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Abstract

This paper investigates the dynamical behaviour of a duffing oscillator using
bifurcation diagrams. There has been growing interest and challenges in
engineering dynamics to characterize dynamical systems that are chaotic using
bifurcation diagrams. The relevant second order differential equations using
Runge-Kutta method were solved for ranges of appropriate parameters. The
solutions obtained were used to produce the bifurcation diagrams using
Microsoft excel 2007. Since an average estimate of 5 = 4.668 from the
bifurcation diagrams produced is an approximate value of the Feigenbaum

.constant as widely reported in the literatures, it can be deduced that the
bifurcation diagrams conforms to the expected results. While the bifurcation
diagrams revealed the dynamics of the duffing oscillator, it also shows that the
dynamics depend strongly on the initial conditions.

Keywords: Bifurcation, Duffing oscillator, chaotic dynamical behaviour,
Feigenbaum constant.

Introduction
Nonlinear science and chaos is a field of growing interest to scientists due to its
usefulness in such diverse fields as Physics, Biology, Engineering, Medicine and
Chemistry among others. There has been growing interest and challenges in
engineering dynamics to characterize dynamic systems that are chaotic. Bifurcation
diagram has been of great help in diagnosing response of complex dynamics systems
to a tunable parameter and as an aid in computation of a Universal constant called
Feigenbaum constant.
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In dynamics, a change in the number of solutions to a differential equation as a
parameter is varied is called a bifurcation (Thompson and Stewart, 1986). Bifurcation
is also described as a record of change in behaviour of a dynamical system as
parameter changes. Julyan and Oreste (1992) emphasized.that one of the major ways
of investigating the dynamics of a continuous time system by differential equation is
the use of Runge-Kutta methods in developing bifurcation diagram. Many researchers
have contributed to the use of bifurcation in the study of chaotic dynam ic systems.
Han et al (1995) developed a model and used bifurcation diagram as a tool for
investigating chaotic phenomena in vibratory ball milling system. McDonough (2004)
applied bifurcation in the analysis of low-dimensional models of turbulent
combustion. The recent developments in understanding the nature of chaos is making
it possible to tackle it in real-world systems. A framework to model real-world chaotic
systems from their short, noisy, observed data, to understand their behavioural
changes with respect to time and parametric space has been developed by Farugi and
Kumar (2005). The study has been performed in qualitative analysis by constructing
the bifurcation diagrams. Joseph (2008) developed a model and bifurcation diagrams
of chaotic frequency scaling in a coupled oscillator model for free rhythmic-actions.

Duffing Oscillator is one of the most intensively studied systems in dynamics, and
it is employed as models of various physical and engineering situations such as
Josephon junctions, optical bistability, plasma oscillators, buckled beam, ship
dynamics, vibration isolators and electrical circuits (Jun Yu and et al). Wagg and
Adhikari (2006) studied the dynamics of Duffing oscillator with an exponential non-
viscous model.

Extensive work has not been done using bifurcation diagrams in investigating the
dynamics of this Duffing oscillator.

Model Descriptions
For fJ > 0, the Duffing oscillator can be interpreted as a forced oscillator with a spring
whose restoring force is written as

F ::::-fJx - aJ (1)

where a> 0, this spring is called a hardening spring and when. a > 0, it is called a
softening spring.

For fJ < 0, the Duffing oscitlator describes the dynamics of a point mass Il1 a
double wall potential, and it can be regarded as a model of a periodically forced steam
beam which is deflected towards the two magnets as shown in figure 1.
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Figure 1: Duffing Oscillator.

According to Takashi (2008), Duffing oscillator can be described as a periodically
forced oscillator with a non-linear elasticity governed by an equation.

x + kx + f3x+ ax3 = Pcos(wt) (2)

According to Salau (2007) as coined from chaotic dynamics by Gregory, LB and
Jerry, PG (1990), the general equation of a damped and forced Duffing dynamical,
system are given as

x+kX±ax(l-x2)= F(t)

,t + kx ± aX(I- x/i)= F(t)

(3)

(4)
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Putting a = 1and F(t) = ~ cos(wt), the governing equation employed for this
case study is given as

(5)

Numerical Simulations
Numerical approach is employed in solving equation 5. Numerical solutions were
obtained using fourth-order Runge-Kutta and FORTRAN 90 Source codes. According
to Salau (2007), chaotic behaviour may be observed using initial conditions of
parameter values K = 0.4 and OJ = 0.5 .Figure 2 describes the bifurcation diagram of a
Duffing oscillator when the damping coefficientk = 0.35, angular frequency CJ)=0.5
and the number of slices, Nslice = 200. The initial conditions used is set at Xo = 0.2

and Yo = 0.2. A stable solution of five thousand cycles at constant time step of 0.001
was achieved after 30 complete transition cycles (Ns = 15, Ne = 15) .

The first periodic doubling is observed at forcing strength 1.690N and angular
velocity of 2.05291 rad/s. An infinitesimal periodic window is observed in the range
1.659N < P < 1.736N. A pair of period-doubling route to chaos occurs at 1.690N
forcing strength P with 2.07452 rad/s angular velocity. The first region of chaotic
behaviour is in the range 1.831N < P < 2.111N .
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Figure 2: Bifurcation Diagram of Duffing Oscillator Model (K=0.35, w=0.5,
Nslice=Zuu).

A wide periodic window is thereafter observed in the range
2. I I IN < P < 3.13 5N. The second but a very wide chaotic region is observed in the
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range 3.13 5N < P < 3 .913N as a result of three pairs of pericd-doub Iing route to
chaos which occurs at forcing strength P of 2.l54N with angular velocity of
1.76177 rad/s, 2.073N with angular velocity of 0.93961rad/s and 2.073N with

angular velocity 0.70286 rad/s.
The interpretations of this dynamic behaviour are that the ranges

1.83IN<P<2.11IN and 3.135N<P<3.913N are chaotic regions. Forcing
strengths in these ranges should be avoided or ignored if chaos is not desired in the
Duffing oscillator system at the set initial conditions. However, if chaotic
phenomenon will be of great merit to the system, such ranges of forcing strength
should be considered.,--- ..-..-.- .•....-...-..•....-.-.-.- ..---- ....-.. ,' .••.., ..... .,.._ ..._.- -,..-_ ...• _-- .--.•.-- ..•...---- ..---- ..
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Figure 3: Bifurcation Diagram of Duffing Oscillator Model (K=OA, w=0.5,Nslice=50).

Figure 3 is obtained when the damping coefficient is increased from k = 0.35 to
k = 0.4. The initial conditions slightly changed to Xo = 0.1, Yo = 0.1, Nslice = 50
w = 0.5. A different dynamical behaviour of Duffing oscillator is experienced. The
bifurcation diagram in figure 3 is produced' when the number of transition cycles
Ns = 16 and number of cycles examined, Ne = 16. The first pair of bifurcation

occurs at forcing strength P = 1.735N with the angular velocity of 1.9827 rad/s. !).
small periodic window is experienced in the range 1.745N < P < 1.952N. Two pairs
of period-doubling route to chaos occurs at 2.l25N and 2.l20N forcing strengths
PiS. The first period-doubling leads to chaotic behaviour in the range
1.952N < P < 2.149N. The widest periodic window is observed in the range
2.149N < P < 2.961N.

The three pairs of period-doubling occurs at 2.763N, 2. 751N and 2.738N forcing
strengths pi s leading to a chaotic region in the range 2.951 N < P < 3.12 IN. Another
periodic behaviour is observed in the range 3.l14N < P < 3.387 N due to four pairs
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of period-doubl ing. The last chaotic region IS observed In the range
3.366N<P<3.452N.The inference that can be drawn from this analysis is that the
ranges 1.745N<P<1.952N, 2.149N<P<2.96IN and 3.114N<P<3.387N
should be adopted when there is need to ignore the phenomenon of chaos at this set
initial conditions. When chaotic behaviour is desired in the system, the forcing
strengths in the ranges 1.952N<P<2.149N, 2.95IN<3.121 and
3.366N < P < 3.452N should be employed.

!' -3 Forcing Strength P As Control Par amete rj N]
L.__.._. . . . .. .._.__..._.._

Figure 4: Bifurcation Diagram of Duffing Oscillator Model (K=0.45, (0=0.5,
NSlice=IOO)

Using Xo = O. I and Yo = 0.1 as in figure 3 by increasing the damping coefficient·
to 0.45, putting Nslice = 100, Ns = 20 and Ne = 20, a unique dynamical behaviour is
experienced between I.50lN and 4.069N forcing strengths as shown in the
bifurcation diagram of figure 4. A pair of period-doubling occurs at forcing strength
P = 1.789N with angular velocity X2 = 1.80794 rad/s.The first chaotic region occurs
in2.071N < P < 2.334N. Immediately after this is a wide period-doubling route to
chaos occurs at P = 2.289N with 0.79896 rad/s angular velocity. This leads to a
chaotic region in the range 2.907 N < P < 3.195N. Thereafter is aperiodic window in
the range 3. I95N < P < 3.444N . The largest region of chaotic behaviour is observed
as a result of four pairs of period-doubling route to chaos which occurs at forcing
strengths ofP=3.193N,3.179N, 3.204N and 3.163N . The range of this largest
chaotic phenomenon is 3.444N < P < 4.069.N .The deductions here is that when a
stable, predictable and non-chaotic behaviour is desired, the ranges
2.301N < P < 2.921N and 3. I 95N < P < 3.444N should be employed.
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Figure 5: Bifurcation Diagram of Duffing Oscillator Model (K=0.5,
w=0.5,Nslice=200)

With xo:::: 0.1, Yo:::: 0.1 and w:::: 0.5 as used in figure 4, an interesting and
distinct dynamical behaviour is experienced as shown in figure 5 when damping
coefficient K is increased to 0.5, Nslice = 200, Ns:::: 15 and Ne = 15. The first
bifurcation pair occurs at p:::: 1.889N and 1.7'727 rad/s angular velocity, the first
region of chaos is in the range 1.966N < P < 2.431N This is followed by the major
periodic window in the range 2.431N < P < 2.962N while three pairs of period-
doubling leads to the major chaotic behaviour in the range 2.962N < P < 4.051N The
interpretation of this analysis is that the ranges 1.966N < P < 2.431N and
2.962N < P < 4.051N should be given a high consideration when chaotic
phenomenon is highly advantageous.
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Figure 6: Bifurcation Diagram of Duffing Oscillator Model (K=0.53,
w=0.5,Nslice=100)
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The sensitivity to initial conditions which is a core property of chaotic behaviour
IS revealed when the initial conditions changes to Xo = 0.1 and Yo = 0.2. other
parameters are put as K = 0.53, w = 0.5 and Nslice = 100. The number of cycles
sacrificed (Ns) is 30 and also 30 complete cycles are examined (Ne). A pair of
period-doubling begins at P = 1.964N and angular velocity of 1.77388rad/s. The
first chaotic region is experienced in the range 2.285N < P < 2.524N and followed
by a wide periodic window in the range 2.516N < P < 3.086N. The major and well
pronounced chaotic behaviour is experienced in the range 3.1 06N < P < 4.043 N due
to three pairs of period-doubling which occurs at forcing strengths of P = 2.876N,
P = 2.755N and P = 2.771N. From this analysis, it can be deduced that the 6nly
reliable region for a non-chaotic pheno,menon is 2.516N < P < 3.086N.

Results Validation
The bifurcation diagrams obtained for Duffing oscillator model are confirmed using
Feigenbaum constant (0-) as stated in the equation 6.

(6)

It is estimated using figure generated 6 when Xo = 0.1, Xo = 0.2, K = 0.53,
w = 0.5 and Nslice = 100 as a representative illustration for all other Duffing
bifurcation diagrams produced in this paper. The estimation is done as follows:

b =( 2.9720 - 2.0160)/(3.1768-2.9720)

b = (0.9560)/( 0.2048)

b = 4.668

Since b = 4.668 calculated from the bifurcation diagrams produced is an
approximate value of the Feigenbaum constant (c5 = 4.6692016091029909 .... ) as
widely reported in the literatures, it can be inferred that the bifurcation diagrams
validates or conforms to the expected results.

Conclusions
The results of this study have shown that bifurcation diagram is a resourceful
instrument for global view of the dynamics of Duffing oscillator system over a range
of control parameter. It gives an advantage of simultaneous comparison of both
periodic and chaotic behaviour of dynamical systems.

The results also revealed and confirmed that sensitivity to initial conditions is a
principal property of all chaotic dynam ical systems.

All bifurcation diagrams produced in this work reveals that even a very tiny
alteration in the initial conditions gives a unique and interesting bifurcation diagrams
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with distinct dynamical behaviours.Findings also reveal that a slight change in any of
the adjustable parameters in chaotic governing models generated distinct dynamical
behaviours.
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Notations
fJ: Displacement Damping Coefficient

a : Spring Softening or Hardening Constant

P" : Forcing Strength

w Angular Frequency

t : Period in Seconds

K : Damping Coefficient

X" : Initial Condition of X

y. : Initial Condition ofY

Nslice: Numbers of Slice

Ns: Number of Cycles Sacrificed

Ne: Number of Cycles Examined

5: Feigenbaum Constant

X2 : Angular Velocity

F (t): Damped Force

N: Unit of force in Newton

Appendix
Bifurcation Diagram of a Duffing Oscillator

Implicit real *8(a-h, o-z)

Dimension xl (2),x2(2),Rt( 4 ),Rk(4),Rg( 4 ),Rf( 4)

Open (unit= I, file='jideE.out')

Open (unit=2, file='jideENslice.out')

Pi2=6.0*acos (0.5)

Write (*,*) Pi2

Write (*, *)'Enter Damping Coeffici_ent'

Read (*, *) Dampf

Write (*,*)'Enter Initial conditions and wf, Nslice'

Read (*,*) Xo, Yo, wf, Nslice

Fw=wf/pi2

TP=1.0/fw

Deltat=Tplfloat (Nslice-l)

T.A.O Salau and 00 Ajide
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Deltat6=Deltat/6.0

Tole=O.OOOOO1

Write (*, *)'Enter No of Run away cycles and to be examine'

Read (*,*) Ns, Ne

Pp=l.S

Fp=4.1

Step=O.OOI

Ncut=int «fp-pp)/step)

Do 30 kk=l, Ncut

Tt=O

Xl(l) =xo

X2(1) =yo

Pp=pp+step

The Real Experiments

Do 2011=1, NE+Ns

Do 2012=1, Nslice

Rt(l)=tt

Rt (2) =TT+deltat*O.S

Rt (3) =Rt (2)

Rt (4) =Rt (I) +deltat

Do IS 1=1,4

If (i.eq.l) then

Rk (i) =xl(l)

Rg (i) =x2(1)

Else

If(i.eq.4) then

Rk (i) =xl(l) +deltat*Rg (i-I)

Rg (i) =x2( I) +deltat*Rf (i-I)

Else

Rk (i) =xl(l) +Rg (i-l)*deltat*O.S

Rg (i) =x2(1) +Rf(i-l)*deltat*O.S

Titaf=wf*Rt (i)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



,

68 TA.o. Salau and 0.0. Ajide

Titak=rk (i)

Rf(i) =Pp*cos (titaf) +Rk (i)-0.5*(Rk (i) **3)-Dampf*Rg (i)

Endif

Endif

IS Continue

XI(2) =xl(l) +deltat6*(Rg (I) +2.0*(Rg (2) +Rg (3)) +Rg (4))

X2(2)=x2( 1)+deltat6*(Rf( 1)+2.0*(Rf(2)+Rf(3))+Rf( 4))

TT=Rt (4)

The next if statements ensure stable results are reported!

Titaf=mod (wf*tt, pi2)

If (I l.gt.Ns.and.kk.eq.l.and.titaf.le.tole) write (*, *) titaf, tole

If (Il.gt.Ns.and.titaf.le.tole) Write (1, 25) pp, xl(2), pp, x2(2)

If(Il.gt.Ns.and.I2.eq.Nslice) Write (2, 25) pp, xl(2), pp, x2(2)

Xl(l) =xl(2)

X2(1) =x2(2)

20 Continue

30 Continue

25 Format (4(fl 0.5, 2x))

Stop

End

UNIV
ERSITY

 O
F I

BADAN LI
BRARY


	scan0022.pdf
	scan0023.pdf
	scan0024.pdf
	scan0025.pdf
	scan0026.pdf
	scan0027.pdf
	scan0028.pdf
	scan0029.pdf
	scan0030.pdf
	scan0031.pdf
	scan0032.pdf
	scan0033.pdf

