JOURNAL OF AGRICULTURE, FORESTRY AND THE SOCIAL SCIENCES

VOL 11, NO. 1, 2013

FOSTERING PROGRESSIVE PARTNERSHIPS FOR SUSTAINABLE AGRICULTURE www.ajol.info/journals/joafss

ISSN 1597-0906

JOURNAL OF AGRICULTURE, FORESTRY AND THE SOCIAL SCIENCES (JOAFSS) Vol.11, No.1, 2013

ISSN 1597-0906

EDITORIAL BOARD

Prof. M. A. Bamikole Mr. Antigha ESSIEN

ASSOCIATE EDITORS

Prof. A.O. Angba Dr. E. O. Akinfala Dr. John Ekore Dr. O. M. Adesope Dr. (Mrs) Ebinimi.J.Ansa. Prof.Aminu Abubakar Editor-in-Chief Coordinating Editor

Dept.of Agricultural Economics and Extension, University of Calabar, Nigeria. Dept.of Animal Science, Obafemi Awolowo University, Ile-Ife, Nigeria Dept.of Psychology, University of Ibadan, Nigeria. Dept.of Agricultural Economics and Extension, University of Port Harcourt, Nigeria African Regional Aquaculture Centre (ARAC), Aluu, Port Harcourt, Nigeria Dept. of Animal Science, Usmanu Danfodiyo University, Sokoto, Nigeria.

EDITORIAL ADVISERS

Prof. A. D. Ologhobo Prof C. C. Asiabaka Prof.Isiaka Muhammed. Elder U.Amogu Dr J. K. Saliu University of Ibadan, Nigeria, Federal University of Technology, Owerri, Nigeria Usmanu Danfodiyo University, Sokoto, Nigeria, Nigeria. Oscar Agricultural Consultants, Abuja, Nigeria. University of Lagos.

All correspondences to: Prof. M. A. Bamikole (Editor-in-Chief, JOAFSS)

Department of Animal Science, University of Benin, Edo State, Nigeria E-mails: bankymao@uniben.edu bankymao@yahoo.co.uk

OR

ESSIEN, Antigha (Coordinating Editor, JOAFSS) Department of Animal Science, Faculty of Agriculture and Forestry, Cross River University of Technology (CRUTECH). E-mails: antigha2005@yahoo.com antighabusola@yahoo.com Journal of Agriculture, Forestry and the Social Sciences (JOAFSS), Vol.11, No.1, 2013

	Table of Content
1)	CONTRIBUTIONS OF SMALL-SCALE COMMUNITY-OWNED INFRASTRUCTURE (SCI) AND ASSET ACQUISITIONS TO THE ATTAINMENT OF FADAMA III PROJECT DEVELOPMENT OBJECTIVES IN OGUN STATE NIGERIA
	Coker, A.A.A., Alabi, O.O; Ajuwon, S.S., Onasanya, I., and Adeogun, S.B
2)	ANALYSIS OF MARKET PERFORMANCE OF FARM-RAISED Clarias gariepinus IN THE SOUTH-WESTERN NIGERIA Ayanboye, A.O and Adedokun, M.A
3)	MEAT CONSUMPTION PATTERNS AMONG DIFFERENTINCOME GROUPS IN IMO STATE, NIGERIA Anyiro C.O., C.I. Ezeh, C.K. Osondu, and Madu, L.K
4)	INTELLIGENCE AND SECURITY: INGREDIENTS FOR STABLE POLITY, FOOD SECURITY AND SUSTAINABLE GROWTH. Omobuwajo,O.A
5)	ECONOMIC ANALYSIS OF THE STRUCTURE, INTEGRATION AND PERFORMANCE OF RICE MARKETS IN DEKINA LOCAL GOVERNMENT AREA OF KOGI STATE-NIGERIA. Mohammed, I, A
6)	ANALYSIS OF TECHNICAL EFFICIENCY AMONG SWAMP RICE FARMERS IN NIGER STATE, NIGERIA Usman, A and Rahman, S.A
7)	CHARACTERIZATION, CLASSIFICATION AND LAND CAPABILITY EVALUTION OF NDONI MEANDER BELT SOILS IN NIGER DELT Ayolagha, G. A. and. Opene, G. A
8)	INVESTIGATION OF FUNGI ASSOCIATED WITH THE SPOILAGE OF Chrysophyllum albidum (G.Don) FRUITS. Kazeem-Ibrahim, F, Asinwa, I.O, Iroko, O.A, Aiyeyika A.K and Fapoluwomi, O.A
9)	IMPACT OF URBANIZATION ON GREENHOUSE GASES EMISSION AND ITS ESTIMATION ON ALALUBOSA FOREST RESERVE AREAS Aina-Oduntan, O.A., Oluwasemire, K.O., Oyelowo O.J., Oloketuyi A.J
10)	MORPHOLOGY AND CLASSIFICATION OF THE SOUTHERN SOMBREIRO -WARRI DELTAIC PLAIN SOILS SUROUNDED BY MANGROVE FORESTS IN NIGER DELTA Ayolagha, G.A and Ikiroma, T.G
11)	ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL SCREENING OF Ficus exasperata ROOT BARK Adejoh O.P., Yakubu, F.B., Igboanugo A.B.L and Shasanya O.S
12)	EFFECTS OF SOWING MEDIA AND SOWING DEPTH ON GERMINATION AND GROWTH OF Lecaniodiscus cupaniodes (Planch. Ex Benth). Yakubu, F.B., Adegoke, F.F. and Ogunwande, O.A and Adejoh O.P
13)	EFFECT OF FINANCING ON PROFITABILITY OF SAWMILL INDUSTRIES IN CROSS RIVER STATE, NIGERIA Idiege, D. A. Emesowum, C.E., Amadi, C. A. and Zaku, S.S
14)	TECHNICAL EFFICIENCY OF SUGAR CANE (Saccharum officinarum) PRODUCTION IN NIGER STATE, NIGERIA Omotesho, O.A., Muhammad-Lawal, A., Olatinwo K.B., Adenuga A. H. and Bello A. J
15)	FOREST LEAFY VEGETABLES MARKETING AND SUSTAINABLE RURAL LIVELIHOOD IN RIVERS STATE, NIGERIA Oladele, A.T. Aiyeloja, A. A and Hycent, P.D
16)	DETERMINANTS OF CHARCOAL PRODUCTION EFFICIENCY IN IBARAPA NORTH LOCAL GOVERNMENT OF OYO STATE, NIGERIA.
	Awodele D.O. Famuvide O. Bolaii-Olatunii K.A. Adaniran O.A.S.

17) NET FARM INCOME ANALYSIS OF MAIZE PRODUCTION IN GWAGWALADA AREA COUNCIL OF FEDERAL CAPITAL TERRITORY, NIGERIA.
Alabi, O.O; Coker, A.A.A; and Idegbesor, M.E
18) ASSESSMENT OF AGROFORESTRY PRACTICES BY FARMERS IN LAGELU LOCAL GOVERNMENT OF OYO STATE, NIGERIA.
Banjo A.A., Famuyide O.O., Odefadehan O O., Ayomide A.A., Owoeye A.Y., Oyetunji D.O. and Obafunso, O.E
19) PARSIMONIOUS CROWN DIAMETER PREDICTION MODELS FOR TECTONA GRANDIS (LINN F VERBENACEAE)
Popo-ola, F.S. and Oyebade, B.A
20) EVALUATION OF THE INSECTICIDAL POTENTIALS OF SOME INDIGENEOUS MEDICINAL PLANTS ON THE WAREHOUSE MOTH (Ephestia cautella) (Walker) Ine, I.E., Oyelowo, O.J. and Oloketuyi, A.J
21) SURVEY OF INCENTIVES DEVELOPMENT IN AGROFORESTRY ESTABLISHMENTS IN YEWA NORTH LOCAL GOVERNMENT, OGUN STATE
Odewo, S.A., Ajekigbe, J.M., Bolanle-Ojo, O.T., Adeyinka, .A., Adewuyi, S.O
22) ASSESSMENT OF TREE DIVERSITIES IN OBAN DIVISION OF THE CROSS RIVER NATIONAL PARK (CRNP), NIGERIA Adeyemi, A.A., Jimoh, S.O. and Adesoye, P.O
23) COMPARATIVE EFFECT OF SOLE FORAGE AND MIXED CONCENTRATE-FORAGE FEEDING REGIMENS ON THE GROWTH PERFORMANCE OF WEANER RABBITS Ekereuke, E.O., Effiong, H.E and Essien, V
24) EFFECT OF PALM OIL SUPPLEMENTATION IN YAM PEEL MEAL DIETS FED TO BROILERS
Inaku, E.N., Bawa, G.S., Olugbemi, T.S and Awuna, G.R
25) THE EFFECT OF FEEDING GMELINA (G. arborea) LEAF MEAL IN COWPEA SHELL BASE COMPLETE DIETS ON NUTRIENT INTAKE AND NUTRIENT DIGESTIBILITY IN RED SOKOTO BUCKS Abdu, S.B., Hassan, M.R., Jokthan, G.E., Adamu, H.Y., Yashim, S.M. and Wakili, D. D
26) GROWTH AND REPRODUCTIVE PERFORMANCE OF RABBITS FED MISTLETOE LEAVES (<i>Phragmanthera nigritana</i>) Alemede, I.C., Fasanya, O.O.A and Oke, A.O., 249
27) EFFECT OF GMELINA FRUIT PULP BASED DIETS ON HEMATOLOGY AND HISTOPATHOLOGY OF RATS
Ingweye, J.N and Kalio, G.A
28) FORAGE YIELD, NUTRIENT COMPOSITION AND NUTRITIVE QUALITY OF SILAGE PRODUCED FROM MAIZE-LABLAB MIXTURE
Amole T. A., Oduguwa B. O., Okwelum, N., Oyekale, T. O., Jolaosho, A. O., Olanite, J. A. and Oyewole, S. T
29) THE EFFECT OF EXOGENOUS MELATONIN ON SPERM CHARACTERISTICS OF WEST AFRICAN DWARF GOAT BUCKS
Fatoba, T.A and Adeloye, A.A
30) GERMINATION RESPONSE OF GUM ARABIC (Acacia senegal L.) SEEDS TO HOT WATER PRE-TREATMENT IN MAIDUGURI, BORNO STATE, NIGERIA.
Zakari, Y., 'Bukar N., Danlingi, G.H and Omar, A.I.O
Guideline to authors

ASSESSMENT OF TREE DIVERSITIES IN OBAN DIVISION OF THE CROSS RIVER NATIONAL PARK (CRNP), NIGERIA

BY

Adeyemi, A.A., Jimoh, S.O. and Adesoye, P.O.

Department of Forest Resources Management, University of Ibadan, Ibadan, Nigeria E-mail for correspondence: adeyemiadesoji@yahoo.com

ABSTRACT

Many tropical forests are under great anthropogenic pressure and require management intervention to maintain the overall biodiversity, productivity and sustainability. This cannot be possible without proper understanding of their structure and species diversities. Tree diversity in Oban Division of the CRNP was assessed. Systematic sampling technique was adopted for plot locations. Two transects, 2km long with a distance of 600m apart were cut in each of the three study sites. Four plots of 50m×50m were laid alternately along each transect at 500m intervals in the closed canopy and secondary forests. Forty-eight plots were used for the study. Tree growth parameters were measured on all the trees with Dbh>10cm within each plot. All the measured trees were identified and classified into their respective families. Species diversity indices were computed for the trees in the two forest types. The canopy layer to which each tree belongs was noted. Data were analyzed using descriptive statistics, Diversity Indices, t-test as well as analysis of variance. A total of 118 species (107 genera and 37 families) of trees were recorded, with 72 and 69 species in the closed canopy and secondary forests respectively. The Strombosia spp. was the most abundant species in the forests. The family, Olacaceae accounted for 11.94% of the total individuals recorded in the area. This was followed by Mimosoideae (8.4%). The average tree stems/ha was 158 and 130 in the closed canopy and secondary forest respectively. The Simpson' Indices were 0.99 and 0.98 for the two forest types respectively, which implied high floristic richness. The Shannon-Wiener's Indices (4.36 and 4.14) and the equitability ratios (0.9513 and 0.9506) were high for the two forest types, which indicated moderate representation of most of the species in the area. The tree growth parameters significantly differ under different canopy layers (P<0.05). However, most of the parameters were not significantly different in the two forest types (P>0.05).

Key words: forest-types, species, families, diversity indices, growth parameters

INTRODUCTION

Tropical forests represent one of the most species-diverse terrestrial ecosystems. Their immense biodiversity generates a variety of natural resources, which help to sustain the livelihoods of local communities (Kumar *et al.*, 2002). However, many tropical forests are under great anthropogenic pressure and require management intervention to maintain the overall biodiversity, productivity and sustainability. This cannot be possible without a proper understanding of their diversities, structures and species richness. There has been a consistent deforestation of Nigeria's tropical rain forests for more than two decades. This is being done without a plan for replacement. Today, a semblance of the remaining tropical rainforests in the country is only found within Cross River National Park (CRNP), while forest disturbance and fragmentation caused by illegal logging and land conversion for local agriculture are visibly increasing in the remaining parts of the country (Ogunjobi *et al.*, 2010). There is a dearth of information on the species diversity and richness in Oban Division of the CRNP, which happens to be the most diverse in Nigeria at present. This information could guide the sustainable management of the Park and its components.

Moreover, evidence has pointed to how inadequate information on ecosystem diversity has resulted in poor forest policies, planning and management in the park (e.g. Bisong and Mfon, 2006). It has hampered efforts to reduce illegal and unsustainable extraction of forest resources, and improve transparency. Also, it has resulted in undervaluation of forest resources. According to FAO (2005), such conditions, in turn, could contribute to continuous decline in area, health, stock, and flows of forest resources.

This study was undertaken to assess tree species diversity in Oban Division of the CRNP. Relevant information on tree species and structural diversities is useful for effective formulation and implementation of policies and serves as guide to effective forest management (Irland, 2007). This information is needed since it can provide a baseline data for which changes in the forest resource base and causes for change could be subsequently monitored. It will also help to identify ways to integrate forest development efforts with overall sustainable development in Nigeria.

METHODOLOGY

The Study Area

The study was carried out in Oban Division of CRNP, Nigeria. Oban Division lies between longitudes 8° 02'E and 8°55'E; and latitudes 5° 00'N and 6° 00'N. The Oban Division is 300,000ha in land area. It was carved out of Oban Group Forest Reserve in 1991. It is located in the south-eastern part of the Cross River State in Akamkpa Local Government Area (Fig.1). It shares border with Korup National Park of Cameroon in the east and is about 42km from Calabar, the state capital (Ogunjobi *et al.*, 2010). The three study sites used for this study were *Aking, Ekang* and *Old Netim*.

The study area has a raining season of at least nine months (March-November) and receives over 3500mm of rain annually (Ogunjobi *et al.*, 2010). Oban Division is contiguous with Korup National Park. The Cross River and its tributaries drain northern parts of Oban Division, while southern parts are drained by the Calabar, Kwa and Korup Rivers. The terrain is rough and elevation rises from the river valleys to over 1000m above sea level in mountainous area. The temperature ranges from 25°C to 27°C in January, but in July, it normally rises up to slightly above 30°C. Relative Humidity is between 75% and 95% in January, but toward the end of the year, it reduces gradually as a result of harmattan (Bisong and Mfon, 2006). The vegetation is lowland rain forest. In the less accessible areas, the forest has had little interference, but elsewhere the vegetation has been much influenced by human activities.

Data Collection

Systematic sampling technique was adopted in each of the three study sites (*Aking*; *Ekang* and *Old-Netim*) for plot locations (Adekunle *et al.*, 2004; Akindele, 2005; Adekunle and Olagoke, 2008). Two transects, 2km long with a distance of 600m apart, were cut in each of the study sites. Four sample plots of $50m \times 50m$ (0.25ha) were laid alternately along each transect at 500m intervals. This procedure was replicated in the closed canopy and secondary forests, thus summing up to 4 sample plots per 2km-transect, and a total of 16 sample plots per study site. In all, 48 sample plots were used for the study. The tree growth parameters [Diameter at breast height (Dbh), diameters at the base (D_b), middle (D_m) and merchantable top (D_t), crown diameter (CD), total height (THT), merchantable height (MHT) and crown length (CL)] were measured on all the trees with 10cm and above within each plot. All measured tree stems were identified and classified into their respective genera and families. Species diversity indices were also computed for the tree species in the two forest types. In addition, the canopy layer to which each tree within each plot belongs was noted.

Fig: Map of the Cross River State showing the study area

Data Analysis

Computation of the Simpson's and Shannon-Wiener's indices of diversity

Where, n_i = number of individuals of the *ith* species; N = total number of individuals in the plot; S = number of species in the plot (Simpson, 1949).

Shannon-Wiener index for tree size diversity:

$$H_d = -\sum_{i=1}^m p_i x \log p_i \dots 2$$

Where, p_i = the proportion of trees in the *ith* diameter class and d = the number of diameter classes (Buongiorno *et al.*, 1994).

Shannon-Wiener index for tree height diversity:

Where, p_i = the proportion of trees in the *ith* height class, and h = the number of height classes (Staudhammer and LeMay, 2001).

Descriptive and Inferential Statistics

Descriptive statistics, t-test and analysis of variance were also conducted on the data set. T-test was conducted to investigate significant differences in tree species growth parameters and diversities between the two forest types. Analysis of variance was used to compare the growth parameters under different canopy layers.

RESULTS AND DISCUSSION

Tree Species Composition

A total of 118 species (107 genera and 37 families) of trees were recorded in the study area with 72 species in the closed canopy forest and 69 species in the secondary forest. Details are presented in Table 1. *Strombosia pustulata* (5.04%) and *S. grnadifolia* (4.05%) of the family *Olacaceae* were the most represented in the two forest types. Species like *Khaya grandifoliola* (0.12%), *Lophira alata* (0.64%) and *Terminalia ivorensis* (0.12%) were less represented with very few individuals in the study area (Table 2).

A total of 1726 tree stems were recorded in the study plots, with 947 (54.87%) in the closed canopy forest and 779 (45.13%) individuals in the secondary forest. The members of family Olacaceae accounted for 11.94% of the total individuals with three members (S. pustulata with 42.85%; S. grandifolia with 34.48%; Coula edulis with 22.66%). Mimosoideae accounted for 8.4% and is represented by seven species. Among the species, Parkia bicolor (35.17%), Pentaclethra macrophylla (25.52%) and Calpocalyx cauliflorus (17.24%) were the most common in the family. The following species; Piptadeniastrum africanum (9.66%), Calpovalyx brevibracteatus (6.21%), Albizia zygia (4.14%) and Cylicodiscus gabunensis (1.38%) were present in lesser amount in this family.

The values recorded for tree species in the two forest types were higher in comparison to the values reported by Adekunle (2006) in other tropical rain forests of Nigeria. Higher species occurrence in the area may be attributed to the success of conservation efforts and the recent ban on logging and illegal extraction of forest resources in the area by the Cross River State government.

Table 1: Tree species compositions in the two forest types

	Tree species			Tree species		
S N	Closed canopy forest	Secondary forest	SN	Closed canopy forest	Secondary forest	
1	Afzelia bipindensis	Ficus capensis	37	Hylodendron gabunense	Funtumia elastica	
2	Allanblackia floribunda	Musanga cecropioides	38	Irvingia sp	Hannoa klaineana	
3	Alstonia boonei	Xylopia aethiopica	39	Khaya grandifoliola	Dialium guineense	
4	Amphimas pterocarpoides	Ceiba pentandra	40	Klainedoxa gabonensis	Cola altissima	
5	Anonidium mannii	Distemonanthus benthamianus	41	Lannea welwitschii	Brenania brieyi	
6	Barteria fistulosa	Sterculia rhinopetala	42	Lophira alata	Millettia griffoniana	
7	Berlinia Bracteosa	Maesobotrya barteri	43	Lovoa trichiloides	Hunteria umbellate	
8	Berlinia confuse	Lepidobotrys staudtii	44	Mammea Africana	Panda oleosa	
9	Blighia sapida	Treculia obovoidea	45	Manikara obovata	Cinnamomum zeylanicum	
10	Bosqueia angolensis	Coula edulis	46	Mitragyna stipulosa	Garcinia mannii	
11	Brachystegia eurycoma	Lophira alata	47	Nauciea diderichii	Uapaca staudtii	
12	Brachystegia nigerica	Cleistopholis patens	48	Octoknema affinis	Combretodendron macrocarpum	
13	Calpocalyx cauliflorus	Antrocaryon micraster		Omphalocarpum elatum	Baphia nitida	
14	Canarium schweinfurthii	rthii Bosqueia angolensis		Parinari exelsa	Guarea glomerulata	
15	Carapa procera	Antiaris toxicaria	51	Phyllanthus discoideus	Spathodea campanulous	
16	Carapa procera	Hylodendron gabunense	52	Piptadeniastrum africanum	Morinda lucida	
17	Celtis brownie	Angylocalyx oligophyllus	53	Psydrax palma	Nesogordonia papaverifera	
18	Celtis mildbraedii	Piptadeniastrum africanum	54	Pterocarpus osun	Carapa procera	
19	Chrysophyllum albidum	Chrysophyllum albidum	55	Pterygota macrocarpa	Antidesma vogelianum	
20	Cinnamomum zeylanicum	Strombosia pustulata	56	Rhizophora recemosa	Klainedoxa gabonensis	
21	Coelocaryon preusii	Tabernaemontana pachysiphon	57	Ricinodendron heudelotii	Allanblackia floribunda	
22	Cola argentea	Antiaris toxicaria	58	Rothmannia hispida	Diospyros suaveolens	
23	Cola gigantean	Pentaclethra macrophylla	59	Santiria trimeria	Irvingia sp	
24	Corynanthe pachyceras	Albizia zygia	60	Spathodea campanulata	Octoknema affinis	
25	Cylicodiscus gabunensis	Guibourtia ehie	61	Sterculia oblonga	Corynanthe pachyceras	
26	Dacryodes edulis	Zanthozyllum zanthozylloides	62	Stombosia pustulata	Staudtia stipitata	
27	Dialium guineense	Neoboutonia glabrescens	63	Strombosia grandifolia	Vitex ferruginea	
28	Diospyros mespiliformis	Pycnanthus angolensis	64	Symphonia globulifera	Strombosia grandifolia	
29	Distemonanthus benthamianus	Diospyros mespiliformis	65	Terminalia ivorensis	Celtis zenkerii	
30	Enantia chlorantha	Poga oleosa	66	Treculia oblonga	Barteria fistulosa	

31	Ficus sp .	Diospyros zenkerii	67	Trilepisium madagascariensis	Parkia bicolour
32	Guibourtia ehie	Berlinia confuse	68	Uapaca staudtii	Ouratea calophylla
33	Hannoa klaineana	Anonidium mannii	69	Uvariodendron callophyllum	Guarea thompsonii
34	Hannoa klaineana	Trichilia tessmannii	70	Vitex ferruginea	
35	Holoptelea grandis	Sterculia oblonga	71	Xylopia aethiopica	
36	Hunteria eburnean	Rothmannia hispida	72	Zanthozyllum zanthozylloides	

The dominance of the *Strombosia spp.* in the area may be the result of edaphic factors of the area, or, due to adaptation of the species to the area. The maximum representation of the family *Sterculiaceae* may have also resulted from ecological adaptations of members of this family to the ecosystem. A similar case was reported by Vasanthraj and Chandrashekar (2006) in a tropical forest, where *Dipterocarpaceae* dominated due to their adaptations to the forest ecology.

The average numbers of tree stems/ha was 158 and 130 in the closed canopy and secondary forest respectively. These values were higher compared to those reported by Adekunle *et al.* (2004), Ojo (2004), Adekunle and Olagoke (2008) for other tropical rainforests of Nigeria. This is an indication that the Oban forest is less disturbed compared to others previously studied.

S/ N	Species	Family	%	S/N	Species	Family	%
1	Afzelia bipindensis	Caesalpinioideae	0.46	60	Hunteria eburnean	Apocynaceae	1.04
2	Albizia zygia	Mimosoideae	0.35	61	Hunteria umbellate	Apocynaceae	0.81
3	Allanblackia floribunda	Guttiferae	0.81	62	Hylodendron gabunense	Caesalpinioideae	1.10
4	Alstonia boonei	Apocynaceae	0.58	63	Irvingia sp	Irvingiaceae	2.26
5	Amphimas plerocarpoides	Papilionoideae	0.12	64	Khaya grandifoliola	Meliaceae	0.12
6	Angylocalyx oligophyllus	Papilionoideae	0.58	65	Klainedoxa gabonensis	Irvingiaceae	2.95
7	Anonidium mannii	Annonaceae	0.23	66	Lannea welwitschii	Anacardiaceae	0.35
8	Antiaris toxicaria	Moraceae	0.41	67	Lepidobotrys staudtii	Lepidobotryaceae	0.17
9	Antidesma vogelianum	Euphorbiaceae	0.12	68	Lophira alata	Ochnaceae	0.64
10	Antrocaryon micraster	Anacardiaceae	1.16	69	Lovoa trichiloides	Meliaceae	0.17
11	Baphia nitida	Papilionoideae	0.58	70	Maesobotrya barteri	Euphorbiaceae	0.35
12	Barteria fistulosa	Passifloraceae	0.46	71	Mammea Africana	Guttiferae	0.64
13	Berlinia Bracteosa	Caesalpinioideae	0.35	72	Manikara obovata	Sapotaceae	0.70
14	Berlinia confuse	Caesalpinioideae	0.70	73	Microdesmis puberula	Pandaceae	0.06
15	Blighia sapida	Sapindaceae	1.04	74	Millettia griffoniana	Papilionoideae	0.98

Table 2: Tree species and their respective families in the study area

16	Bosqueia angolensis	Moraceae	2.32	75	Mitragyna stipulosa	Rubiaceae	0.12
17	Brachystegia eurycoma	Caesalpinioideae	0.06	76	Monodora myristica	Annonaceae	0.52
18	Brachystegia nigerica	Caesalpinioideae	0.12	77	Morinda lucida	Rubiaceae	0.41
19	Brenania brieyi	Rubiaceae	0.17	78	Musanga cecropioides	Moraceae	1.04
20	Bridelia micrantha	Euphorbiaceae	0.12	79	Nauclea diderichii	Rubiaceae	0.12
21	Calpocalyx brevibracteatus	Mimosoideae	0.52	80	Neoboutonia glabrescens	Euphorbiaceae	0.98
22	Calpocalyx cauliflorus	Mimosoideae	1.45	81	Nesogordonia papaverifera	Sterculiaceae	0.93
23	Canarium schweinfurthii	Burseraceae	0.12	82	Octoknema affinis	Octoknemaceae	1.78
24	Carapa procera	Meliaceae	1.39	83	Omphalocarpum elatum	Sapotaceae	0.23
25	Ceiba pentandra	Bombacaceae	0.17	84	Ouratea calophylla	Ochnaceae	0.81
26	Celtis brownie	Ulmaceae	0.98	85	Panda oleosa	Pandaceae	0.93
27	Celtis mildbraedii	Ulmaceae	0.23	86	Parinari exelsa	Chrysobalanaceae	0.12
28	Celtis zenkerii	Ulmaceae	0.52	87	Parkia bicolour	Mimosoideae	2.95
29	Chrysophyllum albidum	Sapotaceae	0.46	88	Pentaclethra macrophylla	Mimosoideae	2.14
30	Cinnamomum zeylanicum	Lauraceae	0.93	89	Phyllanthus discoideus	Euphorbiaceae	0.64
31	Cleistopholis patens	Annonaceae	0.64	90	Piptadeniastrum africanum	Mimosoideae	0.81
32	Coelocaryon preusii	Myristicaceae	1.10	91	Poga oleosa	Anisophylleaceae	0.23
33	Cola altissima	Sterculiaceae	0.35	92	Psydrax palma	Rubiaceae	0.46
34	Cola argentea	Sterculiaceae	0.06	93	Pterocarpus osun	Papilionoideae	0.87
35	Cola gigantean	Sterculiaceae	0.58	94	Pterygota macrocarpa	Sterculiaceae	0.35
36	Cola hispida	Sterculiaceae	0.12	95	Pycnanthus angolensis	Myristicaceae	3.36
37	Combretodendron macrocarpum	Lecythidaceae	0.29	96	Rhizophora recemosa	Rhizophoraceae	0.06
38	Corynanthe pachyceras	Rubiaceae	0.93	97	Ricinodendron heudelotii	Euphorbiaceae	0.29
39	Coula edulis	Olacaceae	2.67	- 98	Rothmannia hispida	Rubiaceae	0.29
40	Cylicodiscus gabunensis	Mimosoideae	0.12	99	Santiria trimeria	Burseraceae	1.68
41	Dacryodes edulis	Burseraceae	0.35	100	Spathodea campanulata	Bignoniaceae	0.29
42	Dialium guineense	Caesalpinioideae	1.85	101	Staudtia stipitata	Capparaceae	3.77
43	Diospyros mespiliformis	Ebenaceae	2.67	102	Sterculia oblonga	Sterculiaceae	2.38
44	Diospyros suaveolens	Ebenaceae	0.29	103	Sterculia rhinopetala	Sterculiaceae	0.52
45	Diospyros zenkerii	Ebenaceae	2.78	104	Sterculia tragacantha	Sterculiaceae	. 0.70
46	Distemonanthus benthamianus	Caesalpinioideae	0.87	105	Strombosia grandifolia	Olacacea	4.05
47	Enantia chlorantha	Annonaceae	0.12	106	Strombosia pustulata	Olacaceae	5.04
48	Entandrophragma cylindricum	Meliaceae	0.23	107	Symphonia globulifera	Guttiferae •	0.23
49	E.			108	Tabernaemontana		
	Ficus capensis	Moraceae	0.17		pachysiphon	Apocynaceae	0.E2
50	Ficus sp	Moraceae	0.17	109	Terminalia ivorensis	Combretaceae	0.12

51	Funtumia elastica	Apocynaceae	0.35	110	Treculia oblonga	Moraceae
52	Garcinia cola	Guttiferae	0.12	111	Treculia obovoidea	Moraceae
53	Garcinia mannii	Guttiferae	0.70	112	Trichilia tessmannii	Meliaceae
54	Guarea glomerulata	Meliaceae	1.97	113	Trilepisium madagascariensis	Moraceae
55	Guarea thompsonii	Meliaceae	0.17	114	Uapaca staudtii	Euphorbiaceae
56	Guibourtia ehie	Caesalpinioideae	0.29	115	Uvariodendron callophyllum	Annonaceae
57	Hannoa klaineana	Simaroubaceae	1.33	116	Vitex ferruginea	Verbenaceae
58	Holoptelea grandis	Ulmaceae	0.12	117	Xylopia aethiopica	Annonaceae
59	Homalium letestui	Samydaceae	0.06	118	Zanthozyllum zanthozylloides	Rutaceae

Species Diversities

The species diversity indices for the tow forest types are presented in Table 3. The high values for Simpson's Index (0.99 and 0.98) in the closed canopy and secondary forests respectively indicated high species richness in the forests. The Shannon-Wiener's Indices (4.366 and 4.14) and the equitability ratios (0.951 and 0.959) were high for the two forest types, which indicate moderate representations of most of the species in the area. In the same vein, the species evenness (0.8337 and 0.8344) were also high in each of the closed canopy and the secondary forests, which means that there were less variation in species diversities in the two forest types. Details are shown in Table 3.

Table 3: Summary of diversity indices for the two forest types of CRNP

Index	Ç	losed canopy fo	rest	Secondary forest			
	Mean value	Lower limit	Upper limit	Mean value	Lower limit	Upper lim	
Simpson's	0.986	0.9855	0.9861	0.983	0.923	0.9831	
Shannon-Wieners'	4.366	4.34	4.37	4.17	4.14	4.175	
Evenness	0.8337	0.7895	0.8591	0.8344	0.7955	0.8614	
Equitability ratio	0.9513	0.9386	0.9581	0.9506	0.9375	0.9586	

The Simpson's Index values for two forest types were higher compared to the values reported for various tropical rain forests in Asia and Africa (Shivaprasad *et al.*, 2002; Vasanthraj *et al.*, 2004; Vasanthraj and Chandrashekar, 2006; Adekunle, 2007). The value was slightly higher in the closed canopy forest than in the secondary forest. This is because of higher species diversity in the former than the latter.

Structural Diversity

The Shannon-Wiener's Indices for tree size diversity in the study area are presented in Fig. 2. In the closed canopy forest, the tree diameter class 20-30cm is the most structurally

diverse in the ecosystem, with a diversity index of 3.224. This is followed by the diameter class 10-20cm, which has a diversity index of 3.044. Similarly, the diameter classes 10-20cm and 20-30cm had the highest tree size diversity index of 2.962 each in the secondary forest. The diameter class 80-90cm for the closed canopy forest and the diameter class 90-100cm for the two forest types had zero Index values, which indicated poor diversity since very few individuals fall into these categories in the two forest types. The study also revealed that the two forest types were characterized by abundance of relatively small-diameter trees (of Dbh of 40cm and below) making about 75% in the closed canopy forest and 69% in the secondary forest. These trends are common in near-primary tropical rain forests, which is an indication of high potential of these forests for regeneration processes (Hadi *et al.*, 2009). These percentages are higher than the values reported by the previous workers for other tropical forest ecosystems of Nigeria (Adekunle *et al.*, 2004; Akindele, 2005; Adekunle and Olagoke, 2008). The values are also higher than the 60.91% reported by Hadi *et al.* (2009) for a lowland rain forest in Indonesia.

In terms of the vertical structural diversity, the intermediate canopy (15-27m height class) of the closed canopy forest and the secondary forest had the highest Indices of 3.802 and 3.601 respectively (Fig. 3). This is followed by the suppressed canopy layer (\leq 15m height) in both cases, with index values of 2.477 and 2.327 respectively. The dominant canopy layer is the least structurally diverse in the tow forest types with diversity indices of 1.809 and 1.662 respectively.

Fig. 2: Tree size diversities in the two forest types

Fig. 3: Trees species diversities under different canopy layers in the two forest types

The Shannon-Wieners Indices for structural diversity were higher when compared to the values reported for Western Ghat forest in India by Vasanthraj et al. (2004). However, the values were lower when compared with the result obtained by Vasanthraj and Chandrashekar (2006). This ecosystem has been adjudged the richest in the country due to minimal disturbance, its species richness and diversity (Ogunjobi et al., 2010). Species in this ecosystem are very important for the fauna diversity conservation, soil enrichment and microclimatic amelioration. Species of Caesalpinioideae and Mimosoideae encountered are also noted for their ability to fix atmospheric nitrogen, thereby improving soil fertility, and hence, enhancing luxuriant tree species growth in the area. The study further revealed that stand structural diversity indices involving diameter and height were different throughout the forest strata. Higher index indicates greater complexity in forest structure. Similar results have been reported in previous studies by Spies (1997) and Lei et al. (2009). The intermediate height layer in the two forest types is the most diverse. This is consistent with observation by O'hara et al. (2007) who reported an increasing trend in structural diversity over time in multi-age forest stands. This could also be due to tree size differentiation caused by competitions, mortality and regeneration processes. Stands incorporating large individuals appear to have large ranges in Dbh and hence, higher tree size diversity (McRoberts et al., 2008).

Comparisons of Growth Parameters under Different Canopy Layers

The results of analysis of variance for the tree growth parameters under different canopy layers are presented in Table 4. The results for all the tree growth parameters show that, the parameters are significantly different from one another under different canopy layers at 0.05 level of significance (p<0.05). This implies that the parameters significantly differ under different canopy layers. The mean separations (LSD tests) for the tree growth parameters under different canopy layers are presented in Table 5. The test revealed that most of the means for tree growth parameters under different canopy layers were significantly different from one another.

Tree parameter	SV	df	SS	MS	F	P-level
ТНТ	Canopy layer	3	94281.12	31427.04	2111.502	0.0000*
	Error	1722	25629.783	14.8837		- age -
Dbh	Canopy layer	3	414493.8	138164.6	290.7575	0.0000*
	Error	1722	818274.25	475.1883	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
CD	Canopy layer	3	8299.002	2766.334	224.5185	0.0000*
	Error	1722	21217.106	12.3212	0	
CL	Canopy layer	3	8155.509	2718.503	175.8457	0.0000*
	Error	1722	25621.431	15.4596		
SV .	Canopy layer	3	26751.801	8917.267	227.7228	0.0000*
	Егтог	1722	67430.765	39.1584		

1 able 4: ANOVA for the growth par	ameters under the four canopy lay	vers
------------------------------------	-----------------------------------	------

*significant (P<0.05)

THT=tree total height; Dbh=diameter at breast height; CD=crown diameter; CL= crown length; SV = stem volume

Table 5: LSD tests for the tree growth parameters under the four canopy layers

bits assirted	Artes Dart	6	Mean values of the tree growth parameters						
Canopy layer	ТНТ	Dbh	CD	CL	BA	СРА	sv		
Dominant	41.3831*	80.6204ª	12.6589 ^a	13.3808ª	0.6580ª	150.8611ª	15.6432*		
Co-dor:inant	32.7893 ^b	47.3846 ^b	8.3672 ^b	10.1906 ^b	0.2257 ^b	66.4909 ^b	4.6657 ^b		
Intermediate	22.6100°	28.7036°	5.6794°	7.3647°	0.0903 ^c	33.0034°	1.1730 ^c		
Suppressed	13.5125 ^d	20.5891 ^d	4.0641 ^d	4.9407 ^d	0.0446 ^d	. 20.3635 ^d	0.3907°		

N.E: Means in the same column with the same alphabet are not significantly different from each other

THT=tree total height; Dbh=diameter at breast height; CD=crown diameter; CL=crown length; BA=basal area; CPA=crown projection area; SV=stem volume

The different canopy layers in the two forest types represent different forest strata. Hence, the tree growth parameters vary greatly at these layers. A similar observation has been made by Bobo *et al.* (2006) in a tropical rain forest in Cameroon. However, this study showed that only tree crown diameter was significantly different between the two forest types. The mean crown diameter was higher in the secondary forest than in the closed canopy forest. The higher mean value for crown diameter in the secondary forest may be due to lower stocking and lesser competition than in the closed canopy forest. The trees have more space to rapidly grow, and for crown development.

Comparisons of Tree Growth Parameters in the Two Forest Types

Table 6 presents the result of the t-test for comparison of means of the tree growth parameters between the two forest types. The result revealed that there was no significant difference between the mean tree total heights (THT) under the two forest types since P>0.05. The mean tree diameters at breast height (Dbh) in the two forest types were not significantly different from each other (P>0.05). This implies that the mean tree Dbh in the closed canopy forest and the secondary forest were not significantly different from each other. The t-test for the comparison of the mean tree crown diameters (CD) between the two forest types showed a significant difference (P<0.05). This implies that the mean tree crown diameters in the two forest types were significantly different from each other. The t-test for the comparison of the mean tree crown diameters (CD) between the two forest types showed a significant difference (P<0.05). This implies that the mean tree crown diameters in the two forest types were significantly different from each other. The mean tree basal area (BA) obtained in the closed canopy forest was not significantly different from that obtained in the secondary forest since P>0.05. The result for the crown projection area (CPA) also revealed no significant difference between the two forest types since P-value was 0.1154. The mean tree stem volumes in the two forest types were not also significantly different from each other (P>0.05).

The non-significant difference for most of the tree growth parameters between the two forest types implied that the secondary forest stock is relatively similar to the closed canopy forest. This trend was observed by van Gemerden (2004) and Bobo *et al.* (2006), who noted that, secondary forest, if left undisturbed for a while, could grow into the near-primary forest.

Growth parameters	Forest Type	N	Mean	S.D	Df	t-stat	P-value
ТНТ	CCF	947	24.3946	8.3027	1724	1.2757	0.2022
	SCF	779	24.9090	8.3762			
Dbh	CCF	947	35.4524	27.9940	1724	0.7873	0.4312
7.	SCF	779	34.4342	25.1213			
SQ	CCF	947	16.3046	6.9377	1724	2.0099	0.0446*
	SCF	779	16.9693	6.7112			
CD	CCF	947	6.2885	4.0573	1724	2.1413	0.0324*
* Alaminal de	SCF	779	6.7165	4.2215			
BA	CCF	947	0.1602	0.4221	1724	1.0083	0.3134
	SCF	779	0.1426	0.2664			
CľA	CCF	947	43.9746	70.0042	1724	1.5750	0.1154

Table 6: t-tests for the tree growth parameters between the two forest types

	SCF	779	49.4096	72.9387				
sv	CCF	947	2.7180	7.6144	1724	0.6117	0.5408	
	SCF	779	2.9366	7.1086				
and the second second	and the second states of the	and the second s	manineta	and a start	and the second			

*significant (p<0.05)

N.B: CCF: closed canopy forest; SCF: secondary forest; THT=tree total height; Dbh = diameter at breast height; SQ = stem quality; CD = crown diameter; BA = basal area; CPA = crown projection area; SV = stem volume

CONCLUSION AND RECOMMENDATIONS

This study has revealed the current status, tree species diversity and structure in the Oban Division of Cross River National Park, Nigeria. The higher diversity and species richness in the area implied some conservation success in the Park. The ecosystem is very rich in floral diversity and harbour many species of biological importance. Although the secondary forest is less diverse than the closed canopy forest, the difference in diversities indices appeared negligible. This is an indication that the secondary forest in the area is fast regaining high level of biological diversity, and if left undisturbed for a long period of time could reach its climax.

The Park authority is therefore implored to intensify the conservation and protection efforts in the area, and by extension, it is recommended that such effective measures be adopted in every other tropical rain forest of Nigeria in order to regain the lost ecosystem diversity. However, some illegal activities were noticed in the secondary forest, which serves as the buffer for the protected area. This may have contributed to the lesser number of tree species and stems recorded in the secondary forest. In order to prevent the occurrence of such in the core of the protected park, it is recommended that the possibility of joint forest management be considered. By embracing this, the surrounding indigenous communities would consider themselves as part of the park management, thereby, contributing to the security of the forest resources in the area.

ACKNOWLEDGEMENT

We are grateful to Volkswagen Foundation Hanover, Germany that provided the fund with which this study was conducted. We sincerely appreciate Dr. Matthias Waltert for his encouragement throughout the study. We appreciate the CRNP authority for permitting us to carry out the study within the Park.

REFERENCES

Adekunle, V.A.J. (2006). Conservation of tree species diversity in tropical rainforest ecosystem of southwest Nigeria. *Journal of Tropical Forest Science* 18 (2): 91-101.

Adekunle, V.A.J. (2007). Non-linear regression models for timber volume estimation in natural forest ecosystem, Southwest Nigeria. Research Journal of Forestry 1 (2): 40-54.

- Adekunle, V.A.J., Akindele, S.O., Fuwape, J.A. (2004). Structures and yield models for tropical lowland rainforest ecosystem of South West Nigeria. *Food, Agriculture and Environment* 2: 395-399.
- Adekunle, V.A.J. and Olagoke, A.O. (2008). Diversity and bio volume of tree species in Natural forest ecosystem in the bitumen-producing areas of Ondo state, Nigeria: a baseline study. *Biodiversity and Conservation* 17: 2735-2755.
- Akindele, S.O. (2005). Modeling tropical forest data in Nigeria the challenges. Seminar presented at the Warnell School of Forest Resources, University of Georgia, Athens, Georgia, USA on May 11, 2005. http://www.forestry.ubc.ca/biometrics/Documents/Akindele_Georgia.ppt.
- Bisong, F.E and Mfon, P. Jnr (2006). Effect of logging on stand damage in rainforest of sourth-eastern Nigeria. *West African journal of Applied Ecology* 10: 119-129.
- Bobo, K.S., Waltert, M., Sainge, N.S., Njakagbor, J., Fermon, H. and Muhlenberg, M. (2006). From forest to farmland: species richness patterns of trees and understorey plants along a gradient of forest conversion in Southwestern Cameroon. *Biodiversity and Conservation* 15: 4097-4117.
- Buongiorno, J., Dahir, S., Lu, H.C., and Lin, C.R. (1994). Tree size diversity and economic returns in uneven-aged forest stands. *Forest Science* 40: 83–103.
- FAO (2005): Global Forest Resources Assessment 2005: Progress Towards Sustainable Forest Management." FAO Forestry Paper 147, FAO, Rome. http://www.fao.org/forestry/site/fra/en/.
- Hadi, S., Ziegler, T., Waltert, M. and Hodges, J.K. (2009). Tree diversity and forest structure in northern Siberut, Mentawai islands, Indonesia. *Tropical Ecology* 50(2): 315-327.
- Irland, L.C. (2007). Perspectives on the National Report on Sustainable Forests-2003. In Perspectives on America's forests. Bethesda, MD: Society of American Foresters: 20-33.
- Kumar, A., Gupta, A.K., Marcot, B. G., Saxena, A., Singh, S.P. and Marak, T.T.C. (2002). Management of forests in India for biological diversity and forest productivity, a new perspective. Volume IV: Garo Hills Conservation Area (GCA). Wildlife Institute of India - USDA Forest Service collaborative project report, Wildlife Institute of India, Dehra Dun, Pp 206.
- Lei, X., Wang, W. and Peng, C. (2009). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Resources 39: 1835–1847.

McRoberts, R.E., Winter, S., Chirici, G., Hauk, E., Pelz, D.R., Moser, W.K. and Hatfield, M.A. (2008). Large-scale spatial patterns of forest structural diversity. *Canadian Journal of Forest Resources* 38 (3): 429-438.

- O'hara, K.L., Hasenauer, H. and Kindermann, G. (2007). Sustainability in multi-aged stands: an analysis of long-term plenter systems. *Forestry* 80(2): 163-181.
- Ogunjobi, J.A. Meduna, A.J. Oni, S.O. Inah E.I. and Enya D.A. (2010). Protection Staffs' Job Perception in Cross River National Park, Southern Nigeria. *Middle*-*East Journal of Scientific Research* 5 (1): 22-27.
- Ojo, L.O. (2004): The fate of a tropical rainforest in Nigeria: Abeku Sector of Omo Forest Reserve. *Global Nest: The International Journal* 6 (2): 116-130.

- Shivaprasad, P.V., B.K. Vasanthraj and Chandrashekar, K.R. (2002). Studies on the structure of Pilarkan reserve forest, Udupi District of Karnataka. *Journal of Tropical Forest Science* 14: 71-81.
- Simpson, E.H. (1949). Measurement of diversity. Nature 163: 688p.
- Spies, T.A. (1997). Stand structure, function and composition. In K.A. Kohm and J.F. Franklin ed. Creating a Forestry for the 21st Century. Island Press, Washington, DC, U.S. 11-30.
- Staudhammer, C.L, and LeMay, V.M. (2001). Introduction and evaluation of possible indices of stand structural diversity. *Canadian Journal of Forest Research* 31(7): 1105-1115.
- van Gemerden, B.S. (2004). Disturbance, Diversity and Distributions in Central African Rain Forest. PhD thesis, Wageningen University, The Netherlands.
- Vasanthraj, B.K., P.V. Shivaprasad and Chandrashekar, K.R. (2004). Studies on the structure of Jadkal forest, Udupi District, India. Journal of Tropical Forest Science 17: 13-32.
- Vasanthraj, B.K. and Chandrashekar, K.R. (2006). Analysis of the structure of Charmady reserve forest. *Tropical Ecology* 47(2): 279-290.