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Chaos D.iagram of Harmonically Excited 
Vibration Absorber Control Duffing's 

Oscillator 
Salau T.A.0, Ajide 0.0. 

Abstract- This study utilised positive Lyapunov exponents' criteria to develop chaos diagram on the parameters space of &dimensional 
harmonically excited vibration absorber control Duffing's Oscillator. Relevant simulations were effected by choice combination of constant 
step Runge-Kutta methods and Grahm Schmidt Orthogonal rules. Simulations of 4-dimensional hyper-chaotic models of modified Lorenz 
and R&ler were used for validation purposes. Lyapunov's spectrums were obtained at (197 x 307) mesh points of parameters ,space 
(p.a.).Lyapunw's spectrum of modified Lorenz system by constant time step (NRK1) fourth order Runge-Kutta method (0 4208. 0 1650. - 
0.0807, -26.4603) compare correspondingly well with (0.4254, 0.1286, 0.0000, -26.5493) reported by Yuxia ef a/. Similariy, Lyapunofs 
spectrum of modified R&ler system by constant time step (NRK1) fourth order RungeKutta method (0.1424, 0.0051f-0.0041, -24.0831) 
compare correspondiigly and qualitatively with (0.1287, 0.0149, -0.0056, -22.8617) reported by Marco (1996). The sum of Lyapunov 
exponmts (-22.7237, -31.3107, -27.8797) in R6sler compare correspondingly and qualitatively with variation matrix measure -AVERT (- 
24.0181, -30.9462, -28.1991) respectively for fourth, fifth and modified fifth order RungkKutta methods. The chaos diagram results 
suggested preferentially higher mass ratio for effective chaos control of Duffing's Oscillator main mass. The parameters space in the region 
of relative lower mass rdio suffered irregular boundaries. The practical applications of this Chaos diagram plot ~nclude, by instance, walking 
in the parameters-space of vibration absorber conb-ol Duffmg's Oscillator along suitable engineering paths. 

Keywords- Chaos Diagram, Vibration Absorber, DMing Oscillator, Lyapunov exponents, Lorenz and Rtkler, RungeKutta methods 
and Grahm Schmidt Orthogonal rules 

C ONTROL of chaos relies on the fact that any chaotic 
attractor contains an infinite number of unstable periodic 
orbits. Chaos Control can be described as the 

stabilization, by means of small system perturbations, of one 
of these unstable periodic orbits (Wikipedia, 2012). The major 
reason for controlling chaos is to render an otherwise chaotic 
motion more stable and predictable, which is often highly 
beneficial in chaos dynamics. The perturbation must be tiny, 

It was reported in the review that the applications of chaos in 
diverse fields such as mechanics (control of pendulums, 
beams, plates, friction), physics (control of turbulence, lasers, 
chaos in plasma, and propagation of the dipole domains) as 
well as in various branches of engineering such as mechanical 
systems (control of pendulum ,beams, plates, vibroformers, 
microcantilevers, cranes, and vessels), spaceuaft, electrical 
and electronic systems, communication systems, information 

to avoid signheant modificatio; of the system's natural systems, and chemical and processing industries are enor- 
dynamics. Several techniques have been devised far chaos mous. The authors equally stated that the Complexity of the 
control and numerous research efforts have been made chaotic dynamics gives rise to new problems of control that 
towards chaos conti-01. Experimental control of chaos by one stimulate further development of the control theory. Contrc~l 
or both of these methods has been achieved in a variety of 
systems, including turbulent fluids, oscillating chemical 
reactions, magneto-mechanical oscillators, and cardiac tissues. 
Sarnobat et a1 (2000) attempt the control of chaotic bubbling 
with the OGY (ott, Grebogi and Yorke) method and using 
electrostatic potential as the primary control variable. 
Amdrievskii and Fradkov (2004) carried out a comprehensive 
review on the problems and methods for control of chaos, 
which in the last decade was the subject of intensive concern. 

and Chaos for Vibro-Impact and Non-Ideal Oscillators has 
been examined (SiIvio and Ibere, 2008). The authors proposed 
a satisfactory control procedure which helps in avoiding un- 
desirable behaviour of mechanical systems with practical ap- 
plications. A dynamics of stability and bifurcation analysis of 
an asymmetrically nonlinear absorber system that contains a 
main part and a nonlinear spring was proposed by Chiou- 
Fong and Chiang-Na .The investigation reveals that the bifur- 
cation sequences illustrate compIetely the complex phenom- 
ena of system dynamics. Furthermore, this study show that 
the pr&ary bifurcation orbit coexist with orbit of the secon- 
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(Andrzel and Tomasz, 2oa3). A nonlinear energy sink (NES) sorber control Duffing's Oscillator using chaos diagram is a 
that is characterized by its ability to passively realize targeted strong motivatisn for this work. This paper employed positive 
energy transfer as well as multimodal damping has been ex- Lyapunov exponents' criteria in developing chaos diagram for 
amined by Viguie and Kerschen (2009). The perspective of this Duffing oscillator dynamics. 
dealing with W O F  linear primary structures requires the 
development of an efficient NES design procedure. The author 
proposes the basis of such a procedure based upon the bifur- 2 METHODOLOGY 
cation analysis of a system composed of a 1Gear oscillator 
coupled to a NES, using the software MatCont In the Ashraf 
et al (2004) paper, the dynamics of a forced Duffing oscillator 
has been studied by means of modem nonlinear, bifurcation 
and chaos theories-to show that the system is ultimately ex- 
periencing chaos. The authors were able to characterize and 
control this chaotic behavior. A nonlinear recursive Bacbtep- 
ping controller was propased and the transient performance 
was also investigated. Simulation resuits are obtained for the 
uncontrolled and controlled cases, validating the effectivehess 
of the proposed controller. The effect of random phase for 
Duffkg-Holmes equation has been investigated (Longsuo , 
2011). It was demonstrated that as the intensity of random 
noise properly increases, the chaotic dynamical behavim will 
be suppressed by the criterion of top Lyapunov exponent, 
which is computed based on the Khasminskii's formulation 
and the extension of Wedig's algorithm for linear stochastic 
systems. The obtained results were further validated by the 
Poincar'e map analysis, phase plot, and time evolution on dy- 
namicd behaviour of the system, such as stability, bifurcation, 
and chaos. It can be Werred from this study that the random 
phase is the most important tool for Suppressing chaos as a 
nonfeedback control method Efforts has been made to study 
the dynamics and chaos control of a non-linear electromag- 
netic seismometer system consisting of an sctended &g 
electrical oscillator magnetically coupled with a natural 
Duffing mechanical oscillator (Siem et al, 2006). Some bifur- 
cation -structures and the variation of the corresponding 
Lyapunov exponent are obtained in the study. The results ob- 
tained showed that transitions from a regular behaviour to 
chaotic orbits occur for large amplitudes of the external excita- 
tion. The application of a sirnpk- adaptive damping feedback 
controller to eliminate the chaotic behaviour in a controlled 
extended Duffing system was equally examined in order to 
regulate .the chaotic motion of the electromagnetic seismome- 
ter system around less complex attractas, such as equilibrium 
points and periodic orbits. The effectiveness and efficiency of 
the proposed feedback control strategy was illustrated by 
means of numerical simulations. A robust control scheme for a 
class of uncertain chaotic svstems in the canonical form, with 
unknown nonlinearities hs;s been presented by Samuel and 
Kakmeni (2003). To cope with the uncertainties, the authors 
combined Lyapunov methodology with observer design. The 
proposed strategy comprises an exponential linearizing feed- 
back and an uncertainty estimator. The developed control 
scheme allows chaos suppression. According to the authors, 
the advantage of this meihod over the existing results is that 
the control time is explicitly computed. Simulations studies 
were conducted to verify the effectiveness of the scheme. 
The dearth of literatures which characterizes the parameters 
space of Qaimensional harmonically excited vibration a b  

c 

2.1 Equations of Motions: Harmonically excited and 
Vibration absorber control Duffing Oscillator 

The detail physicaI model and nomendatures regarding sec- 
ond order differential nonlinear equations (1) and (2) can be 
found in Narayanan and Jayararnan (1989) and 'Dolire and 
Salau (2012). The dynamics of main mass (M) and Absorber 
mass (m) are captured respectively with variables x  'and y 
relative to corresponding datum. 

ffi c t i  k 
kc  3 k, 4 x+-x--x+-x +-(x-y )=-S in(wt )  ( I )  

M M  M M 

Introducing the nondimensional time r = Ot equations 
(1) and (2) can be expressed in state space Form as in equations 
(3) bq (6). 

Note that in equations (3) to (6) ,the state space for fie main 
and absorber masses are represented respectively by (x, , x, ) 
and (~39x4). 

I;I, Similarly we have <, = - c k 
,P==,al=- MU' ' 

kc a,=- , a 2 = -  ka and a, = - ka . It is also 
M u 2  Mw2 ma2 

m 
possible to express ff, in term of mass ratio ( p = - ) 

M 
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and a, in which case a2 = 1 .  =--- m % -pa, . The 
M a 2  M mo2 

present study charade- the coordinates of parameters 

plane ( p versus a, ) as either chaotic or not wing the esti- PI P 2  0 0 

(P3 -2) P4 
mated positive Lyapwv exponent of the main mass com , -' '1 
puted by Grahm Schmidt Orthogonal rules. Salau and Ajide 

P5 0 

-P, 0 0 0  
(2012) refers, &e variation matrix (A) for the vibration ab- 

sorber control Duffing oscillator given by equations (3) €XI (6) is 

given by matrix equation 0. 
According to Michael (2000) as well as Salau and Ajide (2012), 

+ 
Lyapunov;~ spectrum must sum to the trace of 

A (P,  +Pq +P5 )' 

A= 

2.3 Modified Rester Model by Resler: 

Addison (1997) as well as Ping and Rui Ding (2011) refen;, 

( a ,  -3a,xI2 -a2)  -P a2 0 

0 0 0 1  

According to (2000) as as Salau and 4de (2012), ROsler proposed hyper-chaoticssystem with ohy one-nonli- 
ear term described bv eauations (13) to (16) which is a modi- 

(7) 

Lyapunov~ spectrum must sum to the trace of A (- P ). fied form of R&ler che-al rea'ctibn dodel, see Salau and 
Ajide (2012). The Cdirnensional forms of this model make it a 

2.2 Modified Lorenz Model by Yuxia et a!: 

good choice for algorithms validation in the present stud!.. 
The one to one corresponding state space variables are respet- 
tively x, y, z, and w . 

Yuxia Li et a1 (2005) proposed hyperchaotic system with two 3 

nonlinear knns described by equations (8) to (11). This is a 4- X=-  Y - 
dimensional system and a modified form of brenz equations 
studied by Saiau and Ajide (2012). Its Qaimensions make it a y=x+  + 

good model choice for algorithms validation in the present 
study. The one to one corresponding stab space variables are 
respectively x, y, z, and w . z=ar2 + X Z  

x=P,x+P,y 

n 
y=p,x-tp4y+ w-xz 

The corresponding variation matrix (A) for system of equa- 

tions (13) to (16) is given by equation (17) . 

The corresponding variation matrix (A) for system of equa- 
tions (8) to (11) is given by equation (l2) 
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According to Salau.and Ajide (2012) , Lyapunov;~ spectrum . response periodic. However the appropriate, mass ratio used 

I. Qust sum to the average of trace of A bver large N-iterations ' was conspicuously misJing. The focus of the present study 

I N  therefore is characterization of the coordinates of plane (-z (a,, + X, + ar4) ). This measure quantity was here 
t N ,=I ( p  versusa, ) as either chaotic or not using the estinuted 

tagged AVERT. positive Lyapunov exponent of the main mass computed by 

Grahrn Schrmdt Orthogonal rules. The studied plane is 

2.4 Driven Parameters and lnitlal Conditions Setting. O . O l ~ p ~  0.99 versus 1.05 a, 13.0 with both variable 

Common to all studied cases is constant time step ( At =0.02) 
and Lyapunov's exponent's estimation reset period (i.e 
r = LEERP) equal ( l o b ) .  For Case-I and Case-I1 transient 
period and steady solution periods are respectively (1000 b ) 
and (10000 At ). For case-III transient and steady solution pe- 
riods (lm, 1OT) and (50T, 30T) were investigated for T equal 
excitation period (T = 27r seconds). For Case-I and Case-III 
initial conditions (xi, x2, $, x4) was set at (1, 0,0,0) and for 
Casdl was set at (-10, -14, 0.3, 29) recommended by Marco 
Sandri (1996). However the initiaI conditions for Lyapunov's 
spectrum estimate for aIl cases are (1,0,0,0), (0,1,0,0), (0,0,1,0) 
and (O,O,O,O,l) in x, , x,, $ , and x, directions respectively. 

2.5 Modified Lorenz Model by Yuxia et a t  (Case-I) 

One set of the driven parameters utilised by Yuxia et al(2005) 

are and pk = 20 - p,=-p,=-35, p3=7, P4=12 

wi& corresponding Lyapunogs spectnun 

axes traversed respectively at constant step of 0.005 and 0.01. 

2.8 Solutions Algorithms 

The transients and steady solutions of the models (Case-I, 
Case-II and Case-In) rate equations and the corresponding 
Lyapunov's spectrum rate equations were sought for numeri- 
cally and simultaneously ushg constant time step fourth, fifth 
and Butcher's (1964) modified fifth order Runge-Kutla meth- 
ods. The details of Grahm Schmidt Orthogonal rules can be 
obtained in Marco (1996). The three Runge-Kutta methods are 
tagged r e s p v e l y  RK4, RK5 and RK5B. The two time step 
ping systems are tagged NRKl and NRK2 respectively for 
constant one full time step and two half-steps in one time step. 

3 RESULTS AND DISCUSSION 

Lyapunov's spectrum report by Yuxia et a1 (2005) refers. Table 
1 and 2 gives algorithms validation results. 

- 1.4 =0.4254,4 =0. 1286,h =O, A.4 =- 26.5493 ). Table 1: Lyapunov's spectrum of Case-I using fourth order, 
fifth order and Butcher's modified fifth order Runge-Kutta 

This case was verified as part validation of the present study methods and NRKl 
algorithms. 

2.6 Modified Rbsler Model by Rasler: (Case-ll) 
Driven parameters setting are, a,, = 0.25 , a,, = 3.0, 

a,, = -0.5 and a,, = 0.05 , and for algorithms validation 
purpose. The corresponding Lyapunov's spectrum (0.1287, 
0.0149, -0.0056, -22.8617) was reported by Ma~co Sandri 
(1996). 

2.7 Harmonically excited and Vibration absorber 
control Duffing's Oscillator: (Case-Ill) 

Narayanan and Jayaraman (l989) recommended that com- 
-tiination of; 

P, = 0.21,a,=1.0,~=0.168,a, =a, =0.5 Note that UD =undefined. 

It is ensured that chaotic response of the main mass and 

that some appropriate selected will rendered the chaotic 
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Table 2: Lyapunov's spectrum of Case-I using fourth order, 
fifth order and Butcher's modified fifth order Runge-Kutta Table 4: Lyapunov's spectrum of Case-I1 using fourth order, 
methods and NRK2 fifth order and Butcher's modified fifth order Runge-Kutta 

methods and NRK2 

Note that UD =undefined 

Tables 1 and 2 refers, the relative persentage a h l u t e  errors 
decreases averagely for all Runge-Kutta methods changing 
t i p  step system from MRKl to NRKZ Though the highest 
recorded relative percentage absolute error was 56.60 at W E  
versus NRKI, the overdl Lyapunov's spectrum actual varia- 
tion f d s  within aeceptabiIity level in particular at NRK2 for 
all computation methods. Each of the Runge-Kutta method 
recommended average of two positive and two negative 
Lyapunov's exponents at NRKZ and NRK2 respectively. The 
trace s f  A (trace (A)) recorded zero and 0.2 relative percentage 
absolute error for methods mK5 and RK58) and RK4 respec- 
tively over the two time step systems. 

Table 3: Lyapunov's spectrum of Case-I1 using fourth order, 
, fifth order and Butcher's modified fi&h order Runge-Kutta 

methods and NRK 

Note that NA = Not available 

TracdA) 

AVERT 

Note that NA = Not avadable 

R e f h g  to table 4, the range of dative percentage absolute 
error for d l  quantities of interest and for RK4, RK5 and RKSB 
are respectively (5.9 - 247.11, (16.2 - 256.1) and (10.5 -129.0). 
The actual quantities of interest variation relative to available 
actual values are within acceptable numerical limits. The Trace 
(A) and AVERT compare very we11 for all methods (RK4, RK5 
and RK5B). 

23.9397 

NA 

Referring to table 3 , the range of dative percentage absolute 
error for a l l  quantities of interest and for RK4, RK5 and RK5B 
are respedxvely (5.1 - 192.2), 04.1 - 851.2) and (4.8 -156.9). The Figure 1: Variation of AVERT with number of steady iteration 
actual quantities of interest variation relative to available actual in hyperchaos of Rasler using fourth order, fifth order and 
values are within acceptable numerical Iimi~s. The Trace (A) Burcheis modified fifth order Runge-Kutta methods and 
and A m  compare very well for an methods (RK4, RK5 and NRKl 
W B ) .  
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Figure 1 refers, the average AVERT value gravitate towards 
stable value across methods ana with increasing number of 
Steady iteration. This observation agreed with submission of 
Salau and Ajide (2012) regarding the trace of matrix (A) that 
are dependent on position variable on attractur of interest 
(here the hyper-chaos of RLisler).Furthermore, the trends of of 
AVERT variation for the three methods compare very well at 
lower number of steady iteration, however with increasing 
iteration number RK4 shows significant deviation from the 
trend of RK5 and W B .  Background theoretical and compu- 
tation knowledge from successful execution of case-I. and case- 
TI enables the characterization of the coordinates of parameters 
plane ( p  versus a,) in case-111 as either chaotic or not us- 
ing the estimated positive Lyapunov exponent of the main 
mass computed by Grahrn Schmidt Orthogonal rules. The re- 
sults obtained are given in tables 5 and 6, and chaos diagram 
in figures 2 and 3 setlmg p as mass ratio and a, as ALPW 
A. 

Table 5 : Lyapunov's Spectnun of the Vibration Absorber 
Control Duffing oscillatorat p = 0.02, a, =I .27 , NRK1 
and NRK2. 

Refeering table 5 ,the Lyapunov's spectrum result is the same 

Lyapunw's 
SpecDum 

for all methods regardless of time step systems (NRK1 and 

4 

NRK2) . Likewise the trace (A) = Ai is equal to -0.168 (p - 
-1 

the damp coefficient) across methods and time step systems. 

NRKl 

Table 6 : Sample Results of Lyapunov's Spectrum over 
smooth variation of and at constant step of 0.005 and 0.01 
respectively ahd for NRK2 

NaKZ 
RK4 

Referring table 6 either 4 or 4 is greater than zero for 

combination of p and a, to be listed as not guarantee the 

control of chaotic response of the main mass in Duffing oscilla- 
4 

tor. The trace (A) = d, is equal to -0.1680 ( ethe damp 
I= I 

coefficient) across the variati~n of j.f and a, . 

RK4 

C b  Dugramby RK4 wl NRKZ 

3 50 

< 
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Figure 2: Chaos Diagram of the Main Mass in Vibration Absorber 
of Harmonicafly Exated Duffing's Oscillator (lm, 1m ) 
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Figure 2 refers the parameters at the black reqions cannot effect 
~haos control, but chaos control possible with parameters at the 
- blank regions. The chaos diagram suggested preferentially higher 
mass ratio for effective chaos control of Duffing's Osdator main 
mass. However,the appropriate engineering involves cautious 
selection of main mass chaos control param-s in the region of 
relatively lower mass ratio that suffer4 irregular boundaries. 
Furthermore, similar quantitative and qualitative chaos diagram 
were obtained using fifth and modified fifth order Runge Kutta 
methods.Each chaos diagram contains respectively 12532,12533, 
12533 mesh points for RK4, RK5 and RK5B. 

Chaos Diagram by RK4 and NRR 
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