
. ,? '. " -- :. ,-,? ..; 7 

CEIITRE OF P R D F E % I C S ~ ~ ~  
., . . *.*. : , . .  t ' . L ' . - 

~ournai or science and Techndogy )- , - . Z ~ ~ ~ ~ ~ . ? . " ~ ~ . ~ , P :  
..*,% .< ' , "a  ISSN 2049-7311 

International ~ o ; r n a l  of Sc ience  and Technology Volurne.1 No. 12, December,  2012 

Investigation ~f Excited Duffing's Oscillator Using Versions of Second 
Order Runge-Kutta Methods 

Salau T. A.o.' , Ajide 0.0.' 
Deparhnent of Mechanical Engineering, 

Uniqersity of Ibadan, Nigeria. 

ABSTRACT 

This investigation derived its strong motivation in the adoption of versions of second-order Runge-Kutta methods whery 
there is presently dearth of relevant literature to re-establish the complicated nature of solution of buffing oscillator 
dynamics, The choice of second-order Runge-Kutta methods hinged on its simplest algebraic formulation of relevant 
coefficients based on Taylor series expansion comparing With its higher order counterpart. Validation of FORTRAN-90 
codes of algorithms was achieved by phase plots comparison reference to Dowell (1988) as standard. The nature of simulated 
solutions were visually determined with scatter plot of phase variables obtained from simultaneous implementation of large 
number of versions of second-order Runge-Kutta methods in conjunction with the corresponding literature results. Validation 
results are acceptable to within the accuracy limit of Runge-Kutta methods adopted. The scatter plots on phase plane for cases 
investigated are well structured and bounded (strange) and compare correspondingly well with literature Poincare sections. 
This investigation re-establishes the complex nature of solution of Duffings oscillator dynamics. Its established procedures 
provide an alternative Poincare section method and can be utilised for preliminary verification of system dynamics behaviour 
subject to confirmation by additional dynamics tests. 

Keywords: Excited Dufing Oscill~tor, bcond order  rung^-Kutta. Taylor Series and Poincare Section 

1. INTRODUCTION 

Runge kutta technique is unarguably one of the most 
highly favoured numerical tools in simulating chaos 
dynamics. The fourth-order Runge-Kutta method has been 
the preferred numerical integration scheme for solving 
chaotic problems in non-linear systems (Moorthy et al, 
1993). According to the authors' work, the method is 
e ~ ~ ~ i $ e r a d  very accurate but requires very small time- 
steps and four equation solutions per time-step. These 
drawbacks hinder the solution of chaotic problems in 
multi-degee-of-Freedom (MDOF) systems. The paper 
presents the solution of the chaotic problem of impacting 
single-degree-of-freedom (SDOF) oscillators, using the 
Newmark method which is comput.ationally efficient and 
uncohditionally stable. The results of their study are 
compared with those obtained from the fourth-order 
Runge-Kutta method. It is concluded that the Newmark 
method with an adequate check on the sohution accuracy 
could give qualitatively the same results as the Runge- 
Kutta method. The method has the benefit of an extension 
to MDOF real-life problems of chaos which could be 
solved using numerical techniques. Chaotic motion of a 
virtual double pendulum has been studied by Aan et al 
(2011). Large oscillations of this pendulum were 
modelled by the system of nonlinear differential equations 
in the Hamilton form. This system was solved on the 
worksheet of Computer Package Maihcad numerically, 
using the Runge-Kutta algorithm of fourth order. The 

results obtained were demonstrated by some frames of 
video clips visualizing the chaotic motion of a double 
physical pendulum. The paper concluded that the results 
obtained can serve as teaching aids in the process of 
analytical mechanics for engineering students. A study 
which utilizes combination of phase plots. time steps 
distribution and adaptive time steps Runge-Kutta and tifth 
order algorithms to investigate a harmonically Duffing 
oscillator has been carried out by Salau and Ajide 
(2012c,1). The object of their study was to visually 
compare fourth and fifth order Runge-Kutta algorithms 
performance as tools for seeking the chaotic solutions of a 
harmonically excited Duffing oscillator. It is deduced that 
although fifth order algorithms favours higher time steps 
and as such faster to execute than fourth order for all 
studied cases, the reliability of results obtained with 
fourth order worth its higher recorded total computation 
time steps period. 

The objective of Khatami et a1 (2008) paper is the 
analytical investigation of the dynamics of vibration of 
parametrically excited oscillator with strong cubic 
negative nonlinearity based on Mathieu- Duffing 
equation. The analytic investigation was conducted by 
using He's homotopy-perturbation method (HPM).The 
authors employed Runge-Kutta's algorithm to solve the 
governing equation via numerical solution. The effects of 
variation of the parameters on the accuracy of the 
homotopy- perturbation method were equally studied. A 
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modified RungACutta method with phase-lag' of order ' 
infinity for the numerical solution of the Schro"dihger 
equation and related problems has been developed in 
Simos and Jesu' s (2001) paper. The modified method is 
based on the classical Runge-Kutta method of algebmic 
order four. The numerical results indicate that the new 
method developed is more efficient for the numerical 
solution of the Schro"dinger equation and related 
problems than the well known classical Runge-Kutta 
method of algebraic order four. The behaviour of chaotic 
dynamical systems is understood by calculating flows in 
phase space. Stable points can emerge after iteratingthese 
flow many times, revealing significant information about 
the system (Benjamin, 201 1). A rigorous integrator has 
been developed using Taylor models and implemented in 
the code COSY INFINITY which integrates ODES and 
PDEs rigomsly. The author was able to illustrate these 
integrations of various point densities using an eighth- , 
order Runge-Kutta with automatic step size control using 
reverse communication. Optimum fractal disk dimension 
algorithms has been used to characterize the evolved 
strange attractor when adaptive time steps Runge-Kutta 
fourth and fifth order algorithms are employed to compute 
simuJtanaousiy multiple trajectories of a harmonically 
excited Duffing oscilltttor from very close initial 
conditions ( Sdau and Ajide, 2012tb3 ). The object of the 
study was to enable visual comparison of the chaos 
diagrams in the excitation amplitude versus frequency 
plane. The chaos diagrams obtained by fourth order 
algorithms is accepted to be more reliable than its fifth 
order counterpart, its utility as tool for searching possible 
regions of parameter space where chaotic 
behaviour/motion exist may require additianal dynamic 
behaviour tests. 

Despite the availability of numerous literatures on the 
choice of Runge kutta as a numerical tool for 
characterizing nonlinear dynamics, there is presently 
dearth of relevant literature which re-establishes the 
camplirnted nature of solution of Dufftng Oscillator 
dynamics. The god of this paper is to investigate this 
dynamics by adopting versions of second-order Runge- 
Kutta methds. The focus is what geometrical shape wiI1 
set of results obtained when the same Duffing equation is 
simulated from the same initial conditions (displacement 
and velocity) using several versions of second order 
Runge-Kutta (1,2,3,---n; for very large n). The 
justification for the choice of second order RungeXutta is 
that it is the dimplest method where in the mathematical 
relationships between coefficients can easily be obtained 
without much of rigorous derivation. 

2. METHODOLOGY 

2.1 Harmonically 
Oscillator 

Excited Duffing's 

The present study investigated normalized governing 
equation of harmonically excited Duffing system given by 
equation {I) with. reference to Moon (1987), Dowell 
(1988) and Narayanan and Jayaraman (1989b). 

.. 
In equation (1) X ,  x and x represents respectively 
displacement, velocity and acceleration of the oscillator 
about a set datum. The damp coefficient is y . Amplitude 
strength of harmonic excitation, excitation frequency, and 
time are respectively c, W and I . According to literature 

combination of y = 0,168, e, = 0.2 1, and 0 = 1 ,O or y'= 

0.0168, c= 0.09 and@ = 1.0 parameters leads to 
chaotic behaviour. However Dowell (1988) reported 
period one, two and four at. respective excitation 
amplitude of 0.177, 0.178 and 0.197 when the damp and 
excitation frequency are fixed respectively at 0.168 and 
1.0. The present investigation utilised family of second 
order Rung@-Kutta method driven at constant time step 
(0.01) to seek both transient and steady solutions of 
equation (1) over a t o d  of seventy (70) excitation periods 
and initial conditions (1, 0). Scatter diagrams were made 
in each studied case on phase plane with the last 
computed stable solutions. 

2.2 Generalized Runge-Kutta Methods 

According to Chapra and Canale (2006) many variations 
of explicit Runge-Kutta method exist, however all can be 
cast in the generalized form given by equation (2). 

In equation (2) p ( t , , ~ , , b )  is called an incremental 

function and best interpreted as a representative slope of 
multivariable function f (x , f )  over the time interval ( L\I 
). The increment function can be written in general form 

as in equation (3) for canstants a'" and K" . 

2.3 Second-Order Runge-Kutta Methods 

The second -order version of equation (2) is given by 
equation (4). 
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In equation (4) .K, = f (t,, x,) and 

K, = f (4 + Plb, x, +?& Iq&) . The constant 
coefficients are related as in equations (5) to (7) with 
details equivalent relationship between equation (4) and 
Taylor series expansion to the second -order term 
provided in Chapra and Canale (2006). 

The three simultaneous equations ( 5 )  to (7) related fou; 
unknown constants and suggested non availability of 
unique set of constants that satisfy these equations. The 
second -order Rung-Kutta methods is a choice of this 
investigation because of its simplest nature of the 
derivation of equations (5) to (7) compare with its higher 
order counterpart th@ involve a large mount  of tedious, 
time consuming and error prone algebraic manipulation. 

after the other to seek the solutions of equation ( I ) .  
Mathematical arguments by Chapra and Canale (-2006) are 
that each of these versions (Vl,  V2 ... V999) would 
produce sarhe results provided the ordinary differential 
equations (ODE) have solution that is quadratic, linear or 
constant and varied results otherwise. It is here that lays 
the pivot of the present study with one of the objective 
being to observe any structural pattern of assembly of 
solution points. from versions of second-order Runge- 
Kutta methods on the phase plane. The last of computed 
displacement and velocity in the steady solutions realm 
produced by V1, V2 ... V999 were used to plot scatter 
diagrams on the phase plane. 

2.4 Parameters of Cases Investigated 

A constant time step ( A t  = O.Ol), initial conditions (1, 0) 
and corresponding coefficients combination (V I. V2. .  . 
V999) are common to all investigated cases. The unsteady 
solutions spanned the first twenty (20) simulation period 
reference to harmonic excitation. 

Case-I: y = 0.168,< = 0.21, and W = 1.  

Case-11: y = 0.0 168, cJ = 0.09, and W = 1.0 

More insights are provided by Cartwright and Piro Case-111: y = 0.168, = 0.197, and W = 1. 
(1992). The present study assumed nine hundred and 

Case-IV: = 0.168.e, = 0.178. and W = 1 .  
ninety nine (9993 distinct values for Cr2 within Case-V: y = 0.168,eJ = 0.177. and W = 1. ' a, ' l.OOO using constant step size of 0.001 Case-VI: y = 0.168, = 0.21, and W = 1 in addition to 
and solved for o t h ~ r  three constants using equations (5) to table 1 .  The version (V500) is one of the three 

(7). The combination of comsponding a1 ,8', 'I I and most commonly used and preferred. 

the assumed a2 tagged (Vl, V2. .. V999) were used one 

Table 1: Coefficients combination for selected version of second-order Runge-Iiutta methods 

3. RESULTS AND DISCUSSIONS 

The second-order Runge-Kutta methods appropriately 
coded in FORTRAN-90 was u$ed to compute results 
presented under this section. The phase plots in figures 1 
and 2 were wed to validate Rqe-Kutta algorithms by 
comparing corresponding figures with its literature 
counterpart. Figure 1 compare very well its literature 

counterpart which was computed by higher order Runge- 
Kutta. The observed significant variation in figure 2 with 
its literature counterpart can be explained respect to 
higher order Runge-Kutta difference. Dynamics 
 omp put at ions with higher order Runge-Kutta methods are 
well known to be stable and more reliable than lower 
order counterpart. 
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Phase plot (Case-I) 

Displacement 

Finre  1: Steady Phase plot (Case-I) computed by VSOO over 41" to 70U excitation period 

- - 
1 

Phase plot (Case-V) 

I 
1 

Displacement 

Figure 2: Steady Phase plot (Case-V) computed by V500 over 41" to 7O* excitation period 
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- -...-- -- - - 

Time 

Figure 3: Steady time displacement bisbry (Case-VI) over 7 0 ~  excitation period 

- - 

Figure 4: Steady time velocity history (Case-W) over 70a excitation period. 

It is amazing to note that as wildly varied as time history observed wild variations. Furthermore the series in figures 
in figures 3 and 4 are the difference among the series 3 and 4 impresses large number of objects swarming at 
computation is the version of the Runge-Kutta methods different rate with common focus being to get onto 
used. The time displacement history predicted over a arbitrary points on the strange attractor of Duffing's 
whole period of excitation by version V800 was almost oscillator. Some of these attractors are reported in figures 
linear. The common and preferred version (V500) of 5 to 9. 
second-order Runge-Kutta methods is no exception in the 
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Figure 5: Steady scatter plot (Case-I) phase variables on phsse plane computed at the end of 70" excitation period 

Scatter plot (Case-I) 
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Figure 6: Steady scatter plot (Case-11) phase variables on phase plane computed at the end of 70fh excitation period 

Scatter plot (Case-II) 
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Figure 7: Steady scatter plot (Case-111) phase variables on phase plane computed at the end of 70" excitation period 

Scatter plot (Case-III) 
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Figure 8: Steady scatter plot (Case-IV) phase variables en phase plane computed at the end of 70m excitation period 
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Scatter plot (Case-IV) 
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Figure 9: Steady seatter plot (Case-V) phtw variables on phase plane computed at the end of 70m excitation period 

r 

Scatter plot (Case-V) 

The strange structured and bounded images of figures 5 
and 6 are qualitatively acceptable within the accuracy 
limit of second-order Runge-Kutta methods as equivalent 
to the Poincare sections reported by Dowell (1988) and 
Salau and Ajide (2012 (,,) and for respective 
corresponding driven parameters combination. Therefore 
it can be concluded that equivalent Poincare section can 
be obtained by simulation of equation (1) either from set 
of very close multiple initial conditions or by 
implementation of large number of varied version of 
Runge-Kutta methods. The standardised method of 
generating Poincare sections used by Dowell (1988) being 
the stroboscopic report of predicted phase variables at 
interval of one excitation length period performed 
repeatedly over infinite tine length. Figure 7 match fairly . 

the finite average dots number of period four response 
reported by Dowell (1988). However figures 8 and 9 
deviated significantly from respective period two and one 
that Dowell (1988) predicted. The noticeable deviation 
can be accounted to lower instead of higher order Runge- 
Kutta methods used. The phase plot in figure 2 elucidates 
inaccuracy of adopted solution method and why figures 8 
and 9 appeared disjointed unlike their figure 5 
counterpart. 

methods emerge structured and bounded strange images 
on the phase plane that qualitatively replicate Poincare 
sections reference to literature. The observation was 
co'nsistent especially for driven pararneters combination 
that guarantees chaotic response of the Duffing's 
Oscillator. The utility of the procedures of this study can 
be in the preliminary verification of chaotic behaviour of 
dynamic systems subject to confirmation by additional 
acceptable dynamic tests. 
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