MOLECULAR ANALYSIS OF MECHANISMS AND IDENTIFICATION OF FACTORS OF PYRETHROID RESISTANCE IN *ANOPHELES GAMBIAE SENSU LATO* IN SOUTHWESTERN NIGERIA AND SOUTHERN BENIN REPUBLIC

By

Jean Rousseau DJOUAKA-FOLEFACK

B.Sc. (Cameroon), M.Sc. Zoology (Ibadan),

S.I. 119677

A thesis in the Department of Zoology submitted to the Faculty of Science in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

of the UNIVERITY OF IBADAN

2011

ABSTRACT

The development of resistance to insecticides by *Anopheles* mosquitoes continues to threaten the success of malaria control programmes in West Africa. Local data on mechanisms and factors causing resistance in the region are scanty. This study was designed to investigate the environmental factors and mechanisms implicated in resistance to pyrethroids by *Anopheles gambiae* in southwestern Nigeria and southern Benin Republic.

Larvae of *Anopheles* mosquito were collected in 2007 from 19 localities in the six states of southwestern Nigeria and 18 localities in the seven divisions of southern Benin and reared to adults. These were identified morphologically and with Polymerase Chain Reactions (PCR). They were also bioassayed for susceptibility to pyrethroids. Molecular characterisation of pyrethroid resistant phenotypes was carried out using PCR and microarray analyses of the expressed genes. Dissolved Oxygen (DO) and pH were determined using a digital multipurpose meter while physical appearances of breeding sites were assessed visually. Xenobiotic factors such as Spilled Engine Oil (SEO) and agricultural pesticides that might contribute to the emergence of resistance in *Anopheles* populations were examined through bioassay. Associations between pyrethroid resistance with environmental factors and molecular profiles of *Anopheles* were evaluated using Chi square.

A. gambiae complex genotyped in Nigeria comprised of 73.6 % A. arabiensis and 26.3 % A. gambiae sensu stricto; while those genotyped in Benin were 92.9 % A. gambiae s.s. and 7.0 % A. melas. Pyrethroid resistance in Nigeria and Benin were recorded in 68.4 % and 94.4 % of the localities examined respectively. Breeding sites contaminated with SEO (B-SEO) or Pesticide Residues (B-PR) had low DO (B-SEO = 13.4 ± 1.5 mg/l, B-PR= 12.2 ± 1.7 mg/l), the Non-contaminated Breeding sites (B-NC) had higher levels of DO (B-NC= 33.1 ± 2.3) and mainly produced pyrethroid-susceptible Anopheles (p<0.05). Significant variations in pH were not recorded. Differences in habitation by resistant-Anopheles in breeding sites contaminated with SEO or pesticide residues were observed. A. gambiae found around the two agricultural sites (Houeyiho, Benin and Ajibode, Nigeria) exposed to synthetic pesticides showed significant levels of pyrethroid resistance with mortality rates of 70.0 % and 89.7% respectively. A. gambiae larvae survived at

SEO concentrations below 11.8x10-3 μ L/cm². Ninety six percent of larval mortality resulted from direct cuticle contact with SEO whereas only four percentage mortality was from larval suffocation. A cross resistance phenomenon was recorded with SEO and pyrethroids. *A. gambiae* showed the presence of elevated frequencies of knock down resistance West (*kdr*-W) mutations in Benin samples (*kdr*-W ranged from 0.6 to 0.9) and absence of *kdr*-W in Nigeria samples. Two detoxification genes (*CYP6P3* and *CYP6M2*) were up-regulated in resistant-*Anopheles*. Additional detoxification genes specific to agricultural and SEO sites were also over-expressed in the resistant populations.

There was an association between residual synthetic pesticides, spilled engine oil and emergence of pyrethroid-resistance in *A. gambiae* in Nigeria and Benin Republic. The diversified profile of identified metabolic genes reflected the influence of a range of xenobiotics on selection of resistance in mosquitoes.

Keywords: Anopheles, Pyrethroid resistance, Xenobiotics. Word count: 487

DEDICATION

This project is dedicated to GOD almighty, who has being my source of inspiration and sustenance. To my home institution, colleagues, family members and friends for their constant support in the course of this programme.

CERTIFICATION

This is to certify that this work was carried out by MR. Jean Rousseau DJOUAKA-FOLEFACK in Cell Biology and Genetics Unit of Department of Zoology, University of Ibadan, Ibadan, Nigeria.

(SUPERVISOR) Dr. A. A. Bakare B.Sc., M.Sc., Ph.D (Ibadan) Cell Biology and Genetics Unit. Department of Zoology, University of Ibadan, Ibadan, Nigeria.

ACKNOWLEDGEMENT

I would like to take this opportunity to express deep gratitude to my supervisor Dr. A. Bakare and my co-supervisor, Dr. Samson Awolola for their constant encouragement, supervision and guidance during this PhD research. Sincerely, you have given me a lot during this long and very exciting research venture. My profound gratitude to Dr. Ousmane Coulibaly for his guidance and immense support throughout the duration of this programme. I appreciate all the academic and non-academic staffs of the Department of Zoology, University of Ibadan for the prompt and constant willingness to give a helping hand throughout this research study.

The financial support for this PhD research work was partially provided by the LSTM (Prof. Janet Hemingway) and the UNICEF/UNDP/World Bank/WHO Special Programme for Research and training in Tropical Diseases (TDR). I appreciate my laboratory supervisors at the Liverpool School of Tropical Medicine (LSTM) in the United Kingdom for sharing their scientific knowledge with me and providing the necessary training in microarray and other molecular works. Your contribution was of paramount importance in this research. To Prof. Janet Hemingway Director of LSTM, I am very thankful for your scientific and financial contributions and for covering all expenses during my trips to the LSTM and for providing all laboratory consumables needed for this research work. I remember the sleepless night asking myself if I will be able to complete this Ph.D. program; Thanks Prof. Janet, you made this a reality and I sincerely appreciate it.

Huge thanks goes to my family for being incredibly supportive, understanding and patient not only throughout this study, but in everyday of my life. I will like to thank almighty God for giving me a good health and empowering me with more knowledge, the best weapon for survival.

TABLE OF CONTENT

	Page
Title page	i
Abstract	ii
Dedication	iv
Certification	V
Acknowledgement	vi
Table of contents	vii
List of tables	xiv
List of figures	XV
List of appendix	xix
CHAPTER ONE	1
1.0 INTRODUCTION	1
1.1 Aim of this study	4
1.2 Objectives of this study	5
CHAPTER TWO	6
2.0 LITERATURE REVIEW	6
2.1 Malaria disease and transmission of malaria parasites	6
2.2 The biology and the ecology of malaria vectors	9
2.2.1 Adults	11
2.2.2 Mating and blood-feeding of adult Anopheles	11
2.2.3 The ecology of breeding sites	12
2.3 Factors involved in malaria transmission	12
2.3.1 Preferred sources for blood meals	13
2.3.2 Life Span	13
2.3.3 Patterns of feeding and resting	13
2.4 Major vectors of malaria in sub-Saharan Africa.	13
2.4.1 The A. gambiae complex	14
2.4.2 A. funestus group	14
2.5 Vector Identification	15
2.5.1 Application of molecular techniques in the identification of sibling species	16

2.5.1.1 Restriction fragment length polymorphism	18
2.6 Malaria vector control strategies	19
2.6.1 Insecticide-treated bed nets	19
2.6.1.1 Bednets ownership patterns in Nigeria	22
2.6.1.2 Bednets ownership patterns in Benin Republic	23
2.6.2 Indoor residual spraying	24
2.6.3 Breeding sites reduction	25
2.6.4 Less implemented vector control strategies	25
2.6.5 The development of genetically modified Anopheles (GMA) for malaria control	126
2.7 The use of insecticides in Public Health	26
2.7.1 Insecticides and mode of action	27
2.7.1.1 Organochlorine	27
2.7.1.2 Organophosphate	30
2.7.1.3 Carbamates	30
2.7.1.4 Pyrethroids	30
2.7.2 Protective mechanisms of Anopheles and development of resistance	
to insecticides	31
2.7.2.1 Resistance of Anopheles to insecticides	31
2.7.2.2 Behavioral mechanisms of resistance	34
2.7.2.3 Metabolic mechanisms of resistance	34
2.7.2.3.1 Cytochrome P450s (monoxygenase or oxidase mechanisms)	34
2.7.2.3.2 Glutathione-S-transferase	34
2.7.2.3.3 Target site modification (mutations)	34
2.8 Detection of insecticide resistance in malaria vectors	36
2.8.1 Bio-assay for phenotyping insecticide resistance in vectors	36
2.8.2 The bottle tests with synergists	38
2.8.3 Polymerase chain reaction (PCR) for target modification	38
2.8.4 Microarray technique for detection of detoxification genes	
2.8.5 Reported cases of resistance of <i>A. gambiae</i> to insecticides in Nigeria	39
2.8.6 Reported cases of resistance of <i>A. gambiae</i> to insecticides in Benin	40

2.8.7 Reported cases of resistance of A. gambiae to insecticides in	
other African countries	40
2.9 Factors favouring the emergence of resistance in mosquito populations	41
2.9.1 The selection of insecticide resistance by ITNs and IRS	41
2.9.2 Agricultural pesticide residues and other xenobiotics	42
2.9.3 Types of mechanisms of resistance selected by ITNs, IRS, agricultural pesticide	
residues and xenobiotics	43
CHAPTER THREE	44
3.0 MATERIALS AND METHODS.	44
3.1 Susceptibility of Anopheles populations to pyrethroid in studied sites	44
3.1.1 Description of sampling sites	44
3.1.2 Collection of <i>Anopheles</i> larvae	44
3.1.3 Rearing of larvae to adult stage in the insectary	44
3.1.4 WHO susceptibility tests on adult <i>Anopheles</i> from surveyed localities	48
3.1.5 Mapping of permethrin susceptibility in Anopheles populations	
from studied localities	48
3.2. Molecular characterization of Anopheles populations from studied sites:	
PCR-species, PCR-forms, PCR-kdr	50
3.2.1 DNA extraction	50
3.2.2 Polymerase chain reaction for <i>A</i> . <i>gambiae</i> speciation	54
3.2.3 Polymerase chain reaction for detection of the knock down (kdr) mutation	
in A. gambiae populations	54
3.2.4 Specific primers used for PCR-species and PCR- <i>kdr</i>	54
3.2.5 Electrophoresis of PCR products	55
3.3 Evaluation of potential contributions of agricultural pesticide residues and spilled	
petroleum products in the selection of pyrethroid resistance in Anopheles	
populations	55
3.3.1 Screening of pesticide residues in water and soil samples from vegetable sites	55
3.3.1.1 Screening technique	55
3.3.1.2 Collection of water and soil samples used for the bio-assay	55
3.3.1.3 History of synthetic pesticides utilization by farmers in target agricultural sites.	56

3.3.2 Evaluation of the contribution of petroleum products in the selection for insecticide
resistance in A. gambiae
3.3.2.1 KAP studies on the empirical utilisation of petroleum products (PP) in rural
communities
3.3.2.2 Anopheles populations used for analysing the lethal activities of PP
3.3.2.3 Determination of lethal concentrations of 4 PP on larvae of A. gambiae
3.3.2.4 Identification of the mode of action of PP on <i>Anopheles</i> larvae
3.3.3 Analysis of associations between the presence of petroleum products in breeding
sites and the emergence of pyrethroid resistant populations of Anopheles61
3.3.3.1 Physico-chemical properties of breeding sites of resistant and susceptible
Anopheles
3.3.3.2 Selection of oviposition spots by gravid females of Anopheles in localities where
some breeding sites are contaminated with spilled petroleum products61
3.3.3.3 Monitoring of the development of Anopheles larvae (resistant and susceptible
strains) in breeding sites with petroleum products residues
3.4 Screening of candidate metabolic genes overexpressed in pyrethroid resistant
populations of A. gambiae from Benin and Nigeria62
3.4.1 Selection of permethrin resistant <i>A. gambiae</i> for micro-array analysis
3.4.1.1 Target preparation and microarray hybridizations
3.4.1.2 cDNA synthesis, labelling and hybridization
3.4.1.3 Array scanning and visualization
3.5. Data analysis
3.5.1 Analysis of data on the susceptibility level of <i>Anopheles</i> to permtehrin:67
3.5.2 Questionaires, focuss group discussions and indepth-interviews with farmers and
petroleum products users67
3.5.3 Lethal activities of petroleum products on <i>Anopheles</i> larvae
3.5.4 Cross analysis of the physico-chemical properties of breeding sites and the
susceptibility status of emerging Anopheles populations
3.5.5 Analysis of data on the oviposition preference of gravid Anopheles, eggs hatching
rates and larval developments in simulated breeding sites

3.5.6 Allelic frequencies of the <i>kdr</i> mutation in permethrin resistant and susceptible
phenotypes of Anopheles mosquitoes analysed71
3.5.7 Analysis of micro-array spots for expressed metabolic genes identified in studied
Anopheles populations71
CHAPTER FOUR
4.0 RESULTS
4.1 Screening of the susceptibility of Anopheles populations to pyrethroid in
southwestern Nigeria and southern Benin73
4.1.1 Susceptibility to permethrin of A. gambiae populations in southwestern Nigeria73
4.1.2 Susceptibility to permethrin of A. gambiae collected in southern Benin
4.2 Molecular characterization of Anopheles populations from surveyed sites in Nigeria
and Benin (PCR-species, PCR-forms and PCR-kdr)
4.2.1 Molecular characterisation of mosquito populations from the southwestern
Nigeria
4.2.2 Molecular characterisation of mosquito populations from the southern Benin79
4.3 Evaluation of potential contributions of agricultural pesticides in the selection of
pyrethroid resistance in Anopheles populations breeding around vegetable farms88
4.3.1 The use of synthetic pesticides in the vegetable farm of Houeyiho in Benin88
4.3.2 The use of synthetic pesticides in the vegetable farm of Ajibode in Nigeria88
4.3.3 Susceptibility to permethrin of A. gambiae collected around vegetable farms of
Houeyiho and Ajibode
4.3.4 Assessment of the presence of pesticides residues in breeding sites found around
vegetable sites through monitoring of the hatching rates of Anopheles eggs90
4.3.5 Assessment of the presence of pesticides residues in breeding sites found around
vegetable sites through monitoring of larval development rates
4.4 Evaluation of the potential contributions of spilled petroleum products in the
selection of pyrethroid resistance in <i>A. gambiae</i> populations
4.4.1 The empirical utilisation of petroleum products by rural communities in the
southern Benin for mosquito control
4.4.2 Analysis of lethal effect of petrol on permethrin resistant larvae of
A. gambiae from Ladji and from Ojoo100

4.4.3 Analysis of lethal activity of kerosene on permethrin resistant larvae of A. gambia	ле
from Ladji and from Ojoo	104
4.4.4 Analysis of lethal effect of new engine oil on permethrin resistant	
larvae of A. gambiae from Ladji and from Ojoo	106
4.4.5 Analysis of lethal activity of used engine oil on permethrin resistant	
larvae of A. gambiae from Ladji and from Ojoo	106
4.4.6 Identification of the mode of action of PP on A. gambiae larvae	107
4.4.7 Analysis of physico-chemical properties of breeding sites producing	
pyrethroids resistant and susceptible populations of A. gambiae in	
southwestern Nigeria and southern Benin	110
4.4.8 Identification of the preferred types of breeding sites selected by pyrethroids	
susceptible and resistant strains of Anopheles for ovipositions	115
4.4.9 Hatching rate of eggs laid by pyrethroids susceptible and resistant strains	
in oily breeding sites from Nigeria and Benin	118
4.4.10 Development of larvae of pyrethroid susceptible and resistant strains	
in oily breeding sites (rate of larvae getting to pupae stage)	118
4.5 Identification of detoxifying genes up-regulated in pyrethroids resistant	
Anopheles from sites of spilled petroleum products and agricultural	
sites under pesticides utilisation	120
4.5.1 Genotyping and bioassay of Anopheles populations prior to micro-array	
analysis	120
4.5.2 Identification of metabolic genes over transcribed on Anopheles samples	
from agricultural setting	122
4.5.3 Identification of metabolic genes over transcribed on Anopheles samples	
from oil spillage site	122
4.5.4 Comparative expression profiles of metabolic genes in permethrin	
resistant Anopheles from Akron in southern Benin and Ojoo in the	
southwestern Nigeria	122
CHAPTER FIVE	130
5.0 Discussion	130
5.1 The susceptibility pattern of Anopheles populations to pyrethroid in	

southwestern Nigeria and southern Benin	130
5.2 Genotyping of permethrin resistant phenotypes	131
5.3 The hatching rate of Anopheles strains in breeding sites simulated with	
soil and water samples from vegetable farms	132
5.4 Water and soil samples from vegetable farms contain compounds that inhibit	
Anopheles larval development.	133
5.5 The implication of pesticides residues in the emergence of pyrethroid	
resistance in malaria vectors	134
5.6 The treatment of mosquito breeding sites with petroleum products and	
the selection of pyrethroid resistance in malaria vectors	135
5.7 Identification of the mode of action of PP on A. gambiae larvae	136
5.8 Inhibitory effects of petroleum on Anopheles oviposition and larval development	136
5.9 Existence of a cross resistance between petroleum products and permethrin	
in sampled Anopheles	137
5.10 Identification of detoxifying genes up-regulated in pyrethroids resistant	
Anopheles from sites of spilled petroleum products and from agricultural	
areas under pesticides utilisation	138
5.11 Differential expression of metabolic genes by A. gambiae populations	
collected around vegetable farms and those from localities of spilled	
petroleum products	140
CHAPTER SIX	142
6.0 CONCLUSION AND RECOMMENDATIONS	142
References	145
Appendix	165

LIST OF TABLES

Page
4.1 Susceptibility to permethrin of A. gambiae in southwestern Nigeria74
4.2 Susceptibility of A. gambiae populations to permethrin in southern Benin77
4.3 Distribution of members of <i>A.gambiae</i> complex in studied localities in Nigeria82
4.4 Allelic frequencies of the kdr mutation in Anopheles species from the studied
localities in Nigeria
4.5 Distribution of members of <i>A. gambiae</i> complex in studied localities in Benin86
4.6 Distribution of the <i>kdr</i> alleles in <i>Anopheles</i> species from the studied localities
in Benin
4.7 The use of pesticides in the vegetable farm of Houeyiho in Benin and
Ajibode in Nigeria
4.8 Comparison of the mean mortality rates to permethrin of A. gambiae populations
produced by oily and non-oily sites in Nigeria
4.9 Physico chemical parameters (pH and DO) of breeding sites producing susceptible
and resistant populations of Anopheles in southwestern Nigeria113
4.10 Comparison of the mean mortality rates to permethrin of A. gambiae populations
produced by turbid and non-turbid sites in southern Benin
4.11 Physico chemical parameters (pH and DO) of breeding sites producing
susceptible and resistant populations of Anopheles in southern Benin
4.12 Molecular form, percentage mortality and kdr frequency of A. gambiae
from southern Benin and southwestern Nigeria
4.13 Candidate metabolic genes from micro-array analysis of resistant and
susceptible field samples from Akron and Orogun125
4.14 Candidate metabolic genes up-regulated in resistant populations of
Anopheles from Ojoo127

LIST OF FIGURES

	Page
1.1 Trends of malaria in the world	2
2.1 The life Cycle of malaria parasite	8
2.2 The biological Cycle of Anopheles species	10
2.3 The exponential amplification of the gene in Polymerase Chain Reaction	
(PCR); (A) represents the denaturation phase, (B) the annealing or	
hybridization and (C) the amplification or extension phase	
2.4 Chromosomal inversions in A. gambiae females; this mosquito is	
heterokaryotypic for inversions 2Rb and 2Rc (A) as well as the	
2La inversion (B)	20
2.5 The use of insecticide-treated bed nets (ITNs) for malaria vector control	21
2.6 The different targets of insecticides in <i>Anopheles</i> mosquitoes	28
2.7 Chemical structure of some insecticides used in public health	
2.8 Chemical equations of enzymatic activities developed by mosquitoes	
to withstand insecticide lethal doses	32
2.9 Series of mechanisms of resistance to insecticides developed by Anopheles	
2.10 Mutation on the sodium channel in kdr resistant Anopheles from	
West and East Africa	37
3.1 Map of study areas (Divisions and States) in Benin and Nigeria	45
3.2 Identification of breeding sites and field collection of Anopheles larvae	46
3.3 The horizontal position of <i>Anopheles</i> larvae at the surface of water	47
3.4 WHO bioassay steps for analysing the susceptibility status of Anopheles to	
insecticides	49
3.5 DNA extraction for PCR analysis of collected <i>Anopheles</i> samples	51
3.6 DNA amplification (PCR reactions) of collected <i>Anopheles</i> samples	52
3.7 Agarose gel migration of PCR products of amplified Anopheles DNA	53
3.8 Map of sites selected for screening of pesticides residues in vegetable farm	
(Akpakpa-CREC, Houeyiho, Ajibode and UI- Ibadan)	57
3.9 Quantification of the lethal activity of 4 petroleum products on Anopheles	
larvae introduced in plates containing different concentrations of PP	60

4.10 The yield of rearing resistant and susceptible strains of Anopheles in
simulated water and soil samples from vegetable farms of Ajibode,
Ibadan100
4.11 Utilisation of petroleum products for mosquito control in rural
communities in southern Benin102
4.12 Larvicidal effect of petroleum products on larvae of A. gambiae
from Ladji; a similar mortality trend is recorded with most PP except petrol
which shows a lower larvicidal effect103
4.13 Larvicidal effect of petroleum products on larvae of A. gambiae from Ojoo105
4.14 Comparative analysis of recorded HIC of petroleum products on larvae of
Anopheles gambiae from Ladji and from Ojoo larvae
4.15 Comparative analysis of recorded LoC_{100} of petroleum products on larvae of
A. gambiae from Ladji and Ojoo larvae109
4.16 Mode of action of petroleum products on Anopheles larvae
(Mortality rates recorded with sieved and crude or raw petroleum products
from field contaminated breeding sites)
4.17 Number of eggs laid by resistant (A. gambiae from Ojoo) and
susceptible (A. gambiae from UI) strains of Anopheles in oily and
non-oily breeding sites from southwestern Nigeria and southern Benin
4.18 Hatching rate of eggs laid by resistant (A. gambiae from Ojoo)
and susceptible (A. gambiae from UI) strains of Anopheles in oily and
non-oily breeding sites from Nigeria and Benin119
4.19 Rate of larvae (larvae from hatched eggs) of A. gambiae from
Ojoo and A. gambiae from UI developing to pupae stage in oily
and non-oily breeding sites from southwestern Nigeria and southern Benin121
4.20 Candidate metabolic genes over transcribed on resistant Anopheles mosquitoes
from the agricultural site of Akron when co-hybridized with the susceptible
strain A. gambiae from Orogun124
4.21 Candidate metabolic genes over transcribed on resistant Anopheles mosquitoes
from the oil spillage locality of Ojoo when co-hybridized with the susceptible
strain A. gambiae from Orogun128

4.22 Cohort of expressed genes in resistant population of A. gambiae	
from the Agricultural site of Akron in Benin and the site of spilled	
oil of Ojoo in Nigeria	129

LIST OF APPENDIX

I	Page
1. Indepth interview guide on knowledge, attitudes and practices (KAP) of	
communities on synthetic pesticides use in Agriculture	.165
2. Indepth interview guide on knowledge, attitudes and practices (KAP) of	
communities on the use of petroleum products (PP) for mosquito control	.166
3. WHO bioassay for insecticide susceptibility using adult mosquitoes	167
4. Laboratory protocols and preparation of solutions	169
5. Characteristics and toxicity of petroleum products on insects	171