes into functional modules, such as regulatory elements, metabolisms 

and metabolic pathways.   

Clustering differs from the supervised classification since in clustering; there is no 

information about the number of classes that are present before clustering begins. 

The most typical example of clustering in bioinformatics is the clustering of genes in 

expression data. In microarray essays, the expression value for thousands of genes is 

obtained and interesting information that can be extracted from these data includes for 

instance, genes that are co expressed in the different samples. This is a clustering 

problem because here genes with similar expression level in all samples are grouped into 

a cluster. Cluster analysis, also called data segmentation, has a variety of goals. All relate 

to grouping or segmenting a collection of objects into subsets or ‘clusters’, such that 

those within each cluster are more closely related to one another than objects assigned to 

different clusters. Usually, the goal is to arrange the clusters into a natural hierarchy. 

This involves successively grouping the clusters themselves so that, at each level of the 

hierarchy, clusters within the same group are more similar to each other than those in 

different groups. Fundamental to all of the goals of cluster analysis is the notion of the 

degree of similarity (or dissimilarity) between the individual objects being clustered. A 

clustering method attempts to group the objects based on the definition of similarity 

supplied to it. Suffix tree clustering technique is widely used in motif discovery 

algorithms due to its ability to return common strings using their order and proximity of 

                                                            
2  DNA Microarray  is  a  collection  of microscopic  DNA  spots  attached  to  a  solid  surface.  In molecular 

biology,  DNA  microarrays  are  used  to  measure  the  expression  levels  of  large  numbers  of  genes 

simultaneously or to genotype multiple regions of a genome. 
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reference in linear time. Other clustering methods used are partitioning based methods, 

hierarchy based methods, density-based, grid-based, and model-based methods. (Daniel 

et al., 2011, Naresh and Shrish , 2011).  It is important to note that clustering in motif 

discovery algorithms is actually a pattern mining problem since there is a preconception 

about the patterns of interest (strings repeated with a high frequency) unlike clustering in 

data mining where the focus is searching for patterns of interest arising from the data 

without prior knowledge of the type or nature of the pattern. (Naresh and Shrish , 2011). 

 

2.1.2 CHALLENGES OF GENE CLUSTERING 

Gene-based clustering present many new challenges and problems that are still open due 

to the unique features of gene expression data and the particular requirements from the 

biological domain. Gene expression is the process by which information from a gene is 

used in the synthesis of a functional gene product. The challenges of gene clustering 

include the following: 

 Cluster analysis is typically the first step in data mining since the purpose of 

clustering gene expression data is to reveal the natural data structures and obtain 

some initial insights regarding data distribution, a good clustering algorithm should 

therefore, as little as possible, depend on prior knowledge that is not usually available 

before cluster analysis. 

 Due to the complex procedures of microarray experiments, gene expression data is 

often plagued with a lot of noise. Therefore, clustering algorithms for gene 

expression data must be capable of extracting useful information from a high level of 

background noise. 

 Empirical studies have demonstrated that gene expression data are often “highly 

connected” (Jiang, et al, 2003) and clusters may be highly embedded in one another. 
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Therefore, algorithms for gene-based clustering should be able to effectively handle 

this situation. 

 The users of microarray data are not only interested in the clusters of genes, but also 

in the relationship between the clusters and the genes within the same cluster. A 

clustering algorithm, which can partition the data set and also provide some graphical 

representations of the cluster structure (intra- and inter- relationship wise) is more 

useful to the biologists. 

All Motif discovery algorithms incorporate a specific type of clustering mechanism in its 

design framework. The challenges of gene clustering discussed above are taking into 

considerations while developing different methodologies for motif discovery.  This 

section has examined the main challenges that should be bore in mind while considering 

a particular clustering technique for motif discovery tool. We shall hereafter, .provide a 

definition of the motif discovery problem.  

 

2.1.3 THE CONCEPT OF MOTIF DISCOVERY  

Motif discovery in DNA sequences is a fundamental problem in computational biology 

with important applications in understanding gene regulation. Biological approaches for 

this problem are tedious and time-consuming. The availability of large amounts of 

genome sequence data and gene expression micro-array data make it possible to solve 

this problem computationally. However, most computer science problems of this sort are 

NP-complete. 

A motif is a pattern in a sequence, that is, a word and a representation of a set of such 

words. In a more formal way, a motif can be defined as follows:  

Let Σ represent the alphabet{A,C,G,T} of nucleotides.  

An element u Є  Σ+  is  said to be a word in a sequence s Є  Σ+    
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 if  s=xuy for x, y Є  Σ*.  

An element m  Є Σ+ , called a motif is said to have an e-occurrence in s for a non 

negative integer if there is at least one word u in s  

such that the minimum number of substitution between u and m is no more than 

e. Given N sequences s1 , .. sN  Є Σ*  and an integer 1 ≤ q≤ N, an element m  Є  Σ+ 

is said to be a valid motif if it has at least an occurrence in at least q distinct 

sequences of the set(q is called the quorum). 

 Motif discovery has been applied to discover many types of patterns in DNA and amino 

acid sequences. For example, motif discovery has been used extensively to identify 

transcription factor binding sites and to discover protein-protein interaction domains. In 

most cases, motif discovery algorithms accept as input a set of sequences hypothesized 

to contain a biologically important sequence pattern, and search for patterns that are 

repeated with high frequency, that is, patterns unlikely to occur by chance. However, 

since motifs are usually short and can be highly variable sequence patterns, a challenging 

problem for motif discovery algorithms is to distinguish functional motifs from random 

patterns that are over-represented by chance. (MacIsaac et al., 2006). This problem is 

addressed in some motif extraction algorithms by using the information content or 

relative entropy of the motif. The relative entropy of a motif is defined as follows: 

Suppose that a motif of length L, has approximate occurrences in a subset S of N input 

sequences. Then the relative entropy or information content of this motif is defined to be 

 

  r{A,C,G,T} 

where Pr,j is the frequency of occurrence of the nucleotide or residue r in position j 

among the motif occurrences in S, and br is the background frequency of the residue . 
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 Relative entropy provides a measure of frequency of occurrence and how unlikely a 

motif is with respect to the background distribution. In particular, the more dissimilar the 

distribution Pr,j from the background distribution br, the higher the relative entropy of 

position j. 

Relative entropy is a good criterion to use when comparing two motifs with the same 

number of occurrences; however, it does not suffice if the two motifs occur in a vastly 

different number of sequences. This is due to the fact that relative entropy does not take 

into account the absolute number of occurrences; rather it depends on the relative 

frequency of occurrence of each of the nucleotides. (Tompa M , 2005). The nucleotides 

in a DNA sequence are made up of alphabets ‘A’,’C’,’T’,’G’ while in RNA sequence, 

the alphabet ‘T’ is replaced by ‘U’. .  

Motif discovery can also be seen as the problem of discovering promoter sequences and 

binding sites for transcription factors, usually referred to as consensus sequences or 

motifs, without any prior knowledge of their characteristics. These motifs can be sought 

by analyzing regulatory regions taken from genes of the same organism or from related 

genes of different organisms. Bock et al.,(2006). 

Motif discovery can be formally defined as follows:  

Assuming that  G ={g1, ….gT }  is  a set of DNA sequences.  

Let M be a motif of length L. M a motif that can occur in a sequence with 

mutations up to F instances in the sequence. Assuming m1, m2…mT to be 

instances of occurrence of M.  

The motif finding problem of (L, F) is to find M such that P*    P. Usually, we 

assume P* < 3 to avoid discovering motifs with less significance called trivial 

motifs. 

It is important to note that typically several target (L, F) motifs may exist, 
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depending on P*.  

 

In general, a computational algorithm cannot determine a priori the biological 

significance of a motif with certainty, thus the aim will be to find all these motifs based 

on their frequency of occurrence and to statistically validate the biological relevance of 

the extracted motifs. This statistical validation is usually accomplished using a scoring 

matrix. The most common scoring matrix model used for motif discovery tools is the 

Position Specific Scoring Matrix (PSSM).  (Pizzi et al. 2011). 

 

2.1.6   OPEN CHALLENGES IN MOTIF DISCOVERY 

There are many open challenges in motif discovery, one that is often overlooked, 

involves the partitioning of the input set of sequences into target and background sets. 

The target set is the cluster of interest suspected to have the motif, while the background 

set is the remaining sequence set. 

 Many methods rely on the user to provide these two sets and search for motifs that are 

overabundant in the target set when compared with the background set. The question of 

how to partition the data into target and background sets is left to the user. However, the 

boundary between the sets is often unclear and the exact choice of sequences in each set 

arbitrary. For example, suppose that one wishes to identify motifs within promoter 

sequences that constitute transcription factor binding site, a strategy that can be adopted 

would be to partition the set of promoter sequences into target and background sets 

according to the transcription factor binding signal (as measured by ChIP–chip 

experiments (Keich and Pezner, 2002). The two sets would contain the sequences to 

which the transcription factor binds ‘‘strongly’’ and ‘‘weakly,’’ respectively. A motif 

detection algorithm could then be applied to find motifs that are overabundant in the 
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target set compared with the background set. In this scenario, the positioning of the 

cutoff between the strong and weak binding signal is somewhat arbitrary. Obviously, the 

final outcome of the motif identification process can be highly dependent on this choice 

of cutoff. A stringent cutoff will result in the exclusion of informative sequences from 

the target set while a loose cutoff will cause inclusion of irrelevant sequences. It is 

obvious that both extremes hinder the accuracy of motif prediction. This example 

demonstrates a fundamental difficulty in partitioning most types of data. 

There are five major challenges in motif discovery which require consideration, they are: 

 The cutoff used to partition data into a target set and background set of sequences 

is often chosen arbitrarily;  

 The lack of an exact statistical score and p-value for motif enrichment. Current 

methods typically use arbitrarily set thresholds or simulations, which are 

inherently limited in precision and costly in terms of running time. 

 The need for an appropriate framework that accounts for multiple motif 

occurrences in a single promoter region. For example, how should one quantify 

the significance of a single motif occurrence in a promoter against two motif 

occurrences in a promoter? Linear models (Bussemaker et al, 2001) assume that 

the weight of the latter is double that of the former. However, it is difficult to 

justify this approach since biological systems do not necessarily operate in such a 

linear form 

  Another issue that is related to motif multiplicity is low complexity or repetitive 

regions. These regions often contain multiple copies of degenerate motifs. Since 

the nucleotide frequency underlying these regions substantially deviates from the 

standard background frequency, they often cause false-motif discoveries. 
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Consequently, most methods mask these regions in the preprocessing stage and 

thereby lose vital information that might reside therein. 

 Some criticism has been made over the fact that motif discovery methods tend to 

report presumably significant motifs even when applied on randomly generated 

data (Habison et al, 2004). These motifs are clearly, cases of false positives and 

thus should be avoided. 

 The challenge of the multiple occurrence of motif in a single sequence is further 

compounded by the fact that the there might not be an absolute optimal motif. It 

usually occurs in multiples.  

 

Several motif discovery tools tried to take this challenge into consideration when 

building the motif extraction model.  

A typical example is the motif discovery tool by Kaya, 2009 who developed 

MOGAMOD(Multi) using multi-objective genetic algorithm approach to discover 

optimal motifs in sequential data. The main advantage of this approach is that a large 

number of tradeoff (i.e., nondominated) motifs can be obtained by a single run with 

respect to conflicting objectives: similarity, motif length and support maximization.  

Thereby reporting all the multiple optimal motifs present in the sequence data.  A 

discussion of multi-objective genetic algorithm and its implementation is discussed in the 

sections below. 

 

2.1.7 MULTI-OBJECTIVE GENETIC ALGORITHM (GA) 

Multi-objective genetic algorithms are evolutionary algorithms which have become the 

method of choice for optimization problems that are too complex to be solved using 

deterministic techniques such as linear programming or gradient methods. It uses Multi-
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objective optimization. Multi-objective optimization is the process of simultaneously 

optimizing two or more conflicting objectives subject to certain constraints. For 

multiple-objective problems, the objectives are generally conflicting, preventing 

simultaneous optimization of each objective. Many, or even most, real engineering 

problems actually do have multiple objectives, that is, minimize cost, maximize 

performance, and maximize reliability, among others. These are difficult but realistic 

problems. GA are a popular meta-heuristic that is particularly well-suited for this class of 

problems. Traditional GA is customized to accommodate multi-objective problems by 

using specialized fitness functions and introducing methods to promote solution 

diversity. There are two general approaches to multiple-objective optimization. One is to 

combine the individual objective functions into a single composite function and the other 

involves moving all but one objective to the constraint set. In the former case, 

determination of a single objective is possible with methods such as utility theory, 

weighted sum method among others, but the problem lies in the proper selection of the 

weights or utility functions to characterize the decision-maker’s preferences. 

In practice, it can be very difficult to precisely and accurately select these weights, even 

for someone familiar with the problem domain. Compounding this drawback is that 

scaling amongst objectives is needed in order to be able to choose the best objective 

criteria since a few alterations in the weights could result in different solutions. In the 

latter case, the problem is that in moving objectives to the constraint set, a constraining 

value must be established for each of these former objectives. This movement of 

objectives could be arbitrary and thus the problem of consistency ensued. In both cases, 

an optimization method would return a single solution rather than a set of solutions that 

can be examined for trade-offs. For this reason, decision-makers often prefer a set of 

good solutions considering the multiple objectives.  
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The second general approach is to determine an entire Pareto optimal solution set or a 

representative subset. A Pareto optimal set is a set of solutions that are non dominated 

with respect to each other. While moving from one Pareto solution to another, there is 

always a certain amount of sacrifice in one objective to achieve a certain amount of gain 

in the other. Pareto optimal solution sets are often preferred to single solutions because 

they can be practical when considering real-life problems since the final solution of the 

decision-maker is always a trade-off. Pareto optimal sets can be of varied sizes, but the 

size of the Pareto set usually increases with the increase in the number of objectives. 

A general minimization problem of N objectives can be stated mathematically as 

Minimize f(x) = [fi(x), i = 1,..,N] 

Subject to: 

 gj(x) ≤  j =1.2…,J 

 hk (h) = 0  k =1.2…,K 

Where f i (x) is the ith –objective function, gj(x) is the jth inequality constraint. The multi 

objective optimization problem is then reduced to finding x such that f(x) is optimized.  

The ultimate goal of a multi-objective optimization algorithm is to identify solutions in 

the Pareto optimal set. However, identifying the entire Pareto optimal set, for many 

multi-objective problems, is practically impossible due to its size. In addition, for many 

problems, especially for combinatorial optimization problems, proof of solution 

optimality is computationally infeasible because of the search operations involved. 

Therefore, a practical approach to multi-objective optimization is to investigate a set of 

solutions (the best-known Pareto set) that represent the Pareto optimal set as much as 

possible. With these concerns in mind, a multi-objective optimization approach should 

achieve the following three conflicting goals ( Zitzler et al, 2000) 
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 The best-known Pareto front should be as close as possible to the true 

Pareto front. Ideally, the best-known Pareto set should be a subset of the 

Pareto optimal set. 

 Solutions in the best-known Pareto set should be uniformly distributed 

and diverse over of the Pareto front in order to provide the decision-maker 

a true picture of trade-offs. 

 The best-known Pareto front should capture the whole spectrum of the 

Pareto front. This requires investigating solutions at the extreme ends of 

the objective function space. 

For a given computational time limit, the first goal is best served by focusing the search 

on a particular region of the Pareto front. On the contrary, the second goal demands the 

search effort to be uniformly distributed over the Pareto front. The third goal aims at 

extending the Pareto front at both ends, exploring new extreme solutions. (Konak et al., 

2006). 

Usually, Genetic algorithms are well suited to solve multi-objective optimization 

problems. A generic single-objective GA can be modified to find a set of multiple non-

dominated solutions in a single run. The ability of GA to simultaneously search different 

regions of a solution space makes it possible to find a diverse set of solutions for difficult 

problems with non-convex, discontinuous, and multi-modal solutions spaces. The 

crossover operator of GA is capable of exploiting structures of good solutions with 

respect to different objectives to create new non-dominated solutions in unexplored parts 

of the Pareto front. In addition, most multi-objective GA does not require the user to 

prioritize, scale, or weigh objectives. Therefore, GA has been the most popular heuristic 

approach to multi-objective design and optimization problems. A survey by Jones et al., 

(2002) reported that 90% of the approaches to multi objective optimization are aimed at 
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approximating the true Pareto front for the underlying problem, majority of these used a 

meta-heuristic technique, and 70% of all meta-heuristics approaches were based on 

evolutionary approaches. 

The first multi-objective GA, called vector evaluated GA, VEGA, was proposed by 

Schaffer (1985). This was followed by  Several Multi-objective Genetic 

Algorithm(MOGA) such Niched Pareto Genetic Algorithm (NPGA),  Weight-based 

Genetic Algorithm (WBGA),  Random Weighted Genetic Algorithm (RWGA), Non 

dominated Sorting Genetic Algorithm (NSGA),  Strength Pareto Evolutionary Algorithm 

(SPEA), improved SPEA called SPEA2, Pareto-Archived Evolution Strategy (PAES), 

Pareto Envelope-based Selection Algorithm(PESA),  Region-based Selection in 

Evolutionary Multiobjective Optimization,  PESA-II, a fast Non dominated Sorting 

Genetic Algorithm, (NSGA-II), Multi-objective Evolutionary Algorithm,  Micro-GA, 

Rank-Density Based Genetic Algorithm(RDGA), and Dynamic Multi-objective 

Evolutionary Algorithm(DMOEA). It is important to note that although there are many 

variations of multi-objective GA available, these cited GA are well-known and credible 

algorithms that have been used in many applications and their performances were tested 

in several comparative studies. Konak et al, (2006). A list of some popular multi-

objective GA is contained in table 2.6 below indicating their strengths and weaknesses. 
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Table 2.5 A List of popular Multi-objective Genetic Algorithms (Konak et al, 2006) 

Algorithm 
Fitness 

assignment 
Diversity 

mechanism 
Elitism 

External 
population 

Advantages Disadvantages Author 

VEGA 

Each 
subpopulation 
is evaluated 
with respect 
to a different 
objective 

No No No 
First MOGA 
Straightforward 
implementation 

Trend converges 
to the extreme 
of each 
objective 

Schaffer J.D 
(1985) 

MOGA 
Pareto 
ranking 
 

Fitness 
sharing by 
niching 

No No 

Simple 
extension of 
single objective 
GA 

Usually slow 
convergence 

Fonseca wt 
al. (1993) 

WBGA 

Weighted 
average of 
normalized 
objectives 

Niching. 
Predefined 
weights 

No No 

Simple 
extension of 
single objective 
GA 

Difficulties in 
nonconvex 
objective 
function space 

Hajela 
P.,Lin C-y. 
(1992) 

NPGA 

No fitness 
assignment, 
tournament 
selection 

Niche count 
as tie-
breaker in 
tournament 
selection 

No No 

Very simple 
selection 
process with 
tournament 
selection 

Problems 
related to niche 
size parameter. 
Extra parameter 
for tournament 
selection 

Horn J., 
Nafplio N. 
Goldberg 
D.E. (1994) 

RWGA 

Weighted 
average of 
normalized 
objectives 

Randomly 
assigned 
weights 

Yes Yes 
Efficient and 
easy implement 

Difficulties in 
nonconvex 
objective 
function space 

Murata  et 
al (1995) 

PESA 
 

No fitness 
assignment 

Cell-based 
density  

Pure elitist Yes 

Easy to 
implement. 
Computational 
efficient 

Performance 
depends on cell 
sizes. Prior 
information 
needed about 
objective space 

Corne 
D.W., 
Knowles 
J.D., Oates 
M.J. (2000) 

PAES 

Pareto 
dominance is 
used to 
replace a 
parent if 
offspring 
dominates 

Cell-based 
density as tie 
breaker 
between 
offspring and 
parent 

Yes Yes 

Random 
mutation hill-
climbing 
strategy. Easy to 
implement. 
Computationally 
efficient 

Not a population 
based approach. 
Performance 
depends on cell 
sizes 

Knowles J. 
Corne D. 
(1999) 

NSGA 
 

Ranking 
based on non-
domination 
sorting 

Fitness 
sharing 
by niching 

No No 
Fast 
convergence 

Problem related 
to niche size 
parameter 

Srinivas N. 
Deb K. 
(1994) 

NSGA-II 

Ranking 
based on non-
domination 
sorting 

Crowding 
distance 

Yes No 

Single 
parameter (N). 
Well tested. 
Efficient 

Crowding 
distance works 
in objective 
space only 

Deb K et al.  
(2000) 

SPEA 

Ranking 
based on the 
external 
archive of 
non-
domination 
solutions 

Clustering to 
truncate 
external 
population 

Yes Yes 
Well tested. No 
parameter for 
clustering 

Complex 
clustering 
algorithm 

Zitzler E. 
Thiele 
L.(1999) 

SPEA-2 
Strength of 
dominators 

Density 
based on the 
k-th nearest 
neighbor 

Yes Yes 

Improved 
SPEA. Make 
sure extreme 
points are 
preserved 

Computationally 
extensive fitness 
and density 
calculation 

Zitzler E. 
Laumanns 
M. Thiele 
L.(2001) 

RDGA 

The problem 
reduced to bi-
objective 
problem with 
solution rank  

Forbidden 
region cell-
based 
density 

Yes Yes 

Dynamic cell 
update. Robust 
with respect to 
the number of 
objectives 

More difficult to 
implement than 
others 

Lu H.  Yen 
G.G. (2003) 

DMOEA 
Cell-based 
ranking 

Adaptive 
cell-based 
density 

Yes 
(implicitly) 

No 

 efficient 
techniques to 
update cell 
density. 
Adaptive 
approaches to 
set GA 
parameters 

More difficult to 
implement than 
others 

Yen G.G.  
Lu H. 
(2003) 
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2.1.7.1 THE NON DOMINATED SORTING GENETIC ALGORITHM II (NSGA 

II) 

The multi-objective genetic algorithm adopted in STGEMS implementation is the Non 

dominated Sorting Genetic Algorithm NSGA II.  This is an improvement on the non 

dominated sorting genetic algorithm (NSGA) proposed by Srinivas and Deb (1995).  The 

main criticisms of the NSGA approach are as follows: 

 High computational complexity of non dominated sorting: The currently-used 

non dominated sorting algorithm has a computational complexity of  O(MN3 ) 

where M is the number of objectives and  N is the population size. This makes 

NSGA computationally expensive for large population sizes. This large 

complexity is due to the complexity involved in the non dominated sorting 

procedure in every generation. 

 Lack of elitism: The reports of Fonseca and Fleming(1998) and Coello and 

Pulido(2001) showed that elitism can speed up the performance of GA 

significantly, and at the same time prevent the loss of good solutions once they 

are found. 

 Need for specifying the sharing parameter: The traditional mechanisms of 

ensuring diversity in a population so as to get a wide variety of equivalent 

solutions have relied mostly on the concept of sharing. The main problem with 

sharing is that it requires the specification of a sharing parameter and usually, 

parameter-free diversity preservation is always preferred. 

NSGA II procedure basically consists of creating a random parent population at first; 

then the population is sorted based on the non domination. Each solution is assigned a 
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fitness (or rank) equal to its non domination level. Thus, minimization of fitness is 

assumed.  

In general, motif discovery algorithms employ a search algorithm to obtain the initial 

cluster, since the first step in any clustering technique is the search for the items to be 

clustered. However, the search scheme in motif discovery algorithms differ considerably 

from other search schemes especially the web search where the search item is specified 

before the search begins but not the same with the search scheme of motif discovery 

tools since the items are not known before the search begins. An overview of search 

algorithms is discussed below. 

 

2.1.8 OVERVIEW OF SEARCH ALGORITHMS 

A search algorithm is an algorithm for finding an item with specified properties among a 

collection of items. The items may be stored individually as records in a database; or 

may be elements of a search space defined by a mathematical formula or procedure. 

There are basically two classes of search algorithms. The informed search and the 

uninformed search algorithm.   An informed search algorithm looks for a specific answer 

to a specific problem in a data, that is, the particular item being search for is known 

before the search commences. A typical example of this is searching for items on the 

web. While for uninformed search, the item is not known before the search begins. For 

example, the search involved in motif discovery, since the patterns are not known before 

hand and therefore, they usually search for high occurring patterns. 

The different types of search algorithms are: 

List search – A list search algorithm searches through specified data looking for a single 

key. The data is searched in a very linear, list-style method. The result of a list search is 

usually a single element.   
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Graph Search 

Graph searches can be either depth-first or breadth-first. These two kinds of searches 

visit the nodes in different orders. A depth-first search is most often implemented with a 

recursive algorithm. A depth-first search follows one path of the graph until it can no 

longer proceed. It then backs up until it finds a path that has not been visited and 

proceeds down that path until it comes to the end. The process continues until all 

reachable nodes have been visited. The breadth-first search algorithm is very different. A 

breadth-first search visits all nodes that are one node away from the starting node first. It 

then visits all nodes that are two nodes away from the starting node and continues until 

all reachable nodes have been visited. 

To search a graph (directed or not) in breadth first; this is done by using a queue where 

the vertices found are stored. Unlike binary trees, graphs do not have a root, so the search 

can begin at any node. Also, because graphs can contain cycles, it is necessary to mark 

each node as it is visited to prevent an endless loop around the cycle.  

SQL search - One of the difficulties with a tree search is that it is conducted in a 

hierarchical manner, which implies that the search is conducted from one point to 

another, according to the ranking of the data being searched. A  SQL search allows data 

to be searched in a non-hierarchical manner, which gives the advantage of searching for 

data from any subset of data. 

 Adversarial search - An adversarial search algorithm looks for all possible solutions to 

a problem. It is similar to finding all the possible solutions in a game. This algorithm is 

found useful in most genomic data set, since we want all the possible patterns or 

combinations to be reported, however, its implementation is involving.  
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Constraint satisfaction search - In this type of search algorithm, the solution is 

discovered by meeting a set of constraints, and the data set can be searched in a variety 

of different ways that do not have to be linear.  

Tree search – A tree search algorithm works by searching a data set from the broadest to 

the narrowest, or from the narrowest to the broadest. Data sets are like trees; a single 

piece of data can branch to many other pieces of data. Tree searches are more useful 

when conducting searches on a large data sets and speed rather than space is of 

paramount importance.  There are different types of trees with various search capabilities 

for instance the binary tree, prefix tree, and suffix tree among other.  

The performance of algorithms are measured based on the computational metrics of time 

and space.  The section below provides a brief description of these metrics. 

 

2.1.9 COMPUTATIONAL COMPLEXITY METRICS FOR MOTIF 

DISCOVERY ALGORITHMS 

The efficiency of algorithms is a measure of the time and space complexity, these 

metrics are important when comparing algorithms. Estimation of complexity metric for 

motif discovery algorithms is a necessary benchmark for the efficiency of the 

methodology adopted in the design of motif discovery tool. For tasks, such as searching, 

that are repeated frequently, the choice among alternative algorithms becomes important 

because they differ in complexity. The complexity of an algorithm can be measured in 

three different ways: best-case complexity, average-case complexity and worse-case 

complexity. Best-case complexity is the measure of the complexity of solving the 

problem for the best size of input. Average-case complexity measure is the complexity of 

solving the problem on an average input size while the worst-case complexity is that of 

solving the problem for the worst size of input. 
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The time complexity of an algorithm is a measure of the amount of time taken by the 

algorithm to run as a function of the size of the input to the problem. It measures the 

running time of the algorithm which is the number of machine instructions it executes 

when the algorithm is run on a particular instance. The time complexity of an algorithm 

is commonly expressed using big O notation, which suppresses a multiplicative constants 

and lower order terms. When it is expressed this way, the time complexity is said to be 

described asymptotically, that is, as the input size goes to infinity. For example, if the 

time required by an algorithm on all inputs of size n is at most 8n3 + 5n, the asymptotic 

time complexity is O (n3). (Hopcroft et. al., 2007). 

Time complexity is commonly estimated by counting the number of elementary 

operations performed by the algorithm, where an elementary operation takes a fixed 

amount of time to perform. Thus the amount of time taken and the number of elementary 

operations performed by the algorithm differ by at most a constant factor. 

Since an algorithm may take a different amount of time even on inputs of the same size, 

the most commonly used measure of time complexity, is the worst-case time complexity 

of an algorithm, denoted as T(n). It is the maximum amount of time taken on any input of 

size n. Time complexities are classified by the nature of the function T(n). For instance, 

an algorithm with T(n) = O(n) is called a linear time algorithm, and an algorithm with 

T(n) = O(2n) is said to be an exponential time algorithm. It is said to take logarithmic 

time if T(n) = O(log n).  The better the time complexity of an algorithm is, the faster the 

algorithm will carry out its work in practice. (Flum et al, 2006).Time complexity 

measurement is crucial for motif discovery algorithms which aim at extracting patterns 

from very large data sets. It is very essential that the algorithm is adequately tuned to 

speed up the search process and thereby achieve a favourable runtime.  
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The space complexity of a program is the number of elementary objects that the program 

needs to store during its execution. It is essentially the number of memory cells which an 

algorithm needs and a good algorithm keeps this number as minimal as possible. This 

number is computed with respect to the size n of the input data. 

In space and time complexity management, there is usually a trade-off between storage 

space and computing time, consequently, there is need for a compromise between the 

choice of computing time and memory consumption . This however, depends on the 

choice of algorithm and the parameters specified. (Naresh and Shrish , 2011). 

The performance of an algorithm is also  influenced by the choice of data structures used 

in the implementation of the algorithm. Researchers involved in the development of 

motif discovery tools realising the importance of these data structures have employed the 

different structures in an attempt to improve the performance of their algorithm. Some 

popular data structures used include suffix tree, suffix array, hash tables and link lists.  

 

2.2 RELATED WORKS 

There are several approaches proposed in literature for the discovering of simple and 

structured motifs. This review of related work is based on the three main approaches 

used in the literature namely the Pattern Driven Approach, Statistical Based Approach 

and Machine Learning Approach.  

 

2.2.1 MOTIF DISCOVERY TOOLS BASED ON MACHINE LEARNING 

APPROACH 

Several motif discovery algorithms used different machine learning techniques as their 

operating principle.  The most common machine learning technique used in motif 

inference tool is the genetic algorithm. The advantage of such genetic algorithm based 
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methods is that they are likely to locate the global optimum in a typically difficult search 

space. On the other hand, they are stochastic and so they may fail to report consistent 

results in different runs. They also require a large population of solutions and the 

computation time is usually high. The other machine learning techniques that have been 

used in motif discovery are the Artificial neural Network and  Support Vector machine .  

In general, machine learning techniques requires a large data set to adequately train the 

learning tool in order to achieve relevant predictions and that can limit its use when the 

required  data size is not available.   

A survey of motif discovery tools by Kaya,  2009 reported that MOGAMOD (Multi-

Objective Genetic Algorithm Motif Discovery), outperformed the existing motif 

discovery tools that used pattern driven or statistical approach in terms of accuracy of 

predicted motifs. However, this success was limited to model organisms with a generic 

genomic structure, since it failed to identify any motif from the challenging sequence of 

the malaria parasite genome. 

 MOGAMOD used the multi-objective genetic algorithm to discover optimal simple 

motifs in sequential data. Multi-objective optimization involves having a solution which 

is a family of pareto-optimal set or non dominated solutions. The optimal motif 

discovery problem was converted into three conflicting optimization problems of 

maximizing similarity, increase motif length and support for candidate motifs. The 

implementation of MOGAMOD was based on a well known high performance multi-

objective Genetic Algorithm called NSGA II(Non- dominated Sorting Genetic 

Algorithm) by Deb et al (2002). 

The sensitivity of MOGAMOD was enhanced by its flexibility in choice of similarity 

measures for finding motifs. The user can analyze the obtained optimal motifs, and can 

make a decision on the tradeoff between the different objectives. 
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In 2009, the same author extended MOGAMOD to extract structured motif. Kaya 

(2009). The objective function optimizations used were similarity maximization, total 

gap minimization and support maximization. The performance of the algorithm was 

compared with two well known structured motif extraction methods: ExMOTIF and 

RISOTTO and it showed a good performance with respect to speed and accuracy. 

Nevertheless, it could not identify structured motifs from malaria parasite genome 

(Makolo et al., 2012).  

Another  popular tools based on genetic algorithm is FMGA (Finding Motif with Genetic 

Algorithm ) by Liu et al. (2004). In FMGA, the mutation in GA is performed by using 

position weight matrices to reserve the completely conserved positions. The crossover is 

implemented with specially designed gap penalties to produce the optimal child pattern. 

This algorithm also uses a rearrangement method based on position weight matrices to 

avoid the presence of a very stable local minimum, which may make it quite difficult for 

the other operators to generate the optimal pattern. The authors reported that FMGA 

performs better in comparison to MEME and Gibbs sampler algorithms. 

 

 GAME (Genetic Algorithm Motif Elicitation) by Wei and Jensen (2006) is also a 

common motif discovery tool based on genetic algorithm.  GAME is an optimization 

algorithm for motif discovery capable of an exhaustive search of the space of possible 

motifs. It used position weight matrix based optimization to find an optimal motif in the 

search space.  GAME outperformed MEME and BioProspector when used on both 

simulation and real-data sets. 
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2.2.2 PATTERN-DRIVEN BASED MOTIF DISCOVERY TOOLS  

Pattern-driven method enumerates all the patterns in order to determine those appearing 

with a high frequency in the input sequence. It also considers the number of possible 

substitutions and thereafter provides a ranking for the extracted patterns according to 

some statistical measure of significance. The drawback in this approach is that they can 

have many false predictions, since they are not good at discriminating the relevant 

extracted motifs from the potentially numerous false hits. In addition, this method 

requires a large number of parameters to be specified. (Apostolico et al, 2008) 

The techniques used in Pattern driven include enumeration (listing items in an order), 

suffix tree, graph, hash table and link list.   The review of motif discovery tools based on 

the tools that utilized suffix tree and Enumeration techniques that are more relevant to 

this study is the subject next section. The review is grouped under simple and structured 

motif discovery tools.  

As stated earlier, simple motifs are made up of a single pattern that is made up of 

different characters while Structured  motif consists of a subsequence of intermittent 

characters interspersed with spaces and appearing frequently in an input sequence. 

(Apostolico et al, 2008). 

 

2.2.2.1  Simple Motif Discovery Tools using Pattern Driven-based Approach 

The first simple motif discovery algorithms developed using enumeration technique - a 

pattern-driven approach was by Van Helden et al. (1998). The algorithm – Oligo-

Analysis was conceptually simple and could not detect motifs with mutation. This 

problem was resolved by Tompa (1999)  using the same enumeration method.  The 

algorithm identified motifs with mutations  by considering both the absolute number of 

occurrences and the background distribution, while creating a table that records for each 
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sequence length, the number of sequences containing the repeated sequence, where an 

occurrence allows for a small, fixed number of  substitutions. Sinha and Tompa(2000)  

also used enumeration method but incorporated statistical validation and developed the 

algorithm YMF (Yeast Motif Finder). The statistical validation used is the z-scores, 

which is the number of standard deviations by which its observed number of instances in 

the actual input sequences exceeds its expected number of instances, supposing the input 

sequences had been random. This validation improved the accuracy of the YMF, and 

when the authors compared YMF with MEME and AlignACE, they reported an 

outstanding performance. 

 

Another popular clustering technique in the pattern-driven approach is suffix tree. A 

Suffix tree is a lexicographically interconnected data structure built over all the suffixes 

of a string. It provides efficient access to all substrings of the string and can be 

constructed in linear time and space while exposing the internal structure of a sequence 

in a deeper way than any other data structure. Due to its versatility, no other data 

structure exists with diverse applications in string processing as the suffix tree. 

(Carlvalho et al, 2004, Apostolico et al, 2008, Pizzi et al, 2011). 

A Suffix tree for a string S is a tree whose edges are labeled with strings, such that each 

suffix of S corresponds to exactly one path from the tree's root to a leaf. (Adebiyi and 

Kaufmann,  2002).  By definition, a suffix tree ST of an n-character string S is a rooted 

directed tree with exactly n leaves, numbered from 1 to n. Each internal node, other than 

the root R, has at least two children and each edge is labeled with a nonempty substring 

of S. No two edges out of a node can have edge-labels beginning with the same 

character. The key feature of the suffix tree is that for any leaf i, the label of the path 

from the root to the leaf i spells out exactly the suffix of S that starts at position i. 
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It has been applied to fundamental string problems such as finding the longest repeated 

substring, finding all squares or repetitions in a string, computing substring statistics and 

string comparison. It is particularly useful for finding a small sequence of symbols in a 

large one, a common ancestor of two different strings and common substrings of two 

different strings. The suffix tree of a string S is a tree with O(n) nodes and edges and n 

leaves. Each leave in the suffix tree is associated with an index i(1≤i≤n). This is made 

possible by the concatenation of  a special character $ usually called the sentinel which 

does not occur in the string S. Thus ensuring that no Si is a proper prefix of Sj and there 

is a one-to-one correspondence between S$ and the leaf of the suffix tree (Adebiyi, 

2002).   

 

The construction of a suffix tree in linear time is a problem already addressed by 

Weiner(1973),  McCreight(1976) and  Ukkonen (1992).  Kurtz(1999), improved on this 

design by implementing the space efficient construction using the suffix links and hash 

table.  
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Figure 2.2: The suffix tree for  DNA Sequence  GTTAATTACTGAAT$ 
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Some basic properties of the suffix tree are enumerated below: 

1. The suffix tree is an acyclic tree, and a path of a node is a string from root to that 

node 

2. A branch of the suffix tree may represent any nonempty substring of S.  

3. Every suffix of the string S is represented by a leaf in the suffix tree 

4. Each node of the suffix tree that is not a leaf, except the root, must have at least 

two offspring branches. 

5. The length of an edge label of the suffix tree can be found in O(1) time 

6. If a leaf of the suffix tree represents a string U, then every suffix of U is also 

represented by another leaf in the suffix tree. 

7. If a node w is an ancestor of another node x, then the string that w represents is 

the prefix of the string that x represents. 

8. If nodes x1,x2,…xk represent the strings X1,X2,..Xk respectively, then the lowest 

common ancestor of x1, …, xk represents the longest common prefix of V1, ..,Vk 

9. If two suffixes of S share a prefix, y, then they must share the path leading to the 

extended locus of y, the common prefix. 

 

 The suffix tree construction for a set of N input sequences, called a generalized suffix 

tree, can be easily achieved by consecutively building the suffix tree for each string of 

the set. The resulting suffix tree is built in time proportional to the sum of all the string 

lengths. 

 

The first simple motif algorithm to use the suffix tree was developed by Sagot (1998). 

The suffix tree was constructed and used to represent the sequences, returning all the 

traversal from the root node to the leaf node as unique patterns. The use of the suffix tree 
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for preprocessing and organizing the input data resulted in an accelerated search for 

motifs. This implementation addressed to a large extent the speed bottleneck inherent in 

pattern-driven  based methods. The algorithm was tested on DNA sequences of Yeast. 

This was followed by Apostolico et al.(2001) who developed the VERBUMCULUS 

algorithm and applied it to protein sequences. Eskin and Pevzner (2001) used a variant of 

the suffix tree called a mismatch tree to develop the MITRA algorithm which detected 

complex motifs with mutation successfully. 

A very popular simple motif discovery tool that also used the suffix tree is the WEEDER 

algorithm by Pavesi  et al.,(2001). WEEDER successfully identified motifs of unknown 

length in DNA and protein sequences.     A recent survey of Motif discovery tool by 

Mandas et al., (2007) revealed that WEEDER outperformed many other motif discovery 

tools such as MEME, AlignACE, ANN-Spec, Consensus, MITRA and MotifSampler. 

This success was attributed to its flexibility of parameter specification. Users are allowed 

to estimate apriori the probability of finding a given motif according to its length and the 

maximum number of mutations allowed for its occurrences. It also allows users to 

choose an optimal trade-off between time and accuracy: this ensured a judicious choice 

of prediction of motifs found in the data set, since only the strongest motifs would be 

reported as optimal. 

 

The motif discovery tool developed in this research, STGEMS was compared with 

WEEDER in terms of speed and accuracy of identifying simple motifs. STGEMS 

outperformed it. 



UNIVER
SIT

Y O
F I

BADAN

 
 

61

2.2.2.2  Structured Motif Discovery Tools using Pattern Driven-based 

Approach 

Structured motifs are complex patterns with spaces separating them. The first structured 

motif extraction tool was developed by Marsan and Sagot (2000). They extended the 

simple motif extraction algorithm developed by Sagot(1998)  to extract structured 

motifs. Their algorithm, SMILE proposed two solutions for extracting structured motifs 

on the suffix tree. In the first solution, the structured motif template consists of two 

components with a gap range between them. The algorithm starts by building a 

generalized suffix tree for the input sequences and then extracting the first component. In 

order to extract the other component, a jump is made in the sequences from the end of 

the first component to the second within the gap range. In the second solution, the suffix 

tree is modified temporarily so as to extract the second component from the modified 

suffix tree directly. SMILE proved inefficient in terms of its time and space complexity 

which were exponential in the number of gaps between the two components. The detail 

algorithm of Sagot(1998) for simple and structured motif mining on the suffix tree is 

provided in section 3.5.1. 

 

Carvalho et al., (2004)   attempted to reduce the time complexity during the extraction of 

the structured motifs by SMILE and developed a parallel algorithm, called PSMILE.  

PSMILE used the technique of partitioning the structured motif searching space, that is, 

the most demanding part of the algorithm was decomposed into a number of 

subprocesses that were loosely coupled and therefore could be executed simultaneously 

on different processors. This achieved a time speedup which is linear on the number of 

available processing units. 
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A year later, the same authors developed the RISO algorithm, an improvement on the 

SMILE algorithm. (Carvalho et al., (2005). This improvement is in twofold: the first, 

instead of constructing the whole suffix tree for the input sequence, it built a suffix tree 

only up to a certain level, which was called the factor tree, this resulted in saving 

appreciable space. Secondly, a new data structure called box-link was introduced to store 

the information about how to jump within the DNA sequences from one simple motif 

component to the subsequent one in the structured motif. This accelerated the extraction 

process and avoided the exponential time and space consumption that prevailed in the 

case of SMILE. In RISO, after the generalized factor tree was built, the box-links were 

constructed by exhaustively enumerating all the possible structured motifs in the 

sequences and they were added to the leaves of the factor tree. Then the extraction 

process began, during which the factor tree was temporarily and partially modified in 

order to extract the subsequent simple motifs.  RISO needed a lot of computation at this 

stage since the box-link construction, the structured motif occurrences were exhaustively 

enumerated and the threshold of the sequences was never used to prune the candidate 

structured motifs. 

Pisanti et al., (2006) provided an improvement on the RISO algorithm by developing the 

RISOTTO algorithm.  RISOTTO incorporated boxlinks data structure with the suffix 

tree. While traversing the tree, RISOTTO adopted a depth-first visit of the motif tree and 

does not attempt to extend the node if the maximal length was determined or the quorum 

was no longer satisfied. The main improvement of RISOTTO on RISO was its ability to 

store information concerning maximal extensibility of factors. This was done in order  to 

avoid extending motifs that are unlikely candidates.  RISOTTO was shown to 

outperform RISO in terms of computational speed. However, it incurred an extra cost 
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due to the space required to store the extensibility information. RISOTTO successfully 

identified structured motifs in yeast and bacteria respectively. 

Another popular structured motif extraction tool is EXMOTIF by Yongqiqng Zang et al., 

(2006). EXMOTIF used a variant of the suffix tree, consisting of inverted index of 

symbol positions. This was used to enumerate all structured motifs by positional joins 

over the index. By considering the variable gap constraints at the same time as the joins 

were considered, an appreciable speed was achieved. The algorithm utilized a structured 

motif template defined based on some desired parameters such as length of motif and the 

gap range allowed. It used a hash table to store the computed motifs thus facilitating a 

speedy lookup and extracted all the repeated patterns after statistically validating them. 

EXMOTIF was reported to outperform RISO in both approximate and exact matching 

and superior to RISSOTO in showing the actual occurrences of the structured motifs 

instead of the relative frequency of the occurrence as obtained using RISOTTO.  

 

Zare-Mirakaba et al, (2009) presented another structured motif discovery algorithm 

based on the suffix tree called MotifST (Motif finding using Suffix Trie). The algorithm 

uses a depth first search scheme to search for relevant motifs in a DNA sequence 

returning gapped motifs and motifs with mutations. The algorithm ran in linear time and 

when compared to other popular motif discovery tools like MEME and WEEDER, it had 

a better speed performance.  

 

It is clear from this review that there is a need for structured motif discovery tool for the 

challenging sequence of P.falciparum and that influenced the STGEMS algorithm which 

when compared with these two popular structure motif discovery tools described above 
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((RISOTTO and EXMOTIF) had a better speed of execution and it also mined structured 

motifs from the challenging genomic  sequence of the malaria parasite.  

 

2.2.3 STATISTICAL BASED MOTIF DISCOVERY TOOLS 

Statistical based method uses a two-phase iterative procedure where in the first step the 

likeliest occurrences of the motif are identified, and the second step adjusts the model for 

the motif which is usually  represented by a position scoring weight matrix(PSWM) 

model based on the occurrences of the motifs determined in the previous step. In the first 

iteration the parameters of the initial model are usually set randomly. The limitation in 

this method is sensitivity to noise in the data and the fact that they are not guaranteed to 

converge to a global maximum since they employ some form of local search, such as 

Gibbs sampling, expectation maximization (EM) or greedy algorithms that may converge 

to a locally optimal solution. 

There is no record of statistical based method for structured motif discovery in the 

literature; this is attributed to the complexity of the process involved in identifying the 

spaces that occur in structured motifs. 

 

2.2.3.1  Simple Motif Discovery Tools based on statistical Approach. 

The first simple motif tool based on statistical approach was developed by Hert et 

al.,(1990). The implementation was a greedy probabilistic model-based algorithm for 

discovering a matrix representation of sequences by finding the site with the highest 

information content. This algorithm  has been fundamentally improved upon over the 

years and the latest implementation is called CONSENSUS  by Hertz and Stormo(1999). 

The researchers provided a method to estimate the statistical significance of a given 

information content score based on large deviation statistics. They extracted DNA and 
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protein patterns with statistically significant alignments of multiple sequences, stating 

that valuable insights could be obtained by aligning a set of related DNA, RNA or 

protein sequences and that such alignment could be useful in determining functional or 

evolutionary relationships.     

An improvement on the greedy probability method is the Expectation Maximization 

which was introduced by Lawrence and Reilly (1990) and  used  Bailey and Elkan 

(1995)   in developing MEME (Expectation Maximization Motif Elicitation).  MEME is 

a popular simple motif discovery tool developed with the aim of discovering new motifs 

in a set of sequences where limited knowledge about the motif that could be present is 

available. MEME introduced three main novel ideas for discovering motifs: It used as 

starting point for the EM algorithm, the subsequences that actually occur in the 

sequences thus, increasing the probability of finding globally optimum motifs. It 

removed the assumption that each sequence contains exactly one occurrence of the 

shared motif and incorporated  a method for erasing shared motifs after they are found, 

this ensures that several distinct motifs could be found in the same set of sequences. This 

is especially crucial in situations when different motifs appear in different sequences or 

when a single sequence contains multiple motifs. STGEMS was compared with MEME 

and it outperformed it.  

An improvement on the MEME algorithm is the PHYME (Phylogenetic Motif 

Elicitation)  by  Sinha et al.,(2004).  PHYME used EM technique and improved on it by 

the incorporation of an evolutionary model trained using Hidden Markov model. This 

combination increased the sensitivity of the algorithm appreciably. In addition, the 

phylogenetic tree output of the algorithm makes it easier to trace the genetic relationship 

of the sequences at a glance.  
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Gibb Sampling technique is another popular statistically method that has been used as 

the operating principles of many motif extraction algorithms.  Roth et al., (1998) 

implemented AlignACE (Aligns Nucleic Acid Conserved Elements) based on  the Gibbs 

Sampling probability technique. Liu et al.,(2001) used a variant of Gibbs Sampling to 

design the BioProspector algorithm which is another variant of the Gibbs Sampling 

algorithm and an improvement on the algorithm of Roth et al., (1998).  

 

Gene Enrichmnent analysis is a potent statistical approach introduced by Eden et al 

(2007) and used to  develop  DRIM (Discovery of Rank Imbalanced motifs)  algorithm.  

Gene enrichment analysis is the  use of some statistical test (for example standard 

deviation, geometric mean, hypergeometric mean among others) to measure how 

enriched a particular set of gene is,  in terms of its functional annotation  compared to the 

other set of genes in the genome.  DRIM  incorporated the gene enrichment concept 

using the geometric mean and  identified sequence motifs in lists of ranked DNA 

sequences. DRIM successfully identified simple motifs in the yeast genome, that is, 

novel transcription factor binding sites. 

  

Young et al (2008) also used the  gene enrichment technique and developed the GEMS 

algorithm (Gene Enrichment Motif Searching) incorporating  the statistical test of 

hypergeometric mean instead of the geometric mean used by Eden et al. (2007).  GEMS 

also introduced the position weight matrix optimization principle which improved the 

accuracy of the motifs discovered.  

GEMS algorithm is not an ab-initio motif discovery tool, it requires an already existing 

cluster as candidate motif to perform gene enrichment analysis on. Therefore, it obtained 

the cluster for its analysis from the online Gene Ontology(GO) database. 
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www.geneontology.org. Gene Ontology is an online repository of sequence genes of 

different organisms maintained by the National Centre for Biotechnology Information 

(NCBI). www.ncbi.org. 

GEMS algorithm is the only algorithm that had successfully identified simple motifs 

from the challenging sequence of malaria parasite, all the other algorithms had been able 

to identify motifs from the other model organisms3 such as yeast and bacteria but not 

from malaria parasite. Nevertheless, GEMS’s inability to identify structured motifs is a 

major concern. This is because important proteins in eukaryotic organisms like the 

malaria parasite exist as structured motifs. Moreover, GEMS could not obtain the initial 

gene cluster it needs as a starting cluster (candidate motif). It depends solely on the gene 

ontology database for this initial cluster. Consequently, GEMS is incapable of identify 

optimal simple motifs for organisms that do not have an entry in the gene ontology 

database.  

Some motif discovery algorithm combine pattern-driven approach with statistical based 

approach while others combine machine learning and statistical methods.   This is 

because the hybrid is capable of inheriting the desired features of the two approaches.  

(Modan et al, 2007, Pizzi et al, 2011,  Makolo et al., 2011). 

 

2.2.4    MOTIF DISCOVERY TOOLS BASED ON COMBINATORIAL 

APPROACH 

A number of motif discovery algorithms combine two or more approaches to get a 

hybrid approach, which inherits desired features of the various approaches.  This concept 

was reported by Modan et al., (2007) in their study on survey of motif discovery tools. 

 (Kellis et al, 2004, Modan et al, 2007). 
                                                            
3 A model organism is a non human specie that is extensively studied to understand particular biological 
phenomena, with the expectation that discoveries made in the organism model will provide insight into the 
workings of other organisms 
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A popular motif discovery tool in this category is MUSA (Motif finder with 

UnSupervised Approach) based on a combination of machine learning and statistical 

technique. (Mende et al, 2006). MUSA  used a bi-clustering algorithm that operates on a 

matrix of co-occurrences of simple motifs and computed the statistical significance using 

position weight matrix. MUSA successfully identified complex biologically significant 

motifs with a performance that was independent of the composite structure of the motifs 

being sought. MUSA could be used as a standalone tool or as a tool to determine the 

parameters required to run other motif discovery tools already available because of its 

effective statistical significance assessment method. MUSA was validated both with 

synthetic and real data from yeast, and it was able to discover new biologically 

significant motifs that had eluded searches performed using other motif finders such as 

MEME and AlignAce. Mendes et al (2006). 

 BioProspector by Liu et al.,(2001) also combined Gibbs sampling statistical technique 

with a machine learning markvov model.  

A common choice among researchers of motif discovery tools is a combination of 

pattern-driven and statistical-based methods since this approach guarantees that the 

sensitivity of the statistical based method be complemented with the speed efficiency of 

pattern-driven techniques. An example of this is the STEME (Suffix Tree and 

Expectation Maximization for Motif Elicitation ) algorithm by Reid and Wernisch 

(2011). It combined the suffix tree, a pattern-driven approach with Expectation 

Maximization, a statistical approach.  The incorporation of the Suffix Tree improved the 

speed limitation of the expectation maximization based algorithms (such as MEME).   

STEME was demonstrated to have a better empirical run time than MEME for the same 

data set.  
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2.2.5  EVALUATION OF MOTIF INFERENCE TOOLS 

It is evident from the review of motif inference tools provided in the session above that a 

large number of motif inference algorithms are available and it would be beneficial to 

users to have some guidance in choosing the best tools for their motif finding endeavor. 

However, performance comparison of different motif finding tools and identification of 

the best tools have proven to be a difficult task because tools are designed based on 

algorithms and motif models that are diverse and complex and the incomplete 

understanding of the biology of regulatory mechanism makes adequate evaluation a 

challenge. 

A common practice among authors of various motif inference tools is to test their 

algorithm against a few available algorithms using both biological sequence data and 

synthetic data sets with planted motifs or some known experimentally extracted motifs. 

Thus, a comparative evaluation of the performance of the new algorithm compared with 

existing algorithms is reported.  In the same vein, our novel computational inference 

technique was compared with five popular motif inference tools. In addition to 

comparing the predicted motifs with those extracted from biological experiments. 

Since transcription associated proteins control gene expression, their identification is 

important in understanding the biology of the organism. Therefore, biologists and 

computer scientists have been very interested in identifying efficient computational tools 

for their prediction. This is the crux of this research. We therefore investigated different 

experiments and performance comparisons to guide our research. Below are some of 

such experiments and comparison.   

Hu et al, 2005 conducted a comprehensive benchmark experiment for performance 

comparisons of five sequence-based motif finding algorithms using large datasets 

generated from the biological database (RegulonDB). Their study differs from the 
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benchmark experiments of Tompa et al.(2005) in that Tompa et al.2005,  allowed the 

algorithm developers to fine-tune the running parameters and reported the best results 

while Hu et al.2005 allowed minimal parameter tuning during performance evaluation. 

They also suggested that performance evaluation based only on the predictions with the 

highest score has the risk of penalizing some practically effective algorithms, since in 

many cases the predicted motifs with the highest score are not the motif with highest 

accuracy. The Five algorithms assessed by the authors were AlignACE, MEME, 

BioProspector, MDScan and MotifSampler. The authors defined a set of prediction 

performance indexes for the algorithms and conducted comparative evaluations of the 

algorithms in terms of their prediction accuracy, scalability and the reliability of their 

significance scores with the existing biological database. The prediction accuracy 

measures used by these authors were nucleotide level accuracy, binding site level 

accuracy and sequence and motif level accuracy. The study showed that the performance 

of the algorithms tested was low, with around 15 to 25% accuracy at the nucleotide level 

and 25 to 35% at the binding site level for sequences of 400 nucleotides long. However, 

the algorithms were capable of predicting at least one binding site correctly more than 

90% of the time. Among the factors that affect the prediction accuracy, the sequence 

length was found to be the most critical; the performance of all algorithms degraded 

significantly as the sequence length increased.  

We conclude this review of motif inference tools, by reporting that there is no evidence 

as to which category of motif inference algorithm performs better than the other. Pattern 

driven methods might perform well on some data set but poorly on another type of data 

set. The same applies to statistical based approach and machine learning approach. 

However, a better performance is achieved when a combination of two or more 

approaches are employed, since the algorithm will inherit the benefits of these 
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approaches while reducing their limitations (Pizzi, 2011.). This recommendation 

informed the design framework of our novel motif inference algorithm STGEM, which  

incorporates the benefit of pattern driven approach using suffix tree data structures for 

improved speed, with the statistical approach of gene enrichment using hypergeometric 

function as well as with the machine learning component of  implementing the similarity 

check mechanism of a multiobjective genetic algorithm to further confirm the 

effectiveness of our technique in mining structured motif from the challenging sequence 

of P. falciparum. The table 2.6 below shows a summary of the motif discovery tools 

reviewed in this research.  
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Table 2.6: A list of some popular Motif Discovery Tools  

S/
N 

Algorithm Category Operating 
Principle 

Strengths Weakness Reference 

1. By Hert et al SBA Greedy 
Algorithm 

Simple to 
implement 

It is not time 
efficient 

Hertz  and 
Stormo(1990) 

2. MEME SBA Expectation 
maximization 

Prior 
knowledge of 
the sequence is 
not required 

It cannot run 
large data set at 
once 

Bailey and Elkan (1995) 

3. AlignACE SBA Gibbs Sampling Displays 
frequency of 
non site 
sequence at a 
glance 

Not time 
efficient 

Roth et al, (1998) 

4. CONSENSU
S 

SBA Weight Matrix Detects 
evolutionary 
relationship 

Building the 
evolution tree 
takes time 

Hertz  and 
Stormo(1999) 

5. PhyME SBA EM Shows 
evolutionary 
relationship at a 
glance 

Extra time to 
construct the 
evolution tree  

Sinha et al., (2004)  

6. Oligo-
Analysis 

PDA Enumeration Easy to 
implement 

It cannot handle 
motifs with 
mutation 

Van Helden et al. 
(1998). 

7. WEEDER PDA Suffix Tree Allow flexible 
parameter 
specification 

It can only 
return simple 
motif 

Pavesi(2001) 

8. By Sagot PDA Suffix Tree Improved speed It can only 
return simple 
motifs 

Sagot(1998)   

9. By Tompa 
(1999)   

PDA Enumeration Good at 
discriminating 
randomly 
occurring motif 

Cannot handle 
motifs with 
mutations 

Tompa (1999)   

10
. 

Verbumculus PDA Suffix tree Improved speed 
of execution 

It can only 
return simple 
motifs 

Apostolico et al. (2000) 

11
. 

SMILE PDA Suffix Tree It can identify 
complex 
structured 
motifs 

Space 
inefficient 

Marsan and Sagot(2000) 

12
. 

YMF PDA Enumeration Allow flexible 
parameter 
specification 

It can only 
return simple 
motif 

Sinha and Tompa(2000) 

13
. 

BioProspecto
r 

SBA & 
MLA 

Gibbs Sampling 
and hidden 
markcov 

Allows 
Multiple 
optimal motif 
detection 

Very slow with 
large data set 

Liu et al.,(2001) 

14
. 

DRIM SBA Hyper 
geometric 
Framework 

Added feature 
of Ranking  
motifs 

Too slow 
especially for 
large data set 

Eden et al (2007) 

15
. 

GEMS SBA Gene 
Enrichment 

Identified 
simple motifs in 
the malaria 
parasite 

Cannot identify 
structure motifs 

Young et al (2008) 

16
.   

 MITRA  PDA PrefixTree/Mis
match tree and 
Graph 

Allow 
preprocessing 
of sequences 

Space 
inefficient 

Eskinand Pevzner(2002) 

17
. 

PSMILE PDA Suffix Tree Partitioning of 
search space 
that can run on 
parallel systems 

Extra cost of 
space due to the 
partitioning 

Carvalho et al (2004)   

18
. 

RISO PDA Box  links and 
suffix tree 

Additional 
speed gain due 
to boxlinks 

Additional 
Space 
requirement for 
the box link 

Carvalho et al (2005)   

19
. 

RISOTTO PDA Box  links and 
suffix tree 

Good for long 
complex motifs 

Extra space 
need to store 
Extensibility 
information 

Pisanti et al., (2006) 

20 EXMOTIF PDA Inverted index 
of symbols and 

actual 
occurrences of 

Additional 
space 

Zang and Zaki (2006)   
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hash table the structured 
motifs instead 
of the relative 
frequency 

requirement for 
storing the 
symbols 

21
. 

FMGA MLA Genetic 
Algorithm 

Can handle 
difficult search 
space 

Time 
consuming 

Liu et al. (2004) 

22
. 

GAME MLA Genetic 
Algorithm 

Return high 
fitness motif 

Inconsistent in 
multiple runs 

Wei and Jensen (2006) 

23
. 

MUSA MLA & 
SBA 

Biclustering 
and PSSM 

No need  to 
specify 
parameter and 
can be used to 
determine the 
parameter 
needed for 
other 
algorithms 

The speed is 
unacceptable 
especially for 
large data set 

Mendes et al(2006) 

24
. 

MOGAMOD MLA Multi Objective 
Genetic 
Algorithm 

Handles 
multiple 
optimal motifs 
efficiently 

It is time 
consuming 

Mehmet Kaya (2007)   

25
. 

By Mehme 
Kaya  

MLA Multi-objective 
GA 

Can identify 
structured 
motifs 

It is time 
consuming 

Mehmet Kaya (2009) 

26 MOTIFST PDA Suffix Tree Fast It cannot 
identify motif 
in the malaria 
parasite genome 

Zare-Mirakaba et al. 
(2009) 

27
. 

STEME PDA 
&SBA 

Suffix tree , 
Expectation  
maximization 

Fast and very 
sensitive 

Can only 
identify simple 
motifs 

John E. Reid and 
Lorenz  
Wernisch  (2011) 

 

 

PDA  stands for Pattern Driven Approach SBA  stands for  Statistical Based Approach, MLA 
stands for Machine Learning Approach. 
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Figure 2.3: A Taxonomy of Popular Motif Discovery Tools 
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2.3 ESTABLISHMENT OF GAPS FROM REVIEW OF RELATED WORKS 
 

Some of gaps identified in our review of existing motif discovery algorithms are as 

follows: 

1. The need for a holistic motif discovery tool that takes input sequence 

from any organism and returns a viable list of optimal motifs. This is a 

limitation inherent in the popular  GEMS algorithm by  Young et al., 

2008,   which can only return optimal motifs based on candidate motifs 

with clusters in the gene ontology database.  

2. The absence of motif discovery algorithm that can mine structured motifs 

from organisms with peculiarity in their genomic structure, for example 

the malaria parasite genome. Important genomic components such as the 

DNA binding site in eukaryotic organism occur as structured motif and 

needs to be mined. 

3. The need for a motif discovery tool that in addition to handling genomic 

structure peculiarities incorporates the phylogenetic relationship.  This 

will involve developing an evolutionary tree of the motifs from different 

organisms with the aim of providing evolutionary information. 

4. The need for an integrated sequence analysis tool that combines gene 

finding, sequence alignment and motif discovery task. 

This research, attempts to fill the gaps in 1 and 2 above which are the main limitations 

identified in the GEMS algorithm. The motivation for this research springs from these 

identified limitations and therefore proposed a computational inference technique for 

mining structures motif, an improvement on the GEMS algorithm.  
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2.4 SUMMARY AND CONCLUSION 
 

In this chapter, we started by presenting the main concepts and theories of sequence 

analysis algorithms. We highlighted the three main classes which are Gene Prediction, 

Sequence Alignment and Motif Discovery Algorithms. We expounded the basic 

principles behind each class of algorithm, while focusing on motif discovery algorithms, 

our interest in this research.    Our review of related works on motif discovery tools was 

based on the three main approaches adopted by most motif discovery tools namely: the 

pattern-driven, statistical and machine learning approach and we reviewed some simple 

and structured motif discovery tools based on these various approaches.   

 The variety of techniques adopted in the design paradigm of the various motif inference 

tools shows an increasing effort of researchers to develop efficient algorithms for 

genomic functions predictions. The efficiency of these algorithms is measured in terms 

of their time and space complexity. The important role played by the choice of data 

structure in the performance of the algorithm was also shown.  

In the last part of the chapter, we explored the application domain of the research which 

is the malaria parasite, providing an insight into its  genomic composition and the 

challenge of the malaria disease .  Key among these challenges is the parasite’s high 

adaptability enabling it to survive in the host in spite of the adverse conditions. 

In the past, large-scale genomic data were not as available as in present times. The 

increasing rate of current availability necessitated the study of how to develop efficient 

tools for mining sequenced data with the aim of elucidating important information 

needed to understand the complex biological makeup of organisms. The understanding 

of the regulatory mechanism of the malaria parasite, attained through knowledge of the 

transcription associated protein provides an insight into the development of drug targets 

required to combat the various strains of drug resistant malaria in existence.  
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This research, which was motivated by the lack of existing motif discovery algorithm for 

mining structured motifs in the challenging sequence of the malaria parasite, proposed a 

new methodology that combined the suffix tree clustering technique with gene 

enrichment analysis using hypergeometric scoring function. The detailed methodology is 

discussed in chapter three. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

In the previous chapter of this write up, we have reviewed extensively the operating 

principles or approaches used in motif discovery systems. These include the pattern-

driven, statistical and machine learning. We emphasized that tools based on a 

combination of approaches usually yield better results. This notion informed the 

methodology adopted in the design of STGEMS which in an attempts to fill the gap 

identified in the review of existing motif discovery tools, proposed a holistic algorithm 

for mining simple and structured motifs particularly suited for organisms with peculiarity 

in their genomic structure.   

The other feature of this research is our attempt to capture motifs in the glycolytic 

metabolic pathway of the P.falciparum, which is the core of the malaria parasite’s high 

adaptability and consequently, its high resistance to the existing anti-malaria drugs. We 

hope to bring to notice the importance of identifying these genomic elements responsible 

for understanding the vital biological processes of the deadly malaria parasite. 

 

3.1 DERIVATION OF STGEMS ALGORITHM 

STGEMS algorithm has its roots in sequence analysis algorithm.  It belongs to the class 

of motif discovery algorithms.  Basically, Motif discovery tools adopt one or more of 

these three approaches namely pattern-driven, statistical and machine learning. STGEMS 
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is a combinatorial approach based on pattern-driven and statistical approach. Figure 3.1 

below shows the derivation of STGEMS. 
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Figure 3.1 Derivation Tree of STGEMS Algorithm 
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STGEMS combined the clustering technique of the suffix tree with gene enrichment 

analysis, hence the origin of its name Suffix Tree Gene Enrichment Motif Searching. 

(STGEMS).  STGEMS is an improvement on the popular GEMS algorithm. It adopted 

the hypergeometric scoring function which is capable of identifying motifs from 

organisms with peculiar genomic structure such as the P.falciparum genome. STGEMS 

addressed the limitations inherent in GEMS by providing a holistic framework capable 

of predicting simple and structured motifs from any sequence data.  It accepts any 

sequence data as input and outputs the optimal motifs present within the sequence. 

Unlike GEMS, STGEMS generates its own initial clusters using the suffix tree clustering 

technique. In addition, STGEMS is also capable of identifying simple and structured 

motifs from any organism especially, organisms with peculiarity in their genomic 

structure while GEMS only identified simple motifs. STGEMS also adopted the 

technique used by successful structured motif tools such as SMILE, EXMOTIF. This 

enabled it to successfully mine structured motifs.  

As part of our research methodology, two popular similarity check mechanisms were 

implemented. The first is the similarity check mechanism based on position specific 

scoring matrix (PSSM) construction using  hypergeometric scoring function (for 

example GEMS).  The second constructed PSSM using dominance value of nucleotide 

(for example, MOGAMOD).  The two methods were compared. The result of this 

comparison influenced the incorporation of the similarity check based on the 

hypergeometric scoring function into STGEMS’ framework.    

 

3.2 OPERATING PRINCIPLE OF STGEMS 

The operating principle of the STGEMS algorithm is based on a combinatorial approach 

of pattern-driven using the suffix tree and the statistical approach of gene enrichment  
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Figure 3.2 Schematic Representation of  the Operating Principle of STGEMS  
 

 

 

 

 

 

 

Pattern‐Driven Approach  Statistical Based Approach 

Suffix Tree 

Gene Enrichment 
Analysis 

PSSM 
Optimization 

STGEMS

Similarity Check 

Hypergeometric Value  Dominance Value 



UNIVER
SIT

Y O
F I

BADAN

 
 

83

The suffix tree, has an inherent clustering mechanism that returns all repeated patterns 

(candidate motifs) at a remarkable speed.  The justification for using the suffix tree data 

structure is because of its speed efficiency in searching for items that are subsets of an 

entire list.  The suffix tree implementation adopted is the space efficient construction 

introduced by (Kurt et al, 1999) using suffix links.  

The statistical significance of the extracted candidate motifs identified is computed by a 

gene enrichment analysis using the similarity check base on the hypergeometric scoring 

function which was complemented with position weight matrix optimization. This was 

used to rank the gene enrichment of the discovered motifs, thereby reporting only the 

optimal motifs.  Similarity check is a measure of the degree of closeness of two strings. 

This is useful in computational biology where two slightly different patterns can 

represent the same motif due to the presence of a number of mismatches or mutation. For 

instance motifs AAAATGC, AACATGC, AAATTGC are similar motifs with one 

mismatch. Similarity score is used to filter off spurious motifs so that only optimal 

unique motifs are reported in the output.  An implementation of similarity check 

mechanism based on dominance value of nucleotide could not identify relevant motifs 

from the challenging sequence of P.falciparum.  This is due to its repetitive AT rich 

sequence which could result in the same motif being represented as multiple variants 

having the AT character repeated. The hypergeometric scoring function uses permutation 

and combination formula to eliminate the duplicates and reports only unique optimal 

motifs.  

3.3 ARCHITECTURE OF STGEMS 

The architecture of STGEMS is captured in the fig 3.3 and details of the logical flow of 

the process involve is described in fig 3.4.  
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Figure 3.3 Architecture of STGEMS 
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Figure 3.4   Logical Flow of STGEMS 
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STGEMS receives a list of DNA sequences as input, which contains unknown motifs 

that needs to be identified. This is used in the construction of a generalized suffix tree. 

The suffix tree is a data structure that is useful in representing a string or set of strings, 

they are well suited to algorithms that require efficient access to substrings by content 

rather than by position. (Adebiyi, 2002) The suffix tree construction reorganizes data 

into a form that facilitates searching and exposes sections of the strings that are repeated. 

In view of the fact that the core aim of this study is in searching for repeated patterns in a 

set of DNA sequences, the choice of the suffix tree data structure in the framework of 

STGEMS algorithm is adequate. 

The tree is traversed to output unique patterns or candidate motifs. In the suffix tree 

construction, each traversal from the root node to a leaf node is a unique pattern. This is 

followed by the computation of position weight matrix (PWM) for the extracted unique 

patterns. The PWM or Position specific scoring matrix(PSSM) is a scoring matrix that 

shows the information content of the motifs, which depends on the frequency of 

occurrence of each of the characters in the identified pattern.  Subsequently, the 

computation of the biological significance of the candidate motif is done by computing 

the similarity scores of the different motifs. The motifs with low similarity scores are 

reported as best optimal motifs.  

The merging of similar motifs, that is, those with one or two variations in the character 

that make up the motifs is effected. These are merged using edit distance, before 

returning them as optimal motifs. The final output is the optimal motifs represented 

using a sequence logo.  

A sequence logo is one of the standard output format for representing DNA or Proteins 
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in Bioinformatics. Sequence logos are a graphical representation of an amino acid or 

nucleic acid multiple sequence alignment. It was first introduced by Schneider and 

Stephens (1990).  

Each logo consists of stacks of symbols, one stack for each position in the sequence. The 

overall height of the stack indicates the sequence occurrence at that position, while the 

height of symbols within the stack indicates the relative frequency of each amino or 

nucleic acid at that position. To create sequence logos, related DNA, RNA or protein 

sequences, or DNA sequences that have common conserved binding sites, are aligned so 

that the most occurring  parts create good alignments. A sequence logo can then be 

created from the conserved multiple sequence alignment. The sequence logo will show 

how well the nucleotides are conserved at each position: the fewer the number of 

nuleotides, the higher the letters will be, because the better the conservation is at that 

position. Different nucleotides at the same position are scaled according to their 

frequency. The height of the entire stack is the information measured in bits. Sequence 

logos can be used to represent conserved DNA binding sites. 

Figure 3.5 shows a sequence logo diagram derived from counts of the nucleotide (the 

letters that made up the genes) in the translation initiation region of P.falciparum genes. 

Each letter is written in proportion to its frequency of occurrence. The letters are stacked 

together, If a nucleotide were used in all 25,000 genes it would be fully conserved and be 

drawn two bits tall. The most significantly biased nucleotides are -3 (A) and +4 (G). 
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Figure 3.5: Sequence Logo 
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3.4 CONSTRUCTION OF SUFFIX TREES  

The suffix tree implementation adopted in this research is the space efficient linked list 

construction by Kurtz(1999 ) . The algorithm for constructing the suffix tree ST is 

generally a successively insertion of suffixes of S$ from the longest to the shortest, into 

an initially empty tree ST0 (which consist of the root only), in the following sequence of 

compact Σ+ -trees: ST1,ST2,...,STn,1,STn +1, where words(STi)={ w Є Σ*  such that w is a 

prefix of Sj for some j Є [1, i] }.  

Usually, a suffix tree is represented using head which is the longest prefix of the suffix 

tree STi  while tail is the  remainning suffix of STi such that , headitaili = STi . Their 

locations and pointers on the tree can be denoted by headloc, tailloc and tailptr.  

The heads and tails are represented by pointers into the tree and the input string S. An 

example of a successive construction of suffix trees for S = Tata is shown in fig 3.6 

below and the procedure that encapsulate these processes are also given in fig 3.7  
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 Figure 3.6: Iterative Construction of a Suffix Tree 
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3.4.1 COMPLEXITY ANALYSIS  OF SUFFIX TREE CONSTRUCTION 

The complexity analysis is achieved by examining the various components and processes 

involved in the construction of the suffix tree. The tree is constructed successively, by 

first inserting into the empty tree, then a decision is made based on whether the string 

exist on the tree or not, if it exist, it is not inserted, but if string is not already in existence 

on the tree, it is inserted, that is, a new leaf or branch node is appended in such a way 

that repetition is avoided. It follows that the best case scenario will be when the strings 

are not in existence and all that is needed is to insert leaf in depth first format while the 

worst case will be when there is need to search through the tree before inserting a leaf.  

Figure 3.6,  shows that ST1 is a compact Σ+ -tree with only one edge from the root, that 

is,  root+ S$= . This can be constructed in constant time since it does not involve any 

iteration. The implementation algorithm for the suffix tree construction is shown in 

figure 3.7. Although the construction is involving, it is however, simple to implement. It 

is obvious that headloci and tailptri can be computed in constant amortized time. For the 

if-case, where headloci = , then  u = ε   or is a branching node in STi-1 such that u = 

headi = headj for some j Є (2, i – l). This implies node  exists there already and what 

remains is to insert a new leaf edge labelled with taili. Therefore, it follows that 

operation insertleaf can be done in constant time. For the if-case where head1oci = (ū, 

av) for some node   in STi- 1, some character a Є Σ, and some string v Є Σ*, then i 

=  does not exist in STi- 1. Therefore, the a-edge +avw =  that exist in STi- 1 

for some w Є Σ+ has to be split into two, one representing the old a-edge +avw =  

and the new edge +av =  , will be updated by insertleaf with taili. Operations 

required in splitedges involve only change of references and the creation of a new Tbranch. 

It then simply follows, that operation splitedge can also be performed in constant time. 
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Therefore, the total running time of executing the for loop  is O(n) since the iteration is a 

function of n. We can therefore infer that constructing a suffix tree can be carried out in 

linear time of the length of the input string. 

It is important to note that, the node i is created with its head position i. This means 

that the branching nodes in ST are created in the order of their head position, and this is 

the order in which they are stored in table Tbranch. Ultimately, a decision is made whether 

a branching node is small or large and then set the distance of a small node in operation 

split edge. 

1. Procedure Construct(S) 

2. Construct tree ST1 

3. For i = 2 to n + 1 do//Construct STi as follows 

4. Compute Headloci 

5. Compute tailoci 

6. If (headloc1 == ū ), where ū  is a node in STi-1 

7. Insertleaf (ū, tail)Si,         where Si = ūtail 

8. If (head1oci == (ū, av)), 

 There Exist an a-edge ū+ avw = uavw in STi- 1 

9. Splitedge(ū, avw)            ,  

10. Insert leaf (  , taili)                     Si 

Figure 3.7 Kurtz(1999) algorithm for constructing a suffix tree ST. 

 

Usually, a suffix tree is represented using head which is the longest prefix of the suffix 

tree STi  while tail is the  remainning suffix of STi such that , headitaili = STi . Their 

locations and pointers on the tree can be denoted by headloc, tailloc and tailptr.  

The heads and tails are represented by pointers into the tree and the input string S. 
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3.4.2 TRAVERSAL OF SUFFIX TREE WITH SUFFIX LINKS 

The suffix link is an auxiliary structure that accounts for the most important acceleration 

element in the construction and traversal of a suffix tree. The suffix tree construction 

algorithm is based on the observation that constructing the suffix tree can be performed 

by iteratively expanding the leaves of a partially constructed suffix tree. Through the use 

of suffix links, which provide a mechanism for quickly traversing across sub-trees, the 

suffix tree can be expanded by simply adding the j+1 character to the leaves of the suffix 

tree built on the previous j characters. The algorithm thus relies on suffix links to 

traverse through all of the sub-trees in the main tree, expanding the outer edges for each 

input character. 

Adding a new prefix to the tree is done by walking through the tree and visiting each of 

the suffixes of the current tree. The starting point is the longest suffix and then proceeds 

down to the shortest suffix, which is the empty string. Starting at the end of string S[j - 1 

..i] in the current tree, walk up at most one node to either the root or to a node v that has a 

suffix link from it; let � be the edge-label of that edge; assuming v is not the root, then  

traverse the suffix link from v to s(v); and walk down the tree from s(v), following a path 

labeled �to the end of S[1..j]; finally, extend the suffix to S[1..j+1] . Figure 3.8  shows a 

suffix tree with the connecting suffix links. 
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Figure 3.8 Suffix Tree with Suffix Links for String AGACAGGAGGC$. 
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Let string S[l..i] be x ε, where x is a single character and εis a (possibly empty) substring, 

and let (v, 1) be the tree-edge that enters leaf 1. The algorithm must find the end of string 

S[2..i] εin the current tree derived from v. The key is that node v is either the root or it is 

an interior node . If it is the root, then to find the end of ε the algorithm needs to walk 

down the tree following the path labeled ε but if  v is an  internal node, then v has a suffix 

link out of it to node s(v). Furthermore, since s(v) has a path-label that is a prefix of 

string ε the end of string a must end  the subtree of s(v). Consequently, in searching for 

the end of ε in the current tree, the algorithm need not walk down the entire path from 

the root, but can instead begin the walk from node s(v). This is the main advantage of 

including suffix links in the algorithm. 

 

3.5 ALGORITHM FOR MOTIF EXTRACTION ON SUFFIX TREE 

Simple motifs as well as structured motifs can be extracted using the suffix tree.  Pisanti 

et al. (2006) presented algorithms with novel techniques for the extraction of simple and 

structured motifs using Suffix tree under the Hamming distance. However the speed of 

the algorithm was not remarkable.  It is important to note that this has been done under 

the Edit distance by Adebiyi and Kaufmann (2002).  The algorithms for simple and 

structured motif extraction are described below. 

 

3.5.1 SIMPLE MOTIF EXTRACTION ALGORITHM ON SUFFIX TREE 

The single motif extraction problem takes N sequences as input, q<N quorum, with a 

maximal number of error rate allowed and a minimal and maximal length for the motifs, 

kmin and kmax, respectively. The problem consists in identifying all motifs that occur in at 

least q input sequences. Such motifs are said to be valid. Sagot (1998) introduced an 
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efficient exact algorithm based on a suffix tree for extracting single motifs with 

mismatches. Usually, motifs are considered in lexicographical order starting from the 

empty word, and they are extended to the right as long as the quorum is satisfied until 

either a valid motif of maximal length is found, or the quorum is no longer satisfied. In 

both cases, a new motif is attempted. At each step, all nodes spelling e-occurrences of 

the current motif are taken into account.  

A formal representation of a sketch of the algorithm of Sagot (1998) is shown in 

algorithm A below, where motif m is the one whose extension is being tried. At the 

beginning, ExtractSimpleMotif is evoked on the empty word. The algorithm recursively 

calls itself for longer motifs built by adding letters (step 4) and considers new ones 

(step1) when the extension fails (step2). A valid motif is spelled out whenever a motif 

whose length lies within the required minimal and maximal length is being considered 

(step 3). The order of generation of the motif is a depth-first visit of a complete tree M of 

all words of length Kmax on the alphabet ∑. M is referred to as the motif tree and the 

algorithm does not need to allocate memory to it, only the suffix tree needs memory 

allocation. If we assume that the required length of the motif is k (that is kmin = kmax = k), 

and that at most e mismatches are allowed, the algorithm has worst case time complexity 

in O(Nnk٧(e, k) where nk is the number of tree nodes at depth k, and ٧(e, k) is the number 

of words of length k that differ in at most e letters from a word m of length k. This value 

does not depend on m, and it holds that ٧(e, k)  ≤ Ke |∑ |e. This upper bound is in practice 

not tight. However, a better bound cannot be obtained and therefore the time complexity 

is linear in the input size, but possibly exponential in the number e of mismatches. Since 

reasonable values for e are proportional to the value of k, this really places a practical 

bound on the length required for the motifs. 

Algorithm A. Simple motif extraction 
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ExtractSimpleMotif(motif m) 

1. for all   ∑ do 

2. if m  is valid then 

3. if |m  |  ≥ kmin then spell out the valid motif (m  )         

4. if |m  | < kmax then ExtractSimpleMotif (m  )     

 

3.5.2 STRUCTURED MOTIF EXTRACTION ON SUFFIX TREE 

A structured motif can be defined as an order of collection of simple motifs with gap 

constraint between each pair of adjacent simple motifs. For example the structured motif 

AT[115,136]GTCTATCG[121, 151]GTCGATGAC, has AT, GTCTATCG and 

GTCGATGAC as simple motifs and  [115,136] and [121,151] as variable gap 

constraints, that is,  ([minimum gap, maximum gap]) allowed between the adjacent 

simple motifs. More formally,  

a structured motif is a pair (m, d) where m = (mi)1≤i≤p is a p-tuple of single motifs and d= 

1≤i<p  is a (p-1)-tuple of pairs, denoting p-1 intervals of distance between 

the p single motifs. Each element mi of a structured motif is called a box and its minimal 

and maximal length denoted by respectively. 

The structured motif extraction problem takes as parameters N input sequences, a 

quorum q≤ N, p maximal error rate (ei)i≤1≤p (one for each of the p boxes), p minimal and 

maximal lengths ( )i≤1≤p and ( ) )i≤1<p (one for each of the p boxes), and p-1 

intervals of distance     

With these parameters given, the problem involves searching for the contents of the 

boxes, which is the motifs, that have the structure defined by the parameters above and 
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that satisfy the quorum. The algorithm for single motif extraction introduced in Sagot 

(1998) is the ancestor of a couple of others that infer structured motifs. 

The optimization that was introduced can be applied to any of them. 

In summary, the algorithm first builds the factor tree T of the input sequences, then it 

searches for all valid motifs of length at least kmin and up to kmax and after updating the 

data structure checks whether there is a second valid motif with the required interval 

between them.  

From a formal perspective, the algorithm is described by Algorithm B assuming for 

simplicity that p = 2, where the motif m is the one whose extension is being attempted, 

and the value i indicates whether we are dealing with the first or the second box. Finally, 

٨ denotes the empty word. 

 

Algorithm B. Structured motif extraction 

ExtractStructuredMotif(motif m) 

1. for all   ∑ do 

2. if m  is valid then 

3. if |m  |  ≥ kmin then spell out the valid motif (m  )        

4. if i = 2 then spell out the valid motif 

5. else update  T  ExtractStructuredMotif(λ, 2) 

6. if |m  | <  then ExtractStructuredMotif (m  ,i)  

 

3.6 STGEMS PROCEDURE FOR EXTRACTION OF SIMPLE AND 

STRUCTURED MOTIFS 

The procedure below shows the extraction of simple and structured motifs. Following the 

extraction of Simple motif (SIM) with significant speed-up on the generalized suffix tree, 
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it was then extended for the extraction of Structured motif (STM). 

 

Procedure STGEMS(N) 

1.   For all   ∑ do 

2.    For  i = 1 to N 

3.   GST  Construct tree(N) 

4.   SIM  ExtractSimpleMotif(N) 

5.   While q > 2  

6.   STM  ExtractStructuredMotif(N) 

7.  ValSIMs P-value(GEA) 

8.  ValSTMS P-Value(GEA) 

Where  

  GST: Generalised suffix tree;   

  SIM: Simple motif;  

  STM:Structured Motif;  

  q: quorum specif ied for valid structured motifs 

  ValSIMs: The valid simple motifs;  

  ValSTMS: valid candidate structured motifs 

 

Line 2 to 4 mined all unique length  of strings . In GST(Generalised Suffix Tree), these 

are words ending at the leave node. Line 7 and 8 among other things, implemented the 

GEA(Gene Enrichment Analysis) on GST output by the computation of PWMs from 

candidate the motifs and computing the similarity of any given motif in a promoter 

region to the PWM. Next, a similarity threshold was selected to determine how similar 

any motif in a promoter region must be to the PWM to be considered an actual instance 
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of the motif or regulatory element. And lastly, this threshold was used with PWMs to 

extract optimal motifs. It is important to note that the computation of PWM from a seed 

demands the identification of all sequences differing from the seed word by one 

mismatch. 

Since STMs are combination of boxes (SIMs), line 6 implemented the connection of 

these boxes on the suffix to determine STMs based on the quorum specified. 

 

3.7  GENE ENRICHMENT WITH HYPERGEOMETRIC SCORING 

FUNCTION  

STGEMS implementation details involves the extraction of all  unique words of 5-8 

length  occurring in the sequence space, this was done by outputting all unique SEED 

from the root node of suffix tree to the leaf node,  then  a p-value enrichment score is 

computed  using a hypergeometric formula below.  

 

Where X is the total set of genes, that is, positive and negative set, x a subset of the gene 

of interest, Y is the total promoter sequence that matches the genes, y is the subset of the 

promoters which fall within the cluster of interest. The hypergeometric formula is a 

standard statistical test used for gene enrichment analysis. It is a test that specifies 

whether a particular gene set is enriched for any functional annotations out of the full set 

of genes in the genome. The hypergeometric p-value equals the probability of finding y 

matches if one randomly select Y genes out of the total X gene collection. The smaller the 

p-value score for a candidate motif, the higher the likelihood of it being an optimal motif. 

The computation result produced a long list of words with associated p-values 

representing the probability of word enrichment in the entire sequence. The next stage 
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consist in listing the words in ascending order with the most enriched candidates (lowest 

p-values) serving to seed the construction of PWMs one at a time. The hash table data 

structure was used in implementing the sorting of the words with the aim of achieving an 

improved speed.   All sequences differing from the seed word by one mismatch were 

then identified and re-listed by ascending p-value, before generating a PWM by 

individually weighing each word by its p-value score into the PWM.  

The resulting PWM represents the probability of any given nucleotide occurring at a 

corresponding location in the candidate motif. The similarity of any sequence can be 

compared to the PWM through the calculation of a similarity score, which is the 

geometric mean of the corresponding matrix elements associated with the sequence. The 

similarity threshold selected determines the level of similarity that any given candidate 

motif must be to the PWM for it to be considered a true motif. The algorithm also adopts 

an optimal similarity threshold approach instead of using trial and error to guess the 

threshold for each candidate motif. This was achieved by first sorting all words by 

similarity to the PWM, then  the p-values were re-calculated as more dissimilar words to 

the PWM were considered as motif instances using the  hypergeometric scoring function 

and eventually identifying the similarity threshold that led to the lowest possible p-value. 

This entire process was repeated from the original seed word using two and three 

mismatches up to 40% of the word size to optimize mismatch levels in addition to 

similarity thresholds. The similarity and mismatch parameters that resulted in the lowest 

p-value were considered the best representation of a candidate motif. In addition, 

positional information using the edit distance metric was applied to merge non-unique 

candidate motifs, thus preventing repeated sequences being represented as new motifs.  
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 Figure 3.9 Gene Enrichment Process 

 

                                                                
Construct a generalized suffix tree, traverse the nodes and 

output  5‐8 length string (SEED) from the root node to a leaf node  

as candidate motifs 

AATTGG_ACTTGG 

AAGTGG_ACTTGG 

Compute p‐value for each candidate motif using the 

Hypergeometric formula . i.e the gene enrichment of  motif 

relative to the whole set 

SEED           p‐value 

ATTGG_ACTTGG             0.02  

AATTGG_ACTTGG           0.05 

Sort SEEDS according to  p‐value using the hash table for 

improved sorting speed  

A reordered list of all SEEDS and other motifs that differ by 1 to 

3 mismatches  is obtained 

A reordered list of all SEEDS ranked by similarity scores to the 

generated PWM. The similarity score for any SEED is computed 

using the hypergeometric formula as a function  of the PWM 

element associated with each motif 

Hash 

Table 

01

02

A Position Weight Matrix (PWM) is generated using the ordered 

list based on the p‐value 

SEED                   p‐value  

AATTGG_ACTTGG             0.02  

AATTGG_ACTTGG             0.05 

1 Mismatch     p‐value       

AATTGG_ACTTGG             0.02  

AACTGG_ACTTGG             0.04       

A PWM  for the SEED                                 

0.3  0.5 0.2 0.4  0.3                                     

0.5 0.2  0.4 0.3  0.2  

Optimal motifs are those whose similarity scores had very low p‐

values. In order to merge non‐unique candidate motifs, positional 

information is included using the edit distance metric 

Sequence           Similarity  Score    p‐value 

AATTGG_ACTTGG             0.02        ‐0.2     

AACTGG_ACTTGG             0.04        ‐0.3        

Two motifs with edit distance less than 0.2 

represent the same motif and the PWM with a 

lower p‐value is the optimal motif  



UNIVER
SIT

Y O
F I

BADAN

 
 

103

 

3.8  ANALYSIS OF THE STGEMS ALGORITHM  

The STGEMS algorithm was analysed based on the time complexity, predictive accuracy 

and its sensitivity. The three sections below describes the techniques used in this analysis 

 

3.8.1     TIME  COMPLEXITY ANALYSIS  

The analysis of STGEMS is done in terms of the time complexity involved in the 

running of the algorithm. In figure 3.8 above, it is clear that Line 2 can be run in O(N). It 

is important to point out that when the extraction of the seed is not implemented using 

the suffix tree it results into a O(N2) run time. Assuming the number of unique seeds is 

O(N), then from Sagot (1998), the computation of PWMs from seeds can be done in   

O(NK|∑|).  

Where N is the length of the string, k is the size of the alphabets and ∑ is finite ordered 

set of alphabets.  

In the worst case, the asymptotic run time of the functions embedded in Line 3 will cost 

O(N2), while on the average case (which is the situation in practice), this can be done in 

O(N). Line 4 also can be done in the worst case, O(N2), and in the average case O(N). 

Therefore, the average case run time of STGEMS is O(NK|∑|), while on the worst case, 

it is O(N2). 

 

3.8.2  PREDICTIVE ACCURACY  

The predictive accuracy of motif inference algorithms are usually determined by 

computing the correlation coefficient as defined originally by Mathews (1975) and later 

adapted to the problem of gene finding evaluation by Burset and Guigo (1996) as 
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Mathew Correlation Coefficient (MCC) which can be calculated directly from the 

confusion matrix using the formula below: 

 

Where TP is true positive, TN is the true negative, FN false negative and FP is false 

positive. The correlation coefficient was computed over four different data sizes.   

The Matthews correlation coefficient is used as a measure of the quality of binary 

classifications. It takes into account true and false positives and negatives and is 

generally regarded as a balanced measure which can be used especially when the classes 

are of very different sizes.  The MCC is in essence a correlation coefficient between the 

observed and predicted binary classifications; it returns a value between −1 and +1. A 

coefficient of +1 represents a perfect prediction, 0 an average random prediction and −1 

an inverse prediction.  

A confusion matrix is a table that contains information about actual and predicted 

classifications done by a classification system. Performances of such systems are usually 

evaluated using the data in the matrix. It shows the relationships between true and 

predicted classes and it is used in evaluating the performance of a predictive algorithm in 

a supervised learning system. Our computational inference technique, STGEM is similar 

to a supervised classification in its output. The patterns or motifs predicted are compared 

with those obtained using biological experiments to confirm the authenticity of the 

algorithm in mining biologically relevant motifs.   The confusion matrix returns 1 for 

true positive in cases where the predicted motif by STGEMS is the same as that extracted 

by the biological experiment and 0 if it is not the same. It returns 1 for true negative if 

the motif considered was not found either by STGEMS and the biological experiments 

and 0 otherwise. 
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The sensitivity of STGEMS was demonstrated by implementing a system using the 

method used in MOGAMOD as a benchmark  to show the accuracy of STGEMS.  

 
3.9 IMPLEMENTATION OF SIMILARITY CHECK MECHANISM OF 

MOGAMOD  

The similarity check used in MOGAMOD measures similarity among all motif instances 

defining an individual solution using the dominance value of the nucleotides. In our 

implementation of the similarity mechanism, we started by first generating a position 

weight matrix from the motif patterns found by our generalized suffix tree in every 

sequence. Then, the dominance value (dv) of the dominant nucleotide in each column is 

found using this formula: dv(i) = max{f(b,i)} , 1,…., l  where f(b, i) is the score of the 

nucleotide b on column i in the position weight matrix, dv(i) is the dominance value of 

the dominant nucleotide on column i, and l is motif length. The similarity objective 

function of motif M is the average of the dominance values of all columns in the position 

weight matrix. 

 

   The likelihood of the candidate motif been discovered as a real motif depends on the 

value of the similarity score. In other words, the closer the value of the similarity M is to 

one, the greater the probability that the candidate motif M will be discovered as a true 

motif.  

This similarity check approach used here differs from that used in GEMS algorithm and 

it proved ineffective in extracting optimal motif for the base-biased sequence of 

P.falciparum.  The process in the implementation of the similarity check mechanism is 

encapsulated in figure 3.10 below 
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Figure 3.10 MOGAMOD Similarity Check Implementation 

 

 

 

Compute Position Weight Matrix (PWM) using the 

standard method i.e, compute the frequency of 

occurrence of each alphabet in the matrix and then 

followed by its loglikelihood computation 

Compute  dominant value using  the formula dv(i) = 

max{f(b,i)} , 1,…., l  } 

Compute  similarity threshold which is the average 

of the dominant value computed for each SEED.  

Output optimal motif which is the motif with 

similarity score closest to 1.   

 Output SEED from the generalised suffix tree and 

rank them using the following   
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3.10 STGEMS ANALYSIS USING MALARIA PARASITE GENOMIC DATA 

Two different types of data set from the malaria parasite genome were used in running 

STGEMS in an attempt to extract useful information about the biology of P.falciparum. 

The first aims at identifying transcription associated proteins while the second identifies 

motifs in the glycolytic metabolic pathway.  A brief description of the structure of 

genomic data and the importance of the biological elements mined in this research is 

provided in the sections  below. We also  provides an overview of the glycolytic 

metabolic pathway, an essential pathway in malaria parasite since it is fundamental to the 

survival of the parasite in the two hosts it depends on. 

We recall that, in vivo( wet lab experiment) methods for DNA binding site predictions 

are very expensive and labour intensive. In addition the methods could not identify all 

the binding sites of a transcription factor (Barash et al., 2003, Pizzi et al., 2011), making 

computational methods a good alternative.  

Genomic data consist of a sequence of the alphabet {A, C, G, T} for DeoxyriboNucleic Acid 

(DNA) and {A, C, G, U} for RiboNucleic Acid (RNA). Each alphabet stands for a biological 

molecule.  These sequences are called genes and they are the unit of information storage and 

transfer in living organisms.  

It is important to note that the malaria parasite genome has a peculiar genomic sequence. 

Its genome has an AT content of about 90%. This AT composition is very high in 

comparison to other organisms. This peculiarity necessitates the development of a 

suitable motifs inference algorithm that puts the malaria parasite genome in good 

perspective. This is necessary to prevent false motifs which are copies of the same motif 

repeated with high ‘AT’ pattern being returned as valid motifs. STGEMS in 

incorporating the hypergeometric scoring function was able to mine valid transcription 

factors and DNA binding site from malaria parasite. 
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Transcription factors are proteins that bind to particular sequences upstream of genes 

called DNA binding sites. They either activate the transcription by assisting RNA 

polymerase binding or they inhibit it by blocking RNA polymerase binding. Through this 

process they control and regulate gene expression. 

DNA binding sites are very short sequences (structured motifs of 6-20 base-pairs). Such 

sequences can appear anywhere in the genome without having the regulatory 

functionality. Only a small fraction of these sequences are actually bona fide targets of 

the transcription factor. Schneider et al., (2007). Hence, methods to determine binding 

site suffer from a high false positive rate. The actual true positive prediction can only be 

verified by conducting some experiments such as,  DNA footprinting, Chromatin 

Immuno-Precipitation (chIP), DNA-protein crosslinking (DPC), or X-ray crystallography 

(Miller et al., 2002) where each binding site is verified individually (Del et al., 2007).  

 

STGEMS was also applied to the glycolytic metabolic pathway, with the aim of 

identifying relevant motifs responsible for gene interactions at that level. This pathway is 

of special interest  in the malaria parasite since it provides the energy needed for the 

survival of the parasite in the  two hosts it inhabits.  (Planes and Beasley, 2009).  Thus,  a 

great deal of research has been directed at characterizing the genes and proteins of the 

glycolytic pathway in an attempt to gain a better understanding of the pathway and to 

develop effective inhibitors to destroy the parasite. (Health et al.,2010, Huthmacher et 

al.,2010). 

 

3.10.1 TRANSCRIPTION ASSOCIATED PROTEIN EXTRACTION ANALYSIS  

The identification of transcription factors (simple motifs) and binding sites (structured 

motif) was effected by running three sets of experiments using different gene sets of P. 
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falciparum. The first experiment used the set of genes in the work of Flueck et al. (2010) 

which experimentally extracted regulatory elements for P.falciparum,   that is, 1000 base 

pairs upstream of gene start codons. The second experiment used the set of genes used 

by Yuda et al. (2009) which identified transcription factors in the mosquito-invasive 

stage of malaria parasite. The two experiments aimed at inferring the ability and 

sensitivity of STGEMS in predicting correctly, the motifs already extracted by some 

known biological experiments.  The  third experiment targeted predicting new binding 

sites by using the 3D7 gene clones of P. falciparum, this contains about 3,000 genes 

from the intraerythrocytic developmental cycle.  

 

3.10.2 GLYCOLYSIS METABOLIC PATHWAY ANALYSIS 

The extraction of motifs in the glycolysis pathway was accomplished by running 

STGEMS on the twenty six genes known to be involved in the glycolysis pathway of 

P.falciparum harvested from .www.plasmodb.org.The genes involved in glycolysis 

metabolic pathways were extracted, by including all information of the annotation for 

each gene in P. falciparum. We applied STGEMS to scan their upstream regions for 

conserved sequence motifs involved in the regulation of gene. STGEM’s output ranks 

the extracted motifs by comparing the similarity score with the p-value of the position 

weight matrix for each of the motifs, thus reporting only the optimal motifs.  The 

glycolysis pathway genes used are  PF10_0122, PF10_0155, PF11_0157, PF11_0208, 

PF11_0294, PF11_0338, PFL0780w, MAL13P1.40, PF13_0141, PF13_0144, 

PF13_0269, MAL13P1.324, PF14_0341, PF14_0378, PF14_0425, PF14_0598, 

PFB0210c, PFB0465c, PFC0275w, PFC0831w, PFD0660w, PFF1155w, PFF1300w, 

PFI0755c, PFI1105w and PFI1295c. STGEM program was executed with the DNA 

sequences of these genes as input with the aim of discovery relevant motifs. In order to 
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validate the authenticity of the motifs identified by STGEMS, the popular GEMS 

algorithm was also applied to the same set of genes as a benchmark. This method of 

validation was motivated by the fact that the work of Young et al.,(2008) which 

developed GEMS algorithm,  reported that the motifs  discovered by GEMS had been 

biologically validated with follow up biological experiments, therefore, the biological 

relevance of the motif identified by STGEMS can be inferred  based on its correlation 

with those identified by GEMS.  The correlation coefficient was computed as the basis of 

comparison.  

 

3.11 DISCUSSION ON THE IMPLEMENTATION OF STGEMS 

The implementation of STGEMS algorithm consist of two main modules as shown in 

Appendix B. Module st.c implemented the space efficient construction of the suffix tree 

using suffix links. The suffix tree was constructed successively starting from the root 

node and moving down the depth of the tree inserting new leaves that are not already in 

existence. If a part of the sequence string already exists on the tree, it is not inserted 

again. The tree construction continues until all the strings in the input is evaluated and 

added to the tree.  Suffix links points to the next location to inset a new leaf and makes 

traversal faster. 

The improved efficiency in using the suffix tree in STGEMS is achieved as follows: By 

using a suffix tree to enumerate all the initial clusters (SEEDS), if any two SEEDS are 

identical, they are not repeated; it suffices to choose one of the SEEDS. Also, while 

descending the suffix tree to enumerate the SEED, partial evaluations are made of the 

current motif based on the strings that are in the enumerated SEED so far. These partial 

evaluations are shared across all the SEEDS below the current node in the tree, thus there 

is no need to visit all the nodes. This is in contrast to other techniques that do not use the 
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suffix tree in which case, they have to evaluate every base in each SEED thus leading to 

additional cost in time spent in traversing and returning the repeated pattern. 

To extract the structured motif which is made up of two boxes of simple motifs and gaps, 

the motifs  are considered in lexicographical order by a depth-first visit of the motif tree 

M. Every time we stop extending a motif, that is, when we backtrack in  M, it is either 

because we found a valid motif of the maximal length, or because the quorum is no 

longer satisfied and we start to consider the next one in lexicographical order.  The two 

connected boxes are returned as the structured motif with the gap specified in the 

parameter.  

The SEED which is the output of the tree obtained by traversing from the root node to a 

leaf node is a unique pattern. This is fed as the input to stgems.c program which takes 

this seed and then computes the gene enrichment based on the hypergeometric scoring 

function.  The position weight matrix is generated  for each candidate motif which shows 

the frequency of occurrence of each alphabet in a specific position in the motif sequence.  

The p-value of each motif is computed using the hypergeometric formula. Then the motif 

is ranked by sorting it in ascending order relative to the computed p-value. The hash 

table was introduced to achieve an optimized sorting and ordering of the motifs. The 

hash function maps each possible occurrence of the motif to a unique slot index on the 

hash table. Collision in the hash table   was handled using the overflow method which 

involves creating a second table for collisions and placing the motif at the first empty 

location. 

The incorporation of these data structures in the development of STGEMS contributed 

immensely to its improved efficiency in terms of speed.    

The implementation of the similarity mechanism used in MOGAMOD was relatively 

straightforward. The similarity check mechanism is based on the dominance value of the 
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nucleotides which is computed using the standard method of generating position weight 

matrix. The position frequency matrix is first computed, that is the frequency of 

occurrence of each of the characters in a specific position. Then the dominance value of 

the nucleotide is computed as a measure of the similarity score. The implementation was 

not enhanced in any way since the purpose of this part of the research is to establish a 

comparative benchmark for the evaluation of the improved similarity mechanism used in 

STGEMS.  

The final outputs of STGEMS are optimal motifs represented using sequence logos.  

The performance of any new motif discovery tools is evaluated by comparing the tool 

with existing tools using the same data set on and the same system specification. 

STGEMS was compared with several popular motif discovery tools.  The results of these 

comparisons are discussed in chapter four. 
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CHAPTER FOUR 

 RESULTS AND DISCUSSION 

 

We applied the methodology described in chapter three above to mine simple and 

structured motifs such as Transcription factors and DNA binding sites in  P. falciparum 

and examined the speed of execution of the algorithm. Our findings are contained in the 

sections below. In addition, we report the result of running GEMS and STGEMS on the 

glycolytic metabolic pathways genes of P. falciparum. 

 

4.1 EMPIRICAL RUNTIME COMPARISON OF STGEMS 

 

In chapter three, we demonstrated the asymptotic runtime of STGEMS, In addition to 

that, we will show the comparison of the empirical runtime of STGEMS with the five 

motif discovery algorithms used in this research work. The set of genes used were 

downloaded from PlasmoDB. (An online database of  P.falciparum genes maintained by 

National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov ). 

The running time of STGEMS compared with the five popular motif discovery tools is 

shown in the table below and the graph thereafter.  

 

 



UNIVER
SIT

Y O
F I

BADAN

 
 

114

 

 

 

 

 

 

Table 4.1 Running Time of STGEMS compared with other Motif discovery tools 

 

Size of Data 

Running 
Time in   
Seconds 

    

  

In BP MEME 
WEEDER GEMS RISOTTO EXMOTIF     

STGEMS
20,000 36 15 26 12 10 05
40,000 43 23 34 22 20 16
60,000 55 35 56 31 30 27
80,000 68 45 69 47             41 39
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Four different sizes of genes were used in the analysis i.e.  20,000 , 40,000, 60,000 and 

80,000bp, this variation in gene sizes is chosen to enable a classification of the 

performance of the algorithms as a function of input size.  The empirical runtime of the 

different algorithms was obtained by including a time stamp in the execution of the 

algorithm so that its output displayed the execution time. From table 4.1 above, it is 

obvious that the empirical run time of all the algorithms tested increased as the size of 

input increased as expected.  The run time of the MEME algorithm which is a statistical 

based motif discovery tool was higher than all other algorithms. This is followed by 

GEMS which is also based on a statistical model. The pattern-driven methods WEEDER, 

RISOTTO and EXMOTIF are much faster than the statistical based tools; this speed 

performance gain is attributed to the fact that they all used the suffix tree data structure, 

which is known to enhance searching speed. EXMOTIF performed better than 

RISOTTO and WEEDER because it incorporated the use of suffix links in its 

implementation of the suffix tree. Our computational technique, STGEMS outperformed 

all the five algorithms compared with in improved runtime. This is because the 

framework of STGEMS was built on an efficient implementation of the suffix tree using 

linked list and hash table data structures unlike the other algorithms that did not 

incorporate these combined features.    
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Emperical Runtime Analysis 
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Figure 4.1:  Empirical Run time for STGEMS and 5 motif discovery tools 
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In figure 4.1 above, which is the graph of the empirical runtime of STGEMS compared 

with those of MEME, WEEDER, GEMS, EXMOTIF and RISOTTO, It can be seen that 

MEME had the lowest performance among all the other tools compared since its running 

time over the set of the selected input was the highest, that is, the execution time of 

MEME in all instances was higher than the other tools. On the other hand, STGEMS had 

the lowest empirical run time which implied that it is a time efficient algorithm. The 

more efficient an algorithms is, the lower its empirical runtime. 

 
4.2  PERFORMANCE OF STGEMS IN MINING BIOLOGICALLY 

VALIDATED MOTIFS 
 

In addition to the empirical and asymptotic running time of STGEMS,  it is also very  

effective in mining biologically motivated motifs in P.falciparum. To demonstrate this,  

two sets of sample genes in P.falciparum, which had been experimentally proven to co-

regulate via structured motifs were used for testing. The implementation and testing of 

STGEMS was done in C programming language on Linux. The first experiment used the 

set of genes in the work of Flueck et al. (2010) which experimentally extracted binding 

sites for P.falciparum.  i.e. 100 base pairs upstream of gene start codons as shown in 

table 4.2. Table 4.3 shows the result obtained running them on five popular motif 

discovery tools: RISOTTO, EXMOTIF, WEEDER, MEME and GEMS.  

The second experiment used the set of genes used by Yuda et al. (2009) which identified 

transcription factors in the mosquito-invasive stage of malaria parasite shown in table 

4.4. The resulting output using the five algorithms is depicted in table 4.5. 

Flueck et al. (2010), showed experimentally, that the set of genes in table 4.2 co-regulate 

using the following motif: N(C/G/A)TGCA-4to5-(A/G/C)GTGC(A/G). ‘N’ indicates any 

of the four nucleotides A/C/G/T can occur at this position, while four to five gaps are 
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between the two boxes.  

Yuda et al. (2009) also show that experimentally, TAGCTA-100 to1500-TAGCCA and 

TAGCTA-100 to1500-TGGCTA are those structured motifs used in their co-regulation. 
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Table 4.2. Set of genes from Flueck et al. 

Accession No Description 
PFF0645c 
PFI0265c   
PFE0075c   
PFE0080c   
PFC0120w   
MAL7P1.208 
PFI1730w   
PF14_0102  
PFD0295c    
MAL7P1.119   
PFI1445w   

Plasmodium falciparum 3D7 , integral membrane protein, 
putative  
Plasmodium falciparum 3D7, high molecular weight rhoptry 
protein 
Plasmodium falciparum 3D7, rhoptry-associated protein 3 
Plasmodium falciparum 3D7, rhoptry-associated protein 2 
Plasmodium falciparum 3D7 , cytoadherence linked asexual 
protein 3.1 
Plasmodium falciparum 3D7,  rhoptry-associated membrane 
antigen  
Plasmodium falciparum 3D7, cytoadherence linked asexual 
protein 9 
Plasmodium falciparum 3D7, rhoptry-associated protein 1 
Plasmodium falciparum 3D7 , apical sushi protein  
Plasmodium falciparum 3D7 , rhoptry-associated leucine zipper-
like protein 1 
Plasmodium falciparum 3D7,  high molecular weight rhoptry 
protein 2  
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Table 4.2 shows the accession number of the genes and their equivalent description. The 

accession numbers are unique and they uniquely identify each gene in all the gene 

databases, such as http://geneontology.org, http://plasmodb.org, http://genebank.org etc. 

The standard NCBI format for naming genes accession numbers is the short name of the 

organism as the first character and then a sequence generated number. For example in 

PFI1445w, the PF stands for Plasmodium Falciparum.  

The gene accession numbers starting with MAL stands for Malaria, the old format for 

naming gene accession number uses the disease caused by the organism instead of the 

organism’s short name.  
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Table 4.3. Output from running the algorithms on the DNA sequences in table 4.2 

 IDENTIFIED BY 

Motifs RISOTTO EXMOTIF WEEDER MEME GEMS STGEMS 

GGTGCG YES NO  NO NO NO NO 

CGTGCG NO NO NO NO NO NO 

CTGCA YES NO NO NO YES YES 

GTGCA YES YES YES YES YES YES 

ATGCA NO YES YES YES YES YES 

AGTGCG NO NO NO NO YES YES 
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Table 4.3 shows the output of running the six algorithms using a data set which has been 

biologically proven to contain consensus motifs or potential binding sites. The output of 

each algorithm was scanned for the occurrence of these consensus motifs shown in the 

first column of table 4.3. that is the consensus motifs. These consensuses have been 

shown by Flueck et al. (2010) to be valid binding sites in P.falciparum using biological 

experimental methods. The result of the analysis revealed that MEME,WEEDER and 

EXMOTIF are similar both in the number and type of motif discovered, For instance, out 

of the six motifs scanned for, only two were discovered by the three tools i.e. ‘GTGCA’, 

‘ATGCA’  while ‘GGTGCG’, ‘CGTGCG’, ‘CTGCA’ and ‘AGTGCG’  were not found.  

RISOTTO exhibited a unique behaviour, the type and number of motifs discovered did 

not correspond to those discovered by the other tools. It found three motifs out of the six 

scanned for.  GEMS and STGEMS were similar in the type and number of motifs found, 

they both discovered ‘CTGCA’, ‘GTGCA’, ‘ATGCA’ and ‘AGTGCG’. This similarity 

between STGEMS and GEMS is because they both utilized the same mechanism in their 

methodology, that is, the hypergeometric motif enrichment search mechanism. The main 

advantage STGEMS has over GEMS is in the speed of execution and in its ability to 

mine both simple and structured motifs for the challenging genome of P.falciparum. 
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Table 4.4. Set of genes from the Mosquito invasive stage of malaria parasite. 

Accession No Description 
PF08_0136b   
PFC0905c      
PFL0550w   
PFC0640w 
PFD0425w 
PF08_0030  
PFL2135c 
MAL13P1.203 
PF10_0027  
PFL2510w 
PF13_0355 
 PFD0435c 
PFE0360c 
PF14_0040   
PFF0975c 
PF10_0302 
PF10_0303  
PFC0420w 
PFI1145w    

Plasmodium falciparum 3D7 , von Willebrand factor A-domain related 
protein 
Plasmodium falciparum 3D7, oocyst capsule protein  
Plasmodium falciparum 3D7, HSP20-like chaperone 
Plasmodium falciparum 3D7,CSP and TRAP-related protein 
Plasmodium falciparum 3D7 , sporozoite invasion-associated protein 
1, putative 
Plasmodium falciparum 3D7, conserved Plasmodium protein, 
unknown function 
Plasmodium falciparum 3D7, conserved Plasmodium protein, 
unknown function 
Plasmodium falciparum 3D7 , secreted ookinete protein, putative 
Plasmodium falciparum 3D7,conserved Plasmodium protein, unknown 
function  
Plasmodium falciparum 3D7,  chitinase 
Plasmodium falciparum 3D7, secreted ookinete protein  
Plasmodium falciparum 3D7, conserved Plasmodium protein 
Plasmodium falciparum 3D7, conserved Plasmodium protein 
Plasmodium falciparum 3D7, secreted ookinete adhesive protein 
Plasmodium falciparum 3D7, conserved Plasmodium protein 
Plasmodium falciparum 3D7, 28 kDa ookinete surface protein  
Plasmodium falciparum 3D7,  25 kDa ookinete surface antigen 
precursor 
Plasmodium falciparum 3D7,  calcium dependent protein kinase 3 
Plasmodium falciparum 3D7,  perforin like protein 3 
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Table 4.5: Output from running the algorithms on the DNA sequences in table 4.4 

                               IDENTIFIED BY 

Motifs RISOTTO 

 

EXMOTIF WEEDER MEME GEMS STGEMS 

TAGCTA YES NO YES NO NO NO 

TGGCTA NO NO NO NO NO NO 

TAGCCA NO NO NO NO NO NO 
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From table 4.3, it is can be observed that many of the experimentally extracted motifs 

were also mined by GEMS and by extension, our novel algorithm, STGEMS. This was 

not the same finding in table 4.5, as none of the two structured motifs was found by 

GEMS nor by STGEMS. Only RISOTTO and WEEDER discovered one motif each that 

is,  ‘TAGCTA’ and ‘TAGCTA’ respectively. The other three tools, that is,  MEME, 

GEMS and EXMOTIF could not also detect any of the motifs. 

The observation recorded in table 4.5 gave the understanding that a number of fine 

tunings, which are not necessarily algorithmic, are needed to effectively mine the desired 

structured motifs in the set of table 4.4. 

 

4.3 EVALUATION OF PREDICTIVE ACCURACY OF STGEMS  
 

The predictive accuracy of STGEMS was evaluated by computing its correlation 

coefficient and comparing it with that of the other five algorithms used as benchmark in 

this research. 

Table 4.6  below shows the  prediction accuracy of  STGEMS and five motif discovery 

tools. The dataset are averaged over four cross-validated test set produced from the set of 

biologically validated motifs. The result shows that STGEMS has a relatively high and 

stable correlation coefficient with varying sizes of input. For gene sizes of 20,000, 

40,000, 60,000 and 80,000 respectively, the correlation coefficient remained as close to 1 

as possible that is, 0.86, 0.87, 0.9 and 0.91 respectively. This shows the high accuracy of 

our computational technique. The correlation coefficient of GEMS algorithm is similar 

to that of STGEMS. This ability of STGEMS and GEMS to achieve a high predictive 

ability in predicting biologically relevant motif in the challenging sequence of 

P.falciparum is due to the hypergeometric mechanism employed. The predictive 
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accuracy of MEME and WEEDER were similar, it can be categorized as an average 

performance while EXMOTIF had the worst performance, having a negative correlation 

coefficient for the 20,000bp gene size.    
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Table 4.6:  Correlation Coefficient for STGEMS and the 5 Algorithms 

Tools                    Data sets 

 20,000BP 40,000BP 60,000BP 80,0000BP 

STGEMS 0.86 0.87 0.9 0.91 

MEME 0.3 0.4 0.45 0.5 

WEEDER 0.4 0.5 0.45 0.53 

GEMS 0.86 0.87 0.9 0.91 

RISOTO 0.6 0.48 0.5 0.6 

EXMOTIF -0.3 0.24 0.37 0.41 
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Figure 4.2: Performance Accuracy Comparison  
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4.4 STGEMS AND MINING NOVEL MOTIFS  

STGEMS was run using the 3D7 genes from P.falciparum downloaded from PlasmoDB 

in an attempt to mine novel binding sites.  An exhaustive listing of the genes and the 

extracted motif are found in Table 1 in appendix A. A snapshot of some of the results is 

shown in 4.3. 
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Figure.4.3: Output of one of the modules of STGEMS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIVER
SIT

Y O
F I

BADAN

 
 

131

 

This is a snapshot of running one of the modules of STGEMS to extract motifs with their 

computed similarity score. The second column shows the candidate motif, the third 

column shows the number of the sequences in which the motif appears while the fourth 

column is the total number of occurrence of that motif. The fifth column shows the 

mismatches allowed while the last column is the similarity score for each candidate 

motif. These extracted motifs reported are the optimal motifs since the hypergeometric 

based similarity check mechanism employed,  provided a ranking of all candidate motifs 

in such a way that only those with low similarity threshold relative to the position weight 

matrix generated are reported as optimal motifs. Based on that proposition, the following 

ten motifs were identified as optimal motifs by STGEMS: ‘TCTAT’ occurring in five 

sequences and having similarity value of 0.571429; ‘TCTAA’ occurred in three 

sequences with a value of 0.685714; ‘TATCA’ occurred in five sequences with a 

similarity value of 0.571429; ‘TAACA’ occurred in five sequences with a similarity 

value of 0.571429; ‘GAGTA’ occurred in three sequences and has a similarity value of  

0.685714; ‘TTATC’ occurred in four sequences and have a value of 0.685714; ‘TACAC’  

occurred in five sequences and has a similarity value of 0.571429; ‘GATGA’ occurred in 

four sequences with a similarity value of 0.685714; ‘ATCAA’  occurred in four 

sequences with a similarity value of 0.685714 and ‘ACCTG’ occurred in three sequences 

with a similarity value of 0.685714. 
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Table 4.7  The optimal novel motifs predicted by STGEMS from 3D7 P.falciparum 

genes. 

Optimal motif Similarity Score 
TCTAT 0.571429 
TCTAA 0.685714 
TATCA 0.571429 
TAACA 0.571429 
GAGTA 0.685714 
TTATC 0.685714 
TACAC 0.571429 
GATGA 0.685714 
ATCAA 0.685714 
ACCTG 0.685714 
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It can be observed from table 4.7 that row 1 to four are similar in the type of nucleotide 

and also the positional information, that is,  they all have the’ T’, ‘A’ and ‘C’ nucleotide 

with ‘A’ and ‘T’ having a higher occurrence than ‘C’(Reiterating the AT rich nature of 

P.falciparum) although they vary slightly. For instance,  

 

Optimal motif Similarity 

TCTAT 0.571429

TCTAA 0.685714

 Are very similar with a mismatch at the fifth position, thus can represent the same motif 

and 

Optimal motif Similarity 

TATCA 0.571429

TAACA 0.571429

 

 

are also very similar with one mismatch at the third position and can represent the same 

motif. In chapter two, the importance of representing motifs graphically using sequence 

logo was explored. The primary purpose being that it shows at a glance, the relationship 

between motifs of interest in terms of their positional information. Figure 4.4  below 

shows the sequence logo  representation of the four motifs above. 
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Figure 4.4: Sequence Logo of some of the optimal motifs predicted by STGEMS 
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The sequence logo representation of TCTAT, TCTAA,  TATCA, TAACA is a multiple 

alignment of the sequences showing positional information. It is obvious from the 

diagram that ‘T’ and ‘A’ are dominant. In position 1, ‘T’ is present in all the four 

sequences and that explains why the logo of T is highest in that position. In position 2, 

‘A’ and ‘C’ have equal distributions that is,  two occurrences of ‘A’ and ‘C’ respectively. 

In position 3, ‘T’ occurred in three of the motifs while ‘A’ occurred in one. In position 4, 

‘A’  and ‘C’ have equal occurrences while in position five, ‘A’ has three occurrences and 

‘T’ has one occurrence. 
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Figure 4.5: Similarity score of the optimal motifs predicted by STGEMS 
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From figure 4.5, it can be observed that the motifs with the lowest similarity score are 

TCTAT, TATCA ,TAACA and TACAC and they are the best motifs according to the 

gene enrichment method implored in the design framework of STGEMS. However, the 

biological validation of these predicted motifs is outside the scope of this project. 

The structured motif was obtained by connecting two or more simple motifs and some 

spaces as indicated in the structured motif algorithm in chapter three. That is, e 

TCTAT_TAACA is an example of a structured motif. 

 

4.5  APPLICATION OF STGEMS AND GEMS TO METABOLIC PATHWAY 

GENES  

Having  explained in chapter two, the importance of the metabolic pathway in 

understanding the biology of P.falciparum especially its role in drug target discovery, 

our computational inference technique, STGEMS was used on the glycolytic metabolic 

pathway genes. This glycolysis pathway shows the interactions involved in producing 

the necessary energy needed by the parasite to survive while in the two host it depends 

on, thus understanding the genes involved in this process will aid the design of effective 

drug target to terminate the organisms source of energy and invariably, lead to its 

eventual destruction.  STGEMS was used to scan the regulatory genes in this pathway 

with a view to predicting conserved motifs which have biological significance.  

In order to validate the relevance of the motifs identified by STGEMS, the popular 

GEMS algorithm was used in running the same set of genes as a benchmark. This 

method of validation was motivated by the fact that in the work of Young et al.,(2008) 

which developed GEMS algorithm,  reported that the motifs  discovered by GEMS had 

been biologically validated with follow up biological experiments, therefore, the 

biological relevance of the motif identified by STGEMS can be inferred  based on its 
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correlation with those identified by GEMS.  The motifs discovered by GEMS and 

STGEMS in the glycolytic pathways were the same.  The computation of the correlation 

value of the comparison of the motifs discovered by the two algorithms relative to 

biologically validated motifs gave a correlation value of 0.98 which is very close to 1, 

the perfect prediction value.  The sequence logo representation of some of the common 

motifs are shown in the sequence logo  diagram in figure 4.6. 
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Figure 4.6: A sequence Logo of the common motifs extracted by GEMS and 

STGEMS. 
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4.6 COMPARISON OF THE SIMILARITY CHECK MECHANISM OF GEMS 

AND MOGAMOD 

In chapter three, the implementation of the similarity check mechanism employed in the 

designs of  GEMS  and MOGAMOD algorithms were explored. We now present the 

result of the implementation by providing a comparative analysis of the motifs 

discovered using the two mechanisms. A graph of the value of the correlation coefficient 

of the motif discovered using the mechanism of GEMS and MOGAMOD compared with 

the experimentally identified motifs in Flueck et al.,(2010) is shown in figure 4.7 below.  
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Table 4.9: Motif identification with GEMS and MOGAMOD’s similarity check 

mechanism  

 IDENTIFIED BY 

Motifs MOGAMOD GEMS 

GGTGCG NO NO 

CGTGCG NO NO 

CTGCA NO YES 

GTGCA NO YES 

ATGCA NO YES 

AGTGCG NO YES 
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Computing correlation coefficient as a measure of prediction ability, we obtain the table 

4.10  

Table 4.10: Correlation Coefficient value of GEMS and MOGAMOD’s similarity 

check 

Motifs MOGAMOD GEMS

Sample 1 -0.01 0.6 

Sample 2 -0.01 0.72 

Sample 3 -0.1 0.78 

Sample 4 -0.01 0.81 

Sample 5 -0.1 0.84 

Sample 6 -0.11 0.85 
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Figure 4.7: Similarity Check of GEMS and MOGAMOD compared 
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The correlation value of the MOGAMOD’s mechanism was very low; all the values are 

negative which indicate a poor predictive accuracy or inverse prediction. On the other 

hand, the result obtained using GEMS’s mechanism show a high correlation value of 0.6, 

0.72, 0.78 and 0.87 respectively. We can therefore conclude that the implementation that 

incorporated the similarity mechanism of MOGAMOD performed very poorly in 

predicting relevant motifs as opposed to the implementation that incorporated GEMS 

similarity mechanism. This success as we explained in chapter one is attributed to the 

hypergeometric scoring function incorporated into the similarity mechanism of GEMS 

and made it possible to mine relevant biologically motivated motifs from the challenging 

genome of P.falciparum.  

 In spite of the reported remarkable performance of MOGAMOD, STGEMS 

outperformed MOGAMOD  in terms of accuracy and runtime when tested with the same 

data set. Moreover, MOGAMOD could only identify motifs from other model organisms 

like yeast and bacteria but not from the malaria parasite, while STGEMS identified 

simple and structured motifs in these organisms.   
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION 
 

Motif discovery is presented in this research as the process of identifying and extracting 

patterns believed to have biological importance and therefore necessary for 

understanding the complex biological mechanisms of living organisms. The availability 

of efficient motif discovery algorithms to mine these patterns is crucial to the acquisition 

of this vital knowledge. The consideration of the peculiarity of the data set is an 

important factor in developing efficient algorithms to extract these complex genomic 

patterns.  In this regard, we proposed a combinatorial model using the suffix tree, a 

pattern-driven approach and gene enrichment analysis, a statistical approach which we 

tagged STGEMS.  This combinatorial approach guaranteed the incorporation of the 

speed efficiency of pattern-driven method with the improved sensitivity of statistical 

based methods.  STGEMS utilized the suffix tree and the hypergeometric scoring 

function as a similarity check mechanism in its gene enrichment analysis. This enabled it 

to identify simple and structured motifs from organisms with peculiar genomic structures 

such as the malaria parasite. The key role played by these transcription associated 

proteins which are simple motifs (transcription factors) and structured motifs (DNA 

binding site) identified by STGEMS in malaria research was highlighted.  
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We stressed that the importance of a good choice of data structures in the design 

paradigm of motif discovery tools cannot be overemphasized. Considering the 

exponential growth of genomic data availability, the accessibility of high performance 

algorithms for efficient analysis of  these sequence data is paramount. This research 

presents the criteria for choosing data structures for motif discovery algorithms and the 

justification for the data structures used in STGEMS.  

The linear run time algorithm developed proved effective in mining transcription factors 

and binding sites from the challenging genome of the malaria parasite, P.falciparum.  

This was demonstrated by comparing motifs identified by STGEMS with those extracted 

from biological experiments. The high correlation obtained by this comparison reveals 

the high sensitivity of STGEMS.  

We proved the speed performance of STGEMS by comparing its empirical runtime with 

that of five popular motif discovery tools. The average runtime for the three categories of 

data set used (small, medium and large ) revealed that STGEMS ensures timely efficient 

performance over the popular algorithms we compared with. That is three simple motifs 

tools :WEEDER, MEME, and GEMS and two structured motifs tools:  RISSOTO and 

EXMOTIF.  

The research demonstrated the accuracy of STGEMS in extracting biologically 

motivated structured motifs in the challenging sequence of P. falciparum  which existing 

algorithms could not.  DNA binding sites in P. falciparum, a eukaryotic organism  exist 

as structured motifs and necessary for identifying the viable drug targets to eliminate the 

drug resistant strains of the parasite.   

The research employed STGEMS in scanning the glycolytic metabolic pathway genes of 

P.falciparum for relevant motifs and it identified biologically motivated motifs in the 

pathway. Thus providing a better understanding of the functional genes responsible for 
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the high adaptability of the malaria parasite, which makes it able to survive in two 

different hosts in spite of the adverse condition introduced by anti malaria drug action. In 

providing  a deeper understanding of the various gene interactions involved in the 

adaptability, this forms the basis of discovering efficient drug therapies to destroy this 

deadly parasite 

 

In the same vein,  STGEMS and GEMS were tested with  the glycolytic metabolic 

pathway genes and they discovered the same motifs. This result further confirms the high 

sensitivity of our computational inference technique, since it had a high correlation  with 

the biologically validated motifs discovered by GEMS. 

We developed a computational tool for mining both simple and structured motifs with an 

improved runtime demonstrated by computing its asymptotic runtime which is linear in 

the length of sequence. Our computational tool also has a high accuracy in mining 

biologically motivated motifs. This was revealed by its ability to identify similar motifs 

extracted using experimental methods. In addition, novel DNA binding sites, which are, 

viable drug targets were extracted on a large scale from the P.falciparum genome. 

We also implemented and compared two popular similarity check mechanisms. The first 

was based on hypergeometric scoring function  while the second was based on the 

dominance value of nucleotides occurring in the candidate motifs.  The result of the 

comparison influenced our choice of the hypergeometric based similarity check 

mechanism. This consequently enabled  STGEM to mine relevant optimal motifs from 

P.falciparum  while the other implementation based on dominance value could not. 

Our results showed that STGEMS is a valuable tool that can enable malaria researchers 

and other biologists to effectively produce anti-malarial drugs given that the tool 

identifies the relevant drug targets (binding sites and transcription factors). With this new 
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tool, a great step can be taken in confronting the challenge to eradicate malaria in Nigeria 

and other countries to which the disease is endemic.  

 

5.2 CONTRIBUTION TO KNOWLEDGE 
 

Our contribution to knowledge is two-fold:  

We implemented an efficient and effective algorithm for mining simple motifs on the 

suffix tree. This led to a significant speed up in the run time of the algorithm. We 

then extended this to mine structured motifs. The resulting algorithm runs in linear 

time. Following this, we empirically proved the high sensitivity of the resulting 

algorithm to mining motifs from sequences like we have in P. falciparum and 

compared the similarity check mechanism of GEMS against that used in another 

popular algorithm for extracting structured motifs, a multi-objective genetic 

algorithm, MOGAMOD. 

 The results obtained validated the high sensitivity of the similarity check mechanism 

employed in GEMS and also showed that a careful deployment of this mechanism 

improved the sensitivity level of the resulting algorithm, STGEMS. The end results 

gave us room to exhaustively mine structured motifs. 

Secondly, we successfully identified motifs in the glycolytic metabolic pathway of P. 

falciparum 

 

5.3 RECOMMENDATIONS/FUTURE PERSPECTIVE 
 

This present work has given lead to some future studies. The need to formalize a number 

of fine tunings to exhaustively extract biologically motivated structured motifs was 

identified. Such fine tunings include the determination of biological motivated gaps 
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between the boxes (simple motifs) of structured motifs and the size of the boxes. This 

biological validation will be done as a future work. 

One of the gaps identified in our review of motif discovery algorithms is the need for a 

motif discovery tools which incorporate phylogenetic relationships in its framework and 

at the same time puts sequences with peculiar genomic structure in good perspective. 

This is crucial in revealing evolutionary insights among the different organisms.  This 

will be examined in a future work.   

The need to develop an integrated sequence analysis tool was observed. This tool will 

incorporate adequate methodology for gene prediction, motif discovery and sequence 

alignment in a holistic framework. We hope to take this up as a future work. 
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APENDIX A 

The predicted motifs  

Result of STGEMS for novel motif discovered 

Motif  Seq 
present 

No.of occu mismatch Similarity value 

GGGGA 1 1 0 5.714286 
AACAG 1 1 1 5.142857 
ACGAT 2 1 1 5.142857 
AGAGT 1 1 1 5.142857 
ATTAC 1,2,3,7 4 3  0.685714 
GAAGT 1,3,4 3 2 2.742857 
TGATG  1,6 2 1 6.857143 
ATTAG 1,5 2 1 6.857143 
GCTAC 5 1 0 5.714286 
AATCA 5 1 0 5.714286 
GTCAA 6,7 2 0 7.142857 
AGAGG 1,5 2 1 6.857143 
ATACC 1,7 2 1 6.857143 
GCCTG 4 1 0 5.714286 
AGAGC 4 1 0 5.714286 
AGAGA 1,3,7 3 2 2.742857 
ATACT 6 1 0 5.714286 
GTGCA 5,6 2 0 7.142857 
ATGAC 2,7 2 1 6.857143 
TCTCA 5 1 0 5.714286 
TCTCC 1,5 2 1 6.857143 
ATGAG 3 1 1 5.142857 
TCCAA 4 1 0 5.714286 
TCTCG 5 1 0 5.714286 
GTGCT 1 1 1 5.142857 
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TGTGC 3,4,5,6 4 1 2.057143 
CAGAA 1 1 1 5.142857 
ATGAT 1,5,7 3 1 3.771429 
TCTCT 3,5,7 3 1 3.771429 
TGTGG 5,6 2 0 7.142857 
CCATG 6 1 0 5.714286 
CGCTA 5 1 0 5.714286 
CAACT 1,4,7 3 1 3.771429 
TCCAT 7 1 0 5.714286 
TAGGT 2,3 2 2 3.428571 
CAACG 4 1 0 5.714286 
CATTA 5 1 0 5.714286 
TAGGG 6 1 0 5.714286 
CGCTT 3 1 1 5.142857 
CAACA 1,2,4,5 4 2  1.714286 
CGTAC 1 1 1 5.142857 
CATTG 2,4,5 3 1 3.771429 
TAGGA 2,4,5 3 1 3.771429 
TAGGC 6 1 0 5.714286 
CGTAA 7 1 0 5.714286 
CGACA 1 1 1 5.142857 
CACTT 7 1 0 5.714286 
CGACC 2 1 1 5.142857 
TCGCT 3 1 1 5.142857 
TGGGG 6 1 0 5.714286 
TTTCC 2,3,7 3 2 2.742857 
CACTG 3,4 2 1 6.857143 
TTCAA 4 1 0 5.714286 
TTCAC 2,4 2 1 6.857143 
TGGGT 1 1 1 5.142857 
CCTGA 4,6 2 0 7.142857 
TTCAG 4 1 0 5.714286 
CACTA 7 1 0 5.714286 
CTATA 1,4 2 1 6.857143 
CTATG 2,6 2 1 6.857143 
CCTGT 1,2,3 3 3 0.685714 
ACTTA 1,2 2 2 3.428571 
ACTTC 5,7 2 0 7.142857 
CTATT 1,5,6 3 1 3.771429 
TTGCC 2 1 1 5.142857 
ACTTT 1,3,4,6 4 2 1.714286 
GTTCG 3 1 1 5.142857 
GTTCC 1,4 2 1 6.857143 
GTTCA 5,6 2 0 7.142857 
TTGCT 2 1 1 5.142857 
ACGTA 1,7 2 1 6.857143 
CTTGA 6 1 0 5.714286 
ACAAG 1 1 1 5.142857 
TAATG 5 1 0 5.714286 
TAATC 5,6 2 0 7.142857 
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GGTGT 3 1 1 5.142857 
ACGTT 2,4,5 3 1 3.771429 
CTTGT 1,6,7 3 1 3.771429 
GACAA 1,2,4,5,7 5 2 1.142857 
GACAC 6 1 0 5.714286 
AACCT 2 1 1 5.142857 
GGTGC 1 1 1 5.142857 
ACCGA 4,5 2 0 7.142857 
GGTGA 5 1 0 5.714286 
AAAGG 5,6 2 0 7.142857 
AGGCA 6 1 0 5.714286 
CTGGA 1 1 1 5.142857 
GATCT 7 1 0 5.714286 
AACCG 5 1 0 5.714286 
GACAT 1,7 2 1 6.857143 
GTCTT 2 1 1 5.142857 
GCTCA 1,5 2 1 6.857143 
ACCGT 5 1 0 5.714286 
GAGCA 4 1 0 5.714286 
GTACC 7 1 0 5.714286 
ATAAC 1,4,7 3 1 3.771429 
GTACG 1,2 2 2 3.428571 
ATGTC 6,7 2 0 7.142857 
ATAAG 2,3,4,5,6 5 2 1.142857 
ATGTG 1,2,5,7 4 2 1.714286 
TCCTA 1,3,6,7 4 2 1.714286 
TCCTG 6 1 0 5.714286 
GTACT 1,3,4,7 4 2 1.714286 
TCTAA 1,2,3 3 3 0.685714 
TCCTT 2,4 2 1 6.857143 
TCACA 5 1 0 5.714286 
TCACC 4 1 0 5.714286 
TCACG 2 1 1 5.142857 
CGTTA 2,6 2 1 6.857143 
TCTAT 1,2,3,4,7 5 3 0.571429 
CGTTC 2 1 1 5.142857 
TGCCC 2 1 1 5.142857 
CGTTG 3,4 2 1 6.857143 
TGAGA 3,7 2 1 6.857143 
AGATT 1,6,7 3 1 3.771429 
ATCGT 3 1 1 5.142857 
TCACT 5,7 2 0 7.142857 
TGAGG 7 1 0 5.714286 
TATCA 1,2,3,4,5 5 3 0.571429 
CGTTT 3 1 1 5.142857 
TATCC 3,6 2 1 6.857143 
TGCCT 4 1 0 5.714286 
TCGAA 5,7 2 0 7.142857 
TTCTC 1,7 2 1 6.857143 
AGATA 1,6 2 1 6.857143 
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CACAC 1,7 2 1 6.857143 
TGAGT 3 1 1 5.142857 
CACAA 1 1 1 5.142857 
CGAAA 1,7 2 1 6.857143 
CGGTA 4 1 0 5.714286 
TATCT 1,2,6,7 4 2 1.714286 
CGAAC 7 1 0 5.714286 
TACGT 1,2,7 3 2 2.742857 
TCGAT 7 1 0 5.714286 
CGAAG 1 1 1 5.142857 
TTTAC 1,7 2 1 6.857143 
TTTAG 7 1 0 5.714286 
TACGG 3 1 1 5.142857 
TTACA 1,3,7 3 2 2.742857 
CGAAT 4,5 2 0 7.142857 
TTACC 1,3,5 3 2 2.742857 
CCCCA 2 1 1 5.142857 
TTACG 3,7 2 1 6.857143 
TTACT 1,3,4,6,7 5 2 1.142857 
TAGTT 1,2,4,5,7 5 2 1.142857 
ACATC 1,4,6,7 4 1 2.057143 
TTGAG 3 1 1 5.142857 
CATGA 3,4 2 1 6.857143 
ACATG 3,4,7 3 1 3.771429 
TAAAG 5 1 0 5.714286 
CATGC 5,7 2 0 7.142857 
TAGTA 3,4,6 3 1 3.771429 
CATGG 5,6 2 0 7.142857 
TTGAT 3,4,6 3 1 3.771429 
CATGT 1,5 2 1 6.857143 
AAGGT 3,6 2 1 6.857143 
AGTAC 4,5 2 0 7.142857 
GGCAC 6 1 0 5.714286 
AGTAG 1 1 1 5.142857 
CTCCC 1,5 2 1 6.857143 
CTAGA 4 1 0 5.714286 
AAGGA 3,5 2 1 6.857143 
AGTAT 1,6,7 3 1 3.771429 
GATAA 2,7 2 1 6.857143 
GACTT 3,6 2 1 6.857143 
GATAC 7 1 0 5.714286 
ACTGA 3 1 1 5.142857 
CTCCT 5 1 0 5.714286 
GAACA 1,6 2 1 6.857143 
GAACC 1 1 1 5.142857 
ATATC 1 1 1 5.142857 
GCAGA 1 1 1 5.142857 
GCCCC 2 1 1 5.142857 
AGGAA 3,4,7 3 1 3.771429 
ACTGT 4 1 0 5.714286 
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AATGG 1,3,5 3 2 2.742857 
GAACT 7 1 0 5.714286 
AGCGT 6 1 0 5.714286 
GAGAA 1,3 2 2 3.428571 
AGGAT 2 1 1 5.142857 
GTGTA 4 1 0 5.714286 
GTAAC 5 1 0 5.714286 
TCTTA 2,6,7 3 1 3.771429 
GTAAG 7 1 0 5.714286 
TCTTC 5,6 2 0 7.142857 
TCTTG 6 1 0 5.714286 
ACGGG 3 1 1 5.142857 
GTAAT 1,2,4 3 2 2.742857 
GTGTT 3,4,6 3 1 3.771429 
GGTTT 2,3,5,7 4 2 1.714286 
ACGGT 4 1 0 5.714286 
AGAAT 1,6 2 1 6.857143 
ATTGA 3,7 2 1 6.857143 
ATTGG 3,7 2 1 6.857143 
TCAAA 1,2 2 2 3.428571 
TCGTA 5 1 0 5.714286 
TCAAC 1,4 2 1 6.857143 
GGTTA 1,6 2 1 6.857143 
TCGTC 6 1 0 5.714286 
TCGTG 2 1 1 5.142857 
AGAAC 6 1 0 5.714286 
TGCAC 1,3,4,5 4 2 1.714286 
CGATA 2,5 2 1 6.857143 
CACCT 4 1 0 5.714286 
TCAAT 3 1 1 5.142857 
TCGTT 2,3 2 2 3.428571 
TGTCT 2 1 1 5.142857 
ATGGA 1 1 1 5.142857 
CAAGA 1 1 1 5.142857 
ATGGG 1 1 1 5.142857 
ATGGC 3 1 1 5.142857 
CAAGC 6 1 0 5.714286 
CACCA 1,5,7 3 1 3.771429 
CGATT 7 1 0 5.714286 
TGGCG 3 1 1 5.142857 
ATGGT 3,5,6 3 1 3.771429 
TCCGT 3 1 1 5.142857 
TAGAT 1,4,6 3 1 3.771429 
CCTCA 1,3 2 2 3.428571 
TTAAC 1,3,6 3 2 2.742857 
TTGTC 2,7 2 1 6.857143 
TTAAG 2,4 2 1 6.857143 
TTGTG 1,3,4 3 2 2.742857 
TAGAG 1,3 2 2 3.428571 
TAGAC 1,4 2 1 6.857143 
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TAACT 1,6 2 1 6.857143 
CCCAT 1,2 2 2 3.428571 
GTTGT 1,6 2 1 6.857143 
CGTGT 2 1 1 5.142857 
AGTTA 2,3 2 2 3.428571 
AGTTC 1 1 1 5.142857 
TAACG 5 1 0 5.714286 
GTTGG 7 1 0 5.714286 
TAACC 2,5,6 3 1 3.771429 
TTCGC 3 1 1 5.142857 
TAACA 1,2,3,4,7 5 3 0.571429 
GATTA 1,3,6,7 4 2 1.714286 
TACTT 1,2,6,7 4 2 1.714286 
GATTC 4,7 2 0 7.142857 
AGTTT 5,7 2 0 7.142857 
TTCGT 5,6 2 0 7.142857 
GATTG 4,6 2 0 7.142857 
CTTCA 6 1 0 5.714286 
CTTCC 6 1 0 5.714286 
CTCAA 1 1 1 5.142857 
GGACA 5 1 0 5.714286 
CGGGT 3 1 1 5.142857 
TACTC 1,4,6 3 1 3.771429 
GATTT 1,3,7 3 2 2.742857 
AGGTA 2 1 1 5.142857 
TACTA 4,7 2 0 7.142857 
AGGTG 6 1 0 5.714286 
CTTCT 7 1 0 5.714286 
AACGT 1,4 2 1 6.857143 
GAGTA 1,2,3 3 3 0.685714 
GAAAC 1,2,5 3 2 2.742857 
AGGTT 1 1 1 5.142857 
GTATC 4 1 0 5.714286 
GAAAG 1,6,7 3 1 3.771429 
GTATG 4,7 2 0 7.142857 
GGGAA 6 1 0 5.714286 
GGGAC 6 1 0 5.714286 
ACAGA 7 1 0 5.714286 
AACGG 4 1 0 5.714286 
AACGC 5 1 0 5.714286 
AACGA 2 1 1 5.142857 
GGTAT 4 1 0 5.714286 
ACAGT 1,4 2 1 6.857143 
AAGTT 3 1 1 5.142857 
GACGA 1 1 1 5.142857 
GGTAC 3 1 1 5.142857 
GGTAA 2,3,7 3 2 2.742857 
AAGTG 1,3,5,6,7 5 2 1.142857 
TCATG 1 1 1 5.142857 
TGCTA 2 1 1 5.142857 
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TGCTC 1 1 1 5.142857 
GCATT 1 1 1 5.142857 
AGACT 3 1 1 5.142857 
TCATT 5,6,7 3 0 3.885714 
ATCCA 7 1 0 5.714286 
TGTAA 1,4 2 1 6.857143 
AGACA 1,4,7 3 1 3.771429 
TGCTT 1,2,6 3 2 2.742857 
AGACG 1 1 1 5.142857 
TGACA 2,7 2 1 6.857143 
ATCCT 1,3,6 3 2 2.742857 
AATTG 1,5,6 3 1 3.771429 
ATAGT 1 1 1 5.142857 
GTGGA 5 1 0 5.714286 
GTGGG 6 1 0 5.714286 
TCTGG 1 1 1 5.142857 
TTATC 1,2,3,7 4 3 0.685714 
AGCTC 5 1 0 5.714286 
TGGAA 1,3,5 3 2 2.742857 
CCCTC 1,3 2 2 3.428571 
TGGAC 5 1 0 5.714286 
TTATG 6,7 2 0 7.142857 
GTGGT 4 1 0 5.714286 
TAGCT 5 1 0 5.714286 
CCTAA 1,5,6 3 1 3.771429 
TGGAT 1,3,7 3 2 2.742857 
CCCTT 5 1 0 5.714286 
TAGCA 7 1 0 5.714286 
CCTAT 3,7 2 1 6.857143 
CAATT 5,6,7 3 0 3.885714 
CGAGA 3 1 1 5.142857 
CATCA 4 1 0 5.714286 
CCGAA 4 1 0 5.714286 
CATCC 1 1 1 5.142857 
TTTGG 2,4,6 3 1 3.771429 
TACAG 4,7 2 0 7.142857 
CTCTA 5,7 2 0 7.142857 
CGAGT 2 1 1 5.142857 
CTCTC 3 1 1 5.142857 
TACAC 1,2,3,5,7 5 3 0.571429 
CATCG 7 1 0 5.714286 
CATCT 6 1 0 5.714286 
CCGAT 5 1 0 5.714286 
CTTAA 3 1 1 5.142857 
CTCTT 3,4,5,6 4 1 2.057143 
CTTAC 3,5 2 1 6.857143 
GGAAA 1,3,4,6,7 5 2 1.142857 
CTTAG 3,6 2 1 6.857143 
GAATG 1,3,4 3 2 2.742857 
TTGGA 3 1 1 5.142857 
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CTACA 7 1 0 5.714286 
GGAAG 5 1 0 5.714286 
GGGTG 1,5 2 1 6.857143 
CTACG 5 1 0 5.714286 
CTTAT 1 1 1 5.142857 
GAATT 1,3,4,5 4 2 1.714286 
ACTCA 1 1 1 5.142857 
GGAAT 3 1 1 5.142857 
GGGTT 3 1 1 5.142857 
TTGGT 2,4,6 3 1 3.771429 
ACTCC 5 1 0 5.714286 
GTTTT 1,6 2 1 6.857143 
AAGAT 1,2,4,6 4 2 1.714286 
AGTGA 1 1 1 5.142857 
AGTGC 3,4,6 3 1 3.771429 
GGCGA 3 1 1 5.142857 
ACTCT 3,4,5,6 4 1 2.057143 
GTTTG 2 1 1 5.142857 
AGTGG 4 1 0 5.714286 
ACCAT 1 1 1 5.142857 
GTTTA 2,4,5,7 4 1 2.057143 
AAGAC 1,3,7 3 2 2.742857 
GATGA 1,2,3,6 4 3 0.685714 
AGTGT 5,7 2 0 7.142857 
ACGCA 2,7 2 1 6.857143 
AAACT 3,7 2 1 6.857143 
GATGG 3 1 1 5.142857 
AAACG 1,2,4 3 2 2.742857 
GCAAA 3,4,5,7 4 1 2.057143 
GATGT 3 1 1 5.142857 
TGTTG 1,3,4,6,7 5 2 1.142857 
AAACC 2 1 1 5.142857 
ACGCT 5 1 0 5.714286 
AGGGA 6 1 0 5.714286 
ATTCC 3,4 2 1 6.857143 
AGCAT 6 1 0 5.714286 
AATAC 1,6 2 1 6.857143 
ATCAA 1,2,3,5 4 3 0.685714 
AACTT 1 1 1 5.142857 
TGTTT 1,5,6,7 4 1 2.057143 
ATTCG 5,6 2 0 7.142857 
GAGGG 5 1 0 5.714286 
AGCAG 1 1 1 5.142857 
GCTTG 1 1 1 5.142857 
AGCAC 4 1 0 5.714286 
AACTC 3 1 1 5.142857 
AACTA 1,5 2 1 6.857143 
CACGT 1 1 1 5.142857 
GAGGT 1 1 1 5.142857 
TGGTG 3,6 2 1 6.857143 
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GCTTC 6 1 0 5.714286 
GTAGT 7 1 0 5.714286 
TGGTA 7 1 0 5.714286 
ATGCC 4 1 0 5.714286 
TGGTT 2,5,6,7 4 1 2.057143 
CACGC 2,7 2 1 6.857143 
TCCCA 1 1 1 5.142857 
CCTTG 7 1 0 5.714286 
ATGCT 1,2 2 2 3.428571 
CCTTT 2,3 2 2 3.428571 
TCCCT 1,3,5 3 2 2.742857 
TCAGT 4 1 0 5.714286 
CAAAG 5,6 2 0 7.142857 
CAAAC 1,2 2 2 3.428571 
CAGTA 1 1 1 5.142857 
TATGG 1,3,7 3 2 2.742857 
CCAAC 2 1 1 5.142857 
CGTCA 6 1 0 5.714286 
CCAAG 7 1 0 5.714286 
CGCAA 7 1 0 5.714286 
TAAGT 4,5 2 0 7.142857 
TACCT 1,5 2 1 6.857143 
CCAAT 4,5 2 0 7.142857 
CCGTT 3,5 2 1 6.857143 
CTTTA 1 1 1 5.142857 
CTTTC 1,5 2 1 6.857143 
TTCCC 1,3 2 2 3.428571 
CATAG 3 1 1 5.142857 
TAAGA 3,4,5,6 4 1 2.057143 
TTAGA 1,3 2 2 3.428571 
TTCCG 3 1 1 5.142857 
CTTTG 4,5 2 0 7.142857 
TTAGC 6,7 2 0 7.142857 
TACCA 1 1 1 5.142857 
GGATG 2,3 2 2 3.428571 
TTAGG 2,4,5,6 4 1 2.057143 
TAAGC 7 1 0 5.714286 
TTCCT 2,4,5,7 4 1 2.057143 
GGATT 1,7 2 1 6.857143 
TTAGT 4,6 2 0 7.142857 
ACCTA 5 1 0 5.714286 
GTTAT 1,3,4,7 4 2 1.714286 
ACCTG 1,2,3 3 3 0.685714 
CTGTA 1,2,5 3 2 2.742857 
CTAAC 5 1 0 5.714286 
CTAAG 5,7 2 0 7.142857 
CTGTG 4 1 0 5.714286 
GTTAC 1,4,7 3 1 3.771429 
ACTAA 2 1 1 5.142857 
GTTAA 1,3,6,7 4 2 1.714286 



UNIVER
SIT

Y O
F I

BADAN

 
 

167

ACCTT 4 1 0 5.714286 
ACTAC 7 1 0 5.714286 
CTAAT 2,6 2 1 6.857143 
ACACC 5 1 0 5.714286 
ACACG 1,7 2 1 6.857143 
ACTAT 1,2,5 3 2 2.742857 
GCGAG 3 1 1 5.142857 
CTCGA 5 1 0 5.714286 
ACACT 3,5,6,7 4 1 2.057143 
AAGCA 1,4,6,7 4 1 2.057143 
GCACT 4,6 2 0 7.142857 
ACGAC 1,2 2 2 3.428571 
GACCA 2 1 1 5.142857 
ATCTA 2,7 2 1 6.857143 
GAAGC 1,4 2 1 6.857143 
ATCTG 1 1 1 5.142857 
GCACC 1,4,5,7 4 1 2.057143 
AATCT 4,6,7 3 0 3.885714 
GCACA 3,7 2 1 6.857143 
 

 

 

 

 

 

APENDIX B 

Some of the predicted structured motifs by STGEMS 

 

Structured Motif 

GGGGA_ACGAT 

AACAG_ATTAG 

ACGAT_GCTAC 

AGAGT_ATTAG 

ATTAC_GCTAC 



UNIVER
SIT

Y O
F I

BADAN

 
 

168

GAAGT_AATCT 

TGATG_ATTAG 

ATTAG_GCCTG 

GCTAC_TCTCC 

AATCA_ATACT 

GTCAA_GAAGT 

AGAGG_GCCTG 

ATACC_GCCTG 

GCCTG_ATACT 

AGAGC_GAAGT 

AGAGA_TCTCC 

ATACT_GAAGT 

GTGCA_GCGAG 

ATGAC_GAAGT 

TCTCA_ACACT 

TCTCC_GCGAG  

ATGAG_GCCTG 

TCCAA_ATACT 

TCTCG_ACACT 

GTGCT_TCTCC 

TGTGC_GCCTG 
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APPENDIX C 

 

APENDIX C : SOURCE PROGRAM 
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APENDIX C : SOURCE PROGRAM 

 

Program Extract Gene-Id 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <stddef.h> 
 
#define LINE 80 
 
void main(){ 
 FILE *fp1; 
 char buffer[LINE], hold[LINE]; 
 int len, i, j; 
 //strcpy(input, "TAATATTATTCTTTATTCGGTG"); 
 //strcpy(input2, "TAATAAAGCTCTTCGCTCGGTC"); 
 
 if((fp1 = fopen("Pf3D7genes-fasta.txt", "r")) == NULL) 
  fprintf(stderr, "Error opening file\n"); 
 
 while(fgets(buffer, LINE-1, fp1) != NULL){ 
  len=strlen(buffer); 
  if(buffer[0]=='>'){ 
   i=5; j=0; 
   while(buffer[i]!=' '){ 
    hold[j++]=buffer[i]; 
    i++; 
   } 
   hold[j]='\0'; 
   printf("%s\n", hold); 
  } 
 } 
 fclose(fp1); 
} 
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/* 
Author: Makolo, June 2011 
This program implements suffix  tree part of STGEMS. It 
modified the original program by  Stefan Kurtz (C) 1998 
  * This ST construction use Linked list to acomplish 
space afficiency as proposed by Kurtz 
 * It construct the ST for any input submitted 
*/ 
 
//\FILEINFO{mcc.c} 
 
//\Ignore{ 
#include "bool.h" 
#include "intbits.h" 
#include "choice.h" 
#include "mccdbg.pr" 
#include "space.pr" 
#include "showstr.pr" 
#include "showibit.pr" 
#define DEBUGDEFAULT(X) 
DEBUG1(4,">%s\n",X);\DEBUGCODE(5,SHOWSTATE(state)) 
#define MEGABYTES(V)  ((double) (V)/((1 << 20) - 1)) 
#define VALIDINIT     0 
#ifdef DEBUG 
static void showvalues(void) 
{ 
  SHOWVAL(SMALLINTS); 
  SHOWVAL(LARGEINTS); 
  SHOWVAL(MAXDISTANCE); 
#if defined(MCCLG) || defined(MCCST) 
  SHOWVAL(SMALLDEPTH); 
#endif 
  SHOWVAL(MAXTEXTLEN); 
} 
#endif 
//} 
/* 
 This file contains code for the improved linked list 
implementation, 
 as described in \cite{KUR:1998,KUR:BAL:1999}. It can be 
compiled with two options:  
 \begin{itemize}\item for short strings of length \(\leq 
2^{21}-1=2\) megabytes,we recommend the option 
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\texttt{MCCST}. This results in a representation which 
requires  
 \(2\) integers for each small node, and three integers for 
each large node. 
 See also the header file \texttt{mccdefST.h}. \item 
 for long strings of length \(\leq 2^{27}-1=12\) megabytes, 
we  
 recommend the option \texttt{MCCLG}. This results in a 
representation which requires  
 \(2\) integers for each small node, and four integers for 
each large node. 
 See also the header file \texttt{mccdefLG.h}. 
 \end{itemize} 
*/ 
//\subsection{Space Management} 
/* 
 For a string of length \(n\) we initially allocate space 
for 
 \(\texttt{STARTFACTOR}\cdot\texttt{SMALLINTS}\cdot n\) 
integers to store 
 the branching nodes. This usually suffices for most cases. 
In case we need  
 more integers, we allocate space for 
\(\texttt{ADDFACTOR}\cdot n\)  
 (at least 16) extra branching nodes.  
*/ 
#define STARTFACTOR 0.5 
#define ADDFACTOR   0.05 
#define MINEXTRA    16 
/* 
 These variables allow to check how many integers are 
allocated for 
 the branching nodes, without referring to \texttt{struct 
MccState}. 
 \texttt{firstallocated} refers to the last address, such 
that at 
 least \texttt{LARGEINTS} integers are available. So a 
large node can 
 be stored in the available amount of space. 
*/ 
 
static Uint currentbranchtabsize = 0, 
            *firstnotallocated;  
 
/* 
 \texttt{ALLOCFUNC} calls the functions which initially 
allocate the space  
 for the branching nodes and for the leafs of the suffix 
tree. This function 
 is exported. 
*/ 
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void ALLOCFUNC(Uint maxblocksize) 
{ 
  if((currentbranchtabsize = (STARTFACTOR * 
MULTBYSMALLINTS(maxblocksize+1))) < MINEXTRA) 
  { 
    currentbranchtabsize = MULTBYSMALLINTS(MINEXTRA); 
  } 
  DEBUG1(2,"#malloc(%u)\n",currentbranchtabsize); 
  allocspace(LEAFBLOCK,sizeof(Uint),maxblocksize+2); 
  
allocspace(ROOTCHILDRENBLOCK,sizeof(Uint),LARGESTCHARINDEX 
+ 1); 
  
allocspace(BRANCHBLOCK,sizeof(Uint),currentbranchtabsize); 
} 
/* 
 Before a new node is stored, we check if there is enough 
space available. 
 If not, the space is enlarged by a small amount. Since 
some global pointers 
 directly refer into the table, these have to be adjusted 
after reallocation. 
*/ 
static void spaceforbranchtab(struct MccState *state) 
{ 
  Uint extra, tmpheadnode, tmpchainstart;  
  if(state->nextfreebranch >= firstnotallocated) 
  { 
    if((extra = (ADDFACTOR * (MULTBYSMALLINTS(state-
>textlen+1)))) < MINEXTRA) 
    { 
      extra = MULTBYSMALLINTS(MINEXTRA); 
    } 
    DEBUG1(2,"#all suffixes up to suffix %u have been 
processed\n",state->nextfreeleafnum); 
    DEBUG1(2,"#current space peak 
%f\n",MEGABYTES(getspacepeak())); 
    DEBUG1(2,"#to get %u extra space do ",extra); 
    currentbranchtabsize += extra; 
    DEBUG1(2,"realloc(%u)\n",currentbranchtabsize); 
    
allocspace(BRANCHBLOCK,sizeof(Uint),currentbranchtabsize); 
    tmpheadnode = NODEADDRESS(state->headnode); 
    tmpchainstart = NODEADDRESS(state->chainstart); 
    state->branchtab = (Uint *) reusespace(BRANCHBLOCK); 
    state->undefchainstart = state->branchtab + LARGEINTS * 
state->textlen; 
    state->nextfreebranch = state->branchtab + state-
>nextfreebranchnum; 
    state->headnode = state->branchtab + tmpheadnode; 
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    state->chainstart = state->branchtab + tmpchainstart; 
    firstnotallocated = state->branchtab + 
currentbranchtabsize - LARGEINTS; 
  } 
} 
 
//\subsection{Initializing and Retrieving Headpositions, 
Depth, and Suffixlinks} 
 
/* 
 We have three functions to initialize and retrieve head 
positions, depth, and 
 suffix links. The implementation depends on the bit 
layout. 
 \begin{enumerate} 
 \item 
 The function \emph{setdepthnum} stores the \emph{depth} 
and the  
 \emph{head position} of a new large node. 
 \item 
 The function \emph{setsuffixlink} stores the 
\emph{suffixlink}  
 of a new large node. 
 \item 
 The function \emph{getlargelink} retrieves the 
\emph{suffixlink}  
 of a large node, which is referenced by \emph{headpos}. 
 \end{enumerate} 
*/ 
 
#ifdef MCCST 
 
static void setdepthheadpos(struct MccState *state,Uint 
depth,Uint headpos) 
{ 
  DEBUG2(4,"setdepth(%u)=%u\n",state-
>nextfreebranchnum,depth); 
  DEBUGCODE(1,state->maxset = state->nextfreebranch + 2; 
  if(ISSMALLDEPTH(depth)) 
  { 
    *(state->nextfreebranch+1) |= SMALLDEPTHMARK; 
  } else 
  { 
    *(state->nextfreebranch) 
     = (*(state->nextfreebranch) & (MAXINDEX | LARGEBIT)) |  
       ((depth << 11) & (7 << 29)); 
    *(state->nextfreebranch+1)  
     = (*(state->nextfreebranch+1) & (MAXINDEX | NILBIT)) | 
       ((depth << 14) & (127 << 25)); 
  } 
  *(state->nextfreebranch+2) = (depth << 21) | headpos; 
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} 
 
static void setsuffixlink(struct MccState *state,Uint 
slink) 
{ 
  *(state->setlink) = (*(state->setlink) & (255 << 24)) | 
(slink | NILBIT); 
  if(ISSMALLDEPTH(state->currentdepth)) 
  {  
    *(state->nextfreebranch+1) |= (slink << 25); 
    if(state->nextfreebranchnum & (~((1 << 7) - 1))) 
    { 
      *(state->nextfreebranch) |= ((slink << 17) & (255 << 
24)); 
      if(state->nextfreebranchnum & (~((1 << 15) - 1))) 
      { 
        state->leafbrother[state->nextfreeleafnum-1] |=  
          ((slink << 9) & (255 << 24)); 
      } 
    } 
  }  
} 
 
static Uint getlargelink(struct MccState *state) 
{ 
  SYMBOL secondchar; 
  Uint succ, slink, headnodenum; 
  DEBUGCODE(1,state->largelinks++); 
  if(state->headnodedepth == 1) 
  { 
    return ROOT;               // link refers to the root 
  } 
  if(state->headnodedepth == 2)   // determine second 
character of edge 
  { 
    if(state->headend == NULL)    
    { 
      secondchar = *(state->tailptr-1); 
    } else 
    { 
      secondchar = *(state->tailptr - (state->headend - 
state->headstart + 2)); 
    } 
    return GETBRANCHINDEX(state->rootchildren[(Uint) 
secondchar]);  // this leads to the suffix link node 
  } 
  if(ISSMALLDEPTH(state->headnodedepth))   // retrieve link 
in constant time 
  { 
    slink = *(state->headnode+1) >> 25; 
    headnodenum = NODEADDRESS(state->headnode); 
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    if(headnodenum & (~((1 << 7) - 1))) 
    { 
      slink |= ((*(state->headnode) & (255 << 24)) >> 17); 
      if(headnodenum & (~((1 << 15) - 1))) 
      { 
        slink |= ((state->leafbrother[GETHEADPOS(state-
>headnode)]  
                   & (255 << 24)) >> 9); 
      } 
    } 
    return slink; 
  } 
  succ = state->onsuccpath;   // start at node on successor 
path 
  DEBUGCODE(1,state->largelinklinkwork++); 
  while(!NILPTR(succ))        // linear retrieval of suffix 
links 
  { 
    DEBUGCODE(1,state->largelinkwork++); 
    if(ISLEAF(succ)) 
    { 
      succ = LEAFBROTHERVAL(state-
>leafbrother[GETLEAFINDEX(succ)]); 
    } else 
    { 
      succ = GETBROTHER(state->branchtab + 
GETBRANCHINDEX(succ)); 
    }  
    DEBUGCODE(1,state->largelinkwork++); 
  } 
  return succ & MAXINDEX;   // get only the index 
} 
#endif 
 
#ifdef MCCLG 
 
static void setdepthheadpos(struct MccState *state,Uint 
depth,Uint headpos) 
{ 
  if(ISSMALLDEPTH(depth)) 
  { 
    *(state->nextfreebranch+2) = depth | SMALLDEPTHMARK; 
  } else 
  { 
    *(state->nextfreebranch+2) = depth; 
  } 
  *(state->nextfreebranch+3) = headpos; 
} 
 
static void setsuffixlink(struct MccState *state,Uint 
slink) 
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{ 
  Uint slinkhalf = slink >> 1; 
  *(state->setlink) = (*(state->setlink) & EXTRAPATT) | 
(slink | NILBIT); 
  if(ISSMALLDEPTH(state->currentdepth)) 
  {  
    *(state->nextfreebranch+2)  
      |= ((slinkhalf << SMALLDEPTHBITS) & LOWERLINKPATT); 
    if(state->nextfreebranchnum & (~LOWERLINKSIZE)) 
    { 
      *(state->nextfreebranch+3) |= ((slinkhalf << 
SHIFTMIDDLE) & MIDDLELINKPATT); 
      if(state->nextfreebranchnum & HIGHERSIZE) 
      { 
        state->leafbrother[state->nextfreeleafnum-1] |=  
              ((slinkhalf << SHIFTHIGHER) & EXTRAPATT); 
      } 
    } 
  }  
} 
 
static Uint getlargelink(struct MccState *state) 
{ 
  SYMBOL secondchar; 
  Uint succ, slinkhalf, headnodenum; 
  DEBUGCODE(1,state->largelinks++); 
  if(state->headnodedepth == 1) 
  { 
    return ROOT;        // link refers to root 
  } 
  if(state->headnodedepth == 2)  // determine second char 
of egde 
  { 
    if(state->headend == NULL) 
    { 
      secondchar = *(state->tailptr-1); 
    } else 
    { 
      secondchar = *(state->tailptr - (state->headend - 
state->headstart + 2)); 
    } 
    return state->rootchildren[(Uint) secondchar];  
  } 
  if(ISSMALLDEPTH(state->headnodedepth))  // retrieve link 
in constant time 
  { 
    slinkhalf = (*(state->headnode+2) & LOWERLINKPATT) >> 
SMALLDEPTHBITS; 
    headnodenum = NODEADDRESS(state->headnode); 
    if(headnodenum & (~LOWERLINKSIZE)) 
    { 
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      slinkhalf |= ((*(state->headnode+3) & MIDDLELINKPATT) 
>> SHIFTMIDDLE); 
      if(headnodenum & HIGHERSIZE) 
      { 
        slinkhalf  
          |= ((state->leafbrother[GETHEADPOS(state-
>headnode)] & EXTRAPATT)  
             >> SHIFTHIGHER); 
      } 
    } 
    return slinkhalf << 1; 
  } 
  succ = state->onsuccpath; 
  DEBUGCODE(1,state->largelinklinkwork++); 
  while(!NILPTR(succ))   // linear retrieval of suffix link 
  { 
    DEBUGCODE(1,state->largelinkwork++); 
    if(ISLEAF(succ)) 
    { 
      succ = LEAFBROTHERVAL(state-
>leafbrother[GETLEAFINDEX(succ)]); 
    } else 
    { 
      succ = GETBROTHER(state->branchtab + 
GETBRANCHINDEX(succ)); 
    }  
    DEBUGCODE(1,state->largelinkwork++); 
  } 
  return succ & MAXINDEX;   // get only the index 
} 
#endif 
 
//\subsection{Insertion of Nodes} 
 
/* 
  The function \emph{insertleaf} inserts a leaf and a 
corresponding leaf 
  edge outgoing from the current \emph{headnode}.  
  \emph{insertprev} refers to the node to the left of the 
leaf to be inserted. 
  If the leaf is the first child, then \emph{insertprev} is 
\texttt{UNDEFINED}. 
*/ 
 
static void insertleaf (struct MccState *state) 
{ 
  Uint *ptr, newleaf = MAKELEAF(state->nextfreeleafnum); 
  DEBUGDEFAULT("insertleaf"); 
  DEBUGCODE(1,state->insertleafcalls++); 
  if(state->headnodedepth == 0)                // head is 
the root 
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  { 
    if(state->tailptr != state->sentinel)      // no \$-
edge initially 
    { 
      state->rootchildren[(Uint) *(state->tailptr)] = 
newleaf; 
      *(state->nextfreeleafptr) = VALIDINIT; 
      DEBUG2(4,"%c-edge from root points to leaf 
%u\n",*(state->tailptr),state->nextfreeleafnum); 
    } 
  } else 
  { 
    if (state->insertprev == UNDEFINED)  // newleaf = first 
child 
    { 
      *(state->nextfreeleafptr) = GETCHILD(state-
>headnode); 
      SETCHILD(state->headnode,newleaf); 
    } else 
    { 
      if(ISLEAF(state->insertprev))   // previous node is 
leaf 
      { 
        ptr = state->leafbrother + GETLEAFINDEX(state-
>insertprev); 
        *(state->nextfreeleafptr) = LEAFBROTHERVAL(*ptr); 
        SETLEAFBROTHER(ptr,newleaf); 
      } else   // previous node is branching node 
      { 
        ptr = state->branchtab + GETBRANCHINDEX(state-
>insertprev); 
        *(state->nextfreeleafptr) = GETBROTHER(ptr); 
        SETBROTHER(ptr,newleaf); 
      } 
    } 
  } 
  RECALLSUCC(newleaf);     // recall node on successor path 
of \emph{headnode} 
  state->nextfreeleafnum++; 
  state->nextfreeleafptr++; 
} 
/* 
  The function \emph{insertbranch} inserts a branching node 
and splits 
  the appropriate edges, according to the canonical 
location of the current 
  head. \emph{insertprev} refers to the node to the left of 
the branching 
  node to be inserted. If the branching node is the first 
child, then  
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  \emph{insertprev} is \texttt{UNDEFINED}. The edge to be 
split ends 
  in the node referred to by \emph{insertnode}. 
*/ 
 
static void insertbranchnode(struct MccState *state) 
{ 
  Uint *ptr, *insertnodeptr, *insertleafptr, 
insertnodeptrbrother;  
  DEBUGDEFAULT("insertbranchnode"); 
  spaceforbranchtab(state); 
  if(state->headnodedepth == 0)      // head is the root 
  { 
    state->rootchildren[(Uint) *(state->headstart)] = 
MAKEBRANCHADDR(state->nextfreebranchnum); 
    *(state->nextfreebranch+1) = VALIDINIT; 
    DEBUG2(4,"%c-edge from root points to branch node with 
address %u\n",*(state->headstart),state-
>nextfreebranchnum); 
  } else 
  { 
    if(state->insertprev == UNDEFINED)  // new branch = 
first child 
    { 
      SETCHILD(state->headnode,MAKEBRANCHADDR(state-
>nextfreebranchnum)); 
    } else 
    { 
      if(ISLEAF(state->insertprev))  // new branch = right 
brother of leaf 
      { 
        ptr = state->leafbrother + GETLEAFINDEX(state-
>insertprev); 
        SETLEAFBROTHER(ptr,MAKEBRANCHADDR(state-
>nextfreebranchnum)); 
      } else                     // new branch = brother of 
branching node 
      { 
        SETBROTHER(state->branchtab + GETBRANCHINDEX(state-
>insertprev), 
                   MAKEBRANCHADDR(state-
>nextfreebranchnum)); 
      } 
    } 
  } 
  if(ISLEAF(state->insertnode))   // split edge is leaf 
edge 
  { 
    DEBUGCODE(1,state->splitleafedge++); 
    insertleafptr = state->leafbrother + 
GETLEAFINDEX(state->insertnode); 
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    if (state->tailptr == state->sentinel ||  
        *(state->headend+1) < *(state->tailptr))  
    { 
      SETNEWCHILDBROTHER(MAKELARGE(state->insertnode),  // 
first child=oldleaf 
                         LEAFBROTHERVAL(*insertleafptr));  
// inherit brother 
      RECALLNEWLEAFADDRESS(state->nextfreeleafptr); 
      SETLEAFBROTHER(insertleafptr,MAKELEAF(state-
>nextfreeleafnum)); // new leaf = right brother of old leaf 
    } else 
    { 
      SETNEWCHILDBROTHER(MAKELARGELEAF(state-
>nextfreeleafnum),  // first child=new leaf 
                         LEAFBROTHERVAL(*insertleafptr));  
// inherit brother 
      *(state->nextfreeleafptr) = state->insertnode;  // 
old leaf = right brother of of new leaf 
      RECALLLEAFADDRESS(insertleafptr); 
    } 
  } else  // split edge leads to branching node 
  { 
    DEBUGCODE(1,state->splitinternaledge++); 
    insertnodeptr = state->branchtab + 
GETBRANCHINDEX(state->insertnode); 
    insertnodeptrbrother = GETBROTHER(insertnodeptr); 
    if (state->tailptr == state->sentinel ||  
        *(state->headend+1) < *(state->tailptr))  
    { 
      SETNEWCHILDBROTHER(MAKELARGE(state->insertnode), // 
first child new branch 
                         insertnodeptrbrother);        // 
inherit right brother 
      RECALLNEWLEAFADDRESS(state->nextfreeleafptr); 
      SETBROTHER(insertnodeptr,MAKELEAF(state-
>nextfreeleafnum)); // new leaf = brother of old branch 
    } else 
    { 
      SETNEWCHILDBROTHER(MAKELARGELEAF(state-
>nextfreeleafnum), // first child is new leaf 
                         insertnodeptrbrother);        // 
inherit brother 
      *(state->nextfreeleafptr) = state->insertnode;   // 
new branch is brother of new leaf 
      RECALLBRANCHADDRESS(insertnodeptr); 
    } 
  } 
  SETNILBIT; 
  RECALLSUCC(MAKEBRANCHADDR(state->nextfreebranchnum)); // 
node on succ. path 
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  state->currentdepth = state->headnodedepth + (Uint) 
(state->headend-state->headstart+1); 
  SETDEPTHHEADPOS(state->currentdepth,state-
>nextfreeleafnum); 
  SETDEPTHSTAT(state->currentdepth); 
  state->nextfreeleafnum++; 
  state->nextfreeleafptr++; 
  //DEBUGCODE(1, 
  state->nodecount++; 
} 
//\subsection{Finding the Head-Locations} 
/* 
  The function \emph{rescan} finds the location of the 
current head. 
  In order to scan down the tree, it suffices to look at 
the first  
  character of each edge. 
*/ 
static void rescan (struct MccState *state) 
{ 
  Uint *nodeptr, *largeptr = NULL, distance = 0, node, 
prevnode,  
       nodedepth, edgelen, wlen, leafindex, headpos; 
  SYMBOL headchar, edgechar; 
  DEBUGDEFAULT("rescan"); 
  if(state->headnodedepth == 0)   // head is the root 
  { 
    headchar = *(state->headstart);  // headstart is 
assumed to be not empty 
    node = state->rootchildren[(Uint) headchar]; 
    //printf("follow %c-edge from root to 
",headchar);SHOWINDEX(node); 
    //printf("\n"); 
    if(ISLEAF(node))   // stop if successor is leaf 
    { 
      state->insertnode = node; 
      return; 
    }  
    nodeptr = state->branchtab + GETBRANCHINDEX(node); 
    GETONLYDEPTH(nodedepth,nodeptr); 
    wlen = (Uint) (state->headend - state->headstart + 1); 
    if(nodedepth > wlen)    // cannot reach the successor 
node 
    { 
      state->insertnode = node; 
      return; 
    } 
    state->headnode = nodeptr;        // go to successor 
node 
    state->headnodedepth = nodedepth; 
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    if(nodedepth == wlen)             // location has been 
scanned 
    { 
      state->headend = NULL; 
      return; 
    } 
    (state->headstart) += nodedepth; 
  } 
  while(True)   // \emph{headnode} is not the root 
  { 
    headchar = *(state->headstart);  // \emph{headstart} is 
assumed to be nonempty 
    prevnode = UNDEFINED; 
    node = GETCHILD(state->headnode); 
    while(True)             // traverse the list of 
successors 
    { 
      if(ISLEAF(node))   // successor is leaf 
      { 
        leafindex = GETLEAFINDEX(node); 
        edgechar = state->text[state->headnodedepth + 
leafindex]; 
        if(edgechar == headchar)    // correct edge found 
        { 
          state->insertnode = node; 
          state->insertprev = prevnode; 
          return; 
        } 
        prevnode = node; 
        node = LEAFBROTHERVAL(state-
>leafbrother[leafindex]);   
      } else   // successor is branch node 
      { 
        nodeptr = state->branchtab + GETBRANCHINDEX(node); 
        GETONLYHEADPOS(headpos,nodeptr); 
        edgechar = state->text[state->headnodedepth + 
headpos]; 
        if(edgechar == headchar) // correct edge found 
        { 
          break; 
        }  
        prevnode = node; 
        node = GETBROTHER(nodeptr); 
      } 
    } 
    GETDEPTHAFTERHEADPOS(nodedepth,nodeptr);     // get 
info about succ node 
    edgelen = nodedepth - state->headnodedepth; 
    wlen = (Uint) (state->headend - state->headstart + 1); 
    if(edgelen > wlen)     // cannot reach the succ node 
    { 
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      state->insertnode = node; 
      state->insertprev = prevnode; 
      return; 
    } 
    state->headnode = nodeptr;    // go to the successor 
node 
    state->headnodedepth = nodedepth; 
    if(edgelen == wlen)                    // location is 
found 
    { 
      state->headend = NULL; 
      return; 
    } 
    (state->headstart) += edgelen; 
  } 
} 
 
/* 
  The function \emph{taillcp} computes the length of the 
longest common prefix 
  of two strings. The first string is between pointers 
\emph{start1} and  
  \emph{end1}. The second string is the current tail, which 
is between  the 
  pointers \emph{tailptr} and \emph{sentinel}. 
*/ 
 
static Uint taillcp(struct MccState *state,SYMBOL *start1, 
SYMBOL *end1) 
{ 
  SYMBOL *ptr1 = start1, *ptr2 = state->tailptr + 1; 
  DEBUG0(4,">taillcp\n"); 
  DEBUG0(5,"["); 
  DEBUGCODE(5,showstr(state->sentinel,ptr1,end1)); 
  DEBUG0(5,","); 
  DEBUGCODE(5,showstr(state->sentinel,ptr2,state->sentinel-
1)); 
  while(ptr1 <= end1 && ptr2 < state->sentinel && *ptr1 == 
*ptr2) 
  { 
    ptr1++; 
    ptr2++; 
  } 
  DEBUG1(5,"]=%u\n",(Uint) (ptr1-start1)); 
  return (Uint) (ptr1-start1); 
} 
/* 
 The function \emph{scanprefix} scans a prefix of the 
current tail  
 down from a given node. 
*/ 
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static void scanprefix(struct MccState *state) 
{ 
  Uint *nodeptr = NULL, *largeptr = NULL, leafindex, 
nodedepth, edgelen, node,  
       distance = 0, prevnode, prefixlen, headpos; 
  SYMBOL *leftborder = (SYMBOL *) NULL, tailchar, edgechar 
= 0; 
  DEBUGDEFAULT("scanprefix"); 
  if(state->headnodedepth == 0)   // headnode is root 
  { 
    if(state->tailptr == state->sentinel)   // there is no 
\$-edge 
    { 
      state->headend = NULL; 
      return; 
    } 
    tailchar = *(state->tailptr); 
    if((node = state->rootchildren[(Uint) tailchar]) == 
UNDEFINED) 
    { 
      state->headend = NULL;    
      return; 
    } 
    if(ISLEAF(node)) // successor edge is leaf, compare 
tail and leaf edge label 
    { 
      leftborder = state->text + GETLEAFINDEX(node); 
      prefixlen = 1 + taillcp(state,leftborder+1,state-
>sentinel-1); 
      (state->tailptr) += prefixlen; 
      state->headstart = leftborder; 
      state->headend = leftborder + (prefixlen-1); 
      state->insertnode = node; 
      return; 
    } 
    nodeptr = state->branchtab + GETBRANCHINDEX(node); 
    GETBOTH(nodedepth,headpos,nodeptr);  // get info for 
branch node 
    leftborder = state->text + headpos; 
    prefixlen = 1 + taillcp(state,leftborder+1,leftborder + 
nodedepth - 1); 
    (state->tailptr)+= prefixlen; 
    if(nodedepth > prefixlen)   // cannot reach the 
successor, fall out of tree 
    { 
      state->headstart = leftborder; 
      state->headend = leftborder + (prefixlen-1); 
      state->insertnode = node; 
      return; 
    } 
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    state->headnode = nodeptr; 
    state->headnodedepth = nodedepth; 
  } 
  while(True)  // \emph{headnode} is not the root 
  { 
    prevnode = UNDEFINED; 
    node = GETCHILD(state->headnode); 
    if(state->tailptr == state->sentinel)  //  process \$-
edge 
    { 
      do // there is no \$-edge, so find last successor, of 
which it becomes right brother 
      { 
        prevnode = node;  
        if(ISLEAF(node)) 
        { 
          node = LEAFBROTHERVAL(state-
>leafbrother[GETLEAFINDEX(node)]); 
        } else 
        { 
          node = GETBROTHER(state->branchtab + 
GETBRANCHINDEX(node)); 
        } 
      } while(!NILPTR(node)); 
      state->insertnode = NILBIT; 
      state->insertprev = prevnode; 
      state->headend = NULL; 
      return; 
    }  
    tailchar = *(state->tailptr); 
 
    do // find successor edge with firstchar = tailchar 
    { 
      if(ISLEAF(node))   // successor is leaf 
      { 
        leafindex = GETLEAFINDEX(node); 
        leftborder = state->text + (state->headnodedepth + 
leafindex); 
        if((edgechar = *leftborder) >= tailchar)   // edge 
will not come later 
        { 
          break; 
        } 
        prevnode = node; 
        node = LEAFBROTHERVAL(state-
>leafbrother[leafindex]); 
      } else  // successor is branch node 
      { 
        nodeptr = state->branchtab + GETBRANCHINDEX(node); 
        GETONLYHEADPOS(headpos,nodeptr); 
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        leftborder = state->text + (state->headnodedepth + 
headpos); 
        if((edgechar = *leftborder) >= tailchar)  // edge 
will not come later 
        { 
          break; 
        } 
        prevnode = node; 
        node = GETBROTHER(nodeptr); 
      } 
    } while(!NILPTR(node)); 
    if(NILPTR(node) || edgechar > tailchar)  // edge not 
found 
    { 
      state->insertprev = prevnode;   // new edge will 
become brother of this 
      state->headend = NULL; 
      return; 
    }  
    if(ISLEAF(node))  // correct edge is leaf edge, compare 
its label with tail 
    { 
      prefixlen = 1 + taillcp(state,leftborder+1,state-
>sentinel-1); 
      (state->tailptr) += prefixlen; 
      state->headstart = leftborder; 
      state->headend = leftborder + (prefixlen-1); 
      state->insertnode = node; 
      state->insertprev = prevnode; 
      return; 
    } 
    GETDEPTHAFTERHEADPOS(nodedepth,nodeptr); // we already 
know headpos 
    edgelen = nodedepth - state->headnodedepth; 
    prefixlen = 1 + taillcp(state,leftborder+1,leftborder + 
edgelen - 1); 
    (state->tailptr) += prefixlen; 
    if(edgelen > prefixlen)  // cannot reach next node 
    { 
      state->headstart = leftborder; 
      state->headend = leftborder + (prefixlen-1); 
      state->insertnode = node; 
      state->insertprev = prevnode; 
      return; 
    }  
    state->headnode = nodeptr; 
    state->headnodedepth = nodedepth; 
  } 
} 
 
//\subsection{Completion and Initialization} 
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/* 
  The function \emph{completelarge} is called whenever a 
large node  
  is inserted. It basically sets the appropriate distance 
values of the small 
  nodes of the current chain. 
*/ 
 
static void completelarge(struct MccState *state) 
{ 
  Uint distance, *backwards; 
  if(state->smallnotcompleted > 0) 
  { 
    backwards = state->nextfreebranch; 
    for(distance = 1; distance <= state->smallnotcompleted; 
distance++) 
    { 
      backwards -= SMALLINTS; 
      SETDISTANCE(backwards,distance); 
    } 
    state->smallnotcompleted = 0; 
    state->chainstart = state->undefchainstart; 
  } 
  state->nextfreebranch += LARGEINTS; 
  state->nextfreebranchnum += LARGEINTS; 
  DEBUGCODE(1,state->largenode++); 
} 
 
/* 
  The function \emph{linkrootchildren} constructs the 
successor chain 
  for the children of the root. This is done at the end of 
the algorithm 
  in one sweep over table \emph{rootchildren}. 
*/ 
 
static void linkrootchildren(struct MccState *state) 
{ 
  Uint *rcptr, *prevnodeptr, prev = UNDEFINED; 
  for(rcptr = state->rootchildren; rcptr <= state-
>rootchildren + LARGESTCHARINDEX; rcptr++) 
  { 
    if(*rcptr != UNDEFINED) 
    { 
      if(prev == UNDEFINED) 
      { 
        SETCHILD(state->branchtab,MAKELARGE(*rcptr)); 
      } else 
      { 
        if(ISLEAF(prev)) 
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        { 
          state->leafbrother[GETLEAFINDEX(prev)] = *rcptr; 
        } else 
        { 
          prevnodeptr = state->branchtab + 
GETBRANCHINDEX(prev); 
          SETBROTHER(prevnodeptr,*rcptr); 
        } 
      } 
      prev = *rcptr; 
    } 
  } 
  if(ISLEAF(prev)) 
  { 
    state->leafbrother[GETLEAFINDEX(prev)] = 
MAKELEAF(state->textlen); 
  } else 
  { 
    prevnodeptr = state->branchtab + GETBRANCHINDEX(prev); 
    SETBROTHER(prevnodeptr,MAKELEAF(state->textlen)); 
  } 
  state->leafbrother[state->textlen] = NILBIT; 
} 
 
/* 
  \newpage 
  \emph{initMccState} allocates and initializes the data 
structures for  
  McCreight's Algorithm. 
*/ 
 
static void initMccState(struct MccState *state,SYMBOL 
*text,Uint textlen) 
{ 
  Uint i, *ptr; 
 
  state->text = state->tailptr = text; 
  state->textlen = textlen; 
  state->sentinel = text + textlen; 
  state->branchtab = (Uint *) reusespace(BRANCHBLOCK); 
  firstnotallocated = state->branchtab + 
currentbranchtabsize - LARGEINTS; 
  state->leafbrother = (Uint *) reusespace(LEAFBLOCK); 
  state->headnode = state->nextfreebranch = state-
>branchtab; 
  state->headend = NULL; 
  state->headnodedepth = 0; 
  state->rootchildren = (Uint *) 
reusespace(ROOTCHILDRENBLOCK); 
  for(ptr=state->rootchildren; ptr<=state-
>rootchildren+LARGESTCHARINDEX; ptr++) 
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  { 
    *ptr = UNDEFINED; 
  } 
  for(i=0; i<LARGEINTS; i++) 
  { 
    state->branchtab[i] = 0; 
  } 
  state->nextfreebranch = state->branchtab; 
  state->nextfreebranchnum = 0; 
  SETDEPTHHEADPOS(0,0); 
  SETNEWCHILDBROTHER(MAKELARGELEAF(0),0); 
  SETBRANCHNODEOFFSET; 
  state->rootchildren[(Uint) *text] = MAKELEAF(0); 
  state->leafbrother[0] = VALIDINIT; 
  DEBUG2(4,"%c-edge from root points to leaf 
%u\n",*text,0); 
  state->nextfreeleafnum = 1; 
  state->nextfreeleafptr = state->leafbrother + 1; 
  state->nextfreebranch = state->branchtab + LARGEINTS; 
  state->nextfreebranchnum = LARGEINTS; 
  state->insertnode = state->insertprev = UNDEFINED; 
  state->smallnotcompleted = 0; 
  state->chainstart = state->undefchainstart = state-
>branchtab + LARGEINTS * state->textlen; 
  state->nodecount = 1; 
  //state->maxset = state->branchtab + LARGEINTS - 1; 
//\Ignore{ 
 
#ifndef SPACEOPT 
  state->multitab[0] = 0; 
  for(ptr = state->multitab+1; ptr <= state->multitab + 
MAXDISTANCE; ptr++) 
  { 
    *ptr = SMALLINTS + *(rcptr-1); 
  } 
#endif 
#ifdef DEBUG 
  state->nodecount = 1; 
  state->splitleafedge =  
  state->splitinternaledge =  
  state->largenode =  
  state->smallnode =  
  state->artificial =  
  state->multiplications = 0; 
  state->insertleafcalls = 1; 
  state->maxset = state->branchtab + LARGEINTS - 1; 
#ifdef MCCLG 
  state->largelinks = state->largelinkwork = state-
>largelinklinkwork = 0; 
  for(ptr = state->depthstat; ptr <=state-
>depthstat+MAXDEPTH; ptr++) 
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  { 
    *ptr = 0; 
  } 
#endif 
#endif 
 
//} 
 
} 
//\subsection{Computing the Suffix Tree} 
 
/* 
  \emph{MCCFUNC} implements McCreight Algorithm compute the 
suffix tree 
  for a \texttt{text} of length \texttt{textlen}. For 
explanations, see 
  \cite{KUR:1998}. The number \((i)\) refers to the cases 
of Section 6 in  
  \cite{KUR:1998}. 
*/ 
 
//@void MCCFUNC(struct MccState *state,SYMBOL *text,Uint 
textlen) 
 
//\Ignore{ 
 
void MCCFUNC(struct MccState *state,SYMBOL *text,Uint 
textlen,void(*processhead)(struct MccState *,void *),void 
*globalstruct) 
 
//} 
 
{ 
 
//\Ignore{ 
 
  if(textlen > MAXTEXTLEN) 
  { 
    fprintf(stderr,"Sorry, textlen = %u is larger than 
maximal textlen = %u\n", 
                   textlen,MAXTEXTLEN); 
    exit(EXIT_FAILURE); 
  } 
 
//} 
 
  DEBUGCODE(3,showvalues()); 
  initMccState(state,text,textlen); 
  while(state->tailptr < state->sentinel || state-
>headnodedepth != 0 || state->headend != NULL) 
  { 
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    if(state->headnodedepth == 0 && state->headend == NULL) 
// case (1): headloc is root 
    { 
      (state->tailptr)++; 
      scanprefix(state); 
    } else 
    { 
      if(state->headend == NULL)  // case (2.1): headloc is 
a node 
      { 
        FOLLOWSUFFIXLINK; 
        scanprefix(state); 
      } else               // case (2.2) 
      { 
       if(state->headnodedepth == 0) // case (2.2.1): at 
the root do not use links 
        { 
          if(state->headstart == state->headend)  // rescan 
not necessary 
          { 
            state->headend = NULL; 
          } else 
          { 
            (state->headstart)++; 
            rescan(state); 
          } 
        } else 
        { 
          FOLLOWSUFFIXLINK;    // case (2.2.2) 
          rescan(state); 
        } 
        if(state->headend == NULL)  // case (2.2.3): 
headloc is a node 
        { 
          SETSUFFIXLINK(state-
>nextfreebranch,NODEADDRESS(state->headnode)); 
          completelarge(state); 
          scanprefix(state); 
        } else 
        { 
#ifdef SPACEOPT 
          if(state->smallnotcompleted == MAXDISTANCE)  // 
insert artifical large node 
          { 
            DEBUGCODE(1,state->artificial++); 
            DEBUG1(3,"#insert artifical large node 
%u\n",state->nextfreebranchnum); 
            SETSUFFIXLINK(state->nextfreebranch,state-
>nextfreebranchnum + LARGEINTS); 
            completelarge(state); 
          } else 
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          {  
#endif 
            if(state->chainstart == state->undefchainstart)  
            { 
              state->chainstart = state->nextfreebranch;   
// begin a new chain 
            }  
            (state->smallnotcompleted)++; 
            (state->nextfreebranch) += SMALLINTS;      // 
case (2.2.4) 
            (state->nextfreebranchnum) += SMALLINTS; 
            DEBUGCODE(1,state->smallnode++); 
#ifdef SPACEOPT 
          } 
#endif 
        } 
      }  
    } 
 
//\Ignore{ 
 
#ifdef APPLYSOMEFUNCTION 
 
    if(globalstruct != NULL) 
    { 
      processhead(state,globalstruct); 
    } 
 
#endif 
 
//} 
    if(state->headend == NULL) 
    { 
      insertleaf(state);  // case (a) 
    } else 
    { 
      insertbranchnode(state);  // case (b) 
    } 
    DEBUGCODE(5,SHWTABLE(state,False)); 
  } 
  state->chainstart = state->undefchainstart; 
  linkrootchildren(state); 
//\Ignore{ 
 
  DEBUG1(2,"#integers for branchnodes %u\n",state-
>nextfreebranchnum); 
  DEBUG4(2,"#small %u large %u textlen %u all %u ", 
            state->smallnode,state->largenode, 
            state->textlen, 
            state->smallnode+state->largenode); 
  DEBUG1(2,"ratio %f\n", 
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         (double) (state->smallnode+state-
>largenode)/state->nextfreeleafnum); 
  DEBUG1(2,"#splitleafedge = %u\n",state->splitleafedge); 
  DEBUG1(2,"#splitinternaledge = %u\n",state-
>splitinternaledge); 
  DEBUG1(2,"#insertleafcalls = %u\n",state-
>insertleafcalls); 
  DEBUG1(2,"#artificial = %u\n",state->artificial); 
  DEBUG1(2,"#multiplications = %u\n",state-
>multiplications); 
  DEBUGCODE(4,SHOWTABLE(state,True)); 
  DEBUGCODE(3,SHOWTREE(state)); 
#ifdef DEBUG 
#ifdef SPACEOPT 
  { 
    Uint longchain = 0, chainsum = 0; 
#if defined(MCCLG) || defined(MCCST) 
    DEBUG3(2,"#largelinks %u largelinklinkwork %u 
largelinkwork %u ", 
              state->largelinks,state-
>largelinklinkwork,state->largelinkwork); 
    DEBUG2(2,"#ratio1 %.4f ratio2 %.4f\n", 
              (double) state->largelinkwork/state-
>largelinks, 
              (double) state->largelinkwork/state-
>textlen); 
#endif 
    DEBUG1(2,"#longchain: %.7f\n",(double) 
longchain/chainsum); 
  } 
#endif 
#endif 
  DEBUG2(1,"#%6u %6u\n",state->smallnode,state->largenode); 
  DEBUGCODE(2,showspace()); 
  DEBUGCODE(1,CHECKTREE(state)); 
#ifdef DEBUG 
#ifdef MCCLG 
  { 
    Uint i; 
    for(i=0; i<MAXDEPTH; i++) 
    { 
      if(state->depthstat[i] > 0) 
      { 
        DEBUG2(2,"#Depth %u %u\n",i,state->depthstat[i]); 
      } 
    } 
    DEBUG2(2,"#Depth>=%u %u\n",MAXDEPTH,state-
>depthstat[MAXDEPTH]); 
  } 
#endif 
#endif 
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//} 
} 
//\Ignore{ 
#include "callfunc-gem.c" 
 
//} 
 
/* 
Program callfunc-gem 
This program implements Gene Enrichment using 
Hypergeometric function 
Author: Makolo June 2011. 
*/ 
#ifndef BRJDIR 
#include "my_header.h" 
#include <time.h> 
#include <stdlib.h> 
 
int slidingwinlen=4; 
//char substrxx[slidingwinlen]; 
//--- 
long N; 
BOOL xx[FILESIZE]; // to further sort out exact maximal 
repeats used as seeds 
 
void bkread(struct MccState *state){ 
  Uint i; 
   
  printf("\ntext len=%u and init char is %c\n", state-
>textlen, *state->text); 
  N = state->textlen; 
  for(i=0; i<state->textlen; i++){ 
    mineT[i]=*state->text++; 
    xx[i]=false; 
  } 
  mineT[state->textlen]='\0'; 
  //printf("\n %s \n", mineT); 
} 
void displaytable(struct MccState *state) 
{ 
  Uint *largeptr, *btptr, *succptr, *rcptr, i, 
       succdepth, distance,  
       nodeaddress, succ, depth, child, brother,  
       headpos, suffixlink; 
  Uint leafindex, edgelen; 
  SYMBOL *leftpointer; 
 
  printf(" Root:["); 
  for(rcptr = state->rootchildren;  
      rcptr <= state->rootchildren + LARGESTCHARINDEX; 
      rcptr++) 
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  { 
    if(*rcptr != UNDEFINED) 
    { 
      putchar('('); 
      if(ISLEAF(*rcptr)) 
      { 
        leftpointer = state->text + GETLEAFINDEX(*rcptr); 
        showstr(state->sentinel,leftpointer,state-
>sentinel); 
        printf(",Leaf %u)",GETLEAFINDEX(*rcptr)); 
      } else 
      { 
        succptr = state->branchtab + 
GETBRANCHINDEX(*rcptr); 
        GETBOTH(succdepth,headpos,succptr); 
        leftpointer = state->text + headpos; 
        showstr(state->sentinel,leftpointer,leftpointer + 
succdepth - 1); 
        printf(",%s %u)",ISLARGE(*succptr) ? "Large" : 
"Small", 
                         GETBRANCHINDEX(*rcptr)); 
      } 
      fflush(stdout); 
    } 
  } 
  printf(",(~,Leaf %u)]\n",state->textlen); 
  //remove state->nodecount 
  btptr = state->branchtab + LARGEINTS; // skip the root 
  for(i=1; i < state->nodecount; i++) 
  { 
    nodeaddress = NODEADDRESS(btptr); 
    child = GETCHILD(btptr); 
    brother = GETBROTHER(btptr); 
    GETBOTH(depth,headpos,btptr); 
    if(ISLARGE(*btptr)) 
    { 
      printf(" L-Node %u\"",nodeaddress); 
      suffixlink = GETSUFFIXLINKAC(btptr,depth); 
      btptr += LARGEINTS; 
    } else 
    { 
      printf(" S-Node %u\"",nodeaddress); 
      suffixlink = nodeaddress + SMALLINTS; 
      btptr += SMALLINTS; 
    } 
    showstr(state->sentinel,state->text + headpos, 
                            state->text + headpos + depth - 
1); 
    
printf("\"(D=%u,SN=%u,SL=%u,C=",depth,headpos,suffixlink); 
    SHOWINDEX(child); 
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    printf(",B="); 
    SHOWINDEX(brother); 
    printf(")["); 
    fflush(stdout); 
    succ = child; 
    do  
    { 
      putchar('('); 
      if(ISLEAF(succ)) 
      { 
        leafindex = GETLEAFINDEX(succ); 
        leftpointer = state->text + depth + leafindex; 
        showstr(state->sentinel,leftpointer,state-
>sentinel); 
        printf(",Leaf %u)",leafindex); 
 indexcounter+=1; 
  
        succ = LEAFBROTHERVAL(state-
>leafbrother[leafindex]); 
      } else 
      { 
        succptr = state->branchtab + GETBRANCHINDEX(succ); 
        GETBOTH(succdepth,headpos,succptr); 
        leftpointer = state->text + depth + headpos; 
        edgelen = succdepth - depth; 
        showstr(state->sentinel,leftpointer,leftpointer + 
edgelen - 1); 
        printf(",%s %u)",ISLARGE(*succptr) ? "Large" : 
"Small", 
                         GETBRANCHINDEX(succ)); 
        succ = GETBROTHER(succptr); 
      } 
    } while(!NILPTR(succ)); 
    printf("]\n"); 
     
    printf("indexcounter is %d\n", indexcounter); 
    indexcounter=0; 
     
    fflush(stdout); 
  } 
} 
void listoccpos(Uint *btptr, struct MccState *state, Uint 
patternlen,\ 
char mineT[DOUFILESIZE], BOOL allind) 
{ 
  register Uint *succptr, succ, child, leafindex, i, k; 
  char indexnum[SUPINDEXDIGITS]; 
   
  child = GETCHILD(btptr); 
  succ =  child; 
  do  
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    { 
      if(ISLEAF(succ)) 
 { 
   leafindex = GETLEAFINDEX(succ); 
   if(allind){ 
     numhits+=1; 
#ifdef DEBUG  
     printf("%u,",leafindex); 
#endif  
   }else{ 
     k=0; 
     for(i=leafindex+1; !isdigit(mineT[i]); i++); 
     for(i=i; isdigit(mineT[i]); 
indexnum[k++]=mineT[i++]); 
     indexnum[k]='\0'; 
     indexnumi=atoi(indexnum); 
     //printf(" %d,%s;",indexnumi, 
superstr[indexnumi].string); 
     break; 
   } 
   succ = LEAFBROTHERVAL(state-
>leafbrother[leafindex]); 
 } else 
   { 
     succptr = state->branchtab + GETBRANCHINDEX(succ); 
     listoccpos(succptr, state, patternlen, mineT, 
allind); 
      
     succ = GETBROTHER(succptr); 
   } 
    } while(!NILPTR(succ));       
} 
//getting a unique pattern equal to the pattern ends at a 
leaf. 
//all return zero except at ending at a leaf 
BOOL finduniquepattern(char *pattern, struct MccState 
*state,\ 
   char mineT[DOUFILESIZE], BOOL listocc, BOOL 
allind) 
{ 
  Uint *largeptr, *btptr, *rcptr, i, distance, nodeaddress,  
child, brother,  
    leafindex, edgelen, headpos, suffixlink; 
  register Uint j, k, depth, succ, *succptr, succdepth, 
leftpointer; 
  BOOL seekpattern = false; 
  short textptr = -1; 
  Uint patternpos; 
  register char auxchar; 
  char indexnum[SUPINDEXDIGITS]; 
  register Uint patternlen, lencount=0; 
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  patternlen=strlen(pattern); 
  auxchar=*pattern++; 
   
  for(rcptr = state->rootchildren;  
      rcptr <= state->rootchildren + LARGESTCHARINDEX; 
      rcptr++) 
  { 
    if(*rcptr != UNDEFINED) 
    { 
      if(ISLEAF(*rcptr)) continue;    
      else 
      { 
        succptr = state->branchtab + 
GETBRANCHINDEX(*rcptr); 
        GETBOTH(depth,headpos,succptr); 
 //printf("headpos is %u\n", headpos); 
        if(mineT[headpos]==auxchar){ 
   lencount+=1; 
    
   //printf(",%s %u)\n",ISLARGE(*succptr) ? "Large" : 
"Small", 
   // GETBRANCHINDEX(*rcptr)); 
   // print show next char if *pattern is used 
   //printf("mine[headpos] is %c, pattern is 
%c\n",mineT[headpos], auxchar); 
   for(j=headpos+1; j < headpos+depth && 
mineT[j]==(auxchar=*pattern++);\ 
  j++, lencount+=1){ 
     //printf("mine[j] is %c, pattern is 
%c\n",mineT[j], auxchar); 
   }// ends at a node (2) 
   if(j==headpos+depth){ 
     seekpattern=true; 
     //printf("headpos is %u\n", headpos); 
     break; 
   }// end in btw nodes (3) 
   // depth > patternlen 
   else if(patternlen==lencount){ 
     //printf("The index of the occurrence are\n"); 
     if(listocc) listoccpos(succptr, state, patternlen, 
mineT, allind); 
     //printf("\n"); 
     return 0; 
      
   }else break; 
    
 } 
      } 
    } 
  } 
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  // finish checking the root children 
  //printf("seekpattern is %d and depth is %u\n", 
seekpattern, depth); 
  // pattern is pointing presented to end of string so len 
is 0 
  //printf("len of pattern is %u\n", patternlen); 
   
  btptr = succptr; 
  //ends at a node just below the root   
  if(seekpattern == true && depth==patternlen){ 
    //printf("The index of the occurrence are\n"); 
    if(listocc) listoccpos(succptr, state, patternlen, 
mineT, allind); 
    //printf("\n"); 
     
    return 0; 
  } 
  else if(seekpattern == true && depth < patternlen){ 
    for(; ;){ 
      child = GETCHILD(btptr); 
      succ =  child; 
      //printf("C=%u\n"); 
      //SHOWINDEX(child); 
      //printf("\n"); 
       
      auxchar=*pattern++; 
      do 
 { 
   if(ISLEAF(succ)){// ends at a leave (1) 
     leafindex = GETLEAFINDEX(succ); 
     leftpointer = leafindex + depth; 
     //printf("deciding %c, %c, %d\n", 
mineT[leftpointer], auxchar,\ 
       leftpointer); 
     if(mineT[leftpointer]==auxchar){// comes to dead 
end. 
       lencount+=1; 
       for(j=leftpointer+1; j<state->textlen && 
mineT[j]==*pattern++;\ 
      j++, lencount+=1); 
       // ends at the end of leaf or in btw 
       if(j==state->textlen || lencount==patternlen){ 
  //printf("The index of the occurrence are\n"); 
  //printf("%u,", leafindex); 
  k=0; 
  for(i=leafindex+1; !isdigit(mineT[i]); i++); 
  for(i=i; isdigit(mineT[i]); 
indexnum[k++]=mineT[i++]); 
  indexnum[k]='\0'; 
  indexnumi=atoi(indexnum); 
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  //printf("%s,%s;",indexnum, 
superstr[indexnumi].string); 
  return 1; 
       } 
       return 0; 
     } 
     //printf("is Leaf %u\n",leafindex); 
     succ = LEAFBROTHERVAL(state-
>leafbrother[leafindex]); 
     if(NILPTR(succ)) return 0; 
      
   }else 
     { 
       succptr = state->branchtab + 
GETBRANCHINDEX(succ); 
       GETBOTH(succdepth,headpos,succptr); 
       edgelen = succdepth - depth; 
       leftpointer = headpos + depth; 
       //printf("at child level, headpos is %u\n", 
headpos); 
       //printf("deciding %c, %c, %d\n", 
mineT[leftpointer], auxchar,\ 
       leftpointer); 
   //getchar(); 
        
       if(mineT[leftpointer]==auxchar){ 
  lencount+=1; 
   
  for(j=leftpointer+1; j<edgelen + leftpointer && 
mineT[j]==*pattern++;\ 
        j++, lencount+=1); 
  //printf("here is %u, %u, %u\n", 
j,edgelen+leftpointer,succdepth); 
  // ends at a node (2) 
  if(j==edgelen + leftpointer && 
succdepth==patternlen){ 
    //printf("The index of the occurrence are\n"); 
    if(listocc) listoccpos(succptr, state, 
patternlen, mineT,allind); 
    //printf("\n"); 
    //printf("The index of the occurrence are 
%u\n", headpos); 
    return 0; 
  }// has not end 
  else if(j==edgelen + leftpointer && succdepth < 
patternlen){ 
    btptr = succptr, depth = succdepth; 
    break; 
  } 
  // ends in btw node and node. (3) 
  else if(lencount==patternlen){ 
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    //printf("The index of the occurrence are\n"); 
    if(listocc) listoccpos(succptr, state, 
patternlen, mineT,allind); 
    //printf("\n"); 
     
    //printf("The index of the occurrence are 
%u\n", headpos); 
    return 0; 
  } 
  return 0; 
       };// end if  
       succ = GETBROTHER(succptr);  
     } 
 }while(!NILPTR(succ)); 
        if(NILPTR(succ)) return 0; 
       
    };// infinite for loop end 
  } 
  return 0;   
} 
 
BOOL findpattern(char *pattern, struct MccState *state,\ 
   char mineT[DOUFILESIZE], BOOL listocc, BOOL 
allind) 
{ 
  Uint *largeptr, *btptr, *rcptr, i, distance, nodeaddress,  
child, brother,  
    leafindex, edgelen, headpos, suffixlink; 
  register Uint j, k, depth, succ, *succptr, succdepth, 
leftpointer; 
  BOOL seekpattern = false; 
  short textptr = -1; 
  Uint patternpos; 
  register char auxchar; 
  char indexnum[SUPINDEXDIGITS]; 
  register Uint patternlen, lencount=0; 
 
  patternlen=strlen(pattern); 
  auxchar=*pattern++; 
   
  for(rcptr = state->rootchildren;  
      rcptr <= state->rootchildren + LARGESTCHARINDEX; 
      rcptr++) 
  { 
    if(*rcptr != UNDEFINED) 
    { 
      if(ISLEAF(*rcptr)) continue;    
      else 
      { 
        succptr = state->branchtab + 
GETBRANCHINDEX(*rcptr); 
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        GETBOTH(depth,headpos,succptr); 
 //printf("headpos is %u\n", headpos); 
        if(mineT[headpos]==auxchar){ 
   lencount+=1; 
    
   //printf(",%s %u)\n",ISLARGE(*succptr) ? "Large" : 
"Small", 
   // GETBRANCHINDEX(*rcptr)); 
   // print show next char if *pattern is used 
   //printf("mine[headpos] is %c, pattern is 
%c\n",mineT[headpos], auxchar); 
   for(j=headpos+1; j < headpos+depth && 
mineT[j]==(auxchar=*pattern++);\ 
  j++, lencount+=1){ 
     //printf("mine[j] is %c, pattern is 
%c\n",mineT[j], auxchar); 
   }// ends at a node (2) 
   if(j==headpos+depth){ 
     seekpattern=true; 
     //printf("headpos is %u\n", headpos); 
     break; 
   }// end in btw nodes (3) 
   // depth > patternlen 
   else if(patternlen==lencount){ 
     //printf("The index of the occurrence are\n"); 
     if(listocc) listoccpos(succptr, state, patternlen, 
mineT, allind); 
     //printf("\n"); 
     return 1; 
      
   }else break; 
    
 } 
      } 
    } 
  } 
  // finish checking the root children 
  //printf("seekpattern is %d and depth is %u\n", 
seekpattern, depth); 
  // pattern is pointing presented to end of string so len 
is 0 
  //printf("len of pattern is %u\n", patternlen); 
   
  btptr = succptr; 
  //ends at a node just below the root   
  if(seekpattern == true && depth==patternlen){ 
    //printf("The index of the occurrence are\n"); 
    if(listocc) listoccpos(succptr, state, patternlen, 
mineT, allind); 
    //printf("\n"); 
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    return 1; 
  } 
  else if(seekpattern == true && depth < patternlen){ 
    for(; ;){ 
      child = GETCHILD(btptr); 
      succ =  child; 
      //printf("C=%u\n"); 
      //SHOWINDEX(child); 
      //printf("\n"); 
       
      auxchar=*pattern++; 
      do 
 { 
   if(ISLEAF(succ)){// ends at a leave (1) 
     leafindex = GETLEAFINDEX(succ); 
     leftpointer = leafindex + depth; 
     //printf("deciding %c, %c, %d\n", 
mineT[leftpointer], auxchar,\ 
       leftpointer); 
     if(mineT[leftpointer]==auxchar){// comes to dead 
end. 
       lencount+=1; 
       for(j=leftpointer+1; j<state->textlen && 
mineT[j]==*pattern++;\ 
      j++, lencount+=1); 
       // ends at the end of leaf or in btw 
       if(j==state->textlen || lencount==patternlen){ 
  //printf("The index of the occurrence are\n"); 
  //printf("%u,", leafindex); 
  k=0; 
  for(i=leafindex+1; !isdigit(mineT[i]); i++); 
  for(i=i; isdigit(mineT[i]); 
indexnum[k++]=mineT[i++]); 
  indexnum[k]='\0'; 
  indexnumi=atoi(indexnum); 
  //printf("%s,%s;",indexnum, 
superstr[indexnumi].string); 
  return 1; 
       } 
       return 0; 
     } 
     //printf("is Leaf %u\n",leafindex); 
     succ = LEAFBROTHERVAL(state-
>leafbrother[leafindex]); 
     if(NILPTR(succ)) return 0; 
      
   }else 
     { 
       succptr = state->branchtab + 
GETBRANCHINDEX(succ); 
       GETBOTH(succdepth,headpos,succptr); 
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       edgelen = succdepth - depth; 
       leftpointer = headpos + depth; 
       //printf("at child level, headpos is %u\n", 
headpos); 
       //printf("deciding %c, %c, %d\n", 
mineT[leftpointer], auxchar,\ 
       leftpointer); 
   //getchar(); 
        
       if(mineT[leftpointer]==auxchar){ 
  lencount+=1; 
   
  for(j=leftpointer+1; j<edgelen + leftpointer && 
mineT[j]==*pattern++;\ 
        j++, lencount+=1); 
  //printf("here is %u, %u, %u\n", 
j,edgelen+leftpointer,succdepth); 
  // ends at a node (2) 
  if(j==edgelen + leftpointer && 
succdepth==patternlen){ 
    //printf("The index of the occurrence are\n"); 
    if(listocc) listoccpos(succptr, state, 
patternlen, mineT,allind); 
    //printf("\n"); 
    //printf("The index of the occurrence are 
%u\n", headpos); 
    return 1; 
  }// has not end 
  else if(j==edgelen + leftpointer && succdepth < 
patternlen){ 
    btptr = succptr, depth = succdepth; 
    break; 
  } 
  // ends in btw node and node. (3) 
  else if(lencount==patternlen){ 
    //printf("The index of the occurrence are\n"); 
    if(listocc) listoccpos(succptr, state, 
patternlen, mineT,allind); 
    //printf("\n"); 
     
//printf("The index of the occurrence are %u\n", headpos); 
    return 1; 
  } 
  return 0; 
       };// end if  
       succ = GETBROTHER(succptr);  
     } 
 }while(!NILPTR(succ)); 
        if(NILPTR(succ)) return 0; 
       
    };// infinite for loop end 



UNIVER
SIT

Y O
F I

BADAN

 
 

206

  } 
  return 0;   
} 
 
 
/* 
void chopoutstr(int b, int e){ 
    int i, j=0; 
    for(i=b; i<=e; i++) 
 substrxx[j++]=mineT[i]; 
     substrxx[j]='\0'; 
} 
*/ 
// added by Makolo&Adebiyi to return d SEED in form of 
sliding window 
void slidingwinfn(struct MccState *state){ 
int i, j, k=0; 
char substr[slidingwinlen+1]; 
 
   for(i=0; i<=(state->textlen)-slidingwinlen; i++){ 
 k=0; 
 for(j=i; j<=i+slidingwinlen-1; j++) 
  printf("%c", substr[k++]=mineT[j]); 
 substr[k]='\0';   
 printf("...%s\n", substr); 
 //chopoutstr(i, i+slidingwinlen-1); 
 //printf("%s\n", substrxx); 
   } 
   //printf("%d\n", findpattern("TA", &state, mineT, false, 
false)); 
} 
#ifdef WITHCALLMCC 
 
void CALLMCC(SYMBOL *text, Uint textlen) 
{ 
 struct MccState state; 
#ifdef DEBUG 
  addspace(sizeof(struct MccState)); 
  addspace(textlen+1); 
#endif 
  ALLOCFUNC(textlen); 
  MCCFUNC(&state,text,textlen,NULL,NULL); 
  DEBUG0(2,"#"); 
#ifdef DEBUG 
  showspace(); 
  DEBUG0(2,"\n"); 
  subtractspace(sizeof(struct MccState)); 
#endif 
  currentbranchtabsize = 0; 
  wrapspace(); 
} 



UNIVER
SIT

Y O
F I

BADAN

 
 

207

#else 
void mccsplit(char *filename,Uchar *text,Uint textlen,Uint 
maxlen) 
{ 
  Uint i, startpos, optlen; 
  struct MccState state; 
  SYMBOL *symboltext; 
  short jj=0, k = 0; 
 
  if(sizeof(SYMBOL) != sizeof(Uchar)) 
  { 
    CALLOC(symboltext,SYMBOL,textlen); 
    for(i=0; i<textlen; i++) 
    { 
      symboltext[i] = (SYMBOL) text[i]; 
    } 
  } else 
  { 
    symboltext = (SYMBOL *) text; 
  } 
 
  if(maxlen == 0 || maxlen >= textlen) 
  { 
    optlen = textlen; 
  } else 
  { 
    optlen = 1 + textlen/(textlen/maxlen+1); 
  } 
  for(startpos = 0; startpos < textlen; startpos += optlen) 
  { 
    if(startpos + optlen > textlen) 
    { 
      optlen = textlen - startpos; 
    }  
    ALLOCFUNC(optlen);  
    DEBUG3(2,"#mcc of 
%s[%u,%u]\n",filename,startpos,startpos+optlen-1); 
    MCCFUNC(&state,symboltext+startpos,optlen,NULL,NULL); 
  } 
  if(sizeof(SYMBOL) != sizeof(Uchar)) 
  { 
    free(symboltext); 
  } 
 
  displaytable(&state); 
  bkread(&state); 
 
  slidingwinfn(&state); 
 
  wrapspace(); 
  // the suffix tree is built 
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} 
 
#endif 
#endif 
 
 
// STGEMS Program  
// 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <stddef.h> 
 
#define HASHSIZE 1111 
#define slidingwinlen 5 
#define winsize 6//slidingwinlen + 1 
#define promoterlen 1000 
#define LINE 80 
#define NN 30 
/*  
This program implements STGEMS, by doing the following: 
It extracts motif from submited input seq, returns the SEED 
i.e d branch from  
  root to leaf which is d unique pattern or SEED. 
It use HASH table to store d position of the SEED, sorts it 
and returns no of occurence  
   of d SEED in each seq.  
It implements the Hypergeometric distribution used in GEMS 
i.e d combination function of N,n,M,m 
It creates PWM of d SEEDs.  
It computes P-Value and PWM of d SEEDs.  
It computes similarity thresholh 
It incorporates positional information by implementing Edit 
distance 
*/ 
static int occ[HASHSIZE], occ2[HASHSIZE]; 
char input[promoterlen], input2[promoterlen], 
hashtab[HASHSIZE][winsize], patloc[HASHSIZE][NN]; 
char hashtab2[HASHSIZE][winsize], patloc2[HASHSIZE][NN]; 
char buffer[LINE]; 
double pvalue[HASHSIZE], pvalue2[HASHSIZE]; 
 
int hash_function(char *p){ 
 int hash_val=0; 
 for(; *p; p++) 
  hash_val = hash_val*6559+(*p); 
 hash_val %= HASHSIZE; 
 return abs(hash_val); 
} 
void chopoutstr(int b, int e){ 
     int i, j=0, index, found=0; 



UNIVER
SIT

Y O
F I

BADAN

 
 

209

     char substr[winsize]; 
 
     for(i=b; i<=e; i++) 
  substr[j++]=input[i]; 
     substr[j]='\0'; 
 index=hash_function(substr); 
     printf("%s, %d\n", substr, index); 
 
 if(!occ[index]){ 
  strcpy(hashtab[index], substr);//if hashtab loc 
is empty 
  occ[index]=1; strcpy(patloc[index], "1"); 
  //printf("%s (%s), %d\n", substr, hashtab[index], 
occ[index]); 
  //getchar(); 
 }else if(!strcmp(hashtab[index], substr))//if hashtab 
loc string is same with substr 
  occ[index]+=1; 
 else{//resolve collision 
  //printf("%d\n", index); 
  //getchar(); 
  for(i=index+1; i<HASHSIZE; i++){ 
   if(occ[i]==0){  
    strcpy(hashtab[i], substr); found=1; 
    strcpy(patloc[i], "1"); 
    occ[i]=1; 
    break; 
   }else if(!strcmp(hashtab[i], substr)){//if 
hashtab loc string is same with substr 
    occ[i]+=1; found=1; 
    break; 
   } 
  } 
  if(found==0){//start from the begin of the 
hashtab 
   for(i=0; i<index; i++){ 
    if(occ[i]==0){  
     strcpy(hashtab[i], substr); 
     strcpy(patloc[i], "1"); 
     occ[i]=1; 
     break; 
    }else if(!strcmp(hashtab[i], 
substr)){//if hashtab loc string is same with substr 
     occ[i]+=1; 
     break; 
    } 
   } 
  } 
 } 
} 
void chopoutstr2(int b, int e, int pronr){ 
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     int i, j=0, index, found=0; 
     static char substr[winsize]; 
 
     for(i=b; i<=e; i++) 
  substr[j++]=input2[i]; 
     substr[j]='\0'; 
 index=hash_function(substr); 
     printf("%s, %d\n", substr, index); 
 
 if(!occ2[index]){ 
  strcpy(hashtab2[index], substr);//if hashtab loc 
is empty 
  occ2[index]=1; sprintf(patloc2[index], "%d", 
pronr); 
  //printf("%s (%s), %d\n", substr, hashtab[index], 
occ[index]); 
  //getchar(); 
 }else if(!strcmp(hashtab2[index], substr))//if hashtab 
loc string is same with substr 
  occ2[index]+=1; 
 else{//resolve collision 
  //printf("%d\n", index); 
  //getchar(); 
  for(i=index+1; i<HASHSIZE; i++){ 
   if(occ2[i]==0){  
    strcpy(hashtab2[i], substr); found=1; 
    sprintf(patloc2[i], "%d", pronr); 
    occ2[i]=1; 
    break; 
   }else if(!strcmp(hashtab2[i], substr)){//if 
hashtab loc string is same with substr 
    occ2[i]+=1; found=1; 
    break; 
   } 
  } 
  if(found==0){//start from the begin of the 
hashtab 
   for(i=0; i<index; i++){ 
    if(occ2[i]==0){  
     strcpy(hashtab2[i], substr); 
     sprintf(patloc2[i], "%d", pronr); 
     occ2[i]=1; 
     break; 
    }else if(!strcmp(hashtab2[i], 
substr)){//if hashtab loc string is same with substr 
     occ2[i]+=1; 
     break; 
    } 
   } 
  } 
 } 
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} 
 
void mergetables(){ 
 int index, i, j, insdone=0; 
 
 for(i=0; i<HASHSIZE; i++){ 
  if(occ2[i]==1){ 
   //printf("%s\n", hashtab2[i]); 
   //getchar(); 
   insdone=0; 
   index=hash_function(hashtab2[i]); 
   if(occ[index]==0){ occ[index]=occ2[i]; 
strcpy(hashtab[index], hashtab2[i]);  
    strcpy(patloc[index], patloc2[i]); 
   }else if(occ[index]==1 && 
0==strcmp(hashtab[index], hashtab2[i])){ 
    strcat(patloc[index], ","); 
strcat(patloc[index], patloc2[i]); 
   }else if(occ[index]==1 && 
0!=strcmp(hashtab[index], hashtab2[i])){ 
    //resolve collision and insert 
    for(j=index+1; j<HASHSIZE; j++){ 
     if(occ[j]==0){ //cell empty 
      strcpy(hashtab[j], 
hashtab2[i]); insdone=1; 
      occ[j]=1; 
      strcpy(patloc[j], 
patloc2[i]); 
      break; 
     }else if(!strcmp(hashtab[j], 
hashtab2[i])){//if hashtab loc string is same 
      strcat(patloc[j], ","); 
strcat(patloc[j], patloc2[i]); 
      insdone=1; 
      break; 
     } 
    } 
    if(insdone==0){//start from the begin 
of the hashtab 
     for(j=0; j<index; j++){ 
      if(occ[j]==0){ //cell empty 
       strcpy(hashtab[j], 
hashtab2[i]); 
       occ[j]=1; 
       strcpy(patloc[j], 
patloc2[i]); 
       break; 
      }else if(!strcmp(hashtab[j], 
hashtab2[i])){//if hashtab loc string is same 
       strcat(patloc[j], ","); 
strcat(patloc[j], patloc2[i]); 
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       break; 
      } 
     } 
    }// 
   } 
  } 
 } 
} 
 
int fact(int n){  
 if(n <= 1)  
  return 1;  
 return n * fact(n - 1);  
} 
 
int editdistance(char firststr[slidingwinlen], char 
secondstr[slidingwinlen]){ 
 int i, dist=0; 
 for(i=0; i<slidingwinlen; i++) 
  if(firststr[i]!=secondstr[i]) dist+=1; 
 return dist; 
} 
 
void main(){ 
 int i=1, j=1, k, M, m, len, segnr=1, pattnr=0, dist; 
 char hold[slidingwinlen]; //holding to thousand or 
temp hold 
 //for this test 
 int N=7, n=3; //n=3 indicates first three sequences 
constitute the positive set 
 double p_value=0, temp_pvalue=0; 
 int minnM; 
 double NM, A, B, minpvalue=0; 
 
 FILE *fp1, *fp2; 
 //strcpy(input, "TAATATTATTCTTTATTCGGTG"); 
 //strcpy(input2, "TAATAAAGCTCTTCGCTCGGTC"); 
 
 if((fp1 = fopen("gene-sample1.seq", "r")) == NULL) 
  fprintf(stderr, "Error opening file\n"); 
 
 fgets(buffer, 160, fp1);// move from the ">" tag line 
 while(fgets(buffer, LINE-1, fp1) != NULL){ 
  len=strlen(buffer); 
  if(buffer[0]!='>' && i==1){ buffer[len-1]='\0'; 
strcpy(input, buffer); i++;} 
  else if(buffer[0]!='>' && i!=1){ buffer[len-
1]='\0'; strcat(input, buffer); 
  }else break; 
 } 
 //for first input 
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 len=strlen(input); 
 printf("%d\n%s\n", len, input); 
 //getchar();  
 
    for(i=0; i<(len-slidingwinlen+1); i++){ 
  chopoutstr(i, i+slidingwinlen-1); 
    } 
 
 for(i=0; i<=HASHSIZE; i++) 
  if(occ[i]==1) printf("%d\t%s\t%s\n", occ[i], 
hashtab[i], patloc[i]);// print all unique pattern 
 
 
 fgets(buffer, 160, fp1);// move from the ">" tag line 
 printf("%s\n", buffer); 
 //getchar(); 
 while(fgets(buffer, LINE-1, fp1) != NULL){ 
  len=strlen(buffer); 
  if(buffer[0]!='>' && j==1){ buffer[len-1]='\0'; 
strcpy(input2, buffer); j++;} 
  else if(buffer[0]!='>' && j!=1){ buffer[len-
1]='\0'; strcat(input2, buffer); 
  }else{ 
   segnr+=1;  
 
   //for subsequence input 
   len=strlen(input2); 
 
      for(i=0; i<(len-slidingwinlen+1); i++){ 
    chopoutstr2(i, i+slidingwinlen-1, 
segnr); 
      } 
 
   for(i=0; i<=HASHSIZE; i++) 
    if(occ2[i]==1) printf("%d\t%s\t%s\n", 
occ2[i], hashtab2[i], patloc2[i]);// print all unique 
pattern 
 
   //getchar(); 
   mergetables(); 
   printf("merge result..............\n"); 
   for(i=0; i<=HASHSIZE; i++) 
    if(occ[i]==1) printf("%d\t%s\t%s\n", 
occ[i], hashtab[i], patloc[i]);// print all unique pattern 
    
   //getchar(); 
   fgets(buffer, 160, fp1);// move from the ">" 
tag line 
 
   // initialize occ2, hashtab2, patloc2, etc 
   j=1; 
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   for(i=0; i<=HASHSIZE; i++){ 
    occ2[i]=0; 
    strcpy(hashtab2[i], " "); 
strcpy(patloc2[i], " "); 
   } 
  } 
 } 
 fclose(fp1); 
 //for the last sequence 
 segnr+=1;  
 
 len=strlen(input2); 
 
    for(i=0; i<(len-slidingwinlen+1); i++){ 
  chopoutstr2(i, i+slidingwinlen-1, segnr); 
    } 
 
 for(i=0; i<=HASHSIZE; i++) 
  if(occ2[i]==1) printf("%d\t%s\t%s\n", occ2[i], 
hashtab2[i], patloc2[i]);// print all unique pattern 
 
 //getchar();  
 mergetables(); 
 printf("merge result..............\n"); 
 for(i=0; i<=HASHSIZE; i++) 
  if(occ[i]==1){  
    
   p_value=0; 
   //compute M and m 
   len=strlen(patloc[i]); 
   j=0, k=0, M=0, m=0; 
   while(j<len){ 
    if(patloc[i][j]==','){ 
     hold[k]='\0'; k=0; 
     M+=1; if(atoi(hold) <= n) m+=1; 
    }else hold[k++]=patloc[i][j]; 
    j++; 
   } 
   hold[k]='\0'; 
   M+=1; if(atoi(hold) <= n) m+=1; 
    
   //compute p-value using the hypergeometric 
distribution 
   if(n<M) minnM=n; else minnM=M; 
  
 NM=((double)fact(N))/((double)(fact(M)*fact(N-M))); 
   for(j=m; j<=minnM; j++){ 
   
 A=((double)fact(n))/((double)(fact(j)*fact(n-j))); 
    B=((double)fact(N-n))/((double)(fact(M-
j)*fact(N-n-M-j))); 
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    p_value+=(A*B)/NM; 
   } 
   pvalue[i]=p_value; 
   printf("%d\t%s\t%s\t%d\t%d\t%f\n", occ[i], 
hashtab[i], patloc[i], M, m, pvalue[i]);// print all unique 
pattern 
   occ2[pattnr]=occ[i]; 
strcpy(hashtab2[pattnr], hashtab[i]); 
pvalue2[pattnr]=pvalue[i]; 
   pattnr++; 
  } 
 //sort the content of hashtab in ascending order 
pvalue 
 minpvalue=1; 
 for(i=0; i<pattnr-1; i++){ 
  minpvalue=pvalue2[i]; 
  for(j=i+1; j<pattnr; j++) 
   if(pvalue2[j]<minpvalue){ 
minpvalue=pvalue2[j]; k=j; }//k locate the current lowest 
   
  temp_pvalue=pvalue2[i]; 
  strcpy(hold, hashtab2[i]); 
  pvalue2[i]=pvalue2[k]; 
  strcpy(hashtab2[i], hashtab2[k]); 
  pvalue2[k]=temp_pvalue; 
  strcpy(hashtab2[k], hold); 
 } 
 for(i=0; i<pattnr; i++) 
  printf("%d\t%s\t%f\n", occ2[i], hashtab2[i], 
pvalue2[i]);// print all unique pattern 
 
 printf("printing PWMs\n"); 
 //create PWM 
 for(i=0; i<pattnr-1 && occ2[i]==1; i++){ 
   printf("%s\n", hashtab2[i]); 
  for(j=i+1; j<pattnr && occ2[j]==1; j++){ 
   //printf("%d, %s\n", j, hashtab2[j]); 
   if(1==(dist=editdistance(hashtab2[i], 
hashtab2[j]))){ 
    printf("%s\n", hashtab2[j]); 
    occ2[j]=0; 
   } 
   //printf("%d, %s(%d)\n", j, hashtab2[j], 
dist); 
   //getchar(); 
  } 
  printf("printing next PWMs\n"); 
 } 
} 
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