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Chaos Diagram of Harmonically Excited
Vibration Absorber Control Duffing’s
Oscillator

Salau T.A.Q, Ajide 0.0.

Abstract— This study utilised positive Lyapunov exponents' criteria to develop chaos diagram on the parameters space of 4-dimensional
harmonically excited vibration absorber control Duffing’s Oscillator. Relevant simulations were effected by choice combination of constant
step Runge-Kutta methods and Grahm Schmidt Orthogonal rules. Simulations of 4-dimensional hyper-chaotic models of modified Lorenz
and Rosler were used for validation purposes Lyapunov's spectrums were obtained at (197 x 301) mesh points of parameters space
(u.a,).Lyapunov's spectrum of modified Lorenz system by constant time step (NRK1) fourth order Runge-Kutta method (0 4208. 0 1650

0.0807, -26.4603) compare correspondingly well with (0.4254, 0.1286, 0.0000, -26.5493) reported by Yuxia et al Similarly, Lyapunov's
spectrum of modified Résler system by constant time step (NRK1) fourth order Runge-Kutta method (0.1424, 00051, -0.0041, -24.0831)
compare correspondingly and qualitatively with (0.1287, 0.0149, -0.0056, -22.8617) reported by Marco (1996) The sum of Lyapunov
exponents (-22.7237, -31.3107, -27.8797) in Rosler compare correspandingly and qualitatively with variation matrix measure -AVERT (-
24.0181, -30.9462, -28.1991) respectively for fourth, fifth and modified fifth order Runge-Kutta methods. The chaos diagram results
suggested preferentially higher mass ratio for effective chaos control of Duffing’s Oscillator main mass. The parameters space in the region
of relative lower mass ratio suffered irregular boundaries. The practical applications of this chaos diagram plot include, by instance, walking

in the parameters-space of vibration absorber control Duffing's Oscillator along suitable engineering paths.
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1 INTRODUCTION

ONTROL of chaos relies on the fact that any chaotic

attractor contains an infinite number of unstable periodic

orbits. Chaos Control can be described as the
stabilization. bv means of small system perturbations, of one
of these unstable periodic orbits (Wikipedia, 2012). The major
reason for controlling chaos is to render an otherwise chaotic
motion more stable and predictable, which is often highly
beneficial in chaos dynamics. The perturbation must be tiny,
to avoid significant modification of the system's natural
dynamics. Several techniques have been devised for chaos
control and numerous research efforts have been made
towards chaos control. Experimental control of chaos by one
or both of these methods has been achieved in a variety of
systems, including turbulent fluids, oscillating chemical
reactions, magneto-mechanical oscillators, and cardiac tissues.
Sarnobat et al (2000) attempt the control of chaotic bubbling
with the OGY (ott, Grebogi and Yorke) method and using
electrostatic potential as the primary control variable.
Andrievskii and Fradkov (2004) carried out a comprehensive
review on the problems and methods for control of chaos,
which in the last decade was the subject of intensive concern.
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It was reported in the review that the applications of chaos in
diverse fields such as mechanics (control of pendulums,
beams, plates, friction), physics (control of turbulence, lasers,
chaos in plasma, and propagation of the dipole domains) as
well as in various branches of engineering such as mechanical
systems (control of pendulum ,beams, plates, vibroformers,
microcantilevers, cranes, and vessels), spacecraft, electrical
and electronic systems, communication systems, information
systems, and chemical and processing industries are enor-
mous. The authors equally stated that the Complexity of the
chaotic dynamics gives rise to new problems of control that
stimulate further development of the control theory Control
and Chaos for Vibro-Impact and Non-Ideal Oscillators has
been examined (Silvio and Ibere, 2008). The authors propose.d
a satisfactory control procedure which helps in avoiding un-
desirable behaviour of mechanical systems with practical ap-
plications. A dynamics of stability and bifurcation analysis of
an asymmetrically nonlinear absorber system that contains a
main part and a nonlinear spring was proposed by Chiou-
Fong and Chiang-Na .The investigation reveals that the bifur-
cation sequences illustrate completely the complex phenom-
ena of system dynamics. Furthermore, this study show that
the primary bifurcation orbit coexist with orbit of the secon-
dary responses via a saddle-node bifurcation in a specific pe-
riod excitation range. The results established the fact that a
new phenomena occur in a strongly nonlinear system. The
phenomenon of ideal synchronization of a pair of identical
dynamical systems coupled by a one-to-one negative feedback
mechanism is described and explained by Synchronization of
two chaotic oscillators via a negative feedback mechanism
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(Andrzel and Tomasz, 2003). A nonlinear energy sink (NES)
that is characterized by its ability to passively realize targeted
energy transfer as well as multimodal damping has been ex-
amined by Viguié and Kerschen (2009). The perspective of
dealing with MDOF linear primary structures requires the
development of an efficient NES design procedure. The author
proposes the basis of such a procedure based upon the bifur-
cation analysis of a system composed of a linear oscillator
coupled to a NES, using the software MatCont In the Ashraf
et al (2004) paper, the dynamics of a forced Duffing oscillator
has been studied by means of modern nonlinear, bifurcation
and chaos theories to show that the system is ultimately ex-
periencing chaos. The authors were able to characterize and
control this chaotic behavior. A nonlinear recursive Backstep-
ping controller was proposed and the transient performance
was also investigated. Simulation results are obtained for the
uncontrolled and controlled cases, validating the effectiveness
of the proposed controller. The effect of random phase for
Duffing-Holmes equation has been investigated (Longsuo ,
2011). It was demonstrated that as the intensity of random
noise properly increases, the chaotic dynamical behaviour will
be suppressed by the criterion of top Lyapunov exponent,
which is computed based on the Khasminskii’s formulation
and the extension of Wedig's algorithm for linear stochastic
systems. The obtained results were further validated by the
Poincar’e map analysis, phase plot, and time evolution on dy-
namical behaviour of the system, such as stability, bifurcation,
and chaos. It can be inferred from this study that the random
phase is the most important tool for Suppressing chaos as a
nonfeedback control method Efforts has been made to study
the dynamics and chaos control of a non-linear electromag-
netic seismometer system consisting of an extended Duffing
electrical oscillator magnetically coupled with a natural
Duffing mechanical oscillator (Sithem et al, 2006). Some bifur-
cation structures and the variation of the corresponding
Lyapunov exponent are obtained in the study. The results ob-
tained showed that transitions from a regular behaviour to
chaotic orbits occur for large amplitudes of the external excita-
tion. The application of a simple adaptive damping feedback
controller to eliminate the chaotic behaviour in a controlled
extended Duffing system was equally examined in order to
regulate the chaotic motion of the electromagnetic seismome-
ter system around less complex attractors, such as equilibrium
points and periodic orbits. The effectiveness and efficiency of
the proposed feedback control strategy was illustrated by
means of numerical simulations. A robust control scheme for a
class of uncertain chaotic systems in the canonical form, with
unknown nonlinearities has been presented by Samuel and
Kakmeni (2003). To cope with the uncertainties, the authors
combined Lyapunov methodology with observer design. The
proposed strategy comprises an exponential linearizing feed-
back and an uncertainty estimator. The developed control
scheme allows chaos suppression. According to the authors,
the advantage of this method over the existing results is that
the control time is explicitly computed. Simulations studies
were conducted to verify the effectiveness of the scheme.

The dearth of literatures which characterizes the parameters
space of 4-dimensional harmonically excited vibration ab-

sorber control Duffing’s Oscillator using chaos diagram is a
strong motivation for this work. This paper employed positive
Lyapunov exponents’ criteria in developing chaos diagram for
this Duffing oscillator dynamics.

2 METHODOLOGY

2.1 Equations of Motions: Harmonically excited and
Vibration absorber control Duffing Oscillator

The detail physical model and nomenclatures regarding sec-
ond order differential nonlinear equations (1) and (2) can be
found in Narayanan and Jayaraman (1989) and Dolire and
Salau (2012). The dynamics of main mass (M) and Absorber
mass (m) are captured respectively with variables x and y
relative to corresponding datum.
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y+—=(y—-x)=0
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Introducing the non-dimensional time 7= @/ equations
(1) and (2) can be expressed in state space form as in equations
(3) to (6).
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(1]

x,=F,Sin(r) - px, +ax, - a, "'rs —o,(x—x;) (4)
I
Xy =% (5)
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Note that in equations (3) to (6) ,the state space for the main
and absorber masses are represented respectively by (x,x,)

and (x;,x,).
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and &, inwhichcase &, = = uot, . The
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present study characterized the coordinates of parameters

plane (u versusc,) as either chaotic or not using the esti-

mated positive Lyapunov exponent of the main mass com-
puted by Grahm Schmidt Orthogonal rules. Salau and Ajide
(2012) refers, the variation matrix (A) for the vibration ab-
sorber control Duffing oscillator given by equations (3) to (6) is

given by matrix equation (7).

0 1 0 0

e (¢, -3ax’-a,) =B a, 0 o
0 0 0 1
o, 0 -a, 0

According to Michael (2000) as well as Salau and Ajide (2012),

Lyapunov;s spectrum must sum to the trace of A (- 3).

2.2 Modified Lorenz Model by Yuxia ef al:

Yuxia Li ef al (2005) proposed hyper-chaotic system with two
nonlinear terms described by equations (8) to (11). This is a 4-
dimensional system and a modified form of Lorenz equations
studied by Salau and Ajide (2012). Its 4-dimensions make it a
good model choice for algorithms validation in the present
study. The one to one corresponding state space variables are
respectively X, ¥, Z, and W .

x=Px+Py ®)

)

y=ﬁ3x+ﬁ4y+ wW—XxZ

z=Pz+xy (10)

(11)

The corresponding variation matrix (A) for system of equa-
tions (8) to (11) is given by equation (12)

w=—LB.x

ﬁl ﬁ! 0
_|B-2 B -x
y x B
B, 0 0

(= = I = ]

According to Michael (2000) as well as Salau and Ajide (2012),

Lyapunov;s spectrum must sum to the trace of

A (B +PB+ D5 ).

2.3 Modified Résler Model by Rosler:

Addison (1997) as well as Ping and Rui Ding (2011) refers,
Rosler proposed hyper-chaotic system with only one nonlirn-
ear term described by equations (13) to (16) which is a modi-
fied form of Rosler chemical reaction model, see Salau and
Ajide (2012). The 4-dimensional forms of this model make it a
good choice for algorithms validation in the present study.
The one to one corresponding state space variables are respec-
tively x, y, z, andw .

ch=-—y—z (13)
;=x+ar,y+w (14)
z=a,, +xz (15)
;=ar3z+a,4w (16)

The corresponding variation matrix (A) for system of equa-

tions (13) to (16) is given by equation (17) .

0o -1 -1 0
I ey, 0O 1
A= (17)
z 0 x 0
0 0 ar] a.r-'i
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According to Salau.and Ajide (2012) , Lyapunov;s spectrum

must sum to the average of trace of A over large N-iterations

l N
?Z(a“ +Xx +0,,) ). This measure quantity was here
N =1

tagged AVERT.

(

2.4 Driven Parameters and Initial Conditions Setting

Common to all studied cases is constant time step (A7 =0.02)
and Lyapunov's exponent’s estimation reset period (i.e
T= LEERP) equal (10At). For Case-l and Case-II transient
period and steady solution periods are respectively (1000 Af )
and (10000 At ). For case-III transient and steady solution pe-
riods (10T, 10T) and (50T, 30T) were investigated for T equal
excitation period (T =27 seconds). For Case-I and Case-III
initial conditions (X, X,, X;,X,) was setat (1,0, 0, 0) and for
Case-1l was set at (-10, -14, 0.3, 29) recommended by Marco
Sandri (1996). However the initial conditions for Lyapunov’s
spectrum estimate for all cases are (1,0,0,0), (0,1,0,0), (0,0,1,0)
and (0,0,001)in X, X,, X;, and x,-directions respectively.

2.5 Modified Lorenz Model by Yuxia et al: (Case-l)

One set of the driven parameters utilised by Yuxia et al (2005)
B,=—p,=-35, B;=7, PB,=12 and B,=20

with corresponding Lyapunov’s spectrum

“are

(4, =0.4254, 1, =0.1286, 4, =0, , =— 26.5493 ),

This case was verified as part validation of the present study
algorithms.

2.6 Modified Rosler Model by Résler: (Case-ll)
Driven parameters setting are, ¢, =025, «,,=3.0,
a,,=-035 and &, =0.05 , and for algorithms validation

purpose. The corresponding Lyapunov’s spectrum (0.1287,
0.0149, -0.0056, -22.8617) was reported by Marco Sandri
(1996).

2.7 Harmonically excited and Vibration absorber
control Duffing’s Oscillator: (Case-lll)

Narayanan and Jayaraman (1989) recommended that com-
-bination of;
P, =021L0=1.0,5=0.168,¢, =a_=0.5

It is ensured that chaotic response of the main mass and

that some appropriate selected %a will rendered the chaotic

response periodic. However the appropriate mass ratio used

was conspicuously missing. The focus of the present study

therefore is characterization of the coordinates of plane
(4 versusa, ) as either chaotic or not using the estimated

positive Lyapunov exponent of the main mass computed by

Grahm Schmidt Orthogonal rules. The studied plane is
0.01=1<0.99 versus 1.0< &, <3.0 with both variable

axes traversed respectively at constant step of 0.005 and 0.01

2.8 Solutions Algorithms

The transients and steady solutions of the models (Case-l,
Case-II and Case-Ill) rate equations and the corresponding
Lyapunov’s spectrum rate equations were sought for numer:-
cally and simultaneously using constant time step fourth, fifth
and Butcher’s (1964) modified fifth order Runge-Kutta meth-
ods. The details of Grahm Schmidt Orthogonal rules can be
obtained in Marco (1996). The three Runge-Kutta methods are
tagged respectively RK4, RK5 and RK5B. The two time step-
ping systems are tagged NRKI and NRK2 respectively for
constant one full time step and two half-steps in one time step

3 RESULTS AND DISCUSSION

Lyapunov’s spectrum report by Yuxia et al (2005) refers. Table
1 and 2 gives algorithms validation results.

Table 1: Lyapunov’s spectrum of Case-l using fourth order,
fifth order and Butcher's modified fifth order Runge-Kutta
methods and NRK1

Note that UD =undefined.

WSER ®2013

hitecd)

115

Lyapunov’s spectrum Relative |
Percentage Absolute
Errors |
Yuxiaer | RK4 RKS | RKSB | RK4 | RKS | RKSB |
al (Ac-
tual) | S
A 04254 | 04208 | 04263 | 04017 | 11 | 02 | s6 |
/13 0.1286 0.1650 01013 0.2014 283 1212 566 Jl
A, 0.0000 -| -0.0807 | 0.0186 | 00087 [ up | up | up |
;{4 26,5493 | 264603 | 265107 | 26,5933 0.3 01 I;_f___
Trace(A) = . - >
259953 | 259552 | 260018 | 259989 | 02 0.0 no
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Table 2: Lyapunov’s spectrum of Case-I using fourth order,
fifth order and Butcher’s modified' fifth order Runge-Kutta
methods and NRK2

Table 4: Lyapunov's spectrum of Case-Il using fourth order,
fifth order and Butcher's modified fifth order Runge-Kutta

methods and NRK2
Lyapunov’s spectrum Relative
Percentage Absol
Errors Lyapunov's spectrum Relative
Yuxia er RK4 RKS RK3SB RK4 | RK5 | RK5SB Percentage Absolute
al (Ac- Errors
tual) Marco RK4 RKS RK5B RK4 RK5 | RK5SB
A 04254 | 04210 | 03967 | 03940 | 10 | 67 | 74 Sandri
A‘. 0.1286 0.1498 0.2011 0.1825 165 | 564 419 (Actual)
/L 0.0000 0.0129 -0.0203 | -0.0208 uD UD UD
) 2 = = A, 01424 | 01133 | 01183 | 04274 | 204 | 169 | 105
9 26.5493 | -26.5386 | 26.5793 | 26.5545 0.0 0.1 0.0 .l, 00051 0.0177 0.0088 0.0001 247 | 128 Q80
Trace(A) 250953 | 259549 | 26.0018 | 250989 | 02 0.0 00 i-‘ 40.0_04! O.DiJI 5 ~0.0-!46 0 ({098 1366 | 256.1 139.0
i 24,0831 | 254754 | 279780 | 27.8727 58 162 15.7
Note that UD “_'undeﬂned Trace(A) > - ¥ =
23.9397 | 253429 | 278655 | 27 7550 59 164 159
Tables 1 and 2 refers, the relative percentage absolute errors AVBRT | x |Ses37a Y sistes | 2aamss

decreases averagely for all Runge-Kutta methods changing
time step system from NRK1 to NRK2. Though the highest
recorded relative percentage absolute error was 56.60 at RK5B
versus NRK1, the overall Lyapunov’s spectrum actual varia-
tion falls within acceptability level in particular at NRK2 for
all computation methods. Each of the Runge-Kutta method
recommended average of two positive and two negative
Lyapunov’s exponents at NRK1 and NRK2 respectively. The
trace of A (trace (A)) recorded zero and 0.2 relative percentage
absolute error for methods (RK5 and RK5B) and RK4 respec-
tively over the two time step systems.

Table 3: Lyapunov’s spectrum of Case-II using fourth order,
fifth order and Butcher’s modified fifth order Runge-Kutta
methods and NRK

Lyapunov's spectrum Relative
Percentage Absolute Errors
Marco RK4 RKS RK3B RK4 | RKS | RK3B
Sandni
(Actual)
A 01424 | 01287 | 01223 [ 01356 96 | 141 [ 48
117 0.0051 0.0149 | -0.0124 | -0.0029 | 1922 | 343.1 | 1569
/1-. -0.0041 | -0.0056 | -0.0226 | -0.0098 366 | 451.2 [ 139.0
l‘ 240831 | 22.8617 | 31.3980 | 28.0026 5.1 304 16.3
Trace(A) = 2 = =
23,9397 | 22,7237 | 31.3107 | 27.8797 5.l 30.8 16.5
AVERT = N -
NA 24 0181 | 30.9462 | 28.1991

Note that NA = Not available

Referring to table 3 , the range of relative percentage absolute
error for all quantities of interest and for RK4, RK5 and RK5B
are respectively (5.1 - 192.2), (14.1 - 451.2) and (4.8 -156.9). The
actual quantities of interest variation relative to available actual
values are within acceptable numerical limits. The Trace (A)
and AVERT compare very well for all methods (RK4, RK5 and
RK5B).

Note that NA = Not available

Referring to table 4, the range of relative percentage absolute
error for all quantities of interest and for RK4, RK5 and RK5B
are respectively (5.9 - 247.1), (162 - 256.1) and (10.5 -129.0)
The actual quantities of interest variation relative to available
actual values are within acceptable numerical limuts, The Trace
(A) and AVERT compare very well for all methods (RK4, RK5
and RK5B).
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Figure 1: Variation of AVERT with number of steady iteration
in hyper-chaos of Rosler using fourth order, fifth order and
Butcher’s modified fifth order Runge-Kutta methods and
NRK1
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Figure 1 refers, the average AVERT value gravitate towards
stable value across methods and with increasing number of
steady iteration. This observation agreed with submission of
Salau and Ajide (2012) regarding the trace of matrix (A) that
are dependent on position variable on attractor of interest
(here the hyper—chaos of Résler).Furthermore, the trends of of
AVERT variation for the three methods compare very well at
lower number of steady iteration, however with increasing
iteration number RK4 shows significant deviation from the
trend of RK5 and RK5B. Background theoretical and compu-
tation knowledge from successful execution of case-I and case-
[1 enables the characterization of the coordinates of parameters
plane (4 versusc,) in case-Ill as either chaotic or not us-
ing the estimated positive Lyapunov exponent of the main
mass computed by Grahm Schmidt Orthogonal rules. The re-
sults obtained are given in tables 5 and 6, and chaos diagram
in figures 2 and 3 setting {4 as mass ratio and &, as ALPHA
A.

Table 5 : Lyapunov’s Spectrum of the Vibration Absorber
Control Duffing Oscillator at ¢ = 0.02, «,=1.27 ,NRK1
and NRK2.

Lyapunov’s NRKI NRE2
Spectrum RK4 RKS RKS5B RK4 RKS RK5B
/'L 00157 | 00157 | 0.0157 | 0.0157 | 0.0157 00157
/L, -0.0189 | -0.0189 | -0.0189 | -0.0189 | -00189 | -0.0189
/L, -0.0339 | -00339 | -0.0339 | 00339 | -0.0339 | -0.0339
/{, 01309 | -0.1309 | 01309 | -0.1309 | -0.1309 | -0.1309
Trace{A)
4
=2
=1
-0.1680 | -0.1680 | -0.1680 | -0.1680 | -0.1680 | -0.1680

Refeering table 5 ,the Lyapunov’s spectrum result is the same

for all methods regardless of time step systems (NRK1 and

4
NRK2) . Likewise the trace (A) = »_ 4, is equal to -0.168 (B -

i=1

the damp coefficient) across methods and time step systems.

Table 6 : Sample Results of Lyapunov’s Spectrum over

smooth variation of and at constant step of 0.005 and 0.01
respectively and for NRK2

Mass ratio | ALPHAA Lyapunov’ spectrum | e LAY

(H) (a,) A A A A, i 5
=i

0.02 108 00100 | 00025 | 00831 | 00774 01680
0.02 109 00089 | oo0lol | -00791 | -0.0901 -0 1680
0.02 1.10 -0.0200 | 00162 | -0.0828 | -00813 01679
002 111 -0.0215 | 00019 | -0.0715 | -0.0768 01679
0.02 1.12 0.0001 | 00026 | -0.0748 |.-0.0907 -0 1680
0.02 113 0.0102 | 00054 | -0.0850 | -0 0986 U 1680
002 114 00121 | 00127 | -00940 | -0 0989 0 1681
0.02 [N 0.0082 | 0.0209 |.-01004 | -00966 0 [679
0.02 116 0.0008 | 00290 [-0.1032 | w47 U o8l |
0.02 1.17 -0.0028 | 0.0308 | -0.1061 | -00898 0 1679
0.02 1.18 0.0013 | 0.0244 | -0.1150 | -0.0761 0.1680
0.02 1.19 00010 | 00135 | -0.0867 | -0.0959 01681
0.02 1.20 00039 | 00059 | 00646 | -0.1015 -0 1681
0.02 1.21 00055 | -0.0153 | -0.0702 | -00880 -0 1080
0.02 1.22 0.0037 | -0.0196 | 00725 | 00796 0 1680
0.02 1.23 0.0015 | 00208 [ -00516 | -00971 -0 1680
0.02 124 00052 | -00355 | -0.0595 [ -00782 01680
0.02 125 00140 | 00101 | -00634 | 01085 | -0 1680
0.02 126 00175 | -0.0134 | -00370 [ 01350 [ wlo7y |
0.02 [.27 0.0157 | 00189 | 0.0339 | 0.1309 -0.1680 |

Referring table 6 either A, or A, is greater than zero for

combination of i and @,

to be listed as not guarantee the

control of chaotic response of the main mass in Duffing oscilla-

4
tor. The trace (A) = ZE, is equal to -0.1680 ( p-the damp

=]

coefficient) across the variationof 1 and «,.

Chaos Dagram by RK4 and NRK2

Mass mno

Figure 2: Chaos Diagram of the Main Mass in Vibration Absorber

of Harmonically Excited Duffing’s Oscillator (10T, 10T )
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Figure 2 refers the parameters at the black reqions cannot effect
chaos control, but chaos control possible with parameters at the
blank regions. The chaos diagram suggested preferentially higher
mass ratio for effective chaos control of Duffing’s Oscillator main
mass. However,the appropriate engineering involves cautious
selection of main mass chaos control parameters in the region of
relatively lower mass ratio that suffered irregular boundaries.
Furthermore, similar quantitative and qualitative chaos diagram
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