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Fractal Characterization and [so-mapping of 
Parameter Plane of Harmonically Excited 

Pendulum 
Salau. T.A.o.' and Olabode, A. A . ~  

Abstract- This study utilized fractal disk dimension characterization to investigate the system response of a nonlinear, harmonically 
driven pendulum of mass, m (or weight. W) and length I over a well-defined parameter plane of excitation amplitude versus damping factor. 
The system response was simulated at three drive ffequencies (symbol,*) of 1/3, 2/3 and 313. A Runge-Kutta fourth order algorithm, 
coded in FORTRAN programming language was used to simulate the System response over a 101 by 101 parameter plane with the forcing 
amplitude (symbol, g) varying between 0.9 and 1.5 and the damping factor (symbol, q) varying between 2.0 and 4 0 Initial conditions for 
both angular displacement and angular velocity for the simulation at each of the 10,201 points of the plane was set at 0 0 The Po~ncare 
section obtained at each node on the parameter plane at the end of 2000 steady-state drive periods was characterked to estimate the 
fractal disk dimension of the system response at that node. The fractal dimensions of three randomly selected nodes on the parameter 
plane are returned by computer code. Further, the nodes whose fractal dimensions r e  within an upper and lower tolerance of 1 % of the 
frectal dimensions of these randomly selected nodes are also returned by code and they, along with the random fractal dimensions of the 
three randomly selected nodes are plotted on the parameter plane In the form of an equal potential (system response) plot This plotting on 
the parameter plane to show the points that correspond to each of the three bands is done in order to achieve the iso-mapping on the 
plane. The steady-state response of a nonlinear, harmonically driven system depends on the drive frequency, the forcing amplitude and the 
damping factor. With a lower drive frequency of IM, higher fractal dimensions (above 1.0) were obtained with a combination of h~gh 
damping factor and low to medium forcing amplitude; with the median drive frequency of 213, fractal dimensions above 1.0 were obtained 
with a combination of low damping factor and medium to high forcing amplitude; while with the higher drive frequency of 313, a fractal 
dimension that is up to 1.0 was not obtainable at any of the 10.201 nodes on the parameter plane. We note that as the forcing amplitude 1s 
increased from 0.9. In order to assure early onset (as from 04.044) of higher fractal dimensions that are above 1.0, lower drive frequency 
(113) must be used The resub of this study could be used for engineering design, education and fashion design 

Index Terms- Damping factor, Forcing amplitude. Fractal disk dimension, Elonlinear pendulum, Parameter plane. Poincare section. 
Runge-Kutta, System response. 

pendulum has established itself as a test piece both for 
the exemplification and study of linear and nodinear vi- r" 
bratory systems. Since the first observations of Galileo, 

many researchers have likewise used it to study vibration in 
its many f o m .  This research work toes the same line in the 
study of the response of a nonlinear pendulum to varying 
combinations of forcing amplitude and damping aver a large 
101 by 101 (that is 10,201-point) parameter plane with the fort- 

e ing frequency held constant. The observation and fractal char- 
acterization of this response, which may be chaotic since the 
necessary conditions for chaos, namely nonlinearity among at 
least three independent dynamical variables (angular dis- 
placement, angular velocity and time) [I] are present in the 
system, over a parameter plane of parameter- combination 
points to get corresponding fractal dimensions and the iso- 
mapping (of simila~ dimension ,values) over this parameter 
plane, is the objective of this research work. A fractal is an ob- 
ject that displays self similarity on a l l  scales. A plot of the 
quantity on a log-log graph of count versus scale then gives a 
straight line, whose slope is the fractal dimension. The har- 
monically excited pendulum is one that is driven by a sinusoi- 
dally varying load and the system's response could be period- 
ic, quasi-periodic or chaotic. The term chaos has been de- 
scribed as sensitivity to small diffkrences in initial conditions 
[I]. When the response is chaotic, it could be studied by differ- 

ing methods or visual tools and an example of this is the Poi~t- 
care section For chaotic response the section is a fractal shape. 

A fractal possesses self similarity across a range of spatiill 
scales and, not having integer dimensions like Euclidean otb 
jects, can be described by its ability to fill the Euclidean space 
in which it is embedded [2], [3], [4], 151, 1211. Thus fractal dl- 

mensioning can handle all shapes regardless of complexiv. 
Fractals are highly employed in computer modelling of irregu- 
lar patterns and structures in nature. Although the theory c ~ f  
chaos and the concept of fractals evolved independently, they 
have been found to penetrate each other's fronts. Although the 
orbits of nonlinear dynamical systeps could be attracted or 
repelled to simple shapes of nonlinear, near-circles or other 
shapes of Eudid, these are rare exceptions and the behavlour 
of most nonlinear dynamical systems tends to be more coni- 
plicated [4], [ 61. ~heana1~si.s of nonlinear dynamics fractals u 
useful for obtaining information about the future behaviour of 
complex systems because they provide fundamental 
knowledge about the relationship be&een these systems and 
uncertaintv and indeterminism; addition, the dimension of 
Poincark recurrences may serve as an indicator of the onset of 
synchronized chaotic oscillations and thus researchers have 
established the utility of fractal dimensioning as an effective 
characterization tool r/3, [a], [4]. Chaotic dynamical systems 
with phase space symmetries do exhibit riddle basins of at- 
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traction that can be viewed as extreme fractal structures not 
minding how infinitesimal the 'uncertainty in the determina- 
tion of an initial condition and it is not possibIe to decrease the 
fraction of such points that will surely converge to a given 
attractor [9]. Same of the visual bols that enrich the under- 
stending of chaotic behaviour include state variabk (time 
series), the phase portrait, the Poimad map, the p m r  spec- 
tram, the Lyapunov exponents and b a t i o n  diagram [lo]. 
The bifurcation and cham behaviour af horizontal platform 
system (HPS), wed in offshore and earthquake technology, 
and in a 4-sided simply supported rectangular thin electro- 
magneto-eIatic plate in elettromagnetic, mechanical and tem- 
perature Mds have been studied [Ill, 1121. Narayanan and 
Jayaraman P6] emphasized that one of the major ways to in- 
vestigate the dynamics of continuous time system by differen- 
tial equittions was the use of kmge-Kutta methods in dwet- 

'oping b i k c a o n  diagam and a critical review of Rtmge- 
Kutta disw~uous G a l e M  (FtGDK) methods for nodhear 
convection d~minated problems which has become a break- 
through in computatimal fluid dynamics especially in pro- 
ducing its chaos diagrams was carried out by [13]. The RKDG 
methods review also showed its immense applicatians in Na- 
vier-Stokes equations and ~ d t a n - ~ a c o b i a n  equations. Also 
the chaotic behavim of a trahsforwter during fern-resonance 
under single and doubiwpen conductor configurations and 
the solutions of the nod in^^ differen* equat@sI using 
Runge-Kutb fourth order m&d categ&@i the behaviow 
into periodic, quasi-periodic, 'riind chaotic 't$rpes. 'The resdts 
which were corroborated usG Electro Mhgnetic Thsients 
Program 0 showed the influence of parametiers (he. 
transformer saturation characteristic, core loss, and the ampli- 
tude of the voltage soure) on the system response 1141. Chaot- 
ic vibrations of a harmmicdy excited non-linear oscinator 
with couiomb damping was investigated in a rmge sf excita- 
tion frquencies with the observation of a period doubling 
route to chaos in cerfain frequency ranges [15]. An improve- 
ment in the characterization of surface finish of machined sur- 
faces was obtained through the use sf fractal analysis [17J 
while the analysis of the corrosion fronts of aluminium foils in 
an experimenfal invesdg-ation showed that the b t s  can be 
described in terms of self-affine fractal geometry over a sipif- 
icant rarip of length scales [la]. The use of multihctal scaling 
of oore vdume as a tool for rock characterkation to demon: 
strite that a certain amount of order can be &tracted from an 
apparendy random distribution of pores in sedimentary rock 
was done by [19] while it has been shown [a by atamic force 
%croseopy (AFM) method that the surface characteristics of a 
film of Indium Tin Oxide annealed at high temperatures 
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(3000C) has higher surface roughness with the fractal dimen- 
sion, cdda ted  by the height-height correlation function, of 
the surface falling between 2.15 and 2.19, depending on the 
annealing temperahue. Fractal analysis was used [a] to study 
the various harmonic current waveforms generated by typical 
nonlinear loads The gap that ttus study intends to fill through 
the use of Runge-Kutta fourth order simulations using a For- 
tan-90 coded copputer program is to characterize and make a 
plot of equal potential points covering a well defined parame- 
ter range consisting of 10,201 parameter combination points 
This work takes advantage of the fact that camputers are good 
at repetitive tasks with high precision and speed beyond hu- 
man capability. 

2 THEORY AND METHODOLOGY 
2.1 Theory 
The governing equation for the damped, sinusoidally driven 
nonlinear pendulum of mass m (or weight W) and length 1 is 
given by: 

m W ' 8 / d t 2  i y d @ / d t  + W sin6 = d cos(w,t) (1) 
where the various terms on the left represent acceleration, 
damping and gravitation. Expressed in dimensionless form, in 
order to minimize the number of adjustable parameters, (I) 
becomes: 

d'@1dt5 + l /q  (d8ldt.) + sin(6) = 8 cas(luL) t) (2) 
Where q is the damping factor or quality parameter, g is the 
forking amplitude and w~ is the drive frequency. 
Frm [a], (2) may be transformed (taking 8 1  as angular dis- 
placement and 8 2  as angular velocity) into a pair of first order 
differentia1 equations to obtain 

do, Jdt = 8: (3) d4 /dt = g cos(cuo tl - ( l / q ) B z  - sin(@, ) (4) 
According to literature, research interest focuses on the q- and 
g-ranges defined by 2.0 .IC: q 4 4.0 and 0.9 <: g < 1.5 
2.2 Simulation 
The original parameter plane before the commencement of the 
simulations is shown in Fig. 1. 
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Fig. 1. 101 by 101 parameter plane. Note that there are 10.201 
combination points on this plane. 
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' As noted earlier, the value of the damping parameter varies ing the fractal dimensions (from lowest to highest) over a 100 
from 2.0 to 4.0 subdivided into '100 places to give 101 divi- equal-width distribution and taking note of the count of points 
sions. The value of forcing amplitude similarly, is in lff l  &vim within each range, we obtain that the range wth the highest - 
sions and is varied from 0.9 to 1.5. In order to simulate the population'or count of points within it to be the 1 s t  range 
response of the system given by (I), a Runge-Kutta fourth- bounded between 0.0000 and 0.0137, with a modal value of 
order ahgorit'fun coded in Fortran 90 computer Ianguage is 0.0068. This range contained 3,143 out of the total 10,201 points 
emplofld €0 simuIatenous1y solve (3) and (4). This computer or 
programme ran on a 32-bit Windows Vista Opera- System 
on a HP-Compaq laptop. The solutions of the angular dis- 
placements and velocities obtained at the end of each drive 
period are tracked with only the steady state solutions re- 
tained in order to obtain data for the Poincare section. 500 
computations of a@ar displacement and velocity are com- 
puted within each drive period. 2000 steady state soIuti~ns of 
angular displacement and angular velocity are in this way 
stroboscopically obtained at each combination point on the 
parameter p h e  and used to construct the Poincare section f o ~  
that point. 

A base drive frequency of 2/3 was used in the first instance 
to drive over the entire parameter plane and subsequently the 
drive frequency was varied first to 113 and then to 3/3 4.0. 
Following the procedure in 141, the Poincare section obtained 
after simulating at each point on the parameter plane is ana- 
lyzed using fractal disk dimensioning method to obtain the 
fractal dimension. The 10,201 fractal dimensions produced 
over the entire parameter plane are then distributed over a 100 
equal-width distribution. The fractal dimensions of three ran- 
domly selected nodes on the pdrameter plane are returned by 
computer code. Further, the nodes whose fractal dimensions 
are within an upper and lower tolerance of 1 % of the random- 
ly selected fractal dimensions of these nodes are also returned 
by code and they, along with the random fractal dimensions of 
the h e  randomly selected nodes are plotted on the parame- 
ter plane in the form of an equal potential (that is, system re- 
sponse) plot. AII random number generation in this work was 
done with a seed value of 9875. 

Compactly expressed in flow chart form the method fol- 
lowed in this study is shown in Fig. 2. . 

To characterize the fractals obtained at each node on the 
parameter plane, we follwed the procedure in [4]. The fractal 
dimension of all the 10,201 points on the parameter plane are 
in this m e r  obtained and track kept of the values of all of 
them Following this the collection of 10,201 fractal dimen- 
siona are sorted from lowest to highest and the sorted collec- 
tion a m q p d  into an equal-width, 100-range distribution The 
analysis of the program output data and the construction of 
the iso-mapping of fractal dimensions on the parameter plane 
was carried out using Microsoft Office Excel 2007 running on 
32-bit Windows Vista Operating System on a HP-Compaq 
laptop. 

3 RESULTS AND DISCUSSION 

3.1 Results 
Simulating over the entire parameter plane with w=2/3 to 
obtain the fractal dimension at each of the 10,201 points gave 
the lowest fractal dimension as 0.0000 and the highest fractal 
dimension as 1.367l (both to 4 decimal places). After spread- 
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with 30.811%. One range, the 2nd range, (0.0137 to 0.0273, 
modal value of 0.0205) contained no points at all. 

Start 

v 
~nput Parameters (exate 
amplitude range, etc) 

.(. 
Pick one parameter combination point and 

simulate to get Poincare data 

I 
Pick next point 
and slmulate 

A 

Characterlre the Poincare 
section 

A 

No 

Distribute dimensions over 

100 equal interval range 

Randomly select 3 

dimensions/ their nodes 

Using the 3 dimens~ons 
selected above, carry out 
iso-mapping on the 

parameter plane 

Fig. 2. Program flow to achieve study objective. 
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_ , The next highest populated range after the lst range is the l W  
range (0.1230 to 0.1367, with modal value of 0.1299) with 360 
(3.529%) points within it Between the 1st and 10m ranges, the 
number of poi116 per range was always below 100 (0.980%). 

Also after the 10% range, the count of points per range fell 
again to below 100 until the 80th range which had a count of 
122 points while the count remained above 100 poinb from 
the 80m range alI through to the 95h range which had a count 
of 153 points. From the 96* range to the 1W range the count 
f d  and remained below 100 with the lO@h range having a 
count of 4 points. This result is shown graphifally in Fig. 3. 
1 I - I  
I / Dimension Distribution I I 

Distribution Ranges 

Fig. 3. Dimension distribution plot wlth with ~ 2 1 3 .  

Repeating the simulation o ~ &  the parameter plane wi% 
*1/3 gave the lowest fractal. dinension as 0.0000 and the 
highest as 1.3819 @oth ta 4 de;cimal places). A f t a  spreading 
tfie fractal dimensions (from lowest to highest) over a 100 
equal-width distribution and t a h g  note of the count of points 
within each range, the range with the highest population was 
the 1st range bounded between 0.0000 and 0.0139, with a mod- 
a1 value of 0.0069. This range contained 3,951 out of the total 
10,2Ol points or 38.731%. Five ranges (the WJ, P, 8*, 12th and 
14h r&es) contained no points atall. The nact highest popu- 
lated range after the 1st range is the 89" range (1.2222 to 1.2360, 
with modal value of 1.2291) having 480 (4.705%) points within 
i t  Betwen the 1st and 82"* rang&, the number of points per 
range was always below 100 (0.980%). From the 83d range up 
to Me 96@ range the count of points per range remained above 
100 but PFMn the 97" range, it fell again to below 100 and re- 
mained so until the 100" range having a count of 2 points. Thls 
result is shown graphically in Fig. 4. . 

Dimension Distribution 
i I I # ; ;%\- - - - -  - - - 

a m o  t - --- - 

j 
ooo 0 40 m fio a so m loo oa 

, 

D;NtbWton Runeus -- 
Fig. 4. Dimension distribution plot with with w=1/3. 

Finally, repeating the simulation over the parameter plane 
with a 3 1 3  gave the lowest fractal dimension as 0.0000 and 
the highest fractal dimension as 0.8192 (both to 4 decimal 
places). After spreading the fractal dunensions (from lowest to 
highestgovcr a 100 equal-width distribution and taking note of 
the count of po~nts within each range, the range with [he high- 
est population was again the 1 s ;  range bounded between 
0.0000 and 0.0082, with a modal value of 0.0041. This range 
contained a vast 10,012 out of the total 10,201 points or 
98.147%. More than half of the ranges in the distribution (53 
out of 100) contained no points at all. The next highest popu- 
lated range after the 1st range is the 16th range (0.1229 to 0.1311, 
with modal valde of 0.1270) having 104 (1.020%) poi+ witlun 
i t  All the remaining ranges apart from the 83"1 range had a 
count of points below 5. By the way, the 83" range itself had 
exactly 5 points within it. The 100" range had a count of 1 
point. This result is shown graphically in Fig. 5. 

l-_l--IX---l-----l--_.---- 

I '  Dimension Distribution I 

I Fig 5. Dimension diitributkm phi with with w=2/3 

Further, with M=1/3, the random selection code returned the 
three fractal dzmensions 0.0000, 1.2975 and 0.0000 with the 
total number of unique points with fractal dimension within 
1% tolerance of their values equailing 4,632. Plotting this 
number of points on the parameter plane along with the ran- 
dom dimensions that returned them gave the plot in Fig. 6. 

- - - -  - . - . -- -- - - _ - - . - - - -- - - I 
Eaual Potential Plot 

I Fig. 6. Equal potential plot with r t J .  I 
From Fig. 6, the dimensions of the different points on the pa- 
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rafneter plane could of three types represented by colour 
codes, with green standing for 1.0 to 1.5 fractal dimension, 
reddish brown standing for 0.5 to 1.0 fractal dimension and 
blue standing for 0.0 to 0.5 fractal dimension. A first, cursory 
look at Fig. 6 would suggest that the figure is a scatter plot of 
forcing amplitude against damping fi9ctor. However, -noting 
that this plot is made on a 101X101 paramter plane containing 
10,201 nodes which wauld drasticdly squeeze. the pohts into 
a very small space thus leading to the dmission oiusefu~ de- 
tail, and also r&alling that this plot is made, not with the scat- 
ter plot feature, but rather the surface plotting feature of Mi- 
crosoft Excel 2007 with the specification to do a contour plot, 
we dig deeper by magnrfiying to unravel hidden detail. view- 
ing at the maximum resolution of 400% in Microsoft Excel 
2007, a small part (we can no longer see the whole figure at  
once) af Fig. 6 is shown in Fig. 7. 

Fig. 7. A small part of Fig.8 dewed at 400% magnitication. 1 
As the shapes in Fig. 7 confirm, the apparent dots in Fig. 6 are 
actually not dots but rather are a series of approximate con- 
centric figures, occasbnally rectangular but mostly irregular, 
with different colour bands-green at  the centre (1.0 t~ 1.5 frac- 
tal dimension), reddish brown in the middle band (0.5 to 1.0 
fractal dimemion) and blue at the outermost band (0.0 to 0.5 
fractal dimension). A h  all these colour bands close up com- 
pletely fanning contours of points with _similar fractal dimen- 
sions Each colouaed band denotes &e f r a d  dimemion of the 
points that it covers while the size or area of the band gives an 
indication of the number of points eorriahed within it. 

Continuing with Fig. 6, we see &at there is a concentrated 
cluster of points within ths region bounded by damping factor 
= 3.120 to 4.000 and forcing amplitude = 1.020 to 1.3% with 
the innermost green band (fractal dimension = 1.0 to 1.5) in- 
creasing in area as the value of the forcing amplitude decreas- 
es and the damping factor increases. However, we also note 
that as the forcing amplitude increases and the damping factor 
decreases, the area of the innermost green band shrinks but 
there is no occurrence on the parameter plane where the green 
innermost area disappears altogethex. Away from the large 

,concentrated cluster of points on the parameter plane, and 
towards the bottom right region of Fig. 6 the contours become 
less concentrated, spreading out, with the areas of the reddish 
brown band and the blue band increasing relative to that of 
the green band. The same is true of the very small cluster in 
the top right comer of the figure although in keeping with our 
earlier observation, the area of the green band increased as the 

damping factor increased towards 4.000. Within the large clus- 
ter dominating the equal potential plot, and possibly for thr 
whole figure, ,the sum total area of green (fractal dimension 
from 1.0 to 1.5) bands is more than either that of the reddish- 
brown (fractal dimension from 0.5 to 1.0) bands or the blue 
(fractal dimension from 0.0 to 0.5) bands. 
With the drive frequency changed to w=2/3, the random 

selection code returned the three fractal dimensions 1.0926, 
0.0000 and 0.3795'with the total number of unique points with 
fractal dimension within 1 % tolerance of their values equalling 
246. Plotting this number of points on the parameter plane 
along with the random dimensions that rekrncd then,-gavc 

- - -. --. -. - 

Equal Potential Plot 

Fig. 8. Equal potential plot with @=2/3 

I ,  1 

As noted earlier, what we have in Fig. 8 are not dots but ra- 
ther are a series of approximate concentric bands. There are 
occasions with 1u=2/3 when the two inner colow bands of 
green and reddish-brown are entirely crowded out by the out- 
er blue band. Curiously however, whenever the middle red- 
dish-brown band is present the innermost green band is al- 
ways retained, no matter how small the area it covers. Wh~le 
this may not be readily apparent looking at Fig. 8, it becomes 
very glaring at the maximum magnification of 400%. 

In the arrangements of the contour bands on the parameter 
plane, there is a change in pattern from when u=1/3. The con- 
centrated cluster of points has moved from the upper part of 
the parameter plane to the lower part whde at the same bme 
the clusters are now two, with the larger one in the bottom 
right region of the pIotted parameter plane. Within the bot- 
tom-right duster (damping factor = 2.000 to 2620 and forcing 
amplitude = 1.248 to 1.500), the areas of the innermost green 
bands increased with increas~ng damping factors and decreas- 
ing forcing amplitudes, although overall the total area of the 
middle reddish-brown bands is more than either that of the 
green bands or the blue bands. This same observation holds 
true for the bottom-middle cluster (damping factor = 2.000 to 
2.300 and forcing amplitude = 1.104 to 1.248). Away irom 
these two clusters at the bottom of the parameter plane, khe 
remaining colour bands are more pronouncedly spread out 
than for the case when e 1 / 3 .  However, even with the spread 
out, the sum total area of reddish-brown (fractal dimension 
from 0.5 to 1.0) bands are more than either that of the green 
(fractal dimension from 1.0 to 1.5) bands or the blue (fracti~l 
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dimension from 0.0 to 0.3) bands. In addition, we note that 
there is a subsiantial number of colour contours that are filled 
entirely with the outermost blue (fractai dimension from O.ato 
0.5) b i d ,  thus crowding out both the middle reddish-brown 
(fractal dimension from 0.5 to 1.0) bands and tihe innemost 
green (fractal dimension from 1.0 to 1.5) bands but these con- 
tours are not in the majority on the equal potential plot on the 
parameter plane for the case when w=2/3. Curiously, there 
are no contours filled entirely with the reddish-brown band, 
although same are very nearly so filled, A detailed look at 
4 0 %  magnification reveals that whenever the reddish-brown 
bands appear, the innermost green band is always retained, 
even if it is actually very smaU in area. 

When the drive frequency was changed to fi3/3, the ran- 
dom selection code returned the three fractal dimensions 
0.0000,0.0000 and 0.0000 with the .total number of nodes that 
give fractaI dimensions that are within 1% tolerance of them 
equabng 9,923. This is not entirely a surprise since the pfoba- 
bility of gMng a fractal dimension of 0.0000 with h is  drive 
frequency is more than 0.98 (almost unity!). Plotting this num- 
ber of points on the paramekr plane dong with the randomly 
selected fractal dimensions that was used to extract them gave 
the plot in Fig, 9. 

( Fig. 9. Equal potential plot with ~ 3 1 3 .  I 
- 

The number of points on the plane in Fig. 9 is more 
than 9,000 with all of their fractal dimensions equal to O.OOQ0. 
Noting that the colour  ode for fractal dimension 0.0000 is blue, 
it is not surprising that the entire parameter plane is covered in 
blue. All the points on this plane have a fiactal dimension of 
0.0000, Viewing at higher magnifications up to the maximum of 
400% yields no fbrther graphic detail. 

3.2 Discussion 
The highest dimension obtained throughout the simula- 

tions was 1.3819 which was obtained with a drive frequency of 
w=l/3. The lowest fractal dimensions obtained while simdat- 
ing on the parameter plane for the three cases of r~ used was 
always 0.0000, while the highest fractal dimensions obtained 
were respectively 1.3819 for w=1/3, 1.3671 for &=2/3 and 
0.8192 for &-3/3, suggesting an inverse variation between the 
value of drive frequency (w) used and the maximum obtaina- 
ble fractal dimension when simulating over the parameter 
plane. In addition, for all is-cases, fhe majority of the fractal 
dimensions obtained at the points was always 0.0000 (38.731% 

for u=l/3, 30.811% for td=2/3 and 98.247'4 for 6J=3/3), alt- 
hough this did not follow a discernible pattern and hence na 
relationship-betureen drive frequency (M)  and the percentage 
of points with 0.0000 fractal dimension is suggested here. On 
thi egual-width range distribution, out of the-100 ranges, the 
number of ranges that contain no point on the parameter 
plane is respectively, 5 for ca=1/3, 1 for b=2/3 and 53 for 
u 3 / 3 .  This also follows no ready pattern and hence predic- 
tion is impossible in this regard. 

For the cafe when &=1/3, looking at Fig.6, we note that the 
collection of points with high fractal dimensions (1.0 to 1.5) 
occur in larger numbers in the top half reson, in the area de- 
fined by forcing amplitude (g) =1.020 to 1.356 and damping 
factor (4 ~3.120 to 4.000. The collection of poinb'with higher 
fractal dimensions (1.0 to 1.5) are surrounded by points with 
median fractal dimensions (0.5 to 1.0)'which are also in turn 
surrounded by points with even lower fractal dimensions (0.0 
to 0.5). The above suggests that with w=1/3, higher fractal 
dimensions will be.readi1y obtained by a combination of high 
damping factor and low to medium forcing amplitude. In ad- 
dition, within this large cluster in Fig.6, there is a general pro- 
pensity for the areas of the green (high fractal dimension) 
bands to increase as the damping factor increases and the for(*- 
ing amplitude decreases. On the parameter plane, when 
sr=1/3, the large green coloured bands (fractal dimension 
greater than 1.0)stah to occur as early as forcing amplitude (g) 
~1.044 and fall off after 1.368. 

.For the case when w=2/3, looking at Fig.& the equal poten- 
tial plot contained two sizable clusters instead of one (that we 
had with *r=1/3), and now also the position of the clusters is 
shifted to the lower region of the figure. The larger cluster in 
the bottom-right corner is within the area defined by forcing 
amplitude (g) ~1.248 to 1.500 and damping factor (q) =2.000 to 
2.620, while the second cluster is in the mid-bottom to bottom- 
left area defined by forcing amplitude (g) =I .056 to 1.248 and 
damping factor (q) =2.000 to 2.400. Within these two clusters, 
the area of the parameter plane covered by the green contour 
bands (fractal dimension greater than 1.0) is substantial alt- 
hough the overall total area covered by the reddish-brown 
contour bands is stin the majority. In addition, within these 
two clusters, generally, the area of the green coloured contour 
bands is increased by increasing damping factor and reducing 
forcing ampIitude. However, with ~ = 2 / 3 ,  the value of forcing 
amplitude required to obtain a fractal dimension above 1.0 IS 
generally higher (1.104 to 1.448 as against 1.044 to 1.368 for 
when w=1/3). W i t h i n h  second cIuster of points in the mid- 
dle bottom to bottom lef€ area of the parameter plane, if the 
damping factor is held constant with the forcing amplitude 
allowed to decrease, the number of points with fractal dimen- 
sion greater than 1.0 increase. At &e top right corner of the 
parameter plane where the damping factor is highest but with 
accompanying high values of forcing frequency, the points 
almost exclusively give a fractaI dimension that is between 0.5 
and 1.0 while at the bottom left comer existing points exclu- 
sively give a fractal dimension that is less than 1.0. 

~ o r i h e  case when cd=3/3, Iooking a t  Fig.9, the equal poten- 
tial plot is all blue indicating fractal dimension that is all 
0.0000 for the plot of the points that gave the three randomly 
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selected fractal dimensions along with the points having frac- 
tal dimensions that are within a tolerance of 1% of them 

This study has demonstrated that the three adjustable pa- 
rametas of the non-dimensionabd damped, sinusoidally 
driven non-linear pendulum (the drive frequency, the forcing 
amplitude and the damping factor) exert pronounced effects 
on the skady state response of the system (as determined by 
fradal dimension). With drive frequency of 1/3, fractal di- 
mension greater than 1.0 is obtained with a combination of 
high damping factor and low to medium forcing amplitude; 
with a drive frequency of 2/3, fractal dimension greater than 
1.0 is obtained by a combination of low damping factor and 
medium ta high forcing amplitude whereas with a drive fre- 
quency of 3/3, it is not possible b obtain a fractal dimension 
that is up to 1.0. Gentmally, the numbers of nodes that have 
fractal dimension greater than 1.0 increase with increasing 
damping factor and decreasing forcing amplitude. Particular- 
ly, when the drive fnrquency is 113, nodes whose fractal &- 

- -ion is greater than 1.0 occur more readily above q=3.120 
and the onset of these high fractal dimensions start early as g 
is inaeased from 0.9 ( a m d  gc1.044) while for drive fre- 
quency of ZJ3, they occur below q~2.620 and their onset start 
later (around ~1.104). All over the iso-mapped parameter 
plane, nodes or points that have the same colour code can be 
used Internhangably to obtain h a d  dimensions correspond- 
ing b the colour @lue for 0.0-0.5, reddishibrown for 0.5-1.0 
and green for 1.0-1.5). The of. this dtudy could .be a p  
plied in the design of harrnoniay driveh nonlinear engineer- 
ing systems that are to have a desired degree (or absence) of 
chaotic response. It could also be used in the field of technical 
and engineering instruction or education that pertain to the 
vibration response of nonlinear dynamical systems. The inter- 
esting plot of the iso-mapped parameher; plane for the cases 
when el13 ad 213 could be used in aesthetic fashion design. 
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