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ABSTRACT

The extensive completed research and continuous study of pendulum is due to its scientific and engineering
importance. The present study simulate the Poincare solutions of damped, nonlinear and harmonically driven
pendulum using FORTRAN90 coded form of the popular fourth and fifth order Runge-Kutta schemes with
constant time step. Validation case studies were those reported by Gregory and Jerry (I 99()) for two damping

qualities (ql' q2 = 2,4), fixed drive amplitude and frequency (g = 1.5, OJD= 2/3). A novel graphic

presentation of the displacement and velocity components of the Poincare solutions for I ()l-eases each drawn
from the parameters spaces 2:::; q :::;4 and 0.9:::; g:::; 1.5 at l Otl-equal steps were characterised using the
fractal disk dimension analysis. Corresponding validation results compare well with reported results of Gregory
and Jerry (199()). There is observed quantitative variations in the corresponding consec utive Poincare solutions
prescribed by Runge-Kutta schemes with increasing number of excitation period however the quality of the
overall Poincare section is hard to discern. Non-uniform variation of scatter plots per area of solutions space
characterised chaotic and periodic responses as against average uniform variation for a random data set The
plots of periodic response distribute restrictedly on the solutions space diagonal while probabilities of chaotic
responses on the studied parameters space is between 21.5% and 7().6%. Estimated fractal disk dimension
variation is in the range 0.00:::; Dr :::;1.8 I for studied cases. The study therefore has demonstrated the utiluy

of the novel graphic plots as a dynamic systems characterising tool.

KEYWORDS: Graphic, Fractal disk dimension, Excited Pendulum. Poincare Solutions and Runge-Kuua
Scheme.

I. INTRODUCTION

Fractals are typically self-similar patterns. It generally implies a mathematical set that has a fractal
dimension that is often more than its topological dimension. Fractal characterisation can refers to the
approach of evaluating fractal dimension of geometry. Borodich in 2009 (As reported by Borodich
and Evans, 2013) , the basic fundamentals of fractal characterisation follows from the analysis of
basic concepts of fractal that real objects can be described as physical fractals. Graphic presentation is
becoming an interesting platform for concise explanation of the dynamics of nonlinear systems.
According to Webopedia (2013), graphic refers to any computer deviceor program that makes a
computer capable of displaying and manipulating pictures. It is a term that that can also be described
as images of an object. For example, laser printers and plotters are graphics devices because they
permit the computer to output pictures. Presentation graphics software is a useful tool for creating bar
charts, pie charts, graphics, and other types of images for fractal characterisation of nonlinear system
dynamics. The charts can be based on data imported from spreadsheet applications. The techniques
based on fractals show promising results in the field of graphic or image understanding and
visualisation of high complexity data. The aim of Mihai and Klaus in 1994 was to introduce new
researchers in this field to the theory of fractals. Equally, their paper presents several experiments
using fractals as platform for generating accurate models for landforms and cover types, generation of
synthetic images for model based picture processing, and image processing techniques for the analysis
of remotely sensed images. The methods have been applied both for optical and Synthetic Aperture
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Radar (SAR) image' analysis. The influence of chaotic saddles in generating chaotic dynamics in
nonlinear driven oscillators has been studied by Elzbieta (2005).Typical examples of the resulting
multiple aspects of chaotic system behaviours, such as chaotic transient motions, fractal basin
boundaries and unpredictability of the final state, are shown and discussed with the use of geometrical
interpretation of the results completed by colour computer graphics. This study has demonstrated
extensively the use of graphics for nonlinear dynamics presentation. Jun (2006) investigated the
Chaotic dynamic of a harmonically excited Soliton System. The influence of a soliton system under
an external harmonic excitation was examined. Different routes to chaos such as period doubling,
quasi-periodic routes, and the shapes of strange attractors are observed by graphic illustrations.
Bifurcation diagrams, the largest Lyapunov exponents, phase projections and Poincare maps are the
graphical tools employed for the presentation of this dynamic. System identification of nonlinear
time-varying (TV) systems has been a discouraging task, as the number of parameters required for
accurate identification is often larger than the number of data points available, and scales with the.
number of data points (Zhong et al, 2007) . The authors adopted 3-D graphical representation of TV
second-order nonlinear dynamics without resorting to taking slices along one of the four axes has
been a significant challenge to date. The newly developed method using the graphical representation
has the potential to be a very useful tool for characterising nonlinear TV systems. Fingerprint
indexing is an efficient visual technique that greatly improves the performance of automated
fingerprint identification Systems. Jin (2008) proposed a continuous fingerprint indexing method
based on location, direction estimation and correlation of fingerprint singular points. There have been
many approaches introduced in the design of feature extraction. Based on orientation field, authors
divided it into blocks to compute the Poincare Index. According to the report of the authors, the
blocks which may have singularities are detected in the block images. Image retrieval and indexing
techniques has been considered by researchers to be important for efficient management of visual
database. In the fractal domain, fractal code has been described by Liagbin et al (2008) as a
contractive affine mapping that represents a similarity relation between the range block and the
domain block in an image. The authors developed a new algorithm of IFS fractal code for image
retrieval on the compression domain. Finally, the preceding n-frame images which are the smallest
distance sum of fractal code are taken as the retrieval result. The study has further reinforces the
relevant of visual (graphic or images) aids as tool for systems dynamic characterisation. Dusen et a!
(2012) performed a 'box-counting' scaling analysis on Circle Limit III and an equivalent mono-fractal
pattern based on a Koch Snowflake. Previous analysis highlighted the expected graphical differences
between Escher's hyperbolic patterns and the simple mono-fractal. In addition, their analysis also
identifies unexpected similarities between Escher's work and the bi-fractal poured paintings of
Jackson Pollock. Positive Lyapunov exponents' criteria has been used by Salau and Aj ide (2013) to
develop a graphic illustration (Chaos diagram) on the parameters space of 4-dimensional
harmonically excited vibration absorber control Duffing's Oscillator. The chaos diagram obtained
suggested preferentially higher mass ratio for effective chaos control of Duffings Oscillator main
mass. The author's paper has shown the importance of graphical presentation in the vivid explanation
of the practical applications of chaos dynamics.
It is well understood from extensive literature study that induction motors are modelled by nonlinear
higher-order dynamic systems of considerable complexity. According to Joachim (1995), the dynamic
analysis based on the complex notation exhibits a formal correspondence to the description using
matrices of axes-oriented components and yet, significant differences exist. It was further stated in the
author's work that the use of complex state variables further allows the visualization of AC machine
dynamics by complex signal flow graphs. The author has successfully represented the dynamics of
AC machine dynamics using complex signal flow graphs. The simple structures developed have been
of enormous assistance for understanding the internal dynamic processes of a machine and their
interactions with external controls. Madjid et al (2013) paper studied the estimation of stability region
of autonomous nonlinear forced low order system using graphical approach. The findings obtained in
their study have again demonstrate the relevance of graphical presentation in the explanation of the
dynamics of nonlinear systems. The understanding of the stability boundaries of transiently non-
autonomous chaotic system dynamics was enriched with graphical approach as presented in the
authors' work.
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Significant research' efforts have been made in the adoption of poincare section for fractal
characterisation of nonlinear dynamics. in a system dynamics, first recurrence map or Poincare map,
named after Henri Poincare, is the intersection of a periodic orbit in the state space of a continuous
dynamical system with a certain lower dimensional subspace, called the Poincare section
(Wikipedia,20 13). More precisely, one considers a periodic orbit with initial conditions within a
section of the space. One then creates a map to send the first point to the second, hence the name first
recurrence map. The transversality of the Poincare section means that periodic orbits starting on the
subspace flow through it and not parallel to it. A Poincare map, can be interpreted as a discrete
dynamical system with a state space that is one dimension smaller than the original continuous
dynamical system, Hall et al (2009) studied the use of fractal dimensions in the characterisation of
chaotic systems in structural dynamics, Complex partial differential equation (POE) model, simplified
POE model, and a Galerkin approximation method were adopted, The responses of each model are
examined through zero velocity Poincare sections, To characterise and compare the chaotic'
trajectories, the box counting fractal dimension of the Poincare sections is computed, The authors
work has demonstrated the relevance of Poincare sections in the fractal characterisation of, structural
dynamics,
Salau and Ajide (20 I 2) paper serves as one of the major platform for the present study. The author

exploited the computation accuracy of governing equations of linearly or periodically behaves
dynamic system with fourth and fifth order Runge-Kutta algorithms in developing chaos diagrams of
harmonically excited Ouffing oscillator. Their study demonstrated the major utility of numerical
techniques in dealing with real-world problems that are dominantly. nonlinear. The findings of the
study shows that apart from being sensitive to initial conditions, chaos is equally sensitivity to
appropriate simulation time steps, The authors concluded that chaos diagram as a generating
numerical tool is uniquely characterised by being faster and useful for reliable prediction of Duffing 's
oscillator dynamic responses,
Extensive literature review shows that significant works have not been done in the graphical

presentation of the fractal dynamics of harmonically excited pendulum using poincare solutions. This
lacuna motivated the present paper with borders on the fractal characterisation of harmonically
excited pendulum using poincare sectioning approach,
This paper is divided into five main sections for the purpose of clarity of presentation, Section ·1 is the
background introduction to the study, Methodology, Results and Discussion, Conclusions and Future
Applications of the study are presented in sections 2,3,4 and 5 'respectively.

II. METHODOLOGY

Due to its engineering importance and its ability to exhibit rich nonlinear dynamics phenomena.
harmonically excited pendulum has received extensive and continuous research interests as partly
evident in Gregory and Jerry (1990). In the non-dimensional and one dimensional form the governing
equation of the damped, sinusoidally driven pendulum is given by equation (I). In this equation q is
the damping quality parameter, g is the forcing amplitude, which is not to be confused with the

gravitational acceleration, and OJD is the drive frequency.

d2B 1 dB
-+--+sin(B)=gcos(OJ{Jt) (I)
dt q dt ,

Simulation of equation (I) with Runge-Kutta demands its transformation under the assumptions (
B, = angular displacement and 82 = angular velocity) to a pair of first order di fferential equations

(2) and (3).

(2)

(3)

r-------· ~-------'-',..,-.-~,..'
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The present study util ised the popular constant operation time step fourth and fifth order Runge-Kutta
schemes to simulate equation(l) in the first order rate equations (2) and (3). The respective details of
each scheme are provided in equations (4) to (8) and (9) to (15) substituting y *- 8" 8z, x*- t and
constant time step h. .
Fourth-Order Runge-Kutta Scheme

h
Yi+' =y;+-{K,+2(K2+K3)+K4}

6
K, = I(x;,y;)

I h K,h
K, = (x. +-,v. +-)- , 2 -, 2

K3 = I(x; +!!..,y, + Klh)
2 2

K4 = I(xi +h,y; +K3h)
Fifth-Order Runge-Kutta Method

h
y;+, = Yi + 90 {7K, +32K3 + 12K4 +32Ks +7K6}
K, = I(xi,y)

j. h K,hK, = (x, +-,y; +-)2 2
K - I( h (3K1 + K2)h)

3 - Xi + 4" ' Yi + 16

K I h K3h
4 = (x; +-,y; +-)2 2

K - I( 3h -'-(-_3_.K-=-z+_6_K-,,3_+_9_K=.4)_h)
5- X + ,y. +-

, 4 ' 16

K -I h (K,+4Kz+6K3-12K4+8Ks)h)
6 - (Xi + ,Yi + 7

Solutions Schemes
The under-listed four distinct solution schemes were implemented in the present study.

• RK41-Constant single simulation time step fourth order Runge-Kutta scheme.
• RK42-Constant double simulation time step fourth order Runge-Kutta scheme.
• RK51-Constant single simulation time step fifth order Runge-Kutta scheme.
• RK52-Constant double simulation time step fifth order Runge-Kutta scheme.

Study Parameters
In tune with literature research interest this study focuses on the parameter plane defined by

2
2.0:::; q :::;4.0 and 0.9:::; g :::;1.5, fixed drive frequency OJD = -, and fixed simulation time step

3

h = TD for 1;) = 2n . The initial conditions for all studied cases is (0, 0) and the simulation was
500 OJ/)

executed for 20 lOsexcitation periods including lOvperiods of transient and 2000-periods of steady
solutions.
The associated novel attractor of Poincare solutions were investigated for their space filling ability
using fractal disk dimension characterisation, see Salau and Aj ide (20 12). Ten (10) systematic
observrtion scales of disk size variation and quantity of disks required for complete covering of the
attractor were made in five (5) different trials per observation scale using random number generation
seed value of 9876. This process enables the determination of 'optimum' number of disks required at
specified observation scale.

(4)

(5)

(6)

(7)
(8)

(9)

(10)

(II)

(12)

(13)

( 14)

(15

13021 Vol. 6, Issue 3, pp. 1299-1312

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



International Journal of Advances in Engineering & Technology, July 2013.
©IJAET ISSN: 22311963

III. RESULTS AND DISCUSSION

•...

Tables I and 2 and figures I and 2 give validation results for the FORTRAN programmes developed
for this study. Tables I and 2 refer. The corresponding displacement and velocity components lack
repetition with increasing number of completed excitation .periods and across Runge-Kutta schemes
implemented. A comparison of the corresponding periodic displacement and velocity revealed
corresponding absolute deviation range of 0.0-6.2 and 0.0-3.5 respectively. However, the same
corresponding qualitative Poincare patterns were formed across the. numerical schemes, see figures I
and 2. It is to be noted that the Poincare patterns in figures I and 2 compare excellently well with
those reported by Gregory and Jerry (1990) for respective damp quality of 2 and 4, fixed excitation

2
amplitude of 1.5 and fixed drive frequency of - .

3
Tablel: Sample steady simulated Poincare Solutions at fixed excitation amplitude and drive'

frequency.

No of q=2 .q=4
excitation RK41 RK51 RK41 RK51
periods

81 82 81 82 81 82 81 82completed
I -2.241 1.591 -2.241 1.591 2.194 -0062 2.183 -0.070
2 -0.588 2.277 -0.588 2.277 I. 715 2.365 2.909 0.788
3 1.076 1.944 1.076 1.944 1.324 2.221 1.910 0.578
4 -2.450 1.438 -2.450 1.438 -0.449 2.804 -0.825 0.772
5 2.521 0.431 2.521 0.431 -1.280 2.058 -0.283 2.838
6 -2.750 1.217 -2.750 1.217 -0.600 0.760 -0.487 1.690
7 0.343 0.278 0.343 0.278 -2.898 0.982 0.698 -0.278
8 -0.011 1.426 -0.0 II 1.426 1.722 1.850 1.870 -0.238
9 -2.616 1.283 -2.616 1.283 -0.976 2.130 -0.081 -0.363
10 0.607 0.067 0.606 0.068 -0.658 0.861 1.909 -0.240
II 0.001 1.380 0.001 1.380 -1.637 2.229 -0.076 -0.374
12 2.103 0.190 2.104 0.191 -0.617 0.709 1.934 -0.224
13 0.787 2.226 0.893 2.171 0.655 -0.476 -0.026 -0.414
14 -2.644 1.298 -2.961 1.054 2.717 0.358 2.040 -0.156
15 0.619 0.061 0.149 0.559 -1.200 1.565 1.268 -0.585
16 0.001 1.378 -0.028 1.443 1.826 -0.032 3.025 0.621
17 2.064 0.170 -2.086 1.664 0:610 -0.650 -0.170 -0.071
18 0.074 1.400 -0.034 2.176 -2.912 0.897 1.479 -0.470
19 -2.909 1.060 1.012 2.020 1.872 I. 776 1.696 -0.319
20 0.157 0.541 -2.3 82 1.494 -0,4 75 1.612 0.279 -0.501

Table 2: Sample steady simulated Poincare Solutions at fixed excitation amplitude and drive frequency
continued

No of q=2 q=4
excitation RK42 RK52 RK42 RK52
periods 81 82 81 82 81 82 81 82completed

I -2.241 1.591 -2.241 1.591 2.184 -0.069 2.183 -().O70
2 -0.588 2.277 -0.588 2.277 -2.3 81 1.643 -3.103 1.019

3 1.076 1.944 1.076 1.944 1.192 -0.295 1.756 1.786
4 -2.450 1438 -2,450 1.438 1.398 -0.470 -1.282 2.049
5 2.521 OA31 2.521 0.431 1.913 -0.215 -0.606 0.714
6 -2.750 1.217 -2.750 1.217 -0.015 -0,421 2.398 0.182
7 0.343 0.278 0.343 0.278 2.062 -0.141 -0.239 0.367
8 -0.0 II 1.426 -0.011 1.426 2.137 -0.163 2.187 -0.115
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9 -2.616 1.283 -2.616 1.283 -2.593 0.999 1.110 -0.461
10 0.606 0.068 0.606 0.068 1.519 . 2.136 2.524 0.215
II 0.001 1.380 0.001 1.380 1.554 2.525 -0.747 1236
12 2.104 0.191 2.104 0.191 1.337 ~

2.242 1.218 2.470
13 0.886 2.175 0.892 2.172 0.034 2.891 1.873 1.693
14 -2.942 1.068 -2.957 1.056 1.344 2.633 -2.271 1.497
\, 0.\56 0.544 0.150 0.556 1.418 2.140 ·3.061 1.005
16 -0.027 1.444 -0.028 1.443 -0.23 I Q.742 1.832 1.773
17 -2.039 1.695 -2.077 1.670 -I. 162 1.275 -0.831 2.113
18 0.087 2.022 -0.001 2.149 0.397 2.772 -0.659 0.880
19 1.211 1.848 1.041 1.998 1.479 2.568 1.038 2.743
20 -2.414 1.471 -2.414 1.471 1.361 2.213 1.556 1.919

RK41 (q=2)
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,..- - -- - - .. - ..--- " ········-·······---···3-:·0···.--- - -- -- - ..- -.................. -...... ·······1

.' .._ .•2.5 r •• ...,._ ••

: ~,:~.;..f-·::'·":··-·~~;"'Q.~·· •.•....~

i ~ 1.5J1
V 1.0l ~"

Figure 1:

v .

.I 0 0
·····-0:5 ...

.•.•...-.

Figure 2:

-2.0 -1.0 1.0

Angular displacements

2
Poincare section of harmonically excited pendulum by RK41 and for q=2, g=1.5 and OJo =-3

RK41 (q=4)

~--- .•----.------- ..~--~------ ..--...-- -" ..-..

IJj
CIl
".;::l
'(3
o
~

• v- ••••• ' ._: .:J ••~-;:.- ..••;: •.- •••-:;. ••_:..~.:::::-.~ ••

...- ...:::' .•.•...- .~
,.,." ~ .. - """'> 2 0 ~-fi1-~L-

i , .... ;..:.:.':. ,.' -' .. ~.. ••• \ . .
I ..•..of' •• , ••• , •••• c, ...:. 'l
i·'A.~ .• " "'J ~ ••• "1.j.Or . ..~. '" .....-"4....•.:. '~,.•.. :...':~."'~:

~'':a''''''~I' • 0_ .:."JI~~~" I
•....
(\I
'S
Cl
~ -20 -1.0

\;I.~. t •• _, •••_ ••• ' -. ;~

.,..~ :.;;''':''.: ;-.;...M.-i.;.'\.~;7.:.. 2 0
UIU-'-' • .•~·,·~ ••::':1,.,.,...... .

-1.0
-2.0

'----------'-----.--....2-:-0- -----.- ...-------.

Angular displacements

2
Poincare section of harmonically excited pendulum by RK41 and for q=4. g=1.5 and OJn =-. 3

13041 Vol. 6, Issue 3, pp. 1299-1312

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



International Journal of Advances in Engineedng & Technology, July 2013.
©IJAET ISSN: 22311963

Figures 1 and 2 refer. Each Poincare section compare excellent well in quality with corresponding
result reported by Gregory and Jerry (1990). In addition, the quality of the corresponding Poincare
section is found to be the same for the Runge-Kutta schemes tagged RK42, RK51 and RK52.
Furthermore, the visual assessment of the Poincare sections shows that thefi IIing of the phase space
increases with increasing damping quality and vice versa.
Does scatter plot of the displacement/velocity components of Poincare section obtained by multiple
Runge-Kutta schemes produce an attractor? Answering this ponderous question is the focus of figures
3 to 6.

Angular displacements (q=2)
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Angular displacements (q=4)
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Figure 6: Scatter plot of angular velocity components (Poincare section) of harmonically excited
2

pendulum by RK41 vs. RK51 and for q=4, g= 1.5 and OJo = - .
3

Figures 3 to 6 refer. Similar corresponding scatter plots with RK41 vs. RK42 and RK51 vs. RK52
reveals qualitatively the same non-uniform distributed structural details. The scatter plots distribution
per unit space area varies non-uniformly from one location to another. Is this observation a
coincidence or validity in general for chaotic response of harmonically excited pendulum? It is to be
noted that Gregory and Jerry (1990) reported chaotic response of the excited pendulum when driven

2 .
by g= 1.5, OJ{J = - and for q=2 or 4. Figures 7 and 8 serve as response to this research question.3 .
Figure 7 examined the structure of known random data set on a plane while figure 8 examined
harmonically excited pendulum with parameters that guarantee periodic response, see Gregory and
Jerry (1990).
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Figure 7: Scatter plot of pair of randomly generated angular displacements (X, Y): ( -3:::; (X, Y) :::;3 ),
X, Y = -3 +6x ran(iseed) and iseed=9076.
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Figure 8: Scatter plot of angular displacement components (Poincare section) of harmonically excited
2

pendulum by RK4l vs. RK5l and for q=2, g=J.47 and OJD = - .
3

It is worth to note that the scatter plot of angular velocity components (Poincare section) of
2

harmonically excited pendulum by RK4l vs. RK51 and for q=2, g= 1.4 7 and OJfl =>; compare.,
qualitatively with figure 8. Also important to note that figures 3 to 8 can be classified uniquely into
three distinct groups: the data source dynamics response is chaotic (figures 3 to 6), the data source
dynamics is random (figure 7) and the data source dynamics is periodic (figure 8). In figures 3 to 6,
the distribution of the scatter plot per unit space area is non-uniform. In figure 7, the distribution of
the scatter plot per unit space area is on the average uniform. In figure 8 the scatter plots distribute
non-uniformly and the distribution restricted to the diagonal of the solutions space. Therefore, chaotic
response manifestation is like as in any of figures 3 to 6 or its equivalent depending on pendulum
driven parameters. In addition, a strong indication of periodic response is the scatter plots distribution
restriction to solutions space diagonal uniformly or not.
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Fractal disk dimension characterisation using disk counted method of the scatter plots such as in
figures 3 to 6 and figure 8 when the damping quality or the excitation amplitude is varied and keeping
other driven parameters constant is the focus of tables 3 and 4 and.figures 9 to 11.

Table 3: Sample vari~..jn of estimated fractal disk dimension with increasing damping quality fixed
2

excitation amplitude (g=I.5) and drive frequency (OJD = ~ ).
.)

Estimated fractal disk dimension ofthe scatter clots

Damping quality
RK41 vs. RK51 RK41 vs. RK42 RK51 vs. RKS2

(q) ()I (), ()I ()2 ()I ()2

2.00 1.76 1.77 1.76 1.68 1.60 1.63
2.04 0.28 0.34 0.28 0.34 0.28 0.34
2.08 0.91 0.87 0.53 0.80 1.37 1.22
2.12 \.61 1.72 1.70 1.72 1.67 1.59,
2.16 0.13 0.21 0.13 0.21 0.13 0.21
2.20 0.13 0.00 0.13 0.00 0.13 0.00
2.24 0.13 0.00 0.13 0.00 0.13 0.00
2.28 0.13 0.00 0.13 0.00 0.13 0.00
2.32 0.13 0.12 0.13 0.12 0.13 0.12
2.36 O.13 0.24 0.13 0.24 0.13 0.24
2.40 0.13 0.23 0.13 0.23 0.13 0.23
2.44 0.13 0.20 0.13 0.20 0.13 0.20
2.48 0.17 0.20 0.17 0.20 0.17 0.20
2.52 0.42 0.20 0.42 0.20 0.42 0.20
2.56 0.24 0.20 0.24 0.20 0.24 0.20
2.60 1.66 1.65 1.56 1.64 1.55 1.62
2.64 1.72 1.66 1.73 1.67 1.73 1.63
2.68 1.71 1.64 1.55 1.76 1.59 1.64
2.72 1.76 1.64 1.64 1.63 1.68 1.65
2.76 1.63 1.66 1.62 I.b3 1.62 I.b5

RK41 VS. RK51

2.00

""
1.80 pJ1A~~!I/) 1.60

A 1- u -- \ II ' "~'6
~ 5 1AO
(,) .- 1.20 \ !
'" I/) \I - Angular displacement
~ t: 1.00"0 Q) ---- Angular velocity
Q) E 0.80.•...-
"'"0 0.60 \i I ' jE
iii OAO V .s Vw

0.20
0.00 \ /

2.00 2.50 3.00 3.50 4.00

Damping quality

Figure 9: Variation of estimated fractal disk dimension with increasing damping qual ity fixed excitation
2

amplitude (g=1.5) and drive frequency (OJ/J = -).
3

Figure 9 refers the variation of estimated fractal disk dimension trend for both angular displacement
and velocity components are almost the same and vary between 0.00 and 1.80. The probability of the
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estimated fractal disk dimension being greater than unity is 70.6%. Thus the chance of chaotic
response when thedamping quality varies between the limits of 2 and 4 is 70.6% assuming that the
dimension of greater than u1'fity implies chaotic response. Furthermore, the corresponding plot of
variation of fractal disk dimension with increasing damping quality for RK4l vs. RK42 and RK5l vs.
Rk52 are qualitatively the same.

Table 4: Sample variation of estimated fractal disk dimension with increasing excitation amplitude and
2

fixed drive frequency ((J)D = - ).
3

Excitation
amplitude

Estimated fractal disk dimension of the scatter plots
RK.41 vs. RK51 RK41 vs. RK51

(q=2) (q=4)

0.900
0.912
0.924
0.936
0.948
0.960
0.972
0.984
0.996
1.008
1.020
\.032
\.044
\.056
1.068
1.080
1.092
1.104
\.116
\.128

0.00
0.00
0.00
0.00
0.00
0.00
0.12
0.52
0.71
0.72
0.40
0.30
0.00
0.54
0.81
0.20
0.26
0.32
0.45
0.65

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.35
0.58
0.53
0.00
\.0 I

0.00
0.56
0.79
0.13
0.13
0.13
0.13
0.77

\.51
0.23
0.25
0.22
0.29
0.41
0.00
0.62
0.53
\.28
\.63
\.63
\.77
\. 75
\.64
\.66
\.78
1.64
\.61
0.40

\.66
0.57'
0.23
0.13
0.27
0.41
0.44
0.62
0.54
1.62
\.77
1.63
1.64
1.67
1.79
1.65
\.66
\.78
\.62
0.27

1

- Angular displacement

-'- Angular \€Iocity

Figure 10;
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Variation of estimated fractal disk dimension with increasing excitation amplitude. fixed
2

damping quality (q=2) and drive frequency ((J)D = - ).
3
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Figure 10 refers the variation of estimated fractal disk dimension trend for both angular displacement
and velocity components are almost the same and vary between 0.00 and 1.81. The probability of the
estimated fractal disk dimension being greater than unity is 21.5%. Thus the chance of chaotic
response when varying the excitation amplitude between the limits of 0.90 and 1.50 is 21.5%
assuming that the dimension of greater than unity implies chaotic response. Furthermore, the
corresponding plot of variation of fractal disk dimension with increasing excitation amplitude for
RK41 VS. RK42 and RK51 vs. Rk52 are qualitatively the same.

RK41 VS. RK51
(q=4)

2.00

~ 1.50c c:C1l... 0.•.. .-
't:l en

c: 1.00Q) Q)-C1l E
E .-._ 't:l- 0.50enw

0.00
0.90 1.00

- Angular displacement

Angular velocity

~4:n'{l f' .~l'U.i I.~ i: i
V I

I
1.10 1.20 1.30 1.40 1.50

Excitation amplitude

Figure 11: Variation of estimated fractal disk dimension with increasing excitation amplitude. fixed
2

damping quality (q=4) and drive frequency ((1J1J = -).
3

Figure II refers. The variation of estimated fractal disk dimension trend for both angular
displacement and velocity components are almost the same and vary between 0.00 and 1.79. The
probability of the estimated fractal disk dimension being greater than unity is 64.7%. Thus the chance
of chaotic response when varying the excitation amplitude between the limits of 0.90 and 1.50 is
64.7% assuming that the dimension of greater than unity implies chaotic response. Furthermore the
corresponding plot of variation of fractal disk dimension with increasing excitation amplitude for
RK41 vs. RK42 and RK51 vs. Rk52 are qualitatively the same. Though figures II and 9 are
quantitatively different they compare significantly in qualitative term.
Referring to figures 9 to I I, it can be deduced that the probabi Iity of chaotic response of the pendul um
when driven by parameters combination from plane defined by 2.0:s; q :s;4.0 and 0.9 :s;g :s;1.5 for

fixed drive frequency (1JD = ~ is between 21.5% and 70.6%.
3

IV. CONCLUSIONS

A comparison of the corresponding periodic displacement and velocity of the validation cases across
Runge-Kutta schemes revealed corresponding absolute deviation range of 0.0-6.2 and 0.0-3.5
respectively. These observed quantitative variations in the corresponding consecutive Poincare
solutions prescribed by different Runge-Kutta schemes with increasing number of excitation period
notwithstanding the overall quality of the Poincare section obtained is hard to discern for all studied
cases. There are three classifications of scatter plots: A non-uniform variation of scatter plots per area
of solutions space characterised chaotic responses, uniform variation characterised random data set.
Lastly the characterisation of periodic response is restricted distribution on the solutions space with a
straight line pattern. In addition to this visual assessment of the relevant novel plots fractal
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characterisation analysis revealed variatron of estimated fractal disk dimension for both angular
displacement and _velocity components in between 0.00 and \.81. The probabilities of chaotic
responses on the studied parameters space is between 21.5% and 70.6%. The study therefore has
demonstrated the utility of the novel graphic plots as a dynamic systems characterizing tool.

V. FUTURE ApPLICATIONS

The future engineering applications of this study as a diagnosing tool are numerous.

~ It can be used to determine whether a fluid flow is laminar or turbulence. A graphical
plot of flow meter velocities data at two arbitrari Iy close points can be explored to
distinguish a laminar flow from turbulence one.

~ This graphical presentation studied can be applied in weather forecasting. A graphical
plot can easily be produced from weather data (meteorological data) collected for'
arbitrary two close points over a period of time.

~ This study will be a versatile diagnosing tool for distinguishing heat transfer
characteristics in a composite and non-composite materials (whether homogeneous or
not). For instance the characteristics of heat transfer (including temperature) are expected
to experience irregular changes from location to location for a non-homogeneous
material. Under usage such a material will tend to behaves nonlinearly
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