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ABSTRACT 
7bre has been growing need to charackn'ze the fluid flow through a simplified model such as random walk 
dynamics The research work covered three distinct regions of flufd ?ow namely the laminar region. the 
transition regro!] and the tu&uIerrt reg1011 Appropoale flow charts and FORTRAN-90 source codes wore 
devrslopod to solve feI~vant nuid flow governing equaticuxi. Reynolds r?urrther was u68d as tha control 
parameter to tune fm? lantinar la turbulent Bow while relevartt sofution was graphed usrng Microsoff Erce! 
The graph sfrows the distinct regions. The fist region characfen'zes laminar region with three straight-tine 
segments. The second region is the transition region, which is in form of wavy line segments. The third region 
is fhe turbuient region in which higher wavy fine segments are shown. The degree of waviness and number ot 
wavy line segments increases from transition region to turbulent region. The resuif shows that fluid flow can 
be characterized through the use of random walk dynamics. 

Keywords: Fluid flow, random walk dynamics. Reynolds number, distinct regions, wavy lrne segments 

lNf RODUCTlON 
A random walk is fwmaiizatiin in 

Mathemati, Computer Science and Physics of the 
intuitive idea of taking successive steps. each in a 
random direction. The simplest random walk 
considers a walker that takes steps of length L to 
the left or right along a line while more complex 
random walks include fancies consideration such as 
given each step velocity and allowing the random 

b walker to pause for random amoynt of t~me in 
- between the steps. 

q o w o  (2007) ~nvestigated random walker 
in three dimensionaf Euclidean space. The random 
method to model the diffusion ai varticity was first 
proposed by Chorin(l978). In order !o simulate the 
diffusion of vorh'city in vortex flow. the positions of 
the vortices are given random displacements 
(Chorin and Marsden, 1990). The basic idea of the 
random walk method as applim to fluid flow is that 
the random displacements spread out the vwticity. 
Several studies investigated the theoretical and . 
numerical aspect of the random walk method. 
Macchiora and Pulvienti (1982), Goodman (19871 
and Long (1988) have shown thii f o ~  flow in free 
space, the random walk solution converws to that 
of the Navier-Stokes equations as the number of 
vortices is increased. Cheer (1989) has applied the 
1 o r t 4 v 1 1 r  v v a l h  IIIGU~VU t u  f luwe v v v ~  u r,fiir.rlw. Ly..io 
(1990) has used the random walk rr\&h& tbr flow 
over airflow cascade whte Chui (1993) 11sed the 
random walk method to study thermal boundary 
layers. The random walk method has several 

1 advantages. It is simple to use and it can easiky 
handle flows wound complicated boundaries. The 
mefhod also conserves the to#al circulation. This is 
in application to invisGid Ilsws. 

The soil erosion mnsiderd is Ihe 
detachment of materials from the bed or sides of a 
channel. The water flowing through stream performs 
three types of gedogic work. Moving water erodes 
materials from the bed or side of the channel 2nd 

transmrts the eroded material lo a new location and 
deposits it. After the material has been detached 
from the channd, it can be transported. As the 
part~cle size increases. Ule veixlt) needed tc 
tranyfoR it also Increases 

Tne R~ynofds nllmbetr governs laminar- 
turbufent transitlsn It also characterizes &,ether the 
flow conditions lead to laminar or turbulent flow 
Transition Lo tuhulent can occur crver a range of 
Rey,nnolds numbers Jepend~ng on many factors such 
as surface roughness, heat transfer, vibrat~on, nose 
and other distilrbances 

The objectives of this work are to 
1. Characterize parameters for flurd flaw us~rty 

a bet of random walkers . 
2. Develop a simplifiid model tc cnaracterlze 

the fluid flow through :he us+ of randon: 
walk dynamics. 

The study intends to explore the distinguish~ng 
features'of the distlnct regrons In f!urd flow tnroug!, 
the use of random walk aynarnlcs 

The research project is sign~f~cant to the 
advancement of Science and f ngineerlng 1t is 
justified for the foliowing reasow 

1. The wndom w a : ~  r n d e i  WP be ~ s e d  1; 
analyze Aows in f:mns 

2. T!E ?random wn!k dy!;arni<;s IS a S ~ P I I ~ I ~ C ;  .- s v . ) o l  I'  r a t  - a .  I ~- iw  i.. ua ui 6ornrtus-8d 

erosion and herice a d  enhanced toot - 
production. 

This paper reports a *random walk model" fo: 
character~a~on of fluid flow through the use of 
'boundary layers by dtscrete vortex modettng' Tt~e  
research work is expected to cover the three distincf 
regions narnefy taminar, transition and turbulent 

RBODEL FORMUtATIOM 
The fist practicai scheme far simulation of e 

boundary layer by dtscretc vm~ces was proposed b l  
Chorin (19781 based on his earlier conceptmn of Me 
randwn walk model for high Reynolds number bluf' 
body wake flows. The troundary layer fiow can be 
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Ade~bola and Salau 
approximated by placing at appropriate locatlon 
some vortices in a parallel flow. This forms the basis 
of the vortex element method. 

The motion of a diffusing vortex of initial 
vorticity strength (T) entered an the origin of the 
(r,8,+) plane is describecfby the diffusion equation 
from which we may obtain the well known solution 
fw subsequent vorticity w(r.f) in space an@ time. 

Vorticlty strerqth is a function of radius r and time t. 
Far a y t % x  of unit sWngth split into N elements. 
Let w assume ttlat n vafiex elments are scattered 
into the small area rA&A@Ar after time t, the total 
amount of vorttcity P, in this &ement'of ari?a then 
follows from : 

Where n is the ratio of me circumference of a circle 
to its diameter and u IS the kinematic vis.mslty ' 

AR appropriate strategy is to d$spla# each eiement 
in the in the radial and anfplar directions by 
amounts r ,  6 and t& waver time intetval O to t. Thus 
we may define 0 and rt, values independently of ri. 
values by the aquafi~l: 
0, =2@i , (3) 

$4 = a; - (4) 
Where (2, IS a random number withh the range 0 4 

Q p l 0 .  
The fitobability P that an element will be within a 
circle of radius r is given by the equation 

Thus for the nm vortex element equation (5) 
becomes 

Frwn which we obtain its radial random shift 

Considering diffusion over a $~~cess ion of 
small time incrments M, the displacements of 

~ I U S X L  I Uu11say l i 4 b W  SL wijl 11 s-8 I b w  

.%Of = 22Q, (8) 
(9) 

rhus after the incrment &t, the new coordinate 
location (xi', y,', q') of the n* element will b~corne 

x,' = x, + & ; s ~ ~ B ~ c c K ~ ~  (1 1) 
yi' = yi + Ar$in&,cas& f 12) 
t' = t + AricoSQli (121 

Where x, = oid x - coordinate of n element 

-.-.all_!. 
yl = old y  - coordinate of n'" elemerlt 
zi = old z - coordinate of nlh eletner,t 

The displacement from the origin IS given by [he 
equaiion: 

Whsrd ;r-~,  Yo anif& are the orrgrn 

Boundary layers By Discrete vortex modeling 
Convective motlon wele completely ~gnored 

for the diffusion point flow w h ~ c h  have  just bean 
considered, an issumption whrch is perm~ss~bla In 
view Qf symmetry in rhese specral cas-s and 
justified for very Isw Reywfds numbers 

Boundary layer flaws on the other hand are 
more complex invalving: 
(i). Externally ~mposed convection due lo the 

main stream U. the significance, of which IS 

defermlned by 
r \ 

]LfL 1 
the body scale Reynolds flumoer [; J 

L is the Charactwistic length of the particular 
flow. 
lii). continuou6 creation of vorticity at tho 

contact surfaee between ffuld and wail, 
replacing the vortfcity removed by diffusion 
and convection. 

Random Number Generation 
Algorithms were developed to produce long 

sequences of apparently random results, which are 
in fact completely determined by a shorted lnitrel 
value known as a seed. 

Application of Random Watk Method 
The application of the random walk will result in 

h e  loss of hatf of the newly created vorticity due to 
diffusion across the walls 2nd therefore out of the 
active flow domain if vorticity is not conser~ed during 
the diffusion and convection pracclsses for each 
time step, 

The single strength sheet 1s use0 through 
bouncing back wrtfces which attempt to ernss the 
wall by assigning the value yi = abs (y,) 

Selection of Element Size and Time Step 
A reasonpble ap~roach to the selection af an 

approprate trma M ts to focus attentton on the 
average displacements of the drserete vortices due 
to anvectiusn and diffusion. The average convective 
displacement may be approximated by: 

The average biffuslve drsplacement may be 
approximated by: 

6. = J(?vbtLn2) 
To maintain equal discretisation of the fluid motion 
due to convection and diffision wa may equate R, 
and h9 resulting in the expression 
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4t wti1.d alaa bo rmsanabl~ to seied sufla~e 
d~ment  size As at twice S, teawg t~ 
ds =.UAt 44 8) 

The requird number of surface dements for 
satisfac1ai-y discr@t~satton of the plate is then given 
Y 

ft is dear frarn %is study €hat enforcing equal 
dcscrdjr;atian scal@s & and G0 far eanventi~n and 
djffusidn @$ had ta toumputational difflcutties at high 
Reynolds numbers. For eexampje, the boundary layer 
considered far Re = 500, yietds M = 45- On the 
other hand for a typiml engineering system value of 
Re =: TO', yields f s 1 y  M = 9017, thereby imposing 
severe p ~ ~ ~ u r e  upan computritmal requirements. 
The refate? time incremeKlt &t = O.Q0011 woutd also 
require I D  time steps fo achbve one flo* pest%. It is 
thus clear that prijctiwt computational limitations will 
r~!e nut vortex modering for fypical engineering 
system Reynolds numbers if we attempt to impose 
flwconstraint bc = tio to the foregoing calculation. 

Seme Considerations fw high Reynolds Number 
F t a a  

One way to rsdua t h m  difficulties for high 
R~ynalds number w u l d  be lo sslact different time 
steps for diffusion (Ab) and convection (dk)). Since 
convedion havv dominates the flow, it will be 
preferable to select the scale of wnvection 
di~placern~ts through. 

r3 
, 4 7 - r E ,  

Bs 
(22 1 

Where k can be set to be equal to 0.5 
f he? convecilve h e  step is: 

2k5. 
Al- = - 

U 

Atthough it wid be pszrt~ctiy in order to- perform 
btti  the convection and ranocm waik procssses 
over the s m e  hme step 5tc. a saving in 
computational effitr: could Be ach~eved by 
undertaking only one random walk for every N, 
c~nvection step with 

At,=N,Allt, @$I 
The u p r  ijrnit of Ijk, obtainad from equating the 
scales 5~ and 6 0 ~ t  is 

SIM ULATIQN 
The gctvming equatian is dsvsloped for the 

fluid doow. The ReynoSda numbtar served as tk 
control parameter that governed the laminar- 
turbulent transition Thls is followed by Ibe 
fomulatton of algorithms fof the model, which IS 
illustraFed by the flow charl The flow chart is used in 
writing the FORTRAN-QC program. The prograin is 
then run to generate desire output. The result 
obtained were used t-& plot the graphs through 
Microsoft ExmI. 

RESULTS AND DISCUSiOM 
Table 1 shows the result of Reynolds 

numkr  and time increment. It also shows the 
number of time steps, number of elements and log 
of average dbtance against Icq of time steps The 
index is ttse slops obtat~led from the graph of lag 01- 
amrage distame against lug of time steps. The time 
increment tteereases wfth increase in Reynolds 
number. The Reynolds number increases with 
increase in the number of t i ~ e  steps and number of 
dements or triais. Initblly, the Reynolds number 
hcreases wrth the index. but fram the Reynolds 
nwnber 05 70,000 there is mwt of fluctuation in 
index. 

The charactenzing pararnkters are the index and 
Reynolds number. The graph of Index and Reynolds 
number displayed t h w  distinct rqions (fig 2) The 
concept of critical Repoids number proves quite 
wseiuf m demarcating the reglrnes of laminar and 
turbulant h w s  The lower rimit of r;ril~cal Reyn&?hs 
(Re), exists and its value is approximately 70.@3?. 
The upper limit of critical value of (Re), t a i t  
characterizes full attaimenf of transition lie between 
90,000 and 320,000. t h e  lower critical Reynolds 
number is of greater engineering importance as it 
defines the limit below which dt turbulence, na 
matter hoe severe, entenng the flow torn any 
some will sventuaily be damped out by vlscuus 
action 

The first region chara~terrzed ramrnaf 
region with straight-line segment (fig.3) In thts 
r@ion, the Reynolds number is less than 
fu,uuo. lne secoha ~Gg~on IS tne Eranstt~on region 
whi& is in form of way-lhe segments (fifig.4) Thefe 
is onset d wviness {m~ving to and frr, or up and 
dam of lines in scrriss). This region is from 
Reynalda number of 70.000 to 310,000 Tha third 
regran IS the turbulent regron in wtl~Ctf h~gher wavy- 
line segments are shown (fig.5) The region starts 
from Reynolds number of 320,000 Hence in taminer 
region, fherq is no waviness Wde the degree of 
waviness and number of wavy line segments 
incrwse from transition region to turbulent region. 
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Fig.1. Random Walk hsodcl AJgorithmsll;lowchart 

* 
I ~ e t  the values o f  

a. L, u, v I 
Read initial values 

Yes L\ 

1 No 
J = 1  

Initial THETA = 0, k = 0.5. t = 1 
I 

Jr 4 

Determination of e l m m t  size 
43 (5 j - ( 16. *Lloge2)/Rc IJ) 
-7 

No Determination of Number of 
elements MCJ) = U ( A s *  100) j 

I 

Determination of time increment 
Determination of Number of AT = 2.*k*L/(u*M(J)) 
e;lem~nts MtJ) YlAslJI )  

Determination of rime incremenr Determination of- Nutnber of 
ATIJ) -= (16.*L*ioge2)!(ReIJ) * u) steps NU) - ( I lATilJ ) 
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Adegbo!a and Saku 201 1 

- P 
Generation of Random Number R A M  
sXg = IL4.P-J (11 
PSI(I) =.7c * Q(1) 
THETA = 2. * ?r*Q(I) 
p=Qm 
X~O,rtc)-Xo 
Y (0, Ik) =Yo 
r (0, ~ k )  = ~o 

Determination of Radial shift 

Change in tfie co-ordinate 
X (I, ILc) = X(1-1, Ik) 3- Dr(I, Ik)*SINO;HETA(I)* COS(PSI(1)) 
Y (I, Ik) = ABS @(I-1, Ik) + Dr(I, Ik)* SIN(THETA(J)* SlNfPSI(1)) 
Z (4 Ik = ;z011, IK)) -t- Dr(1,wq COSfTHETA(1)) 

L I * 
Determination of Distance fnm the origin 
DW@, Lk) = SQRT((X(1, &) - &)*"2 + (ABS(Y(1, Ik)) - Yo)**2 -t 
(Z(I, Ik) - Z01'*2 

I I 
YES 

YES 
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Adegbda and Salau - -- 202 l 

I Determination of sum of distance h t?x 
Origin SDQR 

Write All Value of Time Increment, Number of time steps, 
Number of elements, Loge (time) and Log (AWOR) 

TABLE 1: CHARACTER@@ION OF FLUID FLOW 
-.-I - - 

Reynofds Time Number Number of Log of average Inde;; Em) 
number Increment of time elements distance against log of 
(Re) (At) steps (N) or trials (M) time steps (y. = mx s- 

C) 

10,000 0.1 1090 9 9 y = 0 5865 x + 0.2821 0.5865 
20.000 0.05545 18 18 y = 0 7218 x + 0.2165 0 7218 
30,000 0.03697 27 27 y = 0.8182 x + 0.1355 0.81 82 
40.000 0.02773 36 36 y =0.8243 x + 0.1274 0 8243 
50,000 0.0221 8 45 45 . y = 0.8266 x 4 0.1 647 0.8266 
60,000 0.01848 - 54 54 y = 0.8281 x + 0.1517 0.8281 
70,000 0.01 5&4 . 63 . 63 y = 0.8558 x + 0.1 131 0.8558 
80,000 8.01 386 72 72 y = 0.8817 x + 0.9490 0.8817 
90,000 0.01232 81 81 y = 0.875 x + 0 1003 0.875 
100,000 0.01 109 90 90 y = 0.8908 x + 0.0874 0.8908 
1 10.000 0.01 008 99 99 y 3 0.8859 x + 0.0230 0.8859 
120.000 0.00924 1 U6 7 Vl3 y u aauo x * U . U ~ L Y  U.OQVI) 

1 30,000 0.00853 117 117 y = 0 8906 x + 0:0863 0 8906 
140,000 0.00792 1 26 126 y = 0.8953 x + 0.071 3 0.8953 
150,000 0.00739 135 135 y = 0.8948 x + 0 0780 Q 8948 
180,000 0.00693 1 44 144 y = 0.0919 x + 0.6722 0.0919 
170.000 0.00652 1 53 153 y = 0.9125 x + 0.052 0.91 25 
180.000 0.0061 6 162 162 y = 0.9087 x + 0.0561 0.9087 
190,000 0.00584 171 171 y=0.~2 lx+O.0361 0921 
200,OOQ 0.00555 1 80 180 y = 0 9232 x + 0.0317 0.5232 
210,060 0.00528 1 89 189 y = 0 91 $0 x + 0.0456 0.91 70 
220,000 0 00504 198 198 = O G 3 6  x + 0.0346 0.9236 
230,000 0.00482 207 207 1 = 0 9250 x + 0.031 1 0 5256 
240,000 0.00462 21 6 216 y = 0.9193 x + 0.0450 0 9*C-7 
250.000 0.00444 225 225 y = 0 9220 x + 0.0468 (1 9 2 ~  
260,000 0.00427 234 234 y = 0.9268 x + 0.0361 0.9268 
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Table 1; Cont'd -- 
Reynolds Tirne ~um?;er of Number of Log of average distance Index (m) - 
number Increment time steps elements 

(at) (N) ar trials (M) 
0.0041 1 243 243 

aga~nst log of time steps 
(y=  mx.+ e) 
y = 0.9293 x + 0.0295 
y = 0.9367 x + 0-01 18 
y = 0.933 x + 0.0238 
y = 0.9338 x + 0.0208 
y = 0.9295 + 0.0353 
y = 0.9375 x + 0.0158 
y = 0.9329 x + 0.0264 
y = 0.9357 x + 0.021 7 
y 5 0.9373 x + 0.0172 
y = 0.9368~ + 0.0192 
y = 0.!3413 x + 0.0107 
yT0.9454 x * 0.0035 
y = 0.9406 x + 0.0136 
y = 0.9446 x + 0.005 
y = 0 9450 x + 0.002 
y = 0 9450 x + 0.0032 
Y = 0.9470 x - 0.0003 
y ~0.9457 x + 0.51038 
y =0.9548 x- 0.0173 
y = 0.9479 x - O.CKlO@ 
y = 0.9470 x + 0.0001 

= 0.9539 x - 0.01 29 
y = 0.9495 x - 0.0028 
y = 0.9525 x - 0.0095 
y = 0.954 X - 0.01 34 
y = 0.9531 x - 0.0109 

Table I: Cont'd --- - 
Reynolds Time Number of Number of Log of avfxage distance Index (m) 
number hcrement time steps elements against log of time steps 
(Re) (At) (N ) or trials (M) {y = mx + c) 
.530.000 0.00209 478 478 Y = 0.9534 x - 0.01 10 0.9534 
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Table 1 : .Cont'd 
Reynolds Time Number of Number d Log of average distance Index (m) 
number ' Increment time steps elements of , against log of tlrne steps 
(Re) (at) (N) tr~ais (M) fy = mx + -.- c )  -_ _ _  -___ 
790,000 0.00140 712 71 2 y = 0.9627 k - rl. G274 0 9627 

- - 
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- Fig 2: Laminar, transiticrn and turbulent region 
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Fig. 3: Laminar regbn 

Fig. 5 :Turbulent region 
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CONCLUSlON 
The s M y  has explored the use of &ndom 

walk ntodet to characterize the: fiuM flow (soil 
oiosi~n]. The Index number increases with ineriiwse 
i~ Reyrid~3s number Rate cf twease d index 
nUtTlD@i is nighest ;r. the rarninar region and 
smallest in turbulent region. 
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