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Abstract This work investigated the control of chaotic behavior of a harmonically perturbed DufTing Oscillator using 
vibration absorber. The system of two degrees of freedom governing equations were simu Eated nu rner i~ally using classical 
fourth order Runge-Kutta algorithm for a constant time step. The solution time history, phase plots and Poincare maps were 
u s d  to validate tbe simulation. Essentially, the details of the' Poincare map were used numerically to determine the 
periodicity ofDuffing oscil&r forspectmmof mass ratio at aconstant step of0.001. The time history, phase plots and the 
Pomca~ at mass ratio (p), absorber parameters (a,), and amplitude ofexcitation IF,) are in agreement with what is obtained 
in open literature. The chaotic response of the Dufigdbsorbersystem at a, = I.!, F, =0.2 1: and, taken respectively. the 
Duffmg and the absorber initiil conditions to be ( 1.0,O.O) and (0.0,0.0), this chaotic response was rendered periodic tor some 
selected mass ratio (Eps1.0). Specifically, periods 1, 2 and 4 were obtained at p= 0.208; these periodic responses were 
obtained at respective values ofa,=l. 1. a,=l.7803 and a,= 1.7595. In this work, eighty percent of the mass ratio selected did 
ensure that the chaotic behaviour ofthe DuRutg-Absorber system is rendered periodic. This workdemonstrated the practical 
utility ofvibration absorber as a chaotic oscillations control tool by the mass ratio approach; and having a recorded success of 
about eighty percent. 
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1. Introduction 
The behiiviourof systems under external perturbations has 

been subject ofactive research area in the past few centuries. 
Until recently the study ofthe behaviourof most dynamical 
systems has been restricted ro linear systems due to the 
limitations of existing cIassica1 analytical tools to handle 
systems that are nonlinear with mult ;degrees of freedom 
Furthermore, the so-called numerical techniques to simulate 
these categories ofsystem are co mputationaly laborious, so 
the human constraints are visible in this regard. Reprieve 
came our way with the advent of personal computers; these _ 
machines give room fbr extensive insight into how and why 
some completely deterministic dynamical system could 
behaveso strange. As of now, the computer remains theonly 
'reliable' tool to study these categories of systems partly 
because ofthe resulting complex geometry and major$ due 
to the number of iterations required to home in on the 
solutions being sought - a concept referred to as 
experimental mathemat ics. The most fundamental and 

fascinating phenomenon in this behaviour is that exhibited 
by a classical simple pendulum having unusually large 
amp litude,[l]. The usual simp litjr ing assumption imposed on 
a simple pendulum to linearize it has hidden its unique 
features for centuries. However, it is instructive to mention 
here that not all nonlinear equations can lead to 
period-doubling and possibly chaos, see[2]. The pendulum 
model is simple but produces an astonishingly complex 
geometry. If a dynamical system involves no stochastic 
variables in its mathematical formulations, then it should 
behavein a mannerthat will make predictability possible and 
the history ofsuch a systemcan be known with certainty. But, 
this is never so. Reference[3] in1963 was baffled by the - 
result of his weather experiment which later brought to the 
conclusion that some dynamical systems of interest cou ld'be 
unpredictable because of their nonlinear relations and their 
sensitivity to initial conditions[4]. This Lorenz model are a 
simplified version of the earlier work on atmospheric fluid 
dynamics carried out by Saltzman in 1962,[5]. Sensitivity to 
initial conditions is responsible for the seemingly 
unpredictabk, long-term temporal evolution of aperiodic 
motion, and in facr a vanishingly small e m r  in the - - 

Camponding author. measurement of the initial conditions of any real or 
o d d l i ~ t n d . c o m  (Folushola Q Dotire) 
~ub/istred onlineat http~fjNjouraal.sapab.orp/pnea deterministic dynamical system brings about loss of 
Copyright 8 2013 Scientific & acadgnic Publishing. An Rights Resaved predictability of its long-term behavioural patterns. As we 
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cannot memure any real dynamical system wfth infinite 
precision the long term pr6diction ofchaotic motion in such 
systems is impossible, even if we know the equations that 
model the system precisely, argued[6]. A small alteration in 
the system parameters could render the system chaotic. This 
chaotic behaviour is one of the ways in which nonlinear 
dynamical system manif5sts as written bym.  Yet it is 
important that scientist and engineers be able to tell the 
future characteristic or response of a system whose 
mathematical model(s) am known. In the ordinary sense of 
things everybody wmts to know what the future holds. So, 
the ideal ofwanting to know what the hture look like is not 
limited to the technical people. 

The study of chaos hta gained tremendous attention over 
the last few years. Control of chaotic osc3latEons by 
vibmion absorber appendage based on some pmmetem of 
control has been repolred by[8]. The duo through'some 
numerical simulations obtained periodicity fmm a 
notoria~wly unpredictable system exhibiting strange attractor 
behaviour, but were not specific in their work what system 
panmeter in the name ms-ra t io  that was ,used to gain 
contmloverthecfraotic system. We express no doubt thatthe 
Duffing Oscillator behaves chaotically. In a study of 
mechanical system,[gJ reported certain values of amp Iitude 
ofexitation that could produce various responses - chaotic 
and peliodic,To ensure that the Duffing oscillator is chaotic 
at the first instance, we chose Dowell's 0.21 amplitude of 
excitation. Fm m here, we studied the Duffing Oscillator with 
the attached undamped dynamic vibration absorber (DVA) 
and observed the systemresponse, even with the 0.21 chaotic 
amplitude of excitation, using the mass ratio as key 
ingredient of control. In addition, Addison [6] simu Iaied a 
s 9 l e  single degree of hedom Quffing oscillator and was 
abk to show that over certain values of some control 
-ten (damping coefficient and the amplitude of 
forcing), the DuFmg oscillator behaves chaotically. 
Wprence[lO] also established similar result. The mass ratio, 
being a pure number bounded between m and unity .is 
widely known to chaoticians to be a 'selector' or 'tuner' for 
rendering the behaviour of such a system from chaotic* to 
periodicity. Of a fact, one can switch from duoticity to 
pakodicity and vice versa. Though[8] stated some absorber 
pakmeters through which they gained control over the 
D&iigpscillator. These pasameters alone are not sufficient 
to characterize the system behavior, especially when 
depigning for compactness. The ratio ofthe absorber mass to 
rh4 main mass defines the mass ratio. 

e present study has, among others, the objective of 
p viding the mass ratio from 0.001 to 1.0,and its associated 

ponse in a tabular form, thus aiding design and reference i 
pu oses. On the other hand, the work is expected to serve as 
a design guide for engineers responsible for making 
eq ipment where competing frequencies are ofinrerest. This I w rk is essentially different fmm others that have preceded it 
in that it demonstrated how caution must be exercised in 1 deciding what value of vibration absorber should be used 
al ng with the main mass or the mass of the system it is 9 

expected to protect. And, the work established that absorbel 
parametem alone are not sufficient to chamterise the 
response ofthesystem 
NOMENCLA TURE 
C Damp ing coefficient 
F, Amplitude ofexitation 
DOF degree of freedom 
k linear stiffness coefficient of main mass 
k, linear stiffkess of absorber 
kc cubic stiffness coefficient of main mass 
m main mass 
m, mass ofabsorber 
1 time 
x, y Cartesian coordinates 
x l ( t )  displ&ement ofthe main mass ' 
xz(t) dl~placemtnt oftheabsorberma& 
x', velocity ofdamper 
$', acceleration of main mass 
$'z acceleration of absorber mass 
number of primes denotes number of derivatives. 

Symbols 
a nondimensional absorber parameter 
o circular frequency ofharmonic excitation 
p mass ratio 
s damper parawter 
Subscripts 
a used to denote parameter for absorber 
c deff nes cubic st if iess 
o maximum amplitude ofexcitation 

2. Methodology 

The procedure adopted to study this type of dynamical 
system is based purely on computer eqerimentation. The 
simu laticin was performed entirely using FORTRAN W95 
code and MicrosoP Excel 2007 is used for graphical 
rendering. The specified mathematical models obtained 
hm[8]  were integrated numerically based on the classical 
kurth order Runge-Kutta method. The external disturbance 
whose nature is harmonic and deterministic was imposed on 
the system for several complete cycles; and one thousand 
ordinates were studied within each cycle. We verified 
whether or not the system response is chaotic by observing 
the response on a Poincare section. With this validation, we 
developed another algorithm that verified periodic motion ot' 
the system while varying the mass ratio finely at a constant 
step of 0.001 and keeping constant all other specitied 
absorber parameters. The validity of this second algorithm 
indicating periodicity at a definite mass ratio and absorber 
parameter is demonstrated by phase plots. ARer series of 
crude runs to gain insight into the responseofthe system, the 
eqerimennt was allowed to go finely by simultaneously 
selecting the mass ratio, absorber parameters and to decide 
whether motion is periodic or chaotic. So, each response was 
tied to a particular value of mass ratio and the associated 
absorberparameters. The mass ratio according to literature is 
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set between zero and unity with the minimum being 0.001 
and the maximum is taken tb be one ( f  ). 

2.1. The Physical and Mathematical Models 

The physical model as shown in figure 1 is the Duffig 
Oscillator with an undamped Dynamic Vibration Absorber 
OVA)  forming a twodegree-of-freedom (DOF) system 
The model consists of two masses - the main mass, m, and 
the absorber mass, ma. The part 'C' is a damper responsible 
for removing energy from the system. The damphg force is 
proportional to the velocity of the system. The undamped 
absorber mass is appended to the rnain mass via a linear 
restoring spiing, b. 

Main Mass (M) 

The linear restoring spring of stiffness k and cubic 
nonliear spring of stiftkess k, are essentially one and 6 
attached to the main mass. The amw seen in this spring is 
used to indicate that cause is not proportional to effect; that 
the Haob's law does not hold forthe nonlinear spring which 
6 a qflection of all real-life problems. The two masses are 
not allowed to deflect side-ways since the mathematical 
models eliminate side thrust e&ct and thus confining the 
motion to the one of vertical oscillation. When exited, the 
duty c$f the absorber is to prevent excessive oscillation of the 
entire system in order to inhibit infmite vibration or 
resonyce. In k t ,  the main mass is essentially stationary 
while the absorber oscillates. According to [I I], the natural 

undamped DVA is tuned to match the 
of the main mass, thereby producing a 
but opposite in direction to the exitation 

force, thus nullifying vibration at the resonant frequency. 
 are ' xtensive daaik about the principles of operation of a 
DVA Frn be 6ound in the book by [I 21. 

model is a system of two second order 
e d h y  dcffmmtial equsatians, (1) and (2). The 

equations are modified to include the mass ratio and are 
presented as. equations (la) and (2b). Though. no alteration 
was perfarmed on (2b). Since the classical fourth order 
Runge-Kutta method cannot handle order higher than one, 
the equations had to be transformed into four sets of first 
order ordinary differential equations; and are simulated in 
this form They are respectively equations (3), (4), (5) and 
(6). ' 

~ , ~ c ~ m ) ~ , 4 ~ m ) x l + ( ~ m ) x l " 3 * k J m ( x l -  %) 
= (F,/m)s in(ot) ( 1 )  

2'2+(k$n)( x 2- x I )  = 0 ( 2) 
The Modification Made: p = &/in 

f l ~ c / m ) x ' 1 4  Wm)~~+(Llm)x~~3+p*(L/ng)(~~-~~) 
=Fsin(wt) ( la) 

kt2+(k/rrl& x 2- x ) =lo (33) 
Equations (la) & (2b) are transformed into the manner 

that is suitable for the Runge-Kutta model as follows: 
Y'I = Y2, (3)  

Y'z=-s*yz+al y ' ~  -ac yl lya,O,~-y3)+Fsinot (4) 
~ ' 3  = Y4 ( 5 )  

yh = *,O~-YI 1 ( 6 )  
where yI=xI,y2=dl .y,= x , , ~ ~ =  i2. 
r =(dm), al= (k/m2), &= (kJw3); 
az= (kJmo2), %= (kJmw2), F =F,/mw- 
Further, in the study of a buckled beam[[ 31, using the 

following parameter values: s = 0.168, al= ac= 0.5. F, = 0.21 
and o = 1, showed that the Duffiig oscillator is chaotic. 
These parameters are used in this present study in order to 
ensure that the. DuEng oscillator is chaotic before 
proceeding on fmding the mass ratio for the purpose of 
controlling the system response. 

2.2. Numerical Simulation 

This numerical experiment involves studying the response 
of the system at the manipulation of the absorber parameters 
and the mass ratio ofthe system. In experimental analysis of 
this nature, it is necessary that we use certain established 
procedure to verify the outcome of the simulation. The 
sirnu lation after hours of processing on a personal computer 
returns hundreds ofdata which we subjected to validation by 
examining the history ofthesystemon phasespace plots and 
Poincare maps. These data were used to determine the results 
that we have in the following paragraph. 

3. Results and Discussion 
3.1. Results 

The results of this computer experiment are as shown in 
table 1. It comprises the so-called absorber parameters. the 
response of the system and the mass ratio at which these 
responses are observed. Figures two (2) thmugh six we& 
plotted by choosing hmthe  pool ofthe values of mass ratio 
along with stated absorber parameters. 
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lLble 1. The concise resuks oftunhpthe tnas ratio (p) fmely (at a step of 0.00 I)  from 0 to 1 0 k q n g  ranstant all otlier specified absorber parameters ' 

' Chaoflc response is deSned in this work m thc response when priodioity ex& two hundred and fie six 
 duni ins two, thw and fwr aged with the results obtained by [6], while the 1st eolumn does not 
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W e r e  2. The Pomcare map of a Duftmg Oscrllator 

Historically, figure 2 is a Poincare map confirming that the 
data generated by the Runge-Kutta algorithm is chaotic and 
the attractor is strange, this is in agreement with the works of 
Dowel!, and Narayanan, er al. This kind ofattractor neglects 
the absorber mass effect. Other figun like 3 depicts the 
response of the system as period one motion. From table 1 ,  
we see that when the mass ratio (y) is 0.012, the motion 
recorded is period one (1) at a,=l.l; and period two (2) 
motions when ag1.7803, a,=1.9575 and a,=1.9576. These 
responses art: examined for both the absorber and the main 
masses on phase space trajectories. 

r-"_l"ll- --*-- ll. -7 
phalc >pace plot for mall1 ~n i~s i .  period 1 matloll 

p =  O , 2 0 8 O l a , =  1.1 

"-"-* - "-- -*-  - - -- - Q15--s 
Displacement 
------- 1 

Figure 3. The PhasePlotofMain Mass 

For the main mass, the phase space trajectory in figure 3 
indicates periodic response when absorber parameter, = 

1.1 and mass ratio y = 0-0280. This is a period one (1) 
motion. Qualitatively, this oval object (figure 3) confirms 
that the motion is periodic since no intertwined loop is 

present-a limit cycle indeed. W ith aclearly defined locus ot' 
points, a view of this motion produces a "dot'' on. the 
Poincare map, as shown in figure 4. 
rrr- ---- ---- --- ---.- ----- -r - - - -_-- 

0.5 - -  -- - - j Velocity I 

I 0.4 t--.?--""-"--- ---- - - - . 9 

! 

Displacement 

t ------ . -- ..... -, . 
Figure 4. T b  Cbrresponding Porncare secton for periodone ( I  )mot 1011 

The Poincare map is the time history ofthe system. For a 
chaotic response, a complicated locus of point is observed 
on a phase plot having infinitely many points. - -- . - . - - - - , -- . - - - 

I 

I Phase ipacc for dbsorb~t m d ~ ~ l j e r ~ d  1 mot1011 

I -- - -  . . 

i 
-1 5 

Displacement 
L . -- - -- - . . - . - - 

Figurt9. ThePhase SpaceoftheAbsorber 

And for a, = 1.1 at the same value of p we obtained period 
one (I ) ,  shown in figure 5 for absorber motion. For the case 
in which aa = 1.7803 at the same value of p we obtained 
period two (2) as shown in figures 6 and 7 respectively Sbr 
the main mass and absorber motions. 
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For a period two (2) mot[on, the Poincare map has two 
"dots" on its plane, see figure 8. 

Pbaa space hajtwtor). for Hod 2 mozton for maln tnarj 
B - 0.206080 Llt a, = 1.7803 

f 

1 .- . . - ---, ._ . . .. .- . - - 1  

Fipn 6. The Pabd TW Phase Plot o f  Main M a  st lf0 2080 and 
a,=l 7803 

1 Phase space pbt of ebsoaKr motiDn at p 0.2080 &a, = 
I 

I 1.7803 I 

i - - a  

I Displacement 
I .  - -I - -  -- - - - -  . - .- .- -. -. -* - - - - 
Fipn 7. The Paiod T w  Phase Pbt of Absorber m fl.2080 and 
a p l  7803 

R p m  8. The Oorresponding Poncare map for pwad tw (2) motion 

3.2. Discussion 

The values of the mass mtio and the absorber parameters 
were used in this study with a focus on its temporal and 
spatial responses. If the stroboscopic time fbr any of such a 
point to revisit a particular point where it earlier visited is 
equql to or more than two-hundred and fifly six periods of 
excitation, then we interpret this response as chaotic. Forthis 
type ofsituation our algorithm returns 'zero' and the motion 

is considered chaotic. 
Where the system repeats at regular time interval. the 

motion is r e g d a d  as periodic and the mass ratio and the 
absorber parameter for which this response occurs are noted. 
inserting these values into an algorithm designed to test b r  
periodic or chaotic response, the algorithm returns a set of 
data which is plotted as phasespace trajectories and 
Poincare maps. ' 

From table 1, the first f i ~ e  result (i.e. from ro w one). the 
simulation returned zero as seen under the following 
respective values of a,: u,=I . I .  ug1.7803, u,- 1.9575 and 
a.=1.9576 at p = 0.001-0.005 suggesting that the system 
behaved chaotically. 

Furthermore, in row two of this table, the sysiem 
responded like a linear system at a,=I . I  (~olumn 2) and at a 
comsponding value of p= 0.006 (mass ratio), this mot ion is 
recorded as period two (21 motion. And, at aa=1.7803, 
1.9575 and 1.9576, at the s a w  value of p (is. 0.006), the 
system gave a typical response indicating chaos. For a p = 
0.016. we have one (1) period motion. At the same 0.016 
mass ratio. it is a period two (2)  motion. On a Poincare map. 
this should give two distinct poinrs. This period doubling is 
generally in agreement with so me of the earlier works; that. 
period doubling is a form ofharbinger ofchaos. As expected, 
the motion is chaotic after the period two (2) mot ions. and 
was followed by another period 2 motion. Again, this is 
clearly in agreement with the open literature, that periodic 
response is still possible a h r  observing chaos. 

Further, during the interval where p is between 0.201 - 
0.207 at a,=l.l and 1.7103 we recorded period ont: ( I )  
motion (i.e. b m  columns 2 and 3); and. at ugl 9575 and 
1.9576 the simulation recorded period four (4)  mot ions for 
both 1.9575 and 1.9576 values of a,, h m columns 4 and 5. 

However, the row in bold face (fiom table I) was 
highlighted to point to the difference@) between the results 
of our numerical experiment and the one conducted by [8]. 
With specified absorber parameters obtained hm[8] ,  it is 
expected that we obtain the same result. This is true for 
columns 2. 3 and 4 but the last column of this highlighted 
portion of the table does not agree with the results of the 
workof181. This particular msponse points toour submission 
that absorber parameten alone (without p) are not sufKcient 
to render a Duffmg oscillator periodic, yet are a necessary 
condtion, 

4. Conclusions 
The chaotic respoma e$ibited by the two degrees ol' 

hedom (DOF) Duffing-Absorber system studied in this 
work were rendered periodic by making the ratio of the 
absorber m s s  to the main mass as the key parameter used to 
gain control over the system. This work also confirmed the 
age-long understating that when the time for a particular 
attractor to revis it a point in space is too far. we concluded 
that the system is chaotic and predictability becomes 
impossible for such a dynamical system The absorber 
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parameters specified were pa~icular ly invaluable in ' 

searching through the chunks *of  data returned by the 
simulation. It should benoted that absorber pat-ametels alone 
are not sufticient to  charaterise the system response. We 
picked the value@) o f t h e  mass ratio that cornspond with a 
particular absorber parameter while also noting the nature o f  
the motion at play. In the study o f  nonlinear deterministic 
dynamical system, this kind of behaviour - transition hrn 
chaoticity to periodicity is one o f  many signs that show that 
cause is not directly ptvportional to effect as it is for linear 
systems. W e  d o  note that by speceing the mass ratio along 
with known absorber parameter values. this kind o f  
nonlinear system would be made to behave like a linear 
system 

[5 ]  Francis c. Moon. Chaotic Vibrations: An Introdut?ion for 
Applied Scientist and Engjneers, John Wiley and Sons. New 
York, 1987. 

[6] Paul S. Addison, Fractals and Chaos: An illustrated Course. 
IOP Publishing Limited. UK. 1997. 

[7] Robert C. Hilborn, Chaos and Nonlinear Dynamics: An 
Introduction for Scientist and Engineers, second ed.. Oxford 
University Press, Condon, 2000. 

[8] S. Naray anan, K. Jay araman,"Control ofChaotic Oscil lat~ons 
by Vibration Absorber". ASME Design Technical 
Conference, 12" Biennial Conference on Mechanical 
Vibration and Noise. DE 18.5 pp. 391 -394. 1989 

[9] Earl H. Dowelk Computational Mechanics, Springer-Vertag, 
Volume 3. Number 3,199-216. 1988. doi. 10.1007 ; 
BF00297446 

REFERENCES 
[I 1 Ian .G. Main. Vibration and Waves in Physics. Cambridge 

University Press, UK. 1995. 

[2] Gameti P. Williams. Chaos Theory Tamed, Joseph Henry 
Press. Washingtan DC. 1997 

[3] Edward N. Lmenz. "Dbenninistic Nrneriodic Flow". 
Journal of Atmospheric. Science, vol. 20, pp. 130-144, 1963 

141 E d w d  Ott, Chaos in Dynamical Systems, Cambridge 
Umiversity Press, UK, 1993. 

[lo] John M.T. Thonpson, H. Bruce Stewart. Nonlinear 
Dynamics and Chaos, John Wiley and Sons, New York, 1987 

[I I ]  Online Available httpd///www.scribd.co mldoc156748 1201 
Dynamic-Vibration-Absorben. (Accessed 18 February 
20 12) 

[I21 Tomasz Kry sinski, Fraoncois, M alburet. Mechanical 
Vibration - Active and Passive Control. 1 STE Ltd. Londun. 
UK, 2007 

[I31 Earl .H. Dowell. Charles Pezeshki. "On the Unden~andmgol' 
Chaos in Duffinds Equation Including a Comparison with 
Eperiment", ASME Journal Applied Mechanics. vol. 53 
ppS-9 1986 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY


	ui_art_dolire_control_2013(27)-1.pdf
	ui_art_dolire_control_2013(27)-2.pdf
	ui_art_dolire_control_2013(27)-3.pdf
	ui_art_dolire_control_2013(27)-4.pdf
	ui_art_dolire_control_2013(27)-5.pdf
	ui_art_dolire_control_2013(27)-6.pdf
	ui_art_dolire_control_2013(27)-7.pdf

