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_ ABSTRACT :
' The effect of grain size on the mochamcal ies of cold-drawn low carbon swcl was investigated. Low carbon
steel specimén cold-drawn to 20%, 25%, 40%, and 55% as applicable for the manufacture of 4 inches, 3 inches, 2% inches and

" 2inches nail were obtained. The study was aimed at providing experimental results for the understanding of grain size effects

which occur with incseasing degrce of cold-drawn deformation in low-carbon steel used for nail manufacture. The micrographs
of the steel were obtained using  optical microscopy (OM) observation for 20%, 25%, 40%, and 55% degrees of drawn

-« +deformation. From the OM micrographs the counting method as stated inthe ASTM E112 standard for grain size was used to

3 determine the grain size of the steel on ‘the micragraph at the different degrees of deformation. The tensile strength, yield

- strength, Brinnel hardness, and toughness of the matérials were obtained from mechanical tests. It was shown that the tensile

strcngth,y:eldstrmglh toughnessandhudnessfol]owqmleclmly the Hall- Pe{chequanon.
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LOINTRODUCTION

The propertics of polycrystalline materials
depend on the microstructure and the properties of
single crystals. From the viewpoint of microstructure,
many Tactors contribute to the macroscopic properties.
Grain size distribution, grain boundary and
misorientation distribution are important to the
mechanical properties of the material (Liet. al., [1]).
When a metal is cold drawn, the microstructure presents
a morphological texture where the grains are
lengthened along the wire drawing axis (Zidani et. al.,
[2]; Schindler et. al, [3]). Various studies had
established microstructure evolution of processed
materials to establish the influence of the processes on
the properties of the materials. Several techniques has
been used to characterize the process materials. These
include the X-ray diffraction (XRD) (Babout et. al_, [4];
Fiala and Némedek, [5]), transmission electron
microscope (TEM) (Zhang et. al., [6]; Liet. al., [7]; Cao
et. al,, [8]), electron backscattering pattern (EBSP) in
scanning clectron microscope (SEM) (Hanton and
Thomson {9]) techniques have been the primary
methods of characterizing materials (Satoh et. al., [10];
Guossery et. al., [11]; Huang and Humphreys, [12]).
These methods have been successfully used to
determine the crystal structure, phase transformation
temperatures, and precipitation behavior of annealed
specimen. The microscopy techniques such as the
optica) microscopy or electron microscope provides
spatial resolution of the microstructure ideal for static
characterization at discrete processing intervals The
microstructure of the material includes the shape, size,
grain boundary

morphology, and orientation distribution of grains
in the metal (Moelans et al [13]). It is well understood
that the properties of a metal are strongly influenced by
these microstructure features (Crespo et al, [14];
Ferry, [15]; Li et. al,, [1]; Ganapathysubramanian and
Zabaras, [16]). The microstructure of the matenial in
which grains forming the basic matrix of the material
are gradually stretched in the direction of the principal
deformation and at the same time the directional
arrangement of the crystallographic lattice forming
structural and crystallographic texture (Schindler et.
al., [3]; Schindler et. al,, [17]; Zidani et. al., [2]). A
typical feature of such deformed structure is anisotropy
of mechanical properties where an initially isotropic
material responds by developing directional anisotropy
when subjected to inelastic deformation (Fuller and
Brannon, [18]). The effects of such cold work on the
characters of polycrystalline structures have been
studied extensively (Zaefferer et. al., [19];
Ganapathysubramanian and Zabaras, [16]; Prasad ct.
al., [20]; Doméankova et. al., [21]; Huda [22]; Pawlak
and Krzton [23]; Schindler et. al., [17]; Wert et. al,,
[24]; Godfrey et. al., [25]; Maurice and Dniver, [26];
Basson and Driver, [27]; Godirey et. al., [28]; Hansen
and Huang, [29]).

Mechanical properties of a metal are strongly
influenced by its microstructure features such as the
grain size and the grain/sub-grain orientation/mis-
orientation. The mechanical properties are influenced

by the microstructure changes which occur during

processing of the material (Ganapathysubramanian and
Zabaras, [16]). The materials are commonly
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characterized by the average grain size and by the
average misorientation between individual grains
(Estrin et al., [30]). The grain size is one of the most
important microstructural characteristics determining
the mechanical properties and therefore the service
performance of polycrystalline materials (Lu et. al.,
[31]; Barnett et. al., [32]). The effect of the grain size
was one of the most studied size effect on plasticity. The
influence of the average grain size on the mechanical
properties of metals is usually described by the Hall-
Patch relationship (H-P), which has been
experimentally proved for a wide range of grain sizes
(Keller et. al., [33]). It has been established in Hall-
Petch relation that the yield strength in steels could be
expressed as (Margolin, [34]);

oy = op + kd “*h

wherey is the yield stress, o and k are constants and d
is the average grain size diameter. The equation was
based on the idea that a dislocation source, operating
from the center of a grain, produced a double pile-up at
opposite sides of the grain. The stress at the head of the
pile-up caused slip in the adjacent grain, which ship then
spread throughout the specimen,

Investigation have revealed that the microstructure
features such as the grain size and grain shapes can be
controlled through effective processing design for
optimum mechanical properties of the material.
(Ganapathysubramanian and Zabaras, [35, 36]; Lee et.
al,, [37]). Leeetal., [37] designed die profile in order to
be able to obtain uniform grain size distribution of
material during hot extrusion process. Schwaiger et al,
[38] in nanoindentation and tensile test experiment
revealed that strength, hardness, clastic modulus and
yield strength of nanocrystalline metals depends on the
strain rate of deformation which is related to the grain
size. The role of grain size variation with degree of cold
drawing dcformation cannot therefore be
overemphasized.

The several methods used for determining the grain
size of material microstructure includes ultrasonic
velocity technique (Sarpiin et al, [39]), autocorrelation
grain size analysis technique (Warrick et al, [40]),
stereological methods(Liu and Yu, [41]), linear
intercept. measurement (Han and Kim, [42];
Thorvaldsen, [43, 44]), mathematical morphology and
texture analysis (Rautio and Silvén, [45]), image
analysis (Diogenes et al., [46]), direct measurement of
nucleation and growth (Lee et al,, [47]), SEM image
analysis (Spaulding et al, [48]), laser diffraction
method (Ryzak etal.,[49]), The grain counting method,
intercept method and the comparison method are the
three standard test
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methods for determining average grain size as
described inthe ASTM standard E211.

In the present study low-carbon steel deformed
according to specifi cation for nail manufacture and the
grain size of the microstructure at different degrees of
deformation was studied, focusing on the relationship
of the grain size with the yield strengthy, tensile strength,
toughness and brinnel hardness of the steel at the 20%,
25%, 40%, and 55% degrees of cold -drawn
deformation and comparing the relationship with the
general Hall-Petch relationship for metal deformation..
The main objective of this work was to study the grain
size and the mechanical properties of low-carbon steel
with the aim of understanding the matenial behavior
subjected to cold-drawing process as apphlicable to nail
manufacture.

2.0 MATERIALSAND METHODS

2.1 Materials

In this study, commercially available wire rod
samples drawn from as-received wire of 5.5 mm
diameter to nominal diameters of 4.2 mm for 4 inches
nail, 4.00 mm for 3 inches nail, 3.24 mm for 2%; inches
nail and 2.35 mm for the 2 inches nail were chosen as
the materials for the study. The expenimental work
involved the use of Optical microscopy with image
capturing. The strength-clongation curves for the
samples were obtained from tensile testona Monsanto®
tensometer.

2.2 Methods
2.2.1 Metallography

The as-received material is the wire rod of 5.5
mm diameter and its chemical composition is listed in
Table 1. The wire rod was cold-drawn to reductions of
20%, 25%, 40% and 55% in series of conical dieson the
wire drawing machines as is obtainable in Nigeria Wire
Industry Limited, Ikeja. The samples for evaluation of
the microstructures by optical microscopy were cut
from the various deformed wires, and taken through a
grinding process on silicon carbide paper, 240, 320,
400, and 600 grit. The samples were then polished
initially at 1um and finally at 0.5um using emery cloth
and silicon carbide solution. The samples were etched
with 2% nital and observed under the optical
microscope.

2.2.2 Mechanical testing

The samples were subjected (o tensile tests to obtain the
strength-ductility properties of the samples at different
degree of deformation. The energy absorption at the
various degrees of cold-draw




deformation was obtained by determining the area
under the stress-strain curve of the material using the
strain energy equation defining the material toughness
(Murty, [50]) expressed as;

U= | o,de

Jo )]
All the tests were performed under displacement
control, 50 as to allow a complete recording of the load-
displacement plot up to final failure.

The commonly used relationship between
ultimate tensile strength (S,) in Ksi units and Brinnel
hardness number (H,) was used in computing the
Hardness property of the drawn steels. The relationship
isexpressed as (Baeetal., [51]);

S, = 500H,

This is a measure of the resistance of the material to
bending during hammering.

2.2.3 Grain size measurement

The planimetric procedure for the grain
counting method was used to measure the mean grain
size from the obtained micrographs (Figures 1(2) —{(¢).
The principles behind this technique and the procedure
for performing it are described in the ASTM standard
E112. The mean grain size is based on mecasurements
made on the micrograph of the drawn steel at 20%,
25%, 40%, and 55% degrees of drawing deformation.
The use of the mean grain size for this study was
appropriate because the micrographs of the cold-drawn
samples show microstructures that are geometrically
similar. The ASTM micro grain size, n, was thus
obtained from equation (1);

n=1+logsN

(n

Where N is the total number of grains per square inch
as obtained in the procedure.

J.ORESULTSAND DISCUSSION

The micrographs of the steel samples at 0%, 20%,

25%, 40%, and 55% degrees of cold -drawn .

deformation are presented in figures 1(a)-(c) showing
the grain count area of 3.4 sq. in. for each of the
micrograph The ASTM grain size number for each of
the micrograph and the corresponding average grain
size are as detail in Table 2. The mechanical properties
of the cold-drawn steels are also presented in Table 2.
The table shows that with increasing cold-drawing,
the steel grain-diameter is larger leading to sofiness off
the material and less toughness. This
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indication shows an awful reality of the situation of the
nails put in the market produced by cold-drawing alone
to achieve geometric (length and diameter)
specifications. Figure 2 shows the results on the
dependence of the yield strength on the grain size
diameter of the cold-drawn low ¢arbon steel for nail
manufacture. Increase in average grain size diameter is
observed with increasing degree of cold drawn
deformation. Also decrease in yield swrength with
increasing grain size was observed in accordance with
the Hall-Petch relation, It is evident from Figures 3-35
that identical relations holds for the tensile strength,
toughness and hardness of the matenial with different
coefficients K,, K, K, and K, The Hall-Petch
coefficient K often depends on the process parameter
such as the strain rate (Estrin et al., [30]). This behavior
could therefore be explained by the change of
mechanism of the plastic flow of the material as it 1s
subjected to increasing cold- drawn deformation
ranging from 20%-55% for nail manufacture.

CONCLUSION

The cold- drawing process produces microstructure
anisotropy in the form of increasing grain size and grain
clongation in the drawing direction. This phenomenon
has negative consequences on the yield strength and
tensile strength of low carbon steel as well as on the
toughness of the material. From experimental
measurement of the yield stress of the cold- drawn low
carbon steel considering the grain size d as the material
variable which depends on the degree of drawn
deformation, it has been found that the Hall-Peich
relationship is satisfied. It was observed that for cold
drawn low carbon steel used for nail manufacture, the
increasing grain size due o increasing degree of cold
drawn deformation causes reduction m the yield
strength and tensile strength of the steel. The Hall-Petch
coefficient which is a material property however varies
under tensile deformation as observed for the yield
strength, UTS and toughness Hall-Petch relationship.

_ This established that the Hall-Petch cocefficient could

not always be taken as constant but dependent on the
material processing condition which in this case
depends on the degree of cold drawn deformation,
Hence grain size dependence of the strength at various
degrees of cold drawn deformation manifested in the
values of the Hall-Petch coeficients. The effect can be
explained by the resistance of the boundaries to plastic
flow.
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Table 1 Chemical composition of the as-received steel
wire material (wt %)

C Si Mn P Fe
0.12 0.18 0.14 0.7 Bal.
Table 2: Grain size and Mechanical properties strength relationship
Tensile
ASTM Ave. grain | Yield strength, Modulus Brinnel
% grain size | size dia. strength, (N/sq. of Hardness,
deformation | no. (mm) (N/sq. mm) | mm) Toughness | HB
Control
specimen 7.47 27 80 670.88 32.88 194
1 20 7.15 30 70 578.79 19.42 168
25 6.9 32 60 510.12 11.25 148
40 - 6.67 35 4.5 3924 8.58 114
55 6.64 38 40 382.59 4.57 111
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Figure 1. Micrographs of drawn low carbon steel
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Figure 2. Hall-Petch plot of yield strength for cold drawn low carbon steel
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Figure 3. Hall-Petch plot of Terisile strength for cold drawn low carbon steel
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Figure 5. Hall-Petch plot of Brinnel Hardness for cold drawn low carbon steel
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