
Comparative Analysis of Time Steps Distribution 
in Runge-Kutta Algorithms 

Salau, T.A.O., Ajide, 0.0. 

Abstract- This study utilized co&ination of phase plots,time Steps dhtribution and 'adaptbe time steps Runge-Kutta and ffb order 
algorithms to investigate a hsrmonically Cuffing oscillator.The object is to vbually corrpare fourth and fifth order Runge-Kutta algorithm 
performance as took f a  seeking the chaotic solutions of a harmonically excited M i n g  oscillator.Though filth order algorithms favours 
higher time steps and as such faster to stecute thanfourth order for all studied cases.The reliability of mults obtainedw ithfourth order 
walh its higher recaded total conputation time steps period. 
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E xtensive literature study shows that numerical technique 
is very important in obtaining s o l u t i ~  of differential 
equations of nonlinear systems.The most common univer- 

sally accepted numerical tedaique are Backward differential 
formulae, Runge-Kutta and Adm-Bashforth-Moulton. Ac- 
cording to Julyan and Orate in 1992, Runge-Kutta family of 
algoritluns remain the most popular and used methods for 
inkat ion,  In numerical analysk, the Runge-Kutta methods 
can be classified as important family of implicit and explicit 
iterative methods for the approximations of solutions of ordi- 
nary differentid equations. Historically, the Runge-Kutta 
techniques were deveIoped by the German mattzematicians 
CRunge and MW. Kutta. The combination of the two names 
formed the basis of nomenclature of the method known as 
Runge-Kutta. The relevance of Runge-Kutta algori- in 
finding solutions to problems in nonlinear dynamics cannot be 
overemphasized. Quite anumber of resealtlh efforts have been 
made in the numerical solutions of nonlinear dynamic prob- 
lems. It is usual when mvestigting the dynamics of a conti- 
nuous-time system described by an ordinary differential equa- 
tion to first investigte in order to obtain trajectories. Julyan 
and Oreste (1992) were aMe to elucidate the dynamics of b e  
most commonly used family of numerical inkgmtion schemes ' 
(Runge-Kutta methods). The study of the authors showed that 
Runge-Kutta integration should be applied to nonlinear sys- 
tems with knowledge of caveats involved, Detailed explana- 
tion was provided for the interactid between stiffngs and 
chaosnnte finding of this research revealed that explicit 
Runge-Kutta schemes should not be used for stiff problems 
mainly because of their ineffiaency. According to the authois, 
the best alternative method is to employ Backward differentia- 
tion formulae methods or pasibily implicit Runge-Kutta me- 
thods. 

The conclusions drawn from the pap& elucidated the fact that 
dynamics is not only intereted in problem with fixed point 
solutions, but also in periodic and chaotic behaviour. 
The application of bifurcation diagram in the chaotic study 
of nonlinear electrical circuifs has been demonstrated (Ajide 
and Salau, 2011). The relevant second order differential equa- , 
tiom were solved for ranges of appropriate parameters using 
Runge-Kutta method.The solutions obtained from this method 
were employed to produce bifurcation diagrams. This paper 
shaved ba t  bifurcation diagram is a useful t d  for exploring 
dynamics of nonlinear resonant cixuit over a range of control 
parameters. Ponalagusamy 2009 resealtlh paper focused on 
providing numerical solutions for system of second order ro- 
bot arm problem using the Runge-Kutta six& order algorithm 
The precised solution of the system of equations reprsenting 
the arm model of a robot has been compared with the corres- 
ponding approximate solutions at different intervds. The re- 
sults and comparison showed that the efficiency of numerical 
integration algorithm based on the absolute error between the 
exact and approximate solutions. ?he implication of this find- 
ing is that SWS algorithm is not based an Taylois serie and 
it is an A-stable method. The dynamics of a torsionaI system 
with harmonically varying drying friction torque was investi- 
gated by Duan and Sin$ (2008). Nonlinaar dynamics of a sin- 
gle degree of freedom torsional system with dry friction is 
chasen as a case study. Nonlinear system with a periodically 
varyingnorm1 load was first formulated. %is is followed by 
re-formulation of a multi-term harmonic balance method 
(MHBM). The reason for this is to directly solve the nonlinear 
time-varying problem in frequency domain. The feasibility of 
MHBM is demonstrated with a periodically varying friction 
and its accuracy is validated by numerical integration using 
fourth order Runge-Kutta scheme. The set of explicit third 
order new improved Runge-Kutta (NIRK) method that iust 
employed two-function ev&ations per sGp has been deiel- 
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authors combined a special class of Runge-Kutta time discreti- 
zation~ that allows the method 6 be nonlinearly stable regard- 

? s of its accuracy with a finite element space discretization 
y discontinuous approximations that incorpolates the idea of 

numerical fluxes and slope limitem coined during the remark- 
able development of hi& resolution finite e e n c e  and finite 
volume schemes. This review revealed that RKDG methods 
are stable, hi&-order aocurate and highly pamnelizable 
schemes that can easlly handle complicated geometries and 
boundam conditions.?he review shawed ib immense applica- 
tions in ~av ie r~ tokes  equatiom and Hamilton-~acobi& hua-  
tions. This study no doubt has brought a relief in computa- 
tional fluid dynarnia.This technique has been mosdy em- 
ployed in analyzing Duffing oscillator dynamios.lhe Duffing 
osciktor has been described as a set of two simple coupled 
ordinary differentid equations to solve . Runge-Kutta method 
has been extensively used for numerical solutions of Duffing 
osciIlator dynamics. Salau and Ajde (2011). mvestigated 'the 
dynamical behaviour of a Duffig o d a t o r  usmg bifurcation 
diagrams. The authols employed four& order Runge-Kuh 
'm&od m solving relevant second order differential equa- 
tions. While the bifurcation diagmms obtained revaled the 
dynamics of the Duffing oscillator, it also shows that the dy- 
n&s depmd stron& on initial conditions. Salau and Oke 
(2010) showed how Duffing equation can be applied m pre- 
dicting the emission characteristics of sawdust particles. The 
pap&plains the modeling of sawdust particle motion as a 
two dimensional transformation system of continous time se- 
ries. n e  authors employed Runge-Kutta algorithm m provid- 
ingsolution to Duffig's model equatim for thesawdust par- 
tEles. The solution was based on displacement and velocity 
perspective. The finding of the authors showed a hi& profile 
feasibility of modeling sawdust dynamics as emissions from 
band saws. The cmclusion drawn from this work is that the 
finding no doubt provides advancement in the knowledge of 
sawdust emission studies. 

Despite this wide application of Runge-Kutta method as a 
numerical tool m nodhiear dynamics, there is no iota of doubt 
that a resea~h p p  exisis. Available literature shows that a 
resea~rh which compares the performance of different order. 
(Second, Third, Fifth, Sixth etc.) of Rufi~Kut ta  has not been 

spectidy Po, 0 and t Francis (l987), DoweIl(l988) and Na- 
rayanan and Jayafaman (1989b) proposed that the combina- 
tion of y=0.168,P0= O.2l and 0=1.0 or 
y = 0.0168, Po= 0.09 and 0 = 1.0 parametas leads to 
chaotic behaviour of harmonicany excited Dufhg ascilla- 
tor.This study utilized adaptive time steps'~un~e-Kutta aIgo- 
rithms to investigate equatim (1) over one hundred and fifty 
excitation starting with a time step of (At =Excitation Pe- 
riod/1000 ). The phase plot was made with the stable solu- 
tiom from the last fifty (50) exdtation period calculatims. 

carried out The objective of this paper is to visually compare 
fourth and fifth order Runge-Kutta aIgorihms performance as 
tools for seeking the chaotic soluti~ns of a harmonically ex- 
cited Duffhg oscillator. 

2 METHODOLOGY 
2.1 Duffing Oscillator 
The studied n o d i z e d  governing equation for the dynamic 
behaviour of harmonically excited Duffing system is given by 
gnuation (1) 

?+*(l-x2)= ~ ~ ( ~ h a x )  (1) 
In equation (1) X, X, represen$ respectively displace- 

ment, velocity and accelemtion of the Duffing oscillator about 

2.2 Time Step Selection 
Steven and Raymond (2006) argued &at employing a con- 
stant step size to seek solutions of ordinary differential equa- 
tions of some dynamical system h t  exhibits an'abxupt 
change could pose serious limitation-In such engineering 
probiems (chaotic dynamics) of interest,the choice of adaptive 
time step size becomes inevitable. The formula used for in- 
creasing and decreasing the time s@ ( A t )  in this study is 
given by (2) and (3) respectively.'Ihe tolerance (E, ) was fixed 
at 10.6 for all computation steps while the error ( & ) compares 
predicted results taking two half-steps with &king a full step 
caned module-1. Similaliy module-2 compares predicted re- 
sule taking three one third with taking a full step. Equation 
(2) is used when E < E, and equation (3) is wed when & >&, . 

2.3 Parameter Details of Studied Cases 
Three different case were studied using the details given in 
table 1 in conjunction with governing equation ( l).Cornrnon 
parameters to all cases includs displacement (x = 1 .O) , Zero 
initial velocity (x) and excitation frequency (a = I). 

Table 1 : Combined-Pammeters for Case 

Cases ( Damping Coefficient 1 Excitation Ampli- ( 

a set datum. The damping d c i e n t  is y . Amplitude strength 
gf harmonic excitation, excitation frequency and time are re- 
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24 RESULTS AND DlSCUSSlONS 
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Fig.1: Comparative Tiae Steps Distribution (Case-1) of fou& 
and fifth order Runge-Kutta Algorizhms 

Fig.1 refers; fhe time steps distribution range is shorter for the 
fourth order algprithm and lmger h r  lhe fifth order alg* 
r ih ." l l ie  fourth order algorithm if lefs to1erant of higher 
computational time steps than fifth order algori&mThe dis- 
tributins for the fourth and fifth order algorithms peaked at 
0.026 and OD26 excifatim periods respectively. 

Fig2 Comparative Time Steps Djstribution (Case-2) of fourth. 
ar8 fifth Order Runge-Kutta Algorithm 

Fig.2 can be interpreted qualitatively as figure 1. However 
the frequency intensities differ drastically. The distributions 
for the fourth and fifth order aigorithms peaked at 0.025 and 
0.048 stcibtim periods respectidy. 

and fifth Order Runge-Kutta Algorithm 
Fig3 can be in t e rp rd  qualitatively as figure 1 and 2. How- 
ever, the fr~uency intensities differ and the distdbuticms for 
the fourth and fifth order algorithms peaked atO.O1l and 0043 
periods respetively. 
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Fig.4a: Phase Plot Obtainad for fourth Order (Case-1) 

1: Phase Plot Obtained for fifth Order (Case-1) 
Fourth Order (Cass-2) 
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Fig.4~: Phase Plot Obtained for fourth Order (Case-2) 

$33.3: Comgamtive Time Step Distribution (Casd) of fourth 

Ftfth Order (Case-2) 
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Fig.4d: Phase Plot O M e d  for fifth Order (Case-2) 

I 
Fourth Order (Case3) 
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%.he: Phase Plot Obtained for fourb Order (he-3)  
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FigAf: Phaseplot Obtained for flf& Order (Case-3) 

module indepmdent 

Table 2a: Corresponding Phase Plots Referring to fig.4 (a, c, 
e) for Fourth Order Algorithm 

Table 2b: Correpmding Phase Plots Referring to fig. 2(b, dl f) 
for Fifth Order Algorithm 

Adjustable 
Time 
Steps(M0dule- 
2) 
None 
Rou* C 
Rough E 

Case3 

Case1 
, Case-;! 
Case3 

Note : A,B,C,D,E,F is the same as fige4(a),(b),(c),(d),(e) and (f) 
respectivdy. 

Case5 

Case-1 
Case2 

Case3 

Table*: Total Nurnber of Variable Steps Taken to Obtain the 
Steadv Solutions wiihin Studied 50 Excitation Periods @our& 

Constant 
Time Steps 

A 
D 
E 

Adjusiable 
Time 
Steps(Modu1e- 
1) 
A 
C 
E 

Consfant 
TimeSteps 

None 
Looks Qcser 
to B 
E 

ly support'highkr consistency a 
alpriihm reslzlts than ifs fifth oder c 
panative assessment of the phase plots 
time steps distribution suggest 
as more reliable than fifth order at 
putation steps period(see table 3) 
fourth order can be twenty five(25) time fast 
paring with its equivalent constant the step 
case-21. Similarlv, adaptive fifth order can be 

OrdG~un KutJa 
Fig.4 (a-f) shows h e  cornparism of the phase plok obtained Case cdwt Adap~ve 

. . ,  
.fast d execute dompahg with its equivalent time s tep (See 
all cases). Table 3 further shows that adaptive fifth order can 
be four times fast to compute as its counterpart fourth order as 
recorded in case3. However, reliability of computed results 
may be doubtful. Thf! ratio of total number of steps taking to 
~ e k  steady sduticm by fourth and &31 order algorithm is 

Adjustable 
Time 
Steps (Module- 

.1) 
B 
D 

F 

using Runge-Kutta fourth and fifth orders (modde-2). Fig.4 
(a+ h; the phase plok are only similar but not scact for 
c a s d  md case-2 only. A closer obeervatian of the phase plot 
for case-2 shows that solutio1\9 obiamed by fourth order algc- 
rithm are bounded to the negative side of the d isp lacmt  
while the sdutiars obtaind by fifth order algodthm are. 

Adjusiable 
Time 
Steps (Module- 
2) 
Fair A 
C 

F 

bounded to the positive side of the displacemaztThe phase Case4 50000 3667 3701, 
plot in figure4 (a) campare very well wifh phase plot ohined 
bv Dowell (19881. In additionhterpreiations of table2 strong- 

- Case-l 
Case-2 

Timesteps 

50000 
5m0 

Time 
Steps(Modu1e- 
1) 
1m 
15!B 

Adaptive 
Time 
Steps(M0dule- 
2) 
1588 
1594 
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Table3c: Ratio of Tod Number of Steps m Fourth Order 
to Fifth Order 

4 CONCLUSlONS 
This study has visually illustrated the performance of two 

Runge-Kutta algorithm to seek the chaotic steady solutians of 
harmdolly exated Duffing oscillator. The study has shown 
that Rmge-Kutta fifth oder can be four time fast to execute 
comparing with the corresponding fourth order but at the ex- 
pense of reliability of the computed results. 
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