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ABSTRACT
The fact that the drive parameters space of harmonically excited pendulum consist of mix parameters
combination leading to different dynamics phenomena including chaotic and periodic responses is a strong
motivation for this study aim at estimating the peak frequency that favour chaotic response. Simulation of
pendulum and estimation of the average Lyapunov exponents by Grahm Schmidt Orthogonal rules at parameter
nodal points selected from damp quality (2.0:::; q:::; 4.0). excitation amplitude (0.9:::; g :::;1.5) and drive

frequency (0.5 ::;OJD ::; lO) were effected using popular constant time step Runge-Kutta schemes (RK4. RK5

and RK5B) from two initial conditions through transient and steady periods. The impact of resolution on the
measure of percentage of parameters combination leading to chaotic response (PPCLCR) was examined at
resolution levels (RI to R5) for increasing drive frequency. The validation cases were from those reported by

Gregory and Jerry (/990) for (OJv,q, g == 2/3,2,1.5) and (OJv,q, g == 2/3,4,1.5) simulated from (0. 0)

initia! conditions. Corresponding validation results compare well with reported results of Gregory and Jerry
(1990). The estimated peak frequency (0.6 radian Is) is the same across studied resolutions. initia! conditions
and Runge-Kutta schemes. The peak value of PPCLCR is 69.5. 69.4 and 69.4 respectively for RK4. RK5 and
RK5B at initial conditions (0. 0). When initial conditions is (I. 0) the corresponding PPCLR value changes
insignificantly to 69.6. 69.7 and 69.6 for RK4, RK5 and RK5B. Therefore affirms the utility and reliability of
Lyapunov exponent as chaotic response identification tool.

I. INTRODUCTION

Lyapunov exponent otherwise known as characteristic exponent of dynamical systems has been
described by Wikipedia (2013) as a quantity that characterises the rate of separation of infinitesimally
close trajectories. There is no doubt that avalanche of relevant literature exists in the field of nonlinear
dynamics in the last two decades on the usefulness of Lyapunov exponents as characterisation tool.
The study of non-linear dynamic system behaviour using Lyapunov exponents is taking new
interesting dimensions. The crucial role of Lyapunov exponents as tools for describing the behaviour
of dynamic systems is enormous (Macro, 1996) .The author's paper demonstrated how numerical
calculation of Lyapunov exponents can be used to analyze the stability of limits sets and check the
presence of chaotic attractors. Mathematica software was used by the author to compute the Lyapunov
spectrum of a smooth dynamic system. Detecting the presence of chaos in a dynamical system is an
important problem that is solved by measuring the largest Lyapunov exponent. Michael et at (1993) in
their paper demonstrated a practical method for calculating largest Lyapunov exponents from small
data sets. The authors remarked that Lyapunov method follows directly frorn the definition of the
largest Lyapunov exponent and is accurate because it takes advantage of all the available data. It has
equally been shown in the paper that the Lyapunov based algorithm is fast, easy to implement, and
robust to changes in embedding dimension, size of data set, reconstruction delay as well as noise
level. In their paper, the versatility of Lyapunov exponent for detecting the manifestation of chaos in
nonlinear dynamics has been clearly illustrated. Peter (1995) study focus on the development of
model algorithm for the calculation of the spectrum of Lyapunov exponents that is generalised for
system dynamics that are nonlinear. Souza-Machado et at (1990) has demonstrated how Lyapunov
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exponents can be used to characterize deterministic chaos. This is adopted in a numerical experiment
conducted by the author on the driven, damped, Duffing two-well oscillator. The paper stated that the
results obtained affirm the importance of sum rule satisfied by the Lyapunov exponent spectra. It is
concluded from the authors' paper that interesting, structure behaviour of the Lyapunov exponent
spectra is observed as the duffing oscillator follows a pattern of periodic-doubling route to chaos. A
study which explores a visualization technique on the basis of Mandelbrot set (M-set) methodology
with the aim of an overall view of a chaotic system's dynamical performance in the parameter space
has been carried out by Jin et al (2008). According to the author, the Lyapunov spectra with regard to
different points in the parameter space were calculated. The points in the given parameter space were:
mapped to the computer screen and a colourful image named Lyapunov distribution map (LDM) was
generated. The findings obtained from visualizing two typical chaotic systems have testified to the
acceptability of this technique for visualization of chaotic systems. A study that investigated the
characterisation of the dynamic responses of3-dimensional Lorenz and Rosier models by Lyapunovs
exponents has been carried out (Salau and Ajide, 2012). Popular but laborious Grahm Schmidt
orthogonal rules were implemented for wider range of models driven parameters. It was established in
the paper that estimation of Lyapunov's exponents' in Rosier model was found to be insensitive to
algorithms due to its relative low degree of nonlinearity when compared with Lorenz model. The
study also revealed that the sum of Lyapunov's spectrum is the same as the average of trace of
variation square matrix over large iteration regardless of dependence on position variable or not. It
can be concluded from the authors' findings that Lyapunov's exponents is a versatile characterising
technique for dynamic systems response driven by different parameters combination. The objective of
Changpin and Guarong (2004) paper was to determine both upper and lower bounds for all the
Lyapunov exponents of a given finite-dimensional discrete map. The authors' work demonstrated
significantly the efficiency of Lyapunov exponent estimation method for nonlinear system
characterization. A novel methodology for forecasting chaotic systems which is based on exploiting
the information conveyed by the local Lyapunov exponents of a system was developed by Dominique
and Justin (2009). The outcome of the authors' study has been found to be a useful tool in correcting
the inevitable bias of most non-parametric predictors: Non-stationary dynamical systems arise in
applications, but little has been done in terms of the characterization of such systems using Lyapunov
exponents (Ruth et al, 2008). This motivated Ruth et al in proposing a framework in 2008 for
characterizing non-stationary dynamical systems using Lyapunov exponents and fractal dimension as
tools. Through a well defined Lyapunov exponents and the fractal dimension based on a proper
probability measure from the ensemble snapshots, the authors' findings revealed that the Kaplan-
Yorke formula (one of the basic models in nonlinear dynamics) remains valid in most cases for non-
stationary dynamical systems. Lyapunov exponents for chaotic systems for observed data evaluation
in chaotic systems has been reviewed by Henry et af (1991). According to the authors, the exponents
govern the growth or decrease of small perturbations to orbits of a dynamical system. It is understood
from their paper that Lyapunov exponents are critical to the predictability of models made from
observations as well as known analytic models. Lyapunov exponent has been widely accepted as a
quantitative measure for the chaotic behaviour of dynamical systems. It is well known among
researchers in this field that if the largest Lyapunov exponent is positive, it infers that the limit set is
chaotic. Well establ ished methods exist for the calculation of the spectrum of Lyapunov exponents for
smooth dynamical systems. The main goal of Leine (2013) semester thesis was to investigate the
relation between the synchronization property as well as the largest Lyapunov exponent of the system.
The largest Lyapunov exponent is calculated using an approved method and is compared to the
synchronization property of the coupled system. It is discovered from the study that the Lyapunov
exponent is a reliable tool for chaos synchronization of mechanical systems. The analysis of chaotic
systems has been done with the help of bifurcation diagrams and Lyapunov exponents (Arch ana et al,
2013).The qualitative changes in dynamics of the system were evaluated with the help of bifurcation
diagrams. It is reported in the paper that for attractors of maps or flows, the Lyapunov exponents
sharply separate between the different dynamics. According to the author, a positive Lyapunov
exponent may be considered as the defining signature of chaos. Bifurcation diagrams are plotted and
Lyapunov exponents are calculated for Lorenz and Rossler chaotic systems dynamics. The authors'
article has again reinforced the utility of Lyapunov exponent as characterising tool for chaotic
systems.
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In the recent time; Salau and Ajide (2013) utilised positive Lyapunov exponents' criteria to develop
chaos diagram 011 the parameters space of 4-dimensional harmonically excited vibration absorber
control Duffing's Oscillator. Lyapunov's spectrum of modified Resler system by constant time step
fourth order Runge-Kutta method was found by the authors 'of this paper to compare correspondingly
and qualitatively with what is reported in the literature.
Extensive literature search revealed that researches that adopted average positive Lyapunov in non-
linear dynamics behaviour characterisation can be considered to be insignificant. The dearth of
relevant literature that bothers on this is a strong motivation for the present paper. The objective of
this paper is the application of average positive Lyapunov in the estimation of chaotic response peak
excitation frequency of harmonically excited pendulum.
This article paper is divided into four sections. The introductory background of the study is given in
section I. Section 2 explains the methodology adopted for the study. Results and Discussion as well
as conclusions are respectively provided in section 3 and section 4.

II. METHODOLOGY

Due to its engineering importance and its ability to exhibit rich nonlinear dynamics phenomena,
harmonically excited pendulum has received extensive and continuous research interests as evident in
the study by Gregory and Jerry (1990). In the non-dimensional and one dimensional form the
governing equation of the damped, sinusoidally driven pendulum is given by equation (I). In this
equation q is the damping quality parameter, g is the forcing amplitude, which is not to be confused

with the gravitational acceleration, and OJD is the drive frequency.

d2fJ 1 dfJ .
-+--+sm(fJ) = gcos(OJvt) (I)
dt q dt

Simulation of equation (1) with any.of Runge-Kutta schemes demands its transformation under the
assumptions (fJ1 = angular displacement and fJ2 = angular velocity) to a pair of first order
differential equations (2) and (3).

fJ1 = fJz

• 1
fJ2 = g cos( OJDt) - - fJ2- sinefJj)

q
The present study employed the popular constant operation time step fourth order; ~ifth order and the
Butcher's (1964) modified fifth order Runge-Kutta schemes to simulate equation (1) with equivalent
first order rate equations (2) and (3). The respective details of each scheme are provided in equations
(4) to (8); (9) to (15) and (16) to (22) substitutingy ~ fJp fJ2, X ~ t and constant time step h.

(2)

(3 )

2.1 Fourth-Order Runge-Kutta Scheme

h
Yi+1 = y, +6{ KI + 2(K2 +K3)+ K4} (4)

(5)

h K h
K, = I(x, +-, v,+_1 )

- 2' 2
(6)

(7)

(8)
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2.2 Fifth-Order Runge-Kutta Method

, (13)

(14)

K = f( h -'-(K-',_+_4_K.-:.2c-+_6_K---'3c--_I_2_K..:;.4 _+_8_K-,,-s c--)h)• x. + ,y +-
v . I I 7 ( 15)

2.3 Butcher's (1964) Modified Fifth-Order Runge-Kutta Method

(16)

(18)

( 19)

h K2hK4 =f(x +-,Y --+K3h)
'2' 2

(20)

(21)

(22)

2.4 Solutions Schemes

The under-listed three distinct solution schemes were implemented in the present study.

• RK4-Constant single simulation time step fourth order Runge-Kutta scheme
• RK5-Constant single simulation time step fifth order Runge-Kutta scheme.
• RK5B-Constant single simulation time step Butcher's (1964) modified fifth order Runge-

Kutta scheme.
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2.5 Study Parameters

In tune with literature research interest this study focuses on the parameter plane defined by
2.0 ~ q ~ 4.0 and 0.9 ~ g ~ 1.5 investigated at different resolutions range from ten (10) to fifty (50)

equal intervals each, and drive frequency 0.5 ~ cvD ~ 1.0 examined in thirty (30) equal intervals with

T
fixed simulation time step h = 500 for excitation period (T = 2Jr). Two set of initial conditions (0,

0) and (1, 0) were investigated and the simulation was executed for 25-excitation periods including
IO-periods of transient and 15-peiods of steady solutions.
The estimation of Lyapunov exponents was by Grahm Schmidt Orthogonal rules. The corresponding
Runge-Kutta scheme effects the relevant transform functions associated with a unit length in
orthogonal axes and Lyapunov exponents estimated at interval of ten simulation time steps and over
the steady simulation periods. The average Lyapunov exponent is continuously estimated. At the end
of total simulation periods the existence of at least one positive average Lyapunov exponent indicates
chaotic response for the selected parameters.

III. RESULTS AND DISCUSSION

Table 1 and figures 1 to 8 give validation results for the FORTRAN programmes developed for this
study. Table \ refers. The corresponding displacement and velocity components lack repetition with
increasing number of completed excitation periods and across Runge-Kutta schemes. The Poincare
patterns in figures \ and 2 compare excellently well with those reported by Gregory and Jerry (1990)

2
for respective damp quality of 2 and 4, excitation amplitude of 1.5 and drive frequency of-

3
Similarly the finite number of points in figures 3 and 4 affirms the periodic response results reported

by Gregory and Jerry (\990) at damp quality of 2; drive frequency of ~ and for respective excitation
3

amplitude of \.35 and \.47. The corresponding variation of average Lyapunov exponents with
increasing steady simulation periods are provided in figures 5 to 8 for the damp quality of 2 or 4.

drive frequency of ~ and respective excitation amplitude of 1.5, 1.5, \.35 and 1.47.
3

No of q=2 q=4
excitation RK4 RK5 RK4 RK5
periods

()I ()2 ()I ()2 ()I ()2 ()I ()2completed
I -2.241 1.591 -2.241 1.591 2.194 -0.062 2.183 -0.070
2 -0.588 2.277 -0.588 2.277 1.715 2.365 2.909 0.788
3 1.076 1.944 1.076 1.944 1.324 2.221 2.910 0.578
4 -1,450 1.438 -2.450 1.438 -0.449 2.804 -0.825 0.772
5 2.521 0.431 2.521 0.431 -1.280 2.058 -0.283 2.838
6 -2.750 1.217 -2.750 1.217 -0.600 0.760 -0.487 1.690
7 0.343 0.278 0.343 0.278 -2.898 0.982 0.698 -0.278
8 -0.011 1.426 -0.0 II 1.426 1.722 1.850 1.870 -0.238
9 -2.616 1.283 -2.616 1.283 -0.976 2.130 -0.081 -0.363
10 0.607 0.067 0.606 0.068 -0.658 0.861 1.909 -0.240
II 0.001 1.380 0.001 1.380 -1.637 2.229 -0.076 -0.374
12 2.103 0.190 2.104 0.191 -0.617 0.709 1.934 -0.224
13 0.787 2.226 0.893 2.171 0.655 -0.476 -0.026 -0.414
14 -2.644 1.298 -2.961 1.054 2.717 0.358 2.040 -0.156
15 0.619 0.061 0.149 0.559 -1.200 1.565 1.268 -0.585

Sample steady simulated Poincare Solutions at excitation amplitude (1.5) and drive frequency
2

(- ).
3

Table I:
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16 0:001 1.378 -0.028 1.443 1.826 -0.032 3.025 0.621
17 2.064 0.170 -2.086 1.664 0.610 -0.650 -0.170 -0.071.
18 0.074 1.400 -0.034 2.176 -2.912 0.897 1.479 -0.470
19 -2.909 1.060 1.012 2.020 1.872 1.776 1.696 -0.319
20 0.157 0.541 -2.382 1.494 -0.475 1.612 0.279 -0.501

RK4 (q=2)

r--·----------·---··---·---·----··-·---3c9-- ---------.---- ---_._ .._- --- ..-.- _.

i,
I .' •• - •• 2.5 ..• '-'"_•.~/.'~".'-c~.---~~~..'"~
I 1.0 '.

! ~.~ .",.. ..

-1

J v.v

-3l0 -2.0 -1.0 00 1.0 2.0 3!0
I --&.-5,-<----------------.---.--. I

Angular displacements

Figure 1:
2

Poincare section of harmonically excited pendulum by RK4 and for q=2, g=I.5 and wD = -.
. 3

RK4 (q=4)
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Figure 2:

Angular displacements

2
Poincare section of harmonically excited pendulum by RK4 and for q=4, g=I.5 and Wu = - .

3
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RK4 (q=2, 9=1.35)
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Figure 3:

Angular displacements

2
Poincare section of harmonically excited pendulum by RK4 and for q=2, g=1.35 and OJD = -

3

RK4 (q=2, 9=1.47)
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Poincare section of harmonically excited pendulum by RK4 and lor q=2, g= 1.47 and OJu = -
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RK4 (q=2)
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Figure 5: Variation of average Lyapunov exponents along two orthogonal directions of harmonically
2

excited pendulum by RK4 and for q=2, g= 1.5 and (j)D = - .
3

RK4 (q=4)
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Figure 6: Variation of average Lyapunov exponents along two orthogonal directions of harmonically
2

excited pendulum by RK4 and for q=4, g=1.5 and (j)D = -r- •
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RK4 (q=2)
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Variation of average Lyapunov exponents along two orthogonal directions of harmonically
7
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3
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Figures I to 8 refer. Each Poincare section compare well in quality with the corresponding result
reported by Gregory and Jerry (1990). In addition the existence of at least one average positive
Lyapunov exponent as illustrated respectively in figures 5 and 6 affirm the chaotic response at damp

2
quality of 2 and 4 respectively and excitation amplitude of 1.5 and drive frequency of - . Similarly

3
non-existence of at least one average positive Lyapunov exponent as illustrated respectively in figures
7 and 8 affirm the periodic response at damp quality of2, respective excitation amplitude of 1.35 and

500 600 700

-0.40

-0.50

-0.60 -'------------ -------

Multiple of ten steady Simulation steps

I-Average Lyap-1 ----Average Lyap-21

Variation of average Lyapunov exponents along two orthogonal directions of harmonically
2

excited pendulum by RK4 and for q=2, g=1.47 and ())u = -.
3
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•

1.47 and drive frequency of ~. In addition the visual assessment of the Poincare sections shows that
3

the filling of the phase space increases with increasing damping quality and vice versa while keeping
other driven parameters constant.
Figure 9 presented the results of variation of percentage of parameters combination leading to chaotic
response (PPCLCR) for increasing resolution (R I to R5) and drive frequency

_R1

--- R2
R3

R4

--R5

RK4

:~~l-~.
~60.0~~
~!!.... 50.0
a::
~ 40.0

~ 30.0a,
20.0

10.0

0.0
0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

Drive frequency (rad/s)

Figure 9: Variation of percentage of drive parameters combination leading to chaotic response
(PPCLCR) of harmonically excited pendulum by RK4 and for initial conditions (0, 0).
2~q~4, 0.9~g~1.5and 0.5~lVD ~1.0.

Figure 9 refers. Though not significantly high the accuracy of variation of percentage of drive
parameters leading to chaotic response (PPCLCR) of harmonically excited pendulum improve with
increasing resolution from R I (II x 11 grid points) to R5 (51 x 51 grid points) at constant step of ten
(10). The peak frequency for all studied resolutions is 0.6 radian/so The PPCLCR decreases slowly
below peak frequency and rapidly toward zero in at drive frequency of one (I).

Table 2: Quantitative comparison of variation of percentage of drive parameters combination leading to
chaotic response (PPCLCR) of harmonically excited pendulum for 2 ~ q ~ 4 .

0.9 ~ g ~ 1.5 and 0.5 ~ lVD ~ 1:0.

RK4 RK5 RK5B

Drive frequency PPCLCR (%) for two Initial Conditions
(0,0) (1,0) (0,0) (I, 0) (0.0) ( I. 0)

0.5000 56.9 55.6 56.6 55.7 56.5 55.7
0.5167 57.4 "57.6 57.6 57.5 57.6 57.6
0.5333 57.8 58.4 57.7 58.2 57.7 58.3
0.5500 60.7 59.7 60.9 59.9 61.0 59.8
0.5667 63.1 62.2 63.0 62.2 62.9 62.3
0.5833 67.2 65.8 67.3 65.9 67.3 65.8
0.6000 69.5 69.6 69.4 69.7 69.4 69.6
06167 66.5 66.3 66.5 66.5 66.6 66.6
0.6333 62.5 63.3 62.6 63.4 62.5 63.4
0.6500 59.3 59.8 59.4 59.7 59.4 59.8
0.6667 53.2 54.4 53.2 54.3 53.2 51:2
0.6833 50.9 51.2 50.8 51. 1 50.8 51. I
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0.7000 48.8 49.9 48.7 49.8 48.8 49.7
0.7167 48.2 48.2 48.2 48.1 48.2 48.0
0.7333 47.2 47.9 47.3 47.9 47.3 48.1
0.7500 44.6 45.3 44.7 45.4 44.6 45.4
0.7667 38.1 38.8 3~.1 38.9 38.0 38.8
0.7833 30.9 31.1 30.9 3 I. I 31.0 3 I. I
0.8000 24.9 26.3 24.9 26.4 24.9 26.2
0.8167 20.1 21.8 20.0 21.8 20.0 21.8
0.8333 17.9 18.8 17.9 19.0 18.0 19.0
0.8500 14.7 15.9 14.6 15.9 14.6 15.9
0.8667 13.2 14.0 13.2 14.2 13.3 14.2
0.8833 14.1 13.5 14.1 13.5 14.1 13.5
0.9000 11.5 12.0 11.4 12.1 11.3 12.3
0.9167 10.0 9.0 10.1 9.2 10.1 9.2
0.9333 7.4 6.8 7.3 6.8 7.3 , 6.9
0.9500 5.0 5.9 4.9 5.9 4.9 5.9
0.9667 2.7 4.2 2.7 4.2 2.7 4.2
0.9833 1.6 2.1 1.5 2.2 1.5 2.3
1.0000 0.9 1.0 0.9 1.0 0.9 1.0

Initial Conditions (0, 0)
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Figure 10: Variation of percentage of drive parameters combination leading to chaotic response
(PPCLCR) of harmonically excited pendulum by RK4 and for initial conditions (0. 0).
2:::; q :::;4, 0.9:::;g :::;1.5 and 0.5:::;OJ/) ::; 1.0.

14191 Vol. 6, Issue 3, pp. 1409-1423

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



.r.
International Journal of Advances in Engineering & Technology, July 2013.
©IJAET ISSN: 22311963 ~

Initial Conditions (1,0)

~~~l-----r. --.----. -------.-- -----------~-------

r, r.r. r.
~ 60.0 r. r,J\ r. ,
o r.
~ 50.0 r.r.~ _RK4~ ~
o 40.0 ~ -a-·RK5..J
U

30.0
r. RK5BQ.

Q. f\

20.0 '\ f\

10.0
(\ f\ r.'\

" ,.. r\ r. ,> ~
0.0
0.5000 0.6000 0.7000 0.8000 0.9000

,
1.0000

Drive fre que ncy (rad/s)

Figure 11: Variation of percentage of drive parameters combination leading to chaotic response
(PPCLCR) of harmonically excited pendulum by RK4 and for initial conditions (I, 0),

2:::; q ::;;4, 0.9:::; g :::;1.5 and 0.5:::; CUD :::; 1.0.

Table 2 and figures 10 and 11 refer. The peak frequency is 0.6 radian/s for all the cases of initial
conditions and Runge-Kutta schemes studied. The peak value of PPCLCR is 69.5, 69.4 and 694
respectively for RK4, RK5 and RK5B at initial conditions (0, 0). However when the simulation initial
conditions is (1, 0) the corresponding PPCLR value changes insignificantly to 69.6, 69.7 and 69.6 for
RK4, RK5 and RK5B. In addition there is no significant difference in PPCLR value across initial
conditions and schemes with increasing level of drive frequency.
Figure 12 presented the chaos diagram at peak frequency simulated form initial conditions (0, 0) and
using constant step fourth order Runge-Kutta (RK4) scheme. The estimation of the average Lyapunov
exponents by Grahm Schmidt Orthogonal rules was effected along two perpendicular axes at 51 x 51
grid points on the driven parameters plane defined by 2:::;q s: 4 and 0.9:::; g:::; 1.5. The set of scatter
plots in figure 12 identified drive parameters combination leading to chaotic response of the
harmonically driven pendulum supported by evidence of at least one average positive Lyapunov
exponent. The pendulum responded chaotically at a total of 1808 parameters combination out of 260 I
maximum possible, which is the same as PPCLCR of 69.5 obtained at peak frequency. Periodic
response of the pendulum can be obtained at driven parameters combination selected in the blank
regions of figure 12.
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Figure 12: Chaos diagram on the drive parameters plane ( 2 ~ q ~ 4 and 0.9 ~ g ~ 1.5) with 51 x 51
grid points and at peak frequency (0.6radian/s) of harmonically excited pendulum by RK4 and
for initial conditions (0, 0).

IV. CONCLUSIONS

This study utilised average positive Lyapunov exponent criteria estimated by Grahm Schmidt
Orthogonal rules to determine the peak frequency of 'harmonically excited pendulum. The peak
frequency is the drive frequency at which the percentage of drive parameters combination leading to
chaotic response (PPCLCR) is highest over a range of studied drive frequency. The estimated peak
frequency (0.6 rad. Is) is the same across studied resolutions, initial conditions and Runge-Kutta
schemes. Therefore the utility of Lyapunov exponent as chaotic response identification tool
reaffirmed.

V. FUTURE ApPLICATIONS

Some of the future applications of this study included the under-listed.

~ The results of the present study can be employed to select suitable drive frequency in
addition to other driven parameters that will guarantee chaotic behaviour of
harmonically driven nonlinear pendulum.

> The platform developed in the present study is a versatile diagnosing tool for
distinguishing dynamic behaviour of dynamic systems such as nonlinear pendulum,
Duffing oscillator etc. Their behaviour can be classified as periodic or quasi-periodic
or chaotic. .

> With little modifications the platforrn can be adapted to similarly investigate higher
order or higher dimensional dynamic systems such as Lorenz, Rossler etc.
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ApPENDIX-I:

Simulation procedures (set-up)
(I) START
(2) Read Basic common parameters including the initial conditions from the input file.
(3) Select Runge-Kutta Scheme (Fourth order or Fifth order or Butcher's (1964) modified f fth order).
(4) Select the First or the second initial conditions.
(5) Select the First or the Next resolution

(6) Select the First or the Next drive frequency (OJo)'
(7) Select the First or the Next Parameter point (q, g) and set or reset the initial conditions as appropriate

for the simulation of the pendulum and Lyapunov value estimation.
(8) Use constant time step Runge-Kutta scheme to simulate both unsteady and steady solutions 0 f nonlinear

and harmonically excited pendulum (governing equation expressed as first order rate). Simultaneously
and for each time step employ Grahm Schmidt Orthogonal rules (coded according to selected Runge-
Kutta scheme) to sequentially effect the transformation of a unit radius circle to its corresponding
elliptic shape. After ten (I O)consecutive time steps within the steady solutions region estimate the local
Lyapunov values and track results (for further processing), then renormalize ellipse to a unit radius
circle. Repeat the estimation of the local Lyapunov values for as long as steady simulation of the
pendulum lasted while tracking relevant simulation results.

(9) Evaluate the average of the estimated local Lyapunov value along the angular displacement and angular
velocity axes. Keep the census if the sign of the greater of the average Lyapunov values is positive for

Vol. 6, Issue 3, pp. 1409-1423

UNIV
ERSITY

 O
F I

BADAN LI
BRARY


	scan0162.pdf
	scan0163.pdf
	scan0164.pdf
	scan0165.pdf
	scan0166.pdf
	scan0167.pdf
	scan0168.pdf
	scan0169.pdf
	scan0170.pdf
	scan0171.pdf
	scan0172.pdf
	scan0173.pdf
	scan0174.pdf
	scan0175.pdf

