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Abstract

Cubic equations of state are commonly used for
predicting the properties of reservoir-fiuids. They
are simple to use and require few paramelers
duning computations. They have also been found
to produce results that are comparable to the more
rigorous multi-parameter equations. However, they
are still regarded by many. as mere comprehensive
correlations of fluid properties because of a
number of weaknesses and hmitations. This work
addresses two weaknesses of cubic equations of
state commonly highlighted in literalure, viz: that
they do not seem to have deep theoretical
foundations and are nol as accurate as non-cubic
equations. A pressure perurbation technigue
based on a simple adaptation of the Weirtheim’s
first order thermodynamic periurbation thecry has
been developed and used lo formulate a cubic
equation of state. The practical equation
formulated was applied to pure fluids and samples
of Niger Delta Petroleum fluids. The resulls show
more accurale predictions than the commonly
used SRK and PR equations. This work suggests
that cubic equations could have deeper theoretical

roots than otherwise” thought and provides a
theoretical framewark for improving the accuracy
of cubic equations of stale.

Introduetion

Equations of State probably originated in 1662
from Boyle who conducled experiments on air and
deduced that at a given temperature, the volume
of a fixed mass of gas is inversely proportional to
its pressure'”’ However, the modern view of
equations of state derives from the well-known van
der Waals equation which describes the pressure
of a system with contributions from the repulsive
and attractive forces: */

= i — A1)

There are several equations of state in use today™
% and majority of them are simple empirical
modifications of the wvan der Waals expression
which has three very important attributes as noted
by Tsonopoulos and Heideman''": First, as P — =,
V — b unlike in most non-cubic equations.
Second, the parameters a and b have physical
meanings, and third, the equation of state is cubic
in volume and easily solved analytically.

Although cubic equations have been found to yield
good results for a number of systems, they are still
regarded as comprehensive correlations of fluid
properties because of the belief that they lack
sound theoretical foundations and are not as
accurate as non cubic equations such as those
based on thermodynamic perturbation theory'".
Many researchers have therefore directed efforts
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in recent times, at developing equations of state
that have sound theoretical foundations. These
efforts have largely resulted in the development of
accurale bul complex non-cubic eguations that
cannot be readily deployed to rouline engineering
applications. One obvious way forward, which has
been adopted in this study, is to develop a
theoretically robust and accurate equation of state
which can be simplified to a practical cubic
equation without substantial loss of accuracy.

THEORETICAL FRAMEWORK
In recent times, the use of Wertheim's first order
perturbation  theory'*'”, has led to the

development of highly accurate, Statistical
Associating Fluid Theory (SAFT) equations of
state for associating pure fluids and mixtures'*"'".
The success of the SAFT equations of state has
been atiributed to the sound theoretical foundation
of describing fluid molecules as covalently bonded
chain segmenis whose Helmholiz energy can be
represented by expressions for repulsive,
dispersion, association and/or solvation forces,
Mathematically, the SAFT free energy can be
expressed as:

A N “in-g 3 .'iu’lurll y ."IIJ“M
NkT NkT'  NEKT  NkT

(2)

Or,

_.:! ~ Amﬁuu’ N A [T . .lri..l!.\-ul N Amu-._
NkT  NkT  NkT  NkT _“WkT
)

Equations (2) and (3} lead to the general
EXPression:

A = A-uur D Ammu 3 Acl‘um + 45.“1“' ) ...14}
But following Gibbs-Duhem principle, we define;
A= Eny-PY (5}

Thus,

(Z iy = PV) = (Z n, = PV + (£ ng, — PV)™% +
(£ np, — PV)™™ + (Z n, = PV) "
.(6)

By equating equivalent terms on both sides of
Equation (), we have:

(E np) = (Z )™ + (Z ag, )™ + (€ ng, )™ + (2
iy ) M

and,

PV = (PV)™ + (PV)T9 & (PV)™*" 4 (V) *55o
(8)

For a closed thermodynamic system, equation (8)
can be simplified to:

P= {F}lﬂﬁﬂ + {P}mm 4 {P}Wﬂ+ {PJ LS

(9}

Thus, it could be concluded that the
thermodynamic perturbation principle may be
extended, under some assumptions, {o pressure
perturbation

In this study, unlike the classical thermodynamic
perturbation approach in which each of the terms
in equations (2) — (4) are derived using different
rigorous statistical thermodynamic equations, we
propose a simple pressure perturbation approach
that ensures the same coherent theary for all the
terms. This method s easy to apply to fluid
mixlures using simple mixing rules

In this study, the pressure function P, is first
expressed by a relation of the form

P= Py + Po + P (10}
Where,
Py = Pressure cantnbution by repulsive forces
P. = Pressure contribution by attractive forces and

Pur = Pressure contribution by other forces
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Equation (10) can however, be replaced by a
simple general form:

= fiv. T. n) (11)

In general, for a pure fluid where composition
effect is neglected. Equation (11) can be expanded
in & polynomial equation form to give:

i
LR TRRL TR L LIRS . LN LTSN

] P E; o

. (12)

Where,
p =  Molar density = 1

Equation (12) can be expressed in general form
as:

;o a(T) & ,
F=Za=l —Il-;r--—'l'z s £ 2 vl 1;'

=l
{13)
Equation (13} is a generalized expression similar

to the ganeralrzed” cubic equation of  state
developed by Martin'™ for pure fluids:

P=N 'Q":T} S(14)

Thus, using common parlance, equalions (12) and
(13) can be still simply be intérpreted conceptually
as

Pzpﬁ"‘pl"‘ PNp {10‘}

SIMPLIFICATION AND APPLICATION

RT
P e .. (15)
=) :

+.)+a, +a, T +a,T" +..

for the repulsive forces term,

cx —a,a,(T)

= — (16)
=gy
for the altractive forces term, and
a.d,
Py = (=)™ ~1] ()

I.’

for the contribution from othet forces. Equation
(17) can further be simplified as:

Poym—t .. (18)

Substituting equations (15) to (18) into equations
{11) and (13) gives:

RT B al(T’) el
Yasm© V(=& ¥

o

119)
Where,

r=4

Equation (19) is the final generalized van-der
Waals type equation of state obtained. However, it
is rather complex and strictly non-cubic in V. It can
be further simplified to yield a simple, practical
cubic equation.

To obtain an approximate cubic equation, we set
r=1, and n =-¢£ = b/MV in Equation (19) to obtain:

i RT - __a{T] 3 e(T)
V-5 ViV +§) V

(20)
Where, following Soave and Peng-Robinson form
as modified by Grasboski and Daubert “¥
alT)= ac a(T) (21)
a(M)=[1+m(1-T,"9f (22)

m = 0.48508 + 1.55171w -0.151613w® ..(23)
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Using a convention similar to the attractive term
a(T},

c(T) = c*y(T) .(24a)
y(T) = exp(-p (1-Tr))  ..(b)
and B is an empirical constant

In this study, a simple optimization approach was
used fo establish B and to evaluate Equation (24b)
as.

¥(T) =exp(-40 (1-T*%)) (c)
Equation of State Parameters

Equation (20) gives a cubic equation in volume
that can be expressed as:

RT ¢ bRT ab b'e
=Pl = i s sy
.. (25)
Solving, at near critical condition, we have:
c= RTg-3P:Ve (26)

a.= 3Pc Ve +b(bP. + RTg)  .(27)

and the parameter, b, is obtained using a well-
known convention, from the smallest pusnlwe real
root of the cubic equation:

2RT

- (3%, - —]b +@V b=V =0

(28)

Equation (25) can also be expressed in the form:

Z° —(1-C)2°.+(A-B*-B)Z -(AB+B*C)=0 ...(29)

Where,
al

" (RTY

EXTENSION TO MIXTURES

Following the work of several earlier investigators,
the simple van der Waals one fluid mixing rules
were used for calculating mixture parameters so
as to extend Equation (20) to mixtures. The
mixture parameters are given as.

as  LEXXay (30a)
b= L Xb, (b)
c= E X {c)
ai) = tara;}c&""n-kiﬂ (d)

——} = OWhere X, stands for mole fraction and kij is a

binary interaction coefficient for interactions
between compenents. In this work, Kij were set al
zero and there was no tuning.

RESULTS AND DISCUSSION

From the foregeing, it is clear that the van der
Waals equation of state and its several vanants
only incorporate the ‘physical’ repulsive and
altractive forces. They do not incorporate possible
contributions to pressure, of other forces such as
quantum effects and the chemical forces. In other
words, a truly generalized equalion of state should
account for all possible conftributions to pressure
beyond the commenly recognized repulsive and
attractive forces 7

Equation (12) is a generalized van der Waals-type
equation of state from which most simple equations
of state can be derived. Equation (20) on the other
hand, can be considered as an approximate
generalized model derived from eguation (19). One
major advantage of the generalized equation
expressed in this form is the fact that it explains the
physical significance of the EOS parameters in a
three-parameter equation of state. Thus, while 'a’
captures the attractive forces, 'b’, the co-volume, 'c’
in the form it appears in the eguation represents a
parameter that captures the confribution to pressure
of other forces. This is different from the concept of
'c’ in many equations of state where 'c’ obviously
represents an ‘“after-the-fact” volume correction
term.
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Furthermore, unlike Bondim}, who suggested

possible determination of non van der Waal forces
from a different fluid theory, in this work, the non-
physical effects represented by parameter 'c’ has
been derived using a theory that is consistent with
the estimation of parameters ‘a’ and 'b’. It follows by
extension that mulli-parameter equations of state
can be physically meaningful if the parameters are
related to different forces in the system.

Equation (20) was first validated by applying it to
pure hydrocarbons under wvarious conditions of
temperature and pressure. The results are as
shown in the Figures 1 — 4 . It was observed that
for the very light compounds — methane, ethane,
nitrogen, etc., the results from this model agree
mare with the SRK predictions which is known to
be accurate for light compounds. However, for the
heavier compounds such as Butane, the results
are closer to the Peng-Robinson estimates.

Binary Mixtures

The results show that Equation (20) produced
results that matched the experimental values more
accurately than the SRK and PR equations.

Application to Niger Delta Crude Qil Samples
The model developed in this study was used o
simulate several fluid samples obtained fram. the
Niger Delta. The results for three samples are
presented in Figures 9-11. The threé samples
presented here have properties thal varyGver a
wide range as shown in Table 3, The resulls as
shown in Figures 9-11 compare wvery well with
SRK and PR, even without any fine-tuning. One
advantage of the model presented in this work is
that it tends to combine the best properties of the
SRK and PR equations.

CONCLUSION

A Pressure perturbation principle has been used to
develop. a2 generalized van-der Waals-type
equation of state. This equation demonstrates that
van-der Waals type equations of state can be
related to thermedynamic perturbation principles
and could have sound theoretical foundations than
previously thought. It was shown that a truly
generalized and accurate model must include the
effects of non-physical forces in addition to the van
der Waals repulsive and attractive forces normally
captured in most of the existing cubic equations of

state. However, such an eguation will be rather
complex and requires further simplification through
some assumplions to generate simple, practical
approximate solutions

NOMENCLATURE
ab -constants in van der Waals equation
a,, by, -equations of state coefficients

A - Helmhoitz energy

c - third constant in equation of state
c - volume translation parameter

k - Boltzmann constant

ky, - binary interaction coefficients

m - constant in EOS attractive term
n - number gf moles of componeant |
N - total number of molecules

P - Pressure, psia (MPa)

r - parameter of solid equation of state
R - universal gas constant, per mole
T - temiperature, °F ("R)

v - molar volume

b - mole fraction of component i

y - parameter defined as b/4v

Z - compressibility factor

Greek

a - coefficient of attractive term

g - empirical constant

& - equation of state parameter

¥ - coefficient of EOS attractive term
Ya - specific gravity

p - molar density

n - dimensional volume = bigy

LW - Pitzer acentric factor
Subscripts

A - attractive forces

c - critical point

k - canvergence

L - liguid

m - mixlure

NP - non-physical forces

r - reduced

R - repulsive forces

Superscripts

Assoc - associated chain

abc - empirical constants

ch - chemical

n - equation of state constant
L - liquid phase

0 - degree

seg - segment-segment chain
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Abbreviations
EQS - equation of state

Exp - exponential

Expt - experimental value
°F - degree Fahrenheit
R - degree Rankin

K - Kelvin

In - natural logarithm

psia - pounds per square inch
SAFT - Statistically Associated Fluid Theory

REFERENCES

1) www informationgenious com'encyclopedi
alequation of state history retrieved on
2/3/2003.

2) van der Waals, J.D. "On the Continuity of
the Liquid and Gaseous State”, Nobel Lecture,
1910. www . google retrieved on 2/3/ 2003,

3) Rediich, ©., and Kwong, J N S "On the
Thermodynamics of Solutions. \: An Equation
of State, Fugacities of Gaseous Solutions.”
Chem. Review, 44, 233-244, (1949)

4) Soave, G. "Equilibrium Constants from a
Modified Redlich-Kwong Equations of State”
Chem. Eng. Sci., 27, 1197-1203 (1972).

5) Peng. D., and Robinson, D.B.: "A New
Two-Constant Equation of State” Ind. Eng
Chem. Fundam. 15(1), 59-64 (1978)

B} Schmidt, G, and Wenzel, H.: “A Modified
van der Waals Type Equation of State " Chem.
Eng. Sci., 35, 1503-1512 (1980).

7) Patel, N.C., and Teja, A. S.: "A New Cubic
Equation of State for Fluids and  Fluid
Mixtures™. Chem. Eng. Sci, 38, 463-473,
(1982),

8} Kubic, W.L. Jr: "A Modification of the
Martin Equation of State for Calculating
Vapour-Liquid  Equilibria,” Fluid Phase
Equilibria, 9, 79-97, (1982),

9) Heyen, G.: "A Cubic/ Eguation of State
With Extended Range of Application,” 2nd
World Congress of Chem. Eng., Montreal, Oct.
4-9, 1983

10) Tsonopoules, €. and Heidman, J.L. “From
Redlich-Kwong. Ta. The Present”, Fluid Phase
Equilibria, 24, 1-23, (1985).

11) Anderke, A "Cubic and Generalized van
der Waals/ Equations”, in Sengers, JV.
Kayser, R.F.. Peters, C.J., White Jr. H.J.
(Eds.), Equations of State for Fluids and Fluid
Mixtures, Elsevier, Amsterdam, 75-126,
{2000).

12) Wertheim, M.S: “Fluids with highly
directional attractive forces. | Statistical
Thermodynamics®, J. Stat. Phys. 35, 19-34
(1984)

13) Wertheim, M.S: “Fluids with highly
directional attractive forces. 2. Thermodynamic
Perturbation Theory and Integral Equations”, J
Stat. Phys. 35, 35-47 (1984).

14) Chapman, W.G., Gubbins, K.E., Jackson,
G. and Radosz, M: "Mew Reference Equation
for Associating Liquids”. Ind. Eng Chem. Res
28, 1709-1721 (1990).

15) Chapman, W.G., Gubbins, K.E . Jackson,
G. and Radosz, M: "SAFT: Equation —of-State
Solution Model for Associating Fluids™ Fluid
Phase Equilibria, 52, 31-38 (1989)

16) Huang, S H. and Randoz, M: “Equation of
State for Small, Large,{Polydisperse, and
Associaling Molecules™. Ind. ‘Eng. Chem. Res.
29, 2284-2294 (1990),

17) Sadus, R.J. "Simple Equation of State for
Hard Sphere Chains®, AIChE. J. 45(11), 2454
(1999).

18) Martin, J. Ji “Cubic Equations of Slate -
Which?", Ind. Eng. Chem. Fundam., 18(2), 81-
97 (1979),

19) Bondi, - A, Physical Properties of
Molecular Liguids, Crystals and Glasses,
Wiley, 1968,

20) Firrozabadi, A Thermodynamics of
Hydrocarbon Reservoirs, McGraw Hill,
{1999).

21 McCabe, C., and Kiselev, S B, “A
Crossover SAFT-VR Eguation of State for
Pure Fluids: Preliminary results for light
hydrocarbons”. Fluid Phase Equilibria, 219
(2004), 3-9.

22) Carnahan, N.F and Starling, K. E

“Intermolecular repulsion and the Equation
of State for Fluids", AIChE. J. 18(6), 1184-
1189, 1972

23) Graboski, M.S., and Daubert, TE. @ "A
Modified Soave Equation of State for
Phase Equilibrium Calculations. 2.
Systems containing CO,; H;S, N; and
CO." SPE Repint Series No 15, Phase
Behaviour, 91-97. 1981



Application Of Generalized Perturbahion Principle Ta Cubic Equalion Formulation SPE

RT

P =
¥(l-n)
RT
P=—
L
_____u{?"}
B RT N 2 S
v -4y)
y = 2o Pyp :(ﬂ}[em =1
y= V
4V

R ¥ = {—.LT}
Py =—I-_—i.l+-~‘>_||-+I1furI +64y" + 2560 +........ ) P-‘-" B L

_ p= RT B a(T) el T)
P o= Etl #dy+10p" + 180" + 280" #4040 + [ V(l=n) V- &Y ¥

[ A
I

P, =¥{I+4_v+lﬂy:+iﬂy1-¥-35_|.'*+... )
_RT(I+y+y° =)

M V(l _y)l
po_RT___a@) e
p . RE T 4 (T e 4
ol (L N7)
g

p_ RT___a@) o)
V-b) VI +b) V




8 5.0, Isehunwa, and G K. Falade SPE

b —(3¥, —Z—f'r-)a* +(3Vb-1)=0

| v (RT)
e A @ L
\ c_{RT}
RT ¢ a bRT a .
o)
(G250 P]{éplﬂ

N

7
&
Q
S



Application Of Generalized Perturbation Prnciple To Cubic Equation Formuwlation SPE

Z- Pressure Plot for Ethane at 60 oF
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Figure 1: Pressure — Z Plot for Ethane at 60 oF
Z- Pressure Plot for Nitrogen at 60 oF
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Figure 2: Pressure — Z Plot for Nitrogen at 60 oF
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Z- Pressure Plot for Methane at 200 oF
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Figure 3: Z- Pressure Plot for Methane at 200 "F

Z- Pressure Plot for Propane at 200 oF
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Figure 4: Z- Pressure Plot for Propane at 200 "F
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Z- Pressure Plot for n-Butane at 200 oF
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Figure 5: Z- Pressure Plot for n-Butane at 200 °F

Z - Pressure Plot for n-Butane-CO2 at 100 oF
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Figure 6: Z — Pressure Plot for n-Butane-CO2 System (% mole of CO2 = 10%)
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1.00
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Z - Pressure Plot for n-Butane-CO2 at 280 oF
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Figure 7: Z - Pressure Plot for n-Butane-CO2 System (% mole of CO2 = 10%)

Z - Pressure Plot for n-Butane-C0O2 at 100 oF
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Figure 8: Z — Pressure Plot for n-Butane-CO2 System (%% mole of CO2 = 90%)
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Table 3: Composition and PYT Data for Three Case Studies

PARAMETER CASE 1 CASE 3 CASE 6
c1 41,83 47 47 7.81
c2 3.51 6.51 1.75
c3 54 4.93 0.71
IC4 1.84 1.03 0.25
NC4 3.36 2.11 0.22
ICE 1.69 0.92 0.16
NC5 1.65 1.06 013
C8 2.24 1.7 0.27
ST 38.25 31.6 B88.46
coz2 0.2 2.54 0.11
N2 0.03 0.13 0.13
Fluid Mol Wt. 83.98 79.48 2349
GOR, scfistb B06 1197 429
Oil Viscosity, cp 0.86 0.82 5.79
Saturation
pressure, Psia 2747 3652 415
Reservoir
Pressure, psia 3960 3663 4218
Reservoir
Temperature R | 648.1 720 631
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Z-Pressure Plot for CASE 1 at 60 oF
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Figure 9: Z — Pressure Plot for Case | at Surface Conditions

Z - Pressure Plot for CASE 1 at 188 oF
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Figure 10; Z = Pressure Plot for Case 1 at Reservoir Temperature
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Z - Pressure Plot for CASE 3 at 260 oF
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Figure 13: Z - Pressure Plot for Case 3 at Reservoir Temperature
Z - Pressure Plot for CASE 6 at 171 oF
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Figure 11: Z < Pressure Plot for Case 6 at Reservoir Temperiture



