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ABSTRACT 
 
Titanium alloy (Ti-6Al-4V) can be economically 
machined with high-pressure coolant (HPC) 
supply. In this study, an artificial neural network 
(ANN) model was developed for the analysis and 
prediction of tool wear parameters when 
machining Ti-6Al-4V alloy with conventional flow 
and high-pressure coolant flow, up to 203 bar. 
Machining trials were conducted at different 
cutting conditions for both rough and finish turning 
operations with uncoated carbide (K10 grade) 
and double TiAlN/TiN, PVD coated carbide (K10 
substrate) inserts.  The cutting parameters 
(cutting speed, feed rate, depth of cut, coolant 
pressure, and tool type) and the process 
parameters (cutting forces, feed force, machined 
surface roughness, and circularity) were used as 
input data set to train the three-layered feed-
forward, back-propagation artificial neural 
networks. The networks were trained to predict 
tool life and wear rate separately. The results 
show that the correlation coefficients between the 
neural network predictions and experimental 
values of tool life, tool wear and wear rate were 
0.996 and 0.999, respectively, suggesting the 
reliability of the neural network model for analysis 
and optimization of cutting process. 

 
(Keywords: artificial neural network, titanium alloy, tool 

wear, machining, tool condition monitoring) 
 
 
INTRODUCTION 
 
Ti-6Al-4V alloy is one of the commonly used 
commercial grades of titanium alloys in 
aerospace and power industries. In recent years, 
the need for harder, stronger, tougher, stiffer, and  
more corrosion or oxidation and heat resistant 
materials has led to an increase in the 
development and application of superalloys such 

as titanium and nickel base alloys in the 
aerospace, automobile, chemical, and medical 
industries (SECO, 2002). These alloys are 
developed specifically for applications demanding 
exceptional mechanical and chemical properties 
at elevated temperatures. Titanium alloys are 
particularly known to exhibit high strength to 
density ratios and good corrosion resistance 
properties. Their ability to retain their mechanical 
properties such as hardness, strength, and 
toughness at elevated temperature makes them 
more difficult to machine. The low machinability of 
titanium alloys coupled with the high temperature 
generated at the cutting edge results in rapid tool 
wear of different types, such as adhesive, 
abrasive wear, and diffusive wear, hence leading 
to extremely short tool life and high cost of 
tooling. Research efforts are been geared 
towards exploring means of machining this 
difficult-to-machine alloys economically by 
optimizing the tool performance through tool 
condition modeling (TCM). 
 
The tool condition modeling is required for the 
optimization of the machining operations and 
reduction of costs of tooling, workpiece, machine 
tool, time and labor and ultimately a reduction in 
the overall cost of production. The implementation 
of a tool condition modeling involves the 
acquisition several process parameters such 
cutting forces, vibration, acoustic emission, 
power, temperature, and roughness and 
roundness of the machined surface, which are 
measured during the machining operations. 
These measured signals, which are also 
influenced by the cutting parameters and external 
factors are then correlated with tool condition 
such as tool life, tool wear, wear rate and failure 
mode. The correlation between the measured 
signals and tool condition are known be complex 
and non-linear time-variant (Silva et al., 1998; 
2000). In order to model this complex relationship 
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various modeling techniques have been 
developed. 
 
The earlier works on TCM systems were focused 
on the development of analytical models, which 
dependent upon large amounts of experimental 
data (Dimla et al., 1997; Lin et al., 2003). These 
methods are costly, time consuming, and fails to 
account for the complexity and variability in the 
nature workpiece, tooling, and cutting conditions. 
The need for a more accurate and reliable model 
for TCM has led researchers into exploring other 
methods such as multiple regression analysis 
(Ehmann et al., 1997), wavelet analysis (Wang et 
al., 2003), time series analysis, and frequency 
domain analysis (Bernhard, 2002). These 
methods have been applied in practical TCM in 
metal-cutting processes with limited degrees of 
success. 
 
More recently, the application of Artificial Neural 
Network (ANN) in TCM is becoming more popular 
in the manufacturing industries. ANN is 
mathematical model consisting or networks of 
interconnected elements called ‘neurons’, which 
are designed to mimic the biological nervous 
systems. Like the human brain, when neural 
network is presented or trained with a given input 
and desirable output datasets, they can learn, 
assimilate, and reproduce the complex and non-
linear relationships between the input and output 
dataset. Neural networks are generally applied for 
modeling complex functions and in pattern 
recognition or classification problems.  
 
Comprehensive reviews of such applications in 
turning operations have been reported by 
Bernhard (2002) and Dimla et al. (1997). The 
complexity of the metal-cutting processes coupled 
with the diverse cutting conditions and the nature 
the acquired signals and associated external 
disturbances are the major setbacks in the 
implementation of reliable practical TCM in metal-
cutting operations. In order to improve the 
generalization capabilities of the systems, 
different techniques have been proposed by 
many researchers such as direct measuring 
methods (Dimla et al., 1997; Lin et al., 2003) and 
indirect monitoring methods (Dimla et al., 1997; 
Lin et al., 2003; Bernhard, 2002; Dan and 
Mathew, 1990; Ezugwu et al., 1995; Liu et al., 
1998).  
 
HPC is currently being used in the manufacturing 
industries to enhance the machinability and chip 
breakability of superalloys such as Ti-6Al-4V alloy 

(Marchado, 1990; Christer, 2003). Little or no 
work has as has been done on the development 
practical TCM systems with ANN for turning of Ti-
6Al-4V alloy with HPC supply, hence this study. 
 
 
MATERIALS AND METHODS 
 
Machining trials  
 
Machining trials were conducted on an 11 kW 
CNC Lathe with a speed range from 18 - 1800 
rpm, which provides a torque of 1411 Nm. Ti-6Al-
4V (IMI 318) alloy bar with 600 mm diameter and 
300 mm long was machined with uncoated 
carbide inserts coded T1 and T2 and a double 
TiAlN/TiN, PVD coated carbide insert coded T3. 
All the inserts used had the ISO designation 
CNMG 120412.  
 
The chemical composition and physical properties 
of the workpiece and cutting inserts are given in 
Tables 1-3, respectively. The followings cutting 
geometry were employed during the trials: Tool 
holder: MSLNR 252512, Approach angle: 40o, 
Side rake angle: 0o, Clearance angle: 60, Back 
rake angle: -50.  
 
During the machining trials, a general purpose 
coolant containing alkaline salts of the fatty acid 
(Tri-(2-Hydroxyethyl)-Hexahydrotriazine), with a 
concentration of 6% by weight, was supplied with 
convectional flow (2.7 l/min) and at high pressure 
of 70 bar (16.9 l/min), 110 bar (18.5 l/min) and 
203 bar (24 l/min). Cutting conditions typical of 
rough and finish turning of titanium alloys in the 
manufacturing industry were employed in the 
machining trials. The following cutting conditions 
were employed in this investigation:  
 
Roughing: Cutting speed (m min-1): 80, 90, 100, 
110,120; Feed rate (mm rev-1): 0.2; Depth of cut 
(mm): 2.0; Coolant supply pressure (bar): 70; 
Coolant concentration (%): 6.0 
 
Finishing: Cutting speed (m min-1): 100, 110,120, 
130; Feed rate (mm rev-1): 0.15; Depth of cut 
(mm): 0.5; Coolant supply pressure (bar): 110, 
203; Coolant concentration (%): 6.0. 
 
The component forces (cutting force, Fz and feed 
force Fx) were measured using a piezo-electric tri-
axial dynamometer (Type 9257B). The roughness 
(Ra) of the machined surface was measured with 
a stylus type instrument, while the circularity was 
measured with a dial gauge.  
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Table 1: Chemical Composition (% wt) of Ti-6Al-4V Alloy. 
Chemical 
Element 

Al V Fe O C H N Y Ti 

Min. 5.50 3.50 0.30 0.14 0.08 0.01 0.03 50ppm Balance 
Max. 6.75 4.50 - 0.23 - - - - - 

 
 

Table 2: Physical Properties of Ti-6Al-4V Alloy. 
Tensile 

Strength 
(MPa) 

0.2% 
Proof 
Stress 
(MPa) 

Elongation 
(%) 

Density 
(g.cm-3) 

Melting  
Point  
(°C) 

Thermal 
Conductivity 

(W.m-1.K-1) 

Measured 
Hardness*  (HV100) 

900-1160 830 8 4.50 1650 6.6 Min. = 341,  
Max. = 363 

 
 

Table 3: Physical Properties and Chemical Composition of Cutting Inserts. 
Physical Properties Chemical Composition (wt.%)  Coating (μm) Tool 

Grade Hardness 
Vickers 

(HV) 

Density 
(g.cm-3) 

Substrate 
Grain Size 

(μm) 

WC Carbides Co TiAlN TiN 

T1 1760 14.95 1.0 93.8 0.2, (Ta, Nb) C 6 - - 
T2 1753 14.92 0.68 93.7 0.3, Cr2C3 6 - - 
T3 1760 14.95 1.0 93.8 0.2, (Ta, Nb) C 6 3.5 0.5 

 
 
Tool wear for each machining trials was 
measured with toolmaker microscopy at a 
magnification of 25x. Tool life and failure mode(s) 
were determined using the ISO Standard 3685 
tool rejection criteria for roughing and finishing 
operations (Table 4). 
 
 

Table 4: Tool Rejection Criteria. 
Rejection value ≥ 

(mm) 
 

Rejection Parameters 
Roughing Finishing 

Average flank wear 0.4 0.3 
Maximum flank wear 0.7 0.4 

Nose wear 0.5 or 0.4 0.3 
Notching at the depth of 

cut line 
1.0 0.6 

Surface roughness 
(μm) 

- 1.6 

 
 
Design of Neural Network  

 
Neural Network Toolbox for MATLAB® (Math 
Works, 2001) was used to design the neural 
network. The basic steps adopted in the design 
are as follows: experimentation and collection of 
data; analysis and pre-processing of data; design 
of the neural network; training and testing of the 

neural networks; simulation and prediction with 
the neural networks; and analysis and post-
processing of predicted result. 

 
The input/output datasets were collected during 
the machining trials, which consists of five cutting 
parameters: cutting speed; feed rate; depth of cut; 
coolant pressure; and tool type, and four process 
parameters: cutting force, feed force, surface 
roughness, and circularity of the machined 
surface, while the output dataset consists of three 
parameters: tool life; tool wear; and wear rate. 
Prior to the training of the network, the 
input/output datasets ware normalized to values 
between –1 to +1 using the MATLAB® function 
‘premnmx’. The ith normalized input/output 
dataset then becomes: 
 

12
minmax

min −
−
−

=
dd

dd
x i

i                             (1) 

 
where, xi is the ith normalized input/output 
dataset, di is the ith raw input/output dataset, 
while dmin and dmin are the minimum and 
maximum raw input/output dataset. 

 
A standard back-propagation multiplayer feed-
forward network was designed using the 
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MATLAB® function ‘newff’. The network consists 
of three layers: input layer; hidden layer; and 
output layer. A typical architecture of a 3-layered 
feed-forward back-propagation hierarchical 
network is shown in Figure 1. The number of 
neurons in the input and output layers are 
determined generally by the number of input and 
output variables, which in case are 9 and 3 
respectively. The number of neurons in the 
hidden layer was varied from 10, 15, and 20. The 
log-sigmoid transfer function ‘logsig’ was used in 
the hidden layer, while linear transfer function 
‘purelin’ was used in the output layer. 
 

 
Figure 1: A Typical Network Structure (9-10-1) 
used for Prediction of Tool Life and Wear Rate. 

 
 
The network was trained automatically with the 
MATLAB® function ‘train’ with the ‘weights’ and 
‘biases’ initialized to random values. Before the 
training, the data set was divided randomly into 
training and test data set. 75% of the data set 
was used as training set, while the remaining 
25% was used in testing of the network. In order 
determine the optimum network generalization 
capability, two different training algorithms were 
used: the resilient back-propagation (trainrp); and 
the Levenberg-Marquard with Bayesian 
regularization (trainbr). During the training the 
‘weights’ and ‘biases’ of the network are adjusted 
so as to minimize the mean square error (MSE) 
between the expected and the predicted values.  
 
The mean square error is computed as: 
 

( ) ( ) ( )(∑∑
==

−==
Q

k

Q

k
kakt

Q
ke

Q
MSE

1

2

1

2 11 )  (2) 

 
where, Q is the number of the input/output 
dataset, e(k) is the network error, t(k) is the 
experimental value and a(k) is the network 
predicted value.  
 
The training was terminated when the MSE = 
0.001 or when the number of iterations is equal 
1000. The performance of the networks with 
different number of neurons in the hidden layer 
trained with different algorithms are tested with 
the correlation coefficient between the predicted 
and the experimental values for training, test and 
whole dataset.  
 
 
RESULTS AND DISCUSSION 
 
The performances of the networks in terms of 
their correlation coefficients between the 
predicted and the experimental values are listed 
in Table 5. Based on the performance of the 
network and the training convergence time the 
network with 20 neurons in the hidden layer 
trained with the Levenberg-Marquard with 
Bayesian regularization algorithm was chosen as 
the best network.  
 
The performance of the network for the prediction 
of tool wear rate, tool life and tool wear using the 
entire dataset are shown in Figure 2.  The 
correlation coefficient between the predicted and 
the experimental values using the entire dataset 
for the prediction of tool life and tool wear rate are 
0.996 and 0.999 respectively. Therefore the 
generalization capability of the network prediction 
can be ranged in the order: wear rate > tool life.  

 
The percentage error of the network model was 
also calculated as the percentage difference 
between the experimental and predicted value 
relative to the experimental valve: 
 

( ) 100% Pr ×
−

=
Exp

eExp

N
NN

error   (3) 

 
where NExp is the experimental value and NPre is 
the predicted value from the neural network. The 
statistical analyses of the error distribution are 
shown in Figure 3.  
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Table 5: Correlation Coefficient between ANN Predicted and Experimental Values of 
the Training, Test, and Whole Data Sets, for Different Training Algorithms and  

Network Topology. 

Training Algorithm Resilient Back-
Propagation 

Levenberg-Marquard with 
Bayesian Regularization 

Network Structure 4-10-1 4-15-1 4-20-1 4-10-1 4-15-1 4-20-1 
Tool Life 

Training 0.987 0.996 0.997 0.997 0.997 0.996 
Test 0.988 0.996 0.996 0.997 0.995 0.998 

Whole 0.987 0.996 0.997 0.996 0.997 0.996 
Tool Wear Rate 

Training 0.990 0.995 0.999 0.994 0.998 0.999 
Test 0.997 0.998 1.000 0.996 0.999 1.000 

Whole 0.992 0.995 0.999 0.994 0.998 0.999 
 

 
 

 
(a) 

   
(b) 

Figure 2: Correlation Between the Neural Network Predicted Values and Experimental Values 
using the Entire Dataset for Prediction of:  (a) Tool Life and (b) Tool Wear Rate. 
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Figure 3: Error Distribution of the Neural Network Predictions for; (a) Tool Life  and  (b) Wear Rate. 

Mean = 3.650 
StDev = 10.746 
Min = -34.993 
Max = 28.035

Mean =0.400 
StDev = 2.589 
Min = -9.403 
Max = 5.781 
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The results show that the error has a uniform 
distribution pattern about zero with mean values 
and standard deviation of 3.650 and 10.746% and 
0.400 and 2.589 for prediction of tool life, and 
wear rate, respectively. The results also show 
that 68.6 and 100% of the entire dataset have the 
percentage error of ranging between ±10% for 
prediction of tool life, and wear rate, respectively. 
This demonstrated that the model has high 
accuracy for predicting the tool life and wear rate. 
 
 
Comparison of ANN Prediction and 
Experimental Data: 
  
The generalization capacity of the ANN model for 
monitoring of tool life, tool wear and wear rate 
was examined for different cutting conditions. 
Tool life, tool wear, and wear rate were predicted 
for cutting tool for typical rough and finish turning 
operation. The neural network predictions and 
experimental values are shown in Figure 4. The 
results show that the neural network predictions 
are in good agreement with the experimental 
data. This shows that the neural model can be 
used successfully for monitoring wear conditions 
of different cutting tools during rough and finish 
turning operations. 

ANN Prediction for Rough Turning 
Operations: 
 
The performance of the neural model was further 
examined for rough turning at different cutting 
speeds and coolant applications (convectional 
and at high pressure of 70 bar), for cutting insert 
(T1), feed rate = 0.2 mm/rev and depth of cut = 
2.0 mm. The neural network predictions and 
experimental values for tool life, tool wear and 
wear rate are shown in Figure 5. 
 
For roughing operations the results show that the 
neural network predictions have a very good 
agreement with the experimental values for all the 
tool wear parameters: tool life (Figure 5(a)) and 
wear rate (Figure 5(b)). It can be seen from 
Figure 5(a), that tool life decreases with increase 
in cutting speed for both conventional and 70 bar 
pressure coolant supplies as expected. Increase 
in cutting speed leads to increase in the 
temperature at the cutting zone thus accelerated 
tool wear and consequent reduction in tool life. It 
can also be seen that longer tool life are obtained 
when machining with 70 bar coolant pressure 
relative to conventional cooling at lower speeds of 
80 – 110 m/min. 
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Figure 4: Neural Network Predictions and Experimental Values for Tool Life (a) and Wear Rate (b) 
for Different Cutting Tool Type. 
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Figure 5: Experimental Values and Neural Network Predictions of the Influence Cutting Speed on Tool 
Life (a) and Wear Rate (b) for Different Coolant Applications, Cutting Insert (T1), f = 0.2 mm/rev, and d 

= 2.0 mm. 
 
 
Figure 5 (b) shows that tool wear rate increased 
almost linearly with increasing speed for both 
conventional and 70 bar pressure cooling. The 
wear rate for conventional cooling are 
consistently higher than that of 70 bar coolant 
pressure. It can be seen that the difference in 
wear rate between the conventional and 70 bar 
coolant pressure cooling are fairly constant at the 
cutting conditions investigated. 
 
 
ANN Prediction for Finish Turning Operations: 
  
The performance of the ANN model was tested 
for typical finish turning operations at different 
cutting speeds and cooling applications (up to 
110 and 203 bar) when machining with T3 inserts 
at a feed rate of 0.15 mm/rev and a depth of cut 
of 0.5 mm. The results show that predicted values 
from the network tracked the experimental values 
with a very high accuracy level. Increase in tool 
life was achieved using high-pressure coolant 
delivery than with conventional cooling. Increase 
in coolant pressure led to increase in tool life 
when machining at lower cutting speeds (110 and 
120 m/min). At higher cutting speeds from 120 – 
150 m/min there was no different in tool life with 
increasing coolant supply pressure (Figure 6(a)). 
Figure 6(b) shows that wear rate increased with 
increasing cutting speed. The wear rate for 
conventional cooling are consistently higher in all 

cutting speeds relative to those obtained with high 
pressure coolant supplies. For high coolant 
applications, the wear rate for 110 bar are higher 
than for 203 bar, although there was no 
significant difference at lower speed conditions of 
110 – 120 m/min. At higher speeds above 120 
m/min, the wear rate at 203 bar are higher than at 
110 bar, contrary to expectation. This 
phenomenon can be related to the significant 
difference in tool life observed at higher speeds 
above 120 m/min in Figure 6(a). These results 
demonstrated the existence of an optimum 
coolant pressure at 110 bar for high speed 
machining of Ti-6Al-4V alloy.  
 
 
CONCLUSIONS 
 
1.   The multilayer neural network with 20 

neurons in the hidden layer trained with 
Livenberg-Marquard algorithm combined with 
Bayesian regularization was found to be the 
optimum network for the model. 

 
2. A good performance was achieved with the 

neural network model for both rough and 
finish turning operations, with correlation 
coefficient between the model predictions and 
experimental values of 0.996, 0.998 and 
0.999 for tool life, tool wear and wear rate 
prediction, respectively. 
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Figure 6: Effect of Cutting Speed and Coolant Pressure on Tool life (a) and Wear Rate (b) for Cutting Insert 
(T3) with f = 0.15 mm/rev and d = 0.5 mm. 

 
 
 
3. Tool life decreases with increase in cutting 

speed for both conventional and high-
pressure cooling. A 2-fold increase in tool life 
was obtained at lower speed of 80 m/min for 
70 bar coolant pressure compared to 
conventional cooling, while a 4-fold and 5-fold 
increase were obtained at higher speed of 
110 m/min with 110 and 203 bar, 
respectively. 

 
4. The optimum coolant pressure, 

corresponding to the minimum wear rate was 
identified as 110 bar. 

 
 
NOMENCLATURE 
  
xi   ith normalized input/output dataset. 
di   ith raw input/output dataset.  
dmin   minimum raw input/output dataset. 
dmin  maximum raw input/output dataset. 
Q   number of the input/output dataset. 
e(k)  network error. 
t(k)   experimental value.  
a(k)  network predicted value. 
NExp  experimental value.  
NPre  ANN predicted value. 
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