
UNIV
ERSITY

 O
F I

BADAN LI
BRARY

1

Note: This document will remain intact when opened on Word 2010 or higher version

INTRINSIC AND EXTRINSIC FACTORS AS PREDICTORS OF

SELF EFFICACY AND ACHIEVEMENT IN PROGRAMMING AMONG

COMPUTER SCIENCE UNDERGRADUATES IN SOUTH-WESTERN

NIGERIA

OWOLABI JOSIAH

B.Sc. Ed (Lagos), M.Sc. Mathematics (Lagos), PGD Computer Science (Lagos),

M.ScComputer Science (Lagos), M.Ed. Educational Evaluation (Ibadan)

Matric No: 131284

A Thesis in the International Centre for Educational Evaluation (ICEE) Submitted

to the Institute of Education in Partial Fulfilment of the Requirement for the degree

of DOCTOR OF PHILOSOPHY of the University of Ibadan, Ibadan, Nigeria.

2014

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

2

ABSTRACT
Java programming language is recent, dynamic and relevant in contemporary organisations.

However, literature shows that learning computer programming using Java poses problems to

many computer science undergraduates. Low self-efficacy in computer programming has been

identified as one of the factors responsible for the observed problems which students encounter

while learning programming. Little attention has been paid by researchers towards isolating

factors that are likely to influence programming self-efficacy and achievement. This study,

therefore examined the predictive value of intrinsic (gender, computer experience, mathematics

background, computer ownership, locus of control, background in C++ and number of

programming courses) and extrinsic (institution type) factors in undergraduates‟ self-efficacy and

achievement in Java computer programming (SEiJCP and AiJCP) in south-western Nigeria.

The study adopted a correlational design. Purposive sampling technique was used to select 254

computer science undergraduates from four universities (three federal and one state). Only

universities offering Java and C++ programming languages in their curriculum participated in

the study. Five research instruments namely: Computer Experience Scale (r = 0.84), Java

Programming Self-Efficacy Scale (r = 0.96), Java Programming Achievement Test (r = 0.70),

Levenson Locus of Control Scale (r = 0.88) and Computer Background Questionnaire with four

subscales: C++ background (r=0.87), computer ownership (r=0.90), mathematics background

(r=0.84) and computer experience (r=0.79) were used to collect data. Data were analysed using

descriptive statistics, t-test and Multilevel Analysis Procedures (MLAP). For MLAP, Null and

Linear Growth Models were examined.

Null model showed that 91.0% of the variations in SEiJCP were due to institutional level

differences. Students in the state university obtained higher scores in SEiJCP (𝑥 =173.97; SD

=26.39) than their colleagues in the Federal (𝑥 =128.05; SD =44.57). The mean difference in

SEiJCP scores between students in Federal and state universities was statistically significant (t =

7.57, df=252, p<0.05). The Null model also showed that 82.0% of the variations in AiJCP were

due to institutional level differences. However, there was no significant difference in the mean

score in AiJCP between students in the state university (𝑥 =22.92; SD =11.78) and their

colleagues in Federal universities (𝑥 =20.54; SD =18.72). The Linear Growth Model (LGM)

showed that only the number of programming courses significantly predicted SEiJCP (β=1.15),

while gender, computer ownership, mathematics background, C++ background, computer

experience and locus of control did not contribute significantly to the prediction. LGM showed

that none of the intrinsic factors contributed to the prediction in AiJCP.

The number of programming courses significantly predicted self-efficacy in Java computer

programming while institutional type significantly predicted both self-efficacy and achievement

in it among computer science undergraduates in south-western Nigeria. Computer science

departments in Federal and state universities should increase the number of programming

courses in their curriculum. The Federal universities should also organise tutorial classes in all

programming courses in order to improve self-efficacy in them.

Keywords: Java programming language, Computer science undergraduates, Self-efficacy,

 Institutional level differences, South-Western Nigeria

Word Count: 487

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

3

CERTIFICATION

This is to certify that this work was carried out by Owolabi, Josiah in the Institute of Education,

University of Ibadan, Nigeria.

...

Supervisor Date

Benson Adesina Adegoke PhD

Senior Research Fellow

Institute of Education

University of Ibadan

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

4

ACKNOWLEDGEMENTS

Writing this dissertation would not be possible without the support of many people. Great

appreciation is expressed to all those who offered me assistance and words of encouragement in

the course of this work.

Firstly, I want to thank my supervisor, Dr. Benson Adesina Adegoke for his constant support,

thoughtful suggestions and guidance. He possesses those qualities that students highly value in a

mentor: a keen intellect, a taste for excellence, a friendly disposition and a genuine interest in

seeing students succeed. He exhibited enthusiasm for my work, made available some relevant

materials on Multilevel Analysis and Lisrel 8.80 software, encouraged me, critically read my

drafts and gave me many helpful and insightful suggestions. Thanks and God bless you sir. I

would like to thank Dr. J.G. Adewale who showed special interest in the work from inception,

took off time to study the proposal and made several positive contributions to the work. The

efforts and contributions of Dr. Isiugo-Abanihe is highly appreciated. Your invaluable

suggestions have gone a long way to make the work what it is today.

My sincere gratitude goes to Dr. Eugenia.A. Okwilagwe and Dr. Monica Odinko who assessed

the work at the initial stage. I can never forget the useful suggestions of Dr. J.O. Adeleke after

going through part of the work and his encouragement and advice at various stages. I am

indebted to Drs. Ikinat Junaid and J. O Abijo for the words of encouragements at the times I

needed them.

My sincere thanks also go to the following: Professor T.W Yoloye for his concern and prayers,

Professor E.Adenike Emeke for her motherly role in my academic and professional endeavours. I

also thank very much all the other research fellows at the Institute of Education, University of

Ibadan: Professor Promise Okpala, Professor (Venerable) Jonathan E. Ibeagha, Dr. Abiodun

Adegbile, Dr. Georgina Obaitan, Dr. Faloyogun Falaye, Dr. Adams Onuka, Dr. Felix Ibode, Dr.

Modupe Osokoya, Dr. C.V Abe and Dr. A.O Otunla. I have learned valuable lessons from each

of them and they are worthy role models for upcoming scholars and evaluators. I appreciate the

contributions and encouragements of Pastor (Dr.) D.O Ashamu, my senior colleague at the

Institute.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

5

I would like to gratefully acknowledge the support and assistance of my colleagues at the

Institute, for encouraging me during the tough process and also attending my seminar

presentations. Mrs Olayemi.O. Oshin, Mrs Olasunbo Olatunji, Mr Olonade P.O and a host of

others too numerous to mention were all wonderful. Special thanks to Auntie Ronke and Sunday

for their support. Thanks also to all my colleagues at the Mathematics/Statistics department of

Federal College of Education (Technical), Akoka, Lagos, for their encouragement, understanding

and support.

A special gratefulness is accorded to Professors Okunuga S.O and Olaleru J.O, both of

Mathematics Department, University of Lagos. Dr. A.B.C Roberts and other lecturers in the

Computer Science Departments of the University of Ibadan, Ladoke Akintola University

(LAUTECH), Ogbomoso, Adekunle Ajasin University, Akungba-Akoko (AAUA), Ondo state,

University of Lagos, Federal University of Technology, Akure and Obafemi Awolowo

University, Ile-Ife, Osun state without whose supports data collection would not have been

possible. My sincere appreciation also goes to BabajideOlusi , my wonderful research assistant

for a job well done. My appreciation to all the participants of this research in all the five

universities used for the study. God bless you all.

Mr. Peter Olanipekun, Miss Jemima Osanyinro, Mr. Tolulope Ilesanmi and Mr. Emmanuel

Adeyemi are highly appreciated for their invaluable contributions to the work.

I also extend my gratitude to Pastors Victor Sopeju, Ukwa, Andrew Umoru, Ademola

Farinmade, Tunde Ajao for the Pastoral concern and prayers. My prayer partners Brother Kudus

Olaitan, Emmanuel, Peter etc. were wonderful. God bless you all.

My late parents (Pa Joseph Owolabi and Mama Mary Owolabi) are highly appreciated for the

legacy of education. My profound gratitude goes to my brother and his wife; Engineer and Mrs

Olufemi Owolabi, my sisters; Mojirade Alli and Rebecca Abba for their concern, prayers and

motivation. You effectively gave the support my late parents would have given me if they were

alive. The blessings of the Lord would never cease in your homes in Jesus Name.

This work would not have been completed without the faithful and continuing support of my

darling wife, Janet Owolabi and our wonderful children, Jemima, Joshua and John Owolabi.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

6

They have all endured a lot of inconveniences and denial of my much needed company during

the course of this study. I appreciate you all.

Above all, my utmost thanks to God Almighty for the completion of this work, for every grace

and favour received. To him alone are all glory and adoration even now and forever more.

AMEN.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

7

DEDICATION

This work is dedicated to God Almighty

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

8

TABLE OF CONTENTS Pages

Title Page

Abstract ii

Certification iii

Acknowledgement iv

Dedication vii

Table of contents viii

List of tables xi

CHAPTER ONE: INTRODUCTION

1.1 Background to the problem 1

1.2 Statement of the problem 14

1.3 Research questions and Hypothesis 15

1.4 Scope of the study 16

1.5 Significance of the study 16

1.6 Definition of terms 17

1.7 Acronyms and abbreviation 18

CHAPTER TWO: LITERATURE REVIEW

2.1 Theoretical Background 19

2.2 Evolution and Development of Computer Programming 22

 2.2.1 History of Computer Programming languages 23

 2.2.2 Historical Development of C++ Programming Language 32

 2.2.3 historical Development of java programming Language 37

2.3 Self Efficacy and Achievement in Computer Programming 41

2.4 Intrinsic and Extrinsic Factors 44

2.5 Computer Experience, Self Efficacy and Achievement in Programming 44

2.7 The Influence of Gender on Self Efficacy and Achievement in

Computer programming 46

2.8 Computer Ownership, Self-Efficacy and Achievement in Programming 52

2.9 The Influence of Locus of Control on Self-Efficacy and Achievement

incomputer Programming 53

2.9 Mathematics Background, Self-Efficacy& Achievement in

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

9

Programming 58

2.10 C++ Background, Self-Efficacy and Achievement in Programming 58

2.11 Number of Programming Courses taken before Java, Self-Efficacy

and Achievement in Programming 60

2.12 Rationale for Multi-Level Analysis 62

2.13 Appraisal of Literature Reviewed 66

2.14 Gaps of Literature Reviewed 69

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Research design 70

3.2 Variables in the study 70

3.3 Target population 70

3.4 Sampling procedure and sample 71

3.5 Instrumentation 73

3.5.1 Computer background questionnaire (CBQ) 73

3.5.2 Computer Experience Scale 73

3.5.3 Java programming self-efficacy scale (JPSES) 74

3.5.4 Java programming achievement test (JPAT) 74

3.5.5 Levenson locus of control scale 75

3.6 Data collection procedure 76

3.7 Scoring of the instrument 76

3.7.1 Computer background questionnaire 76

3.7.2 Computer Experience Scale 77

3.7.3 Java programming self-efficacy scale (JPSES) 77

3.7.4 Levenson locus of control (LLOC) 77

3.7.5 Multiple choice question on Java programming (MCQJP) 77

3.7.6 Essay Question on Java Programming Language 77

3.8 Data analysis procedure 77

3.9 Methodological challenges 78

3.9.1.1 The challenge of the availability of literature 78

3.9.1.2 Challenges from sampling techniques 78

3.9.1.3 Instrumentation challenges 78

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

10

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Research Question One 79

4.2 Research Question Two 82

]4.3 Research Question Three 84

4.4 Research Question Four 86

4.5 Research Question Five 89

4.6 Research Question Six 93

4.7 Hypothesis One 98

4.8 Hypothesis Two 99

CHAPTER FIVE: SUMMARY OF FINDINGS, IMPLICATIONS,

RECOMMENDATIONS AND CONCLUSION

5.1 Summary of Findings 101

5.2 Implication and Recommendation 103

5.3 Conclusion 106

5.4 Limitations and suggestions for further studies 107

References 109

Appendices 123

Appendix I: Computer Background Questionnaire 123

 Appendix II: Computer Experience Scale 123

Appendix III: Java Programming Self-Efficacy Scale 124

 Appendix IV: Levenson Locus of Control 126 130

Appendix V: Java Programming Achievement Test 128

Appendix VI: Solution to the Java Programming

Achievement Test 135

LIST OF TABLES AND FIGURES

TABLES PAGES

3.1 The distribution of Respondents across the Four Public Universities Used 72

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

11

3.2 Test blue print for the 20 multiple choice items on Java programming language 75

4.1 Inter correlation Matrix of Intrinsic and Extrinsic factors and Self-efficacy 79

4.2 Inter correlation Matrix of Intrinsic and Extrinsic factors and achievement 83

4.3 Fixed Part of the Null Model for computer programming self-efficacy 84

4.4 Random Part of the Null Model for computer programming self-efficacy 85

4.5 Fixed Part of the Null Model for computer programming achievement 87

4.6 Random Part of the Null Model for computer programming achievement 87

4.7 Fixed Part of the Linear Growth Model 1 of Intrinsic factors 90

4.8 Random Part of the Linear Growth Model 1 of Intrinsic Factor 91

4.9 Fixed Part of the Linear Growth Model 1 of Intrinsic factors 93

4.10 Random Part of the Linear growth model 1 of Intrinsic Factors 94

4.11 T-test comparison of Self-Efficacy in Java Programing, Between

 Undergraduates in Federal and State Universities 98

4.12 T-test comparison of Achievement in Java Programing, Between

 Undergraduates in Federal and State Universities 99

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

12

CHAPTER ONE

INTRODUCTION

1.1 Background to the Problem

Computer programming skill is a major aspect of computer science which is needed not only by

the computer professionals but also by the non-computer professionals. Though the non-

computer professionals are not required to engage in rigorous programming tasks, they may

however need the programming skills at their work especially in the present information

society.For computer professionals, acquisition of programming skills is inevitable. A computer

is quite useless unless it is running a program. According to Jenkins (2004), programming lies at

the very heart of computer.Pioro (2004) opines that programming courses are not just about

programming perse, but that they provide a forum for teaching precise and logical thought

processes. Moreover, they constitute necessary background for computer science students by

introducing basic concepts and techniques to be used and to be built upon in more advanced

computer science courses. An understanding of how the programs are written is a key part of the

development of any computer science student. It is therefore not surprising that computer

undergraduates are required to take and pass some programming courses during the course of

their traning.

Computer programming is the craft of writing useful, maintainable and extensible instructions

which can be interpreted by a computer system to perform a meaningful task. Precisely, Jenkins

(2001) defined programming as “the process of taking a problem specification written in plain

language, understanding it, devising a solution, and then converting the solution into a correct

computer program (usually expressed in some special-purpose programming language)”. To

program using the computer, one must learn how to give instructions to it. One must also learn

the language understood by the computer. The instructions you give to the computer must be

according to some specified rules. The words which make up the instructions as well as the rules

which the instruction must obey form the computer language. In giving instructions to the

computer, it must be done in any of the computer programming languages. Several computer

programming languages had been developed and are still being developed.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

13

The first set of computer languages developed were the machine languages. Machine languages

were machine dependent (i.e they could be used on only one type of computer).It was however

discovered that the machine language was slow for the programmer to write, time and effort

wasting and proned to error. Consequently, the assembly language consisting of English – like

abbreviations used to represent basic operations on the computer instead of the use of strings of

numbers (as in machine language) was developed. Translator programs called assemblers were

also developed to convert assembly language programs to machine language to enable the

programs to be understood and processed by the computer.

A further developmental stage of computing and programming gave birth to the high level

languages. The high level languages are more understandable by human beings. Just as in the

case of assembly language, compilers are required to convert highlevel languages to machine

form and vice versa. The earliest high level language developers used the procedural

programming approach. The procedural programming approach separates the data of the

program from the operations that manipulate the data. Examples of programming languages that

used this approach are GW Basic, Q Basic, Fortran, Ada, Cobol, Algol, Logo, Pascal, C etc. A

more recent programming paradigm is the object – oriented (OO) programming paradigm. The

advantage of the object – oriented programming paradigm is that the data and the operations that

manipulate the data (i.e the code) are both encapsulated in the object. For instance when an

object is transmitted acrosss a network, the entire object (including the data and the operations)

go with it.

There has been a number of publications that looked into the issues relating to the object –

oriented (OO) programming in contrast to the procedural paradigm. For instance Robins,

Rountree and Rountree (2003) submits that the object oriented approach is (i) Natural; (ii) easy

to use and (iii) more powerful. Examples of the OO programming languages are C++, C#, Java,

Visual Basic. Net etc. Of these object oriented programming approaches, C++ and / or Java

languages are taught presently in most public universities in south – west, Nigeria. Java was

chosen for this study because it is an offshoot of the C++. Besides, it is more relevant in the

industries today and works on the web browsers.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

14

It is ironical that the introduction of computer science degree in Nigerian Universities is yet to

make any significant impact on the programming skills acquired by computer graduates. This is

obvious from the level of participation in software development by these graduates. According to

Jegede (2009a), most of the software packages presently in use in Nigerian industries, schools

and financial institutions are either foreign (developed outside Nigeria) or locally adapted. Since

computers are useless without software (which are basically programs) and there can be no

programs without programmers, the need for competent and effective programmers cannot be

over emphasized.

One reason for the dearth of programmers inspite of the many computer graduates produced

from our institutions could be a result of the difficulties encountered by students in the

programming class and the consequent high failure and drop out rate. Guzdial and Soloway

(2002) estimated that 15 – 30 percent of students enrolled in an introductory course either drop

out of the course or fail it. Reports by Mckinney and Denton (2004) even cited higher drop out

and failure rates. The high drop out and failure rates are now a concern to all computer educators

and the Information Technology (IT) professionals. This is because, it has the potential of

causing shortage of professional software developers. This unfortunate development therefore

necessitates the need to investigate some factors peculiar to individual students and their

institutions which are capable of influencing students‟ achievement and self efficacy in

programming.Programming is not a venture that one undertakes and concludes in a hurry. To

write a program, one must: (i) understand the problem at hand. To solve a problem or process a

data using the computer, the programmer must understand what he wants to do, (ii) design the

computer program. The programmer must either receive or write a detailed specification of the

solution to the problem and then represent the steps, using flowchart; (iii) code using a computer

language; (iv) test and debug and (v) document the program.

Programmingrequires great efforts and perseverance. How people behave can often be better

predicted by their beliefs about their capabilities than by what they are actually capable of

accomplishing. This is simply because these beliefs help in determining what individuals do with

the knowledge and skills they have (Bandura, 1986). Therefore, it is important to understanding

what affects students‟ willingness to engage in programming tasks. According to Bandura

(1986), people‟s judgment of their capabilities to organise and execute courses of action required

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

15

to attain designated types of performances strongly influences the choices people make, the

effort they expend, and how long they persevere in the face of challenges.

People‟s judgement of their capabilities to organise and execute courses of action required to

attain designated types of performance is what is referred to in the literature as self efficacy. Self

efficacy is therefore based on self perceptions regarding particular behaviours. It can be defined

as the belief a person has about his ability to perform a particular task or behaviour (Bandura,

1977b). Self efficacy is therefore domain or task specific. Self efficacy is an important

psychological construct which requires attention in research as it influences (i) the choice of

activities that an individual takes part in; (ii) the amount of effort they will expend in performing

a task and (iii) how long they will persevere in the face of stressful situations in completing that

task (Bandura, 1977b).

Bandura (1994) explains that self efficacy beliefs determine how people think, feel, motivate

themselves and even how they behave. He further explains that people with a strong sense of self

efficacy view challenging problems as tasks to be mastered, develop deeper interest in the

activities in which they participate, form a stronger sense of commitment to their interest and

activities, and recover quickly from setbacks and disappointments. People with a weak sense of

self efficacy avoid challenging tasks, believe that difficult tasks and situations are beyond their

capabilities, focus on personal failures and negative outcomes and quickly lose confidence in

personal abilities. Schwarzer (2004) submits that high self efficacy can enhance motivation. He

further submits that people with high self efficacy set themselves higher goals, invest more

efforts, show more resilience and persist longer than those with low self efficacy. Research on

self efficacy theory has powerful effects which are embedded in social cognitive theory, positing

that confidence in completing behaviours of interest will lead to achievement of those behaviours

(Bandura, 1986). According to social cognitive theory, self efficacy influences an individual‟s

interests, goals, and ultimately performance.

According to Hassan (2003), of the various factors that affects individual‟s willingness and

ability to interact with computers examined in past research, computer self efficacy (CSE) has

been identified as a key determinant of computer related ability (including programming) and

use of computer. It is derived from the general concepts of self-efficacy and it refers to an

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

16

individual‟s perceptions about his or her ability to use computer to perform a computing task

(programming inclusive) successfully (Bandura, 1996&Compeau & Higgins, 1995).

Therefore, self-efficacy beliefs can affect how or whether a particular task or course of action

will be attempted, and it may be a factor in whether people choose to get involved or not, in

computer related activities (programming inclusive). Since it affects whether people attempt and

/or persevere with the usage and study of computers, self efficacy is very important in computer

science education research. Moreover, Marakas, Yi & Johnson (1998) suggest that computer self

efficacy affect not only a person‟s perception of his or her ability to perform a computing task

but also his or her intention towards future use of computer.

Research findings show that higher levels of perceived self efficacy correlate to greater

motivational efforts and perseverance (Cassidy & Eachus, 2002). According to Bandura (1996),

Compeau & Higgins (1995), computer self efficacy has proven to be a factor in understanding

the frequency and success with which individuals use computers. Self efficacy theory, according

to Askar & Davenport (2009) has emerged as an important means of understanding and

predicting a person‟s performance. Jegede (2007) also opines that higher levels of computer self-

efficacy correspond to greater achievement of computer competence. Social cognitive theory

posits that a strong sense of self-efficacy leads individuals to undertake challenging tasks,

expend greater effort in accomplishing a given task andpersist longer in the face of adversaries

(Bandura, 2006a).

Given the research evidence on the influence of self-efficacy outlined earlier, it is reasonable to

think that high self-efficacy in computer programming might play an important role in learning

and writing programs and consequently producing competent and effective programmers in our

nation. According to Wahab, Farhan,Norwawi, Hibadullah &Zaiyadi, (2010), learning to

program is not an easy task to many students. The failure rates among students in higher

institutions taking programming courses were also noticed to be as high as 30% to 40% (Shukur,

Alias, Hanawi & Arshad, 2003 and Norwawi, Hibadullah & Osman, 2005). The general

assumption that bright students can be successful in computer programming has been found not

to be valid in some classrooms. According to Byrne and Lyons (2001), students who are

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

17

proficient in other subjects sometimes perform poorly in programming. Hence the need to focus

research studies on variables related to achievement in programming.

Although there is a correlation between perception and ability, the perception of the ability to

successfully execute a task is independent of the actual ability.There is therefore the need to

research into the two variables. Self-efficacy and achievement cannot be treated in isolation.

They are influenced by several other variables as evidenced in literature (Cassidy & Eachus,

2002; Beas &Salanova, 2006). Some of these variables which will form part of this study are:

Computer experience, locus of control, gender, mathematics background, computer ownership,

C++ background and number of programming courses before entering the Java programming

class.

There are several studies that had examined factors affecting General Computer Self Efficacy

beliefs. Some of the studies found significant and positive relationship between computer

experience and Computer Self Efficacy (Potosky, 2002; Hsiao, Lin & Tu, 2010). Karsten & Roth

(1998) in their studies however found that computer experience had no significant impact on

Computer Self Efficacy (CSE) beliefs.A few others others also examined factors relating to Java

programming achievement and self efficacy (Askar & Davenport, 2009; Jegede, 2009a; Jegede,

2009b). Among the various variables examined as antecedents to general computer self efficacy,

computer experience appeared prominent (Bandura, 1986). Social cognitive theory contends that

prior experience represents the most accurate and reliable source of self efficacy information

towards similar tasks. However the empirical result of the relationship between computer

experience and computer self efficacy are inconclusive.

The contradictions in the findings from the previous studies might be due to lack of attention to

the multi-leveled and multifaceted nature of computer self efficacy. Computer self efficacy

evolved to investigate both general and specific computer self efficacy and the relationship

between them (Agarwal, Sambamurthy & Stair, 2000). General computer self efficacy is defined

as an individual‟s judgement of efficacy across multiple computer application domains while

specific computer self efficacy is defined as perceptions of ability to perform specific computer-

related tasks in the domain of general computing. The focus of this study is not just on general

computing but on a specific computer task (Computer Programming).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

18

Studies on the relationship between computer experience and computer programming self

efficacy and achievement are very rare. Askar & Davenport (2009) in a study of factors related

to Java programming self efficacy among engineering students in Turkey found out that the

number of years of computer experience had a significant linear contribution to Java

programming self efficacy scores. However, Jegede (2009a), in a similar study among

engineering students in a University in south- west, Nigeria found that the number of years of

experience in programming did not significantly predict Java programming self efficacy scores.

The empirical inconsistency reported in the two studies that borders on the relationship between

computer experience and specific computer task (Java programming self efficacy may be

attributed to the fact that computer experiences of an individual is bound to vary across different

computer tasks. While Askar & Davenport (2009) used the general computer experience as a

single construct reflecting the number of years of computer use; Jegede (2009a) was specific-he

used the number of years of programming experience.

Previous studies suggest that computer experience represents a multi-dimensional construct that

comprises various experiences with computer applications and software tools and that specific

computer experiences offer more accurate and reliable predictors of self efficacy than the general

single-dimensional computer experience construct (Bozionelos 2001; Hoxmeier, Nie & Purvis,

(2000). Only few researchers examined the impact of different types of computer experiences on

both General and specific Computer Self Efficacy (CSE) beliefs. Hassan (2003) showed that

certain computer experiences has varying levels of impact on a person‟s perceived computer self

efficacy. Hassan‟s research showed that experiences with computer programming and graphic

applications had strong and significant effects on computer self efficacy beliefs while

spreadsheet and database applications demonstrated weak effects.

Busch (1995) specifically investigated the influence of experience with computer programming,

computer games, word processing and spreadsheet applications on task specific self efficacy

beliefs towards Lotus 1-2-3 and word perfect applications. The results showed that experience

with word processing applications was the most influential predictor of self efficacy beliefs with

regard to word perfect while computer programming had the strongest effects on self-efficacy

beliefs towards Lotus 1-2-3. Jegede (2009a) narrowing down his investigation to the relationship

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

19

between number of years of programming experience and Java programming self efficacy among

engineering students in a South-Western Nigerian University found that, the number of years of

experience in programming did not significantly predict Java programming self efficacy scores.

Several studies have been conducted to find out reasons for poor levels of achievement in

programming. One reoccurring factor in most of the research reports that seem to influence

programming achievement is prior computer experience. In particular, prior programming

experience has been found to affect computer programming achievement (Koohang & Byrd,

1987). Taylor & Mounfield (1989) also found that prior experience in programming provides a

significant predictor of how students perform in the programming courses. They found that prior

exposure whether at the high school or college level is an important factor in students‟

performance in computer programming.

Identifying the computer experiences that have stronger impacts on self efficacy and

achievement scores in recent and current programming styles among computer majors in our

universities will provide reasons why students perform poorly in programming examinations and

lack confidence in their ability to program using the recent approaches. It will also provide

insight into designing effective training programs to enhance their programming self efficacy and

achievement and have more of them in software development industry after graduation. This

research among other thingsconcentrated on examining the relationship between specific

computer experiences (Word Processing, Spreadsheet, Database, Operating Systems, Graphic,

Games, Telecommunications, Internet, Programming experiences) and self efficacy and

achievement in Java programming.

Locus of control (LOC) has also been identified as a factor that could influence self efficacy and

achievement. It consists of two dimensions of causes: Internal and External. Those with an

Internal LOC generally expect that their actions will produce predictable outcomes. Those with

an external LOC generally expect that outcomes are due to external variables such as fate, luck

or powerful others. The initial scale of measurement was that of Rotter (1966). This was

consistent with the conceptualization that only the Internal LOC and External LOC exist.

However, a series of inconsistent findings in the 1960s and 1970s led to calls for revision of this

initial scale (Joe, 1971; Lefcourt, 1972).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

20

Levenson (1974) proposed that the inconsistencies in findings across research studies were

among other reasons for the revision of the scale. There are actually two types of external LOCs:

(i) those who believe that the world is ordered and powerful others are in control; and (ii) those

who believe that the world is unordered and events are due to non-human forces (such as chance

or fate). The scale developed and validated by Levenson (1974) was designed to address these

concerns and is now a common alternative to the standard Rotter scale. The Levenson scale uses

a Likert scale thus allowing the dimensions to be statistically independent. The external

dimension is now categorized as either a belief that control is in the hands of human force, (i.e

powerful others) or non-human forces (i.e chance). For those individuals who believe in

powerful others, outcomes are predictable and the potential for control exists. For those who

believe in chance, outcomes are unpredictable and control is not possible. It is now generally

accepted in the psychological literature that LOC is a multidimensional construct (Skinner, 1996)

and that Internal, Powerful others and chance control are theoretically independent constructs.

According to Araromi (2010), those with a high internal LOC believe that events results

primarily from their own behaviour and actions. Consequently, they are likely to assume that

their efforts will be successful and are more likely to be active in seeking information and

knowledge concerning their situation. This is unlike those with a high external LOC who believe

that powerful others, fate or chance primarily determines events. Emeke and Yoloye (2000) in a

study conducted to compare the adjustment of foreign students across their Locus of control

groupings, the continent of their origin and gender found that internally controlled students were

better adjusted than the externally controlled ones. A number of previous studies identified

significant relationships between LOC and academic achievement. Emeke, Adeoye and Torubeli

(2006) in a study found a relationship between locus of control and achievement to be high,

positive and significant (r = 0.787, p < 0.05). Fakeye (2011) conducted a study to investigate the

relationship between LOC and achievement in English Language. The finding of the study

showed a difference (which is not significant) between the achievements of internal and Exteranl

LOC. Those with Internal LOC in the sample performed better than their counterparts with

external LOC. Stubbs (2001) in a study conducted concluded that internals tend to show superior

achievement compared to their external counterparts.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

21

A number of studies have examined relationship between LOC and programming skills. Bishop-

Clark (1995) identified LOC as a factor that may help in explaining the variability in

programming skills acquisition. Chin & Zecker (1985) observed that internals were more likely

to succeed at programming than externals. Jegede (2009b) found that programming achievement

has no significant relationship with the faith students have in their own lives (internality), the

belief in the irresistible power of others on their lives (powerful others) and the trust they place

on chance in determining their course in life (chance).

Literatures on studies investigating the relationship between LOC and programming self efficacy

and achievement seems to be rare, in view of this, there is the need to examine the relationship

between LOC and programming self efficacy and achievement among computer majors in

Nigerian universities. This may assist in better direction of efforts towards advancing appropriate

logistics that will enhance high programming self efficacy and achievement among computer

majors and consequently bring about better development in the IT industry. It is on this note that

this study will also examine the relationship between computer undergraduates‟ LOC and their

self efficacy and achievement in Java programming language.

In research, relationship between gender and computer self efficacy has been of regular interest,

possibly because the computer was seen as a skill area for the male folks. So far, findings on

gender influence on computer self efficacy are mixed. Some studies showed that males

evidenced higher self efficacy than females (Harrison& Rainer, 1992);Jegede (2007) however

found no gender differences in computer self efficacy. Busch (1995) observed gender differences

in perceived self efficacy regarding completion of complex tasks in both word processing and

spreadsheet software (with males having higher CSE scores). In the same study, no gender

differences were found in self efficacy regarding simple computer tasks.

The influence of gender on programming achievement is also inconclusive. Linn (1985), in a

study organized among middle school programming classes, found that girls and boys have

similar levels of programming achievement once they enroll in classes, but that girls are less

likely to enroll. Yukselturk & Bulnut (2007), in a study observed that gender was among the

variables excluded from the equation of predicting success in an online computer programming

course because it did not have a significant contribution to variance in success (p > 0.05). Askar

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

22

& Davenport (2009) in a study of factors related to self efficacy for Java programming among

engineering students in Turkey found that males evidenced higher programming self efficacy.

Gender studies on computer programming self-efficacy and achievement seems to be rare

especially in Nigeria. This study shall therefore investigate the influence of gender on Java

programming achievement and self efficacy among computer majors in South-Western Nigerian

universities.

Mathematics achievement has also been identified in literature as a factor that affects computer

programming. A possible reason for this could be because mathematics problem solving and

programming require similar skills and ability to succeed. According to Harkins (2008),

problem-solving strategies employed in a traditional college mathematics course are essentially

the same in a first course in computer programming. The primary difference is that in computer

programming the problem‟s solution is implemented on a machine using a computer language to

direct the solution. It could therefore be said that the logical reasoning and critical thinking skills

which are so vital to success in mathematics are likewise crucial to success in computer

programming.Moreover there had been a concensus that mathematics ability predicts

performance in programming. Wilson (2002), Byrne and Lyons (2001) inseparate studies of

factors contributing to success in computer programming achievement found that

mathematicsachievement is one of the key factors that could predict achievement in

programming.Mathematics ability, measured as achievement is however different from

mathematics background. The number of mathematics courses taken by the respondents before

the study was used as the mathematics background. There seems to be dearth of studies on the

influence of mathematics background on achievement and self efficacy in programming. This

study will focus on how mathematics background predicts both achievement and self efficacy in

programming.

The relationship between computer ownership and computer self efficacy has never been found

to be consistent in previous findings. Tokzadeh and Koufterous (1994)as well as Houle (1996) in

their separate studies found that owning a computer is significantly correlated with computer self

efficacy. Busch (1995) found that students who have access to their own computer cooperated

more in front of the computer than any other group. However, Cassidy & Eachus (2002) found

that owning a computer was not a significant predictor of computer self efficacy.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

23

Computer ownership generally has been found to influence usage. Only few of the students who

do not possess computer technologies attempt to access and use them through other means. A

report by Rural Education Action Project (2010) on ownership, access and use of computers,

Information Technologies and other e-technologies in Beijing schools indicated that 36% of the

respondents reported that they access the internet through other family members and only 1%

access the web at internet cafes. The implication of this is that: students who possess personal

computers and other technological devices use them very often; students in families that own

computers and other technologies use computers often; and students without ownership (either at

personal or family level) may not use them at all. Since computer ownership influences usage

generally. For a computer student in the programming class who is exposed to programming

experiences and owns a computer; it is reasonable to think that he will engage in programming

more than the course mate without a computer; since programming art is appreciated more when

carried out on the computer. This study will therefore examine the pattern of influence of

computer ownership on Nigeria undergraduates‟ achievement and self efficacy in Java

programming languages.

Java programming language happened to be the offshoot of the C++ programming language.

Some Universites teach it to the students who are later taken through Java programming. Some

universities do not. Research has however shown that exposure to certain programming

languages influenced performance in Java programming. Hoskey and Maurino (2010) conducted

a study among all two hundred students who took Java programming language between 2005 and

2009 fall semester. Even though these students all took Java programming language; prior to

their Java classes, some were exposed to C++ programming language and some others to Visual

Basic. The finding showed that those previously exposed to C++ did better than those exposed to

Visual Basic. Since Java programming language is the offshoot of C++, it forms the prerequisite

required to learn Java programming language. It is therefore reasonable to conclude that those

taught C++ before entering Java programming class would perform better and have higher self

efficacy in Java programming language. It is on this note that this study sought to examine the

extent of the influence of C++ background on achievement and self efficacy of computer

undergraduates in Java programming.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

24

The curriculum of universities is flexible especially because of the way it is implemented in the

different universities. Specifically, the number of courses computer undergraduates are exposed

to before entering the Java programming class vary from one university to another. Schonberg

and Drivar (2008) opined that Java should not be introduced as an introductory programming

course. According to him, Java hinders the understanding of code performance; the design

methodologies of Java lead to a proliferation of objects, heavy use of dynamic storage and data

structures are pointer heavy and this considered wasteful. Also studies on the influence of

number of programming courses taken before entering Java programming class seems to be very

rare in literature. This study will also investigate the extent of prediction of Java programming

achievement and self efficacy by number of programming courses taken before the Java

programming class.

Wiedenbeck (2005) observed that perceived self efficacy in programming affected performance

in programming courses. There seems to be no research report yet on factors predicting self

efficacy and achievement in computer programming in Nigeria. No doubt, computer

undergradutes‟self efficacy are functions of many factors ranging from intrinsic to extrinsic

factors. The intrinsic factors are those in which the student himself or herself has a significant

input or part of the real nature of the student such as his or her gender, computer experience,

locus of control, mathematics background, computer ownershipand number of programming

courses before entering Java class; while the extrinsic factors are those in which the student has

little or no significant input, or not part of real nature of the student such as the type of institution

which he or she attends.

Since it is not possible to investigate the self-efficacy of all programming languages in a single

study, specifically this study focussedonJava programming language. The choice of Java is

necessitated because it is one of the most recent programming languages taught in our public

universities that are platform independent (it runs on more than one platform without needing to

be recompiled). A platform is a type of computer operating system like windows, Mac OS,

Linux. It can also run on a web browser. Besides, it is still relevant in the industry.

As it is in many educational researches, it became necessary in this work to investigate the

relationship between individual students and their institutions and vice versa. It is a general

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

25

belief that individuals interact with the social contexts to which they belong. The implication of

this is that individual persons are influenced by the social groups they belong which are in turn

influenced by the individuals who make up that group. The individuals and their groups are

conceptualised as hierarchical system. The individuals and their groups are defined at different

levels of the hierarchical system. According to Kreft and Deleeuw (1998), once you know that

hierarchies exist, you will see them everywhere. Whether by design or nature, most educational

researches often use data sets that are referred to as “nested” or hierarchically nested. This is

because observations at one level are nested within observations at another level.

In this work, the computer undergraduates that served as the subjects are nested within

institutions. The students‟ variables formed the level 1 variables (micro level) while their

institutions constituted the level 2 variable (macro level). This type of data are referred to as a

multilevel data. In this study the researcher used techniques that takes into account the nesting.

The results of the analysis that do not take into account the multilevel nature of the data may (or

perhaps will) be inaccurate (Nezlek 2001, 2007).

In this study where students are nested within their institutions, aggregation of

students‟characteristics over their institutions would facilitate an institution analysis. There is no

doubt that in the process, all individual information is lost. Most times, within group variation

accounting for most of the total variation in the outcome is lost. The loss of individual

information therefore can have an adverse effect on the analysis and also lead to distortion of

relationships between variables. Another option is to disaggregate the data by assigning

institutional data to individual students. By this, the assumption of independent observation

would no longer hold. In hierarchical data, individuals in the same group are also likely to be

more similar than individuals in the different groups. Therefore the variations in outcome may be

due to difference between groups and to individual difference within a group.

1.2. Statement of the Problem

Research has shown that learning computer programming is one of the problems many computer

undergraduates face in the course of their studies in computer science. Literature has also shown

that the failure rate among computer undergraduates in computer programming courses is high.

Moreover, many who manage to pass computer programming courses demonstrate inadequate

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

26

competence in programming. Studies have tried to identify reasons for the poor performance and

lack of adequate competence in computer programming among computer undergraduates.

Among various factors identified, computer self efficacy has been identified as a key determinant

of performance and competence in computer programming. However, it seems that from the

literature, researchers have shown little or no interest in identifying factors that are likely to

influence undergraduates‟computer programming self efficacy and achievement.Moreover,

studies that have used multilevel analysis to predict undergraduates‟ computer programming self

efficacy and achievement appear to be very few. It is on the basis of this that the researcher

sought to examine the extent to which intrinsic factors (gender, computer experience, computer

ownership, mathematics background, Locus of control, background in C++, and numberof

programming courses taken before entering Java programming class) and extrinsic factor (type

of institutions) can predict undergraduates‟ self efficacy as well as achievement in programming.

It is on the basis of this that the researcher also sought to use multilevel analysis of intrinsic and

extrinsic factors to predict undergraduates‟self efficacy and achievement in computer

programming in south west, Nigeria.

1.3. Research Questions and Hypothesis

Research Questions

The study sought answers to the following research questions.

1. What type of relationship exist among intrinsic factors (gender, computer experience,

computer ownership, mathematics background, Locus of control, background in C++,

and numberof programming courses taken before entering Java programming class),

extrinsic factor (type of institution)and Java programming self efficacy?

2. Whattypes of relationship exist among the investigated intrinsic factors, extrinsic factor

(type of institution)and Java programming achievement?

3. How much of the total variance in Java programming self efficacy of computer

undergraduates is accounted for by institution-level and student-level differences?

4. How much of the total variance in Java programming achievement of computer

undergraduates is accounted for by institution-level and student-level differences?

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

27

5. How much of the student-level variance in Java programming self efficacy of computer

undergraduates is associated with gender,computer experience, computerownership,

mathematics background, background in C++, Locus of control and number of

programming courses taken before entering Java class.

6. How much of the student-level variance in Java programming achievement of computer

undergraduates is associated with gender, ownership of computer, mathematics

background, background in C++, computer experience, Locus of controland number of

programming courses taken before entering Java class.

Hypotheses

1. There is no significant difference, in the mean score of self-efficacy in Java Programing,

between undergraduates in Federal and State Universities.

2. There is no significant difference, in the mean score of achievement in Java

Programming, between undergraduates in Federal and State Universities.

1.4 Scope of the Study

Java programming languages formed the focus of this study. Computer science students who had

been exposed to Java programming language were sampled for the study. Only government

owned (federal and state) Universities in the southwestern part of Nigeria that have Java

programming language in the computer science curriculum were used for the study. The

influence of computer undergraduates‟intrinsic and extrinsic factors on computer self efficacy

and achievement in computer programming were examined.

1.5 Significance of the Study

The findings from the study would afford the different stakeholders (e.g computer lecturers, the

employers in the Information Technology Industry especially those who are into software

development, directorate of academic programmes in the universities, parents, policy makers and

the government) the opportunity to know what factors could influence computer students‟ self

efficacy and achievement in Java programming language. Based on the findings,

recommendations that can help increase students‟self efficacy and achievement in computer

programming generally and Java programming in particular were suggested. Increasing self

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

28

efficacy and achievement in Java programming will (i) help the students to successfully go

through every stress and difficulties involved in various programming tasks using Java language;

(ii) help University graduates to be relevant in the industry; (iii) encourage them to take to

programming and software development after graduation; (iv) consequently help in making

Nigeria an IT capable country and a key player in the information society. The findings from this

study will also help educational psychologists in guiding human behaviour in desirable ways

towards effective learning and performance in programming as well as productivity in the world

of work generally and the IT industry in particular. The multilevel analysis which is a more

robust statistics compared to ordinary multiple regression used in this study will afford the

researchers the opportunity to have insight into greater details of the pattern of influence of

extrinsic and intrinsic independent variableson the dependent variables. Finally, the database

from this study will provide further illumination into researches onself-efficacy and achievement

in programming.

1.6. Operational Definition of Terms

a. Intrinsic factors: These are factors which the student himself or herself has a significant

input in or part of the real nature of the student such as his or her gender, computer

experience, locus of control, mathematics background, computer ownership and number

of programming courses before entering Java class.

b. Extrinsic factors: These are factors which the student has little or no significant input, or

not part of real nature of him or her such as the type of institution which he or she finds

himself/herself.

c Mathematics Background: This includes the number of mathematics coursestaken by

the computer undergraduates.

d. JavaProgramming Achievement: This is the array of scores of computer undergraduates

in Java programming Achievement test. It is a continuous variable.

e. Java Programming Self Efficacy:Thisis the measure of the feeling about one‟s ability to

performvariousJava programming tasks as measured by the Java Programming

Self-efficacy Scale designed by Askar&Davenport (2009) and revalidated before it was

used.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

29

1.7 Acronyms and abbreviation

M.L.A – Multi - Level Analysis

 I.T – Information Technology

L.O.C – Locus of Control

C++ – C Plus Plus

O.O.P – Object Oriented Programming

O.A.U – Obafemi Awolowo University

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

30

CHAPTER TWO

LITERATURE REVIEW

This chapter presents relevant literature that was reviewed.

Literature was discussed under the following headings:

2.1 Theoretical Background

2.2 Evolution and Development of Computer Programming.

2.3 Self Efficacy and Achievement in Computer Programming.

2.4 Intrinsic and Extrinsic Factors

2.5 Computer Experience, Self Efficacy and Achievement in Programming.

2.7 Gender, Self Efficacy and Achievement in programming

2.8 Computer Ownership, Self Efficacy and Achievement in Programming

2.9 Locus of Control, Self Efficacy and Achievement in Programming

2.9 Mathematics Background, Self Efficacy& Achievement in Programming

2.10 C++ Background, Self Efficacy and Achievement in Programming

2.11 Number of Programming, Self Efficacy and Achievement in Programming

2.12 Rationale for Multi Level Analysis

2.13 Appraisal of Literature Reviewed

2.14 Gaps of Literature Reviewed.

2.1 Theoretical Background

This study is underpined by social cognitive theory. Self efficacy is grounded in the theoretical

framework of social cognitive theory developed by Albert Bandura (1977b, 1997). This theory

emphasizes the evolvement and exercise of human agency – that people can exercise some

influence over what they do (Bandura, 2006b). This assumes that such human agency operates in

a process called triadic reciprocal causation. Reciprocal causation is a multi – directional model

suggesting that our agency results in future behaviour as a function of three interrelated forces.

These forces are environmental influences, behaviour and internal personal factors such as

cognitive, afective and biological processes.

The theory assumes that these (environmental influences, behaviour and internal personal factors

such as cognitive, affective and biological processes) impacts its members, determines what we

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

31

come to believe about ourselves and affects the choices we make and actions we take. According

to the theory we are not products of our environment. We are not products of our Biology;

instead we are products of the dynamic interplay between the external, the internal and our

currentand past behaviours. According to Bandura (1986), dialistic doctrines that regard mind

and body as separate entities do not provide much enlightenment on the nature of disembodied

mental state or on how an immaterial mind and bodily events act on each other.

Central to this social cognitive theory is the concept of self efficacy. Bandura‟s aspirations about

self efficacy were grand, as reflected in the title of his 1977 article “Self-Efficacy”: Towards a

unifying theory of behavioural change. In his seminar work, he defined self efficacy as “beliefs

in one‟s capabilities to organise and execute the courses of action required to produce given

attainments”. Self efficacy beliefs were characterised as the major mediators for our behaviour

and importantly, behavioural change.

Bandura (2006a) maintains that people are self organising, proactive, self regulating and self

reflecting. According to Schunk and Meece (2006), self efficacy affects one‟s goals and

behaviours and is influenced by one‟s actions and conditions in the enviroment. Also according

to Bandura (2006a), efficacy beliefs determine how environmental opportunities and

impediments are perceived. According to Pajares (1997), it affects choice of activites, how much

effort is expended on an activity and how long people will persevere when confronting obstacles.

Based on social cognitive theory, a computer undergraduates Java programming self efficacy

may be conceptualised as his or her belief in his own ability to write and execute Java programs

successfully to solve a given problem. Based on this, Bandura (1997, 2006b) recommended the

following for item construction: (i) because self efficacy is concerned with perceived

capabilities, the items should contain verbs like “can” or “be able to” in order to make clear that

the items ask for mastery expectations because of personal competence, (ii) the object in each

statement should be “I” since the aim is to assess each computer undergraduate‟s subjective

belief about his or her capability and (iii) each item should contain a barrier. The third point

above is highlighted by Bandura (1997b) when he noted that “if there are no obstacles to

surmount, the activity is easy to perform and everyone would have uniformly high perceived self

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

32

efficacy for it”. Askar and Davenport (2009) followed this recommendation in the design of the

Java programming self efficacy scale used in this study.

Self efficacy helps individuals to succeed at tasks (Bandura, 1993). Even though knowledge and

skills are required, Bandura (1993) reported that those requirements are not necessary to

guarantee sucess. When two people have similar educational backgrounds and skill but are at

different levels of self efficacy, one may succeed while the other will fail. The cause in this case

will not be their educational background but their self efficacy.

Bandura (1994) stated that there are four main sources that influence a person‟s self efficacy:

mastery experiences, vicarious experiences, social (Verbal) persuasion and somatic and

emotional states in judging ones capabilities (Physiological arousal).The first and the most

effective is the “mastery experiences” it could also be referred to as “successes at tasks”. It

increases self efficacy. Failure at taskson the other hand may inhibit self efficacy development.

The mastery experience required to increase ones self efficacy is the one that takes time and

effort to accomplish. The increase in self efficacy that comes through quick and easy tasks may

not last. It may even lead to decrease. For instance, when a more challenging task arises, it may

cause the person to become frustrated, stressed and consequently cause a decrease in self

efficacy. Successes at programming tasks if achieved, according to social cognitive theory would

increase the level of self-efficacy which would consequently increase the level of achievement.

Therefore every strategy needed to ensure initial successes at programming tasks is inevitable.

The second source of strengthening self efficacy is vicarious experiences provided through

observing colleagues performing similar tasks. Observing the success of others similar to oneself

contributes positivelyto self efficacy. On the other hand observing the failure of others similar to

oneself may decrease self efficacy.The third source of strengthening self – efficacy is through

“social persuassion”. Ones self efficacy is increased when one is told by others that he/she has

what it takes to succeed. If one was also told that he does not have the skills for success, his self

efficacy may decrease.The fourth and final source of self efficacy is through “sematic and

emotional states in judging ones capabilities”. According to Bandura (1997) Somatic indicators

of personal efficacy are especially relevant in domains that involve physical accomplishments,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

33

health functioning and coping with stress”. Relieving stress and enhancing physical status can

increase self efficacy (Bandura, 1997).

Bandura (1977b) emphasized observational learning as a general process of acquiring

information from another person, verbally and usually. This goes beyond imitation which

involves mere literal duplication or behaviour. He believed that much of learning comes from

observational learning and instruction rather than from overt trial and error behaviour. This

becomes most relevant and related to perceived self efficacy, the idea which originated from

Bandura himself. Obviously, a computer graduate that would judge himself competent to write

programs (perceived self efficacy in programming) must have arrived at this stage through the

four sources of self efficacy: (i) mastery experience; (ii) vicarious experiences; (by observing

others doing it); (iii) verbal persuasion from role models and (iv) psychological traits.The social

cognitive theory explores how people acquire and maintain certain behavioural pattern, while

also providing the basis for intervention strategies (Bandura, 1977b).

The concept of behaviour can be viewed in many ways. Behavioural capability means that if a

person is to perform behaviour, he must know what the behaviour is and have the skills to

perform it (Glanz, Rimer & Lenis, 2002). The summary of this is that competence in

programming will be made possible through consistencies and resilience in the art and practice

of programming, which will be possible only when an individual concerned judges himself

competent to program (self efficacy in programming). Successful programming activities also

increase the individual‟s perceived self efficacy iin programming.

2.2 Evolution and Development of Computer Programming

Computer programming has gained so much popularity and attention in the workplace that even

non-computer professionals make use of programming at work. According to Peyton – Jones,

Blackwell and Burnett (2003), Rosson, Ballin and Nash (2004), Rothermel, Burnett, Dupuis and

Sheretor (2001) and Wiedenbeck and Engebretson (2004) creating macros, spreadsheet formulas

and dynamic web applications in work place require writing programs. Its history can be traced

to the advent of computers. Most computer scientists who were actively involved in the

evolution of computer are also important figure in the developmental processes of computer

programming language. “Computer programming” is a phrase used to refer to the various

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

34

processes of giving a set of instructions to the computer. Such processes include designing,

writing, testing, debugging and maintaining the source code. Programmers write instructions in

various programming languages; some can be easily understood by the computer while others

require immediate translation steps.

Although hundreds of computer languages are in use today, they can be classified into three

general types: machine languages, assembly languages, and high – level languages: Machine

language is the natural language of a computer and it is defined by the computers hardware

design. Machine languages are “machine - dependent”. This implies that such languages can be

used on only one type of computer. As the popularity of computer increased, machine-language

program was discovered to be slow, time and effort wasting and prone to error. English – like

abbreviations were used to represent the basic operations on the computer rather than using the

strings of numbers. These abbreviations formed the foundation of assembly languages and

translator programs called assemblers were used to convert assembly language programs to

machine language at the speed of computer. Another developmental stage of computing and

programming gave birth to the high – level languages. The use of high level languages enables

accomplishment of tasks at greater speed. Compilers were active in converting or translating the

high level programs into machine language at a very fast rate. Of course, programmers would

prefer this kind of programming languague that achieves much within a short time period.

Specifically, programming languages suh as C, C++, Java, C# (pronounced as “C” Sharp),

Python, etc are common high – level languages.

In this section, we shall take a cursory look at the historical development of high-level

programming languages in general and then make special emphasis on C++ and Java.

2.2.1 History of Computer Programming Languages

The development of programming languages was not without a step – by – step or outlined

procedure usually required for solving a problem that is an “algorithm”. Knuth and Pardo (1976)

reviewed that the earliest known written algorithms come from ancient Mesopotamia about 2000

B.C. At that time, the written descriptions contained only sequences of calculations on

particular sets of data, not an abstract statement of the procedure. By the time of Greek

civilization, several non-trivial abstract algorithms had been studied rather thoroughly (Knuth,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

35

1976). They (Knuth and Pardo, 1976) further explained that during the ensuing centuries,

mathematicians never did invent a good notation for dynamic processes, although of course,

notations for (static) functional relations became highly developed. When a procedure involved

non trivial sequences of decisions, the available methods for precise description remained

informal and rather cumbersome. Some programs written for early computing devices, such as

those for Babbage‟s calculating Engine were naturally presented in “machine language rather

than in a true programming language”. The most elatorate program developed by Babbage and

Lady Lovelace for this machine was a routine for calculating Bernoulli numbers (Babbage,

1961). Also in 1914, Leonardo Tores Queredo used natural language to describe the steps of a

short program for his hypothetical automation: and Helmut Schreyer gave an analogous

description in 1939 for the machine he had helped Konrad Zuse to build (Randell, 1973). In

addition, an example of MARK I program given in 1946 by Howard Aiken and Grace Hopper

(cited in Randell, 1973) shows that its machine languages were considerably more complicated.

Although all these early programs were in a machine language, it is interesting to note that

Babbage had noticed already on July 9, 1836 that machines as well as people could produce

programs as output.

Near the end of World War II, Allied bombs destroyed nearly all of the sophisticated relay

computers that Konard Zuse had been building in Germany in 1936. Only his Z4 machine could

be rescued, in what Zuse describes as a fantastic (“abenteuerlich”) way; and he moved the Z4 to

a little shed in a small Alpine Village Called Hinterstein. Other machines built by Zuse include:

Z1 which he built in his parent living room in 1936; Z2 which he experimented with relays for

the ALU; Z3 an all – relay technology that is, the first electronic programmable digit computer;

Z4 which was envisioned as a commercial system.

Zuse had previously come to grips with the lack of formal notations for algorithms while

working on his planned doctoral dissertation (Zuse, 1976). He had independently developed a

three – address notation remarkably like that of Babbage, he however realised that this notation

was limited to straight – line programs (starre plane) and he thus concluded his previous

manuscript, with these remark: unstarre Rechenplane constitute the time discpline of higher

combinational computing (Zuse, 1976). The result was an analysing comprehensive languages

which he called the plankakul (program calculus). Before laying this project aside, Zuse had

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

36

completed an extensive manuscript containing programs far more complex than anything ever

written before.

However, much work on computer programming lnguages was not done until 1952 with short

code for UNIVAC (Sammet, 1972). Before this time Charles Babbage had created a difference

engine which could only be made to execute tasks by changing the gears that executed the

calculations. Thus, the earliest form of computer language was physical motion. Eventually,

physical motion was replaced by electrical signals when the US government built ENIAC in

1942. It followed many of the same principles of Babbage‟s engine and hence, could only be

programmed by presetting switches and rewiring the entire system for each new program or

calculation. This process proved to be very tedious (Ferguson, 2000).

In 1945, John Von Neumann developed two important concepts that directly affected the path of

computer programming languages. The first was known as “shared – program technique”

(http://www.softlord.com). This technique stated that the actual computer hardware should be

simple and not need to be hand – wired for each program. Instead complex instructions should be

used to control simple hardware, allowing it to program much faster (Ferguson, 2000). The

second concept was also extremely important to the development of programming languages.

Von Neumann called it “conditional control transfer” (http://www.softlord.com). This idea gave

rise to the motion of subroutines or small blocks of code that could be jumped to in any order,

instead of a single set of chronologically ordered steps for the computer to take. The second part

of the idea stated that computer code should be able to branch based on logical statements as IF

(expression) THEN, and loops such as with a FOR statement. “Conditional control transfer”

gave rise to the idea of “Libraries”, which are blocks of code that can be re-used over and over

(Ferguson, 2000).

FORTRAN (FORmula TRANslating system) which was first of the major languages (Ferguson,

2000) or higher level language (Sammet, 1972) appeared in 1957 (Ferguson, 2000) was

developed in 1954 (Verkeyn, 2005). It is pertinent however to note here that Ferguson‟s and

Verkeyn‟s accounts of FORTRAN development (with respects to date) do not agree. This is one

of the problems encountered when discussing history of programming languages due to the fact

that “there are a number of phases (in developing a programming language) each of which is

http://www.softlord.com/
http://www.softlord.com/

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

37

important in the overall development, but which is almost impossible in retrospect to pinpoint to

an exact time” (Sammet, 1972) or date. FORTRAN was designed at IBM for scientific

computing. According to (Ferguson, 2000), the components were very simple, and provided the

programmers with low-level acess to the computers. Today, this language would be considered

restrictive as it only included IF, DO and GOTO statements, but at the time, these commands

were a big step forward. The basic types of data in use today got their start in FORTRAN, these

included logical variables (TRUE or FALSE) and integer, real and double – precision numbers.

Ferguson (2000) agrees with Sammet (1972) when the latter noticed that FORTRAN opened the

door to practical usage of computers by large numbers of scientific and engineering personnel.

Ferguson explains further that although FORTRAN was good at handling numbers, it was not so

good at handling input and output, which matterd most to business computing.

Business computing became an isssue of special interest to the USA army and computer

scientists. This informed the development of Common Business Oriented Language (COBOL) in

1959 (Ferguson, 2000; Verkeyn, 2005). It was designed from the ground up as the language for

businessman and Colonel Grace Hopper was very instrumental to this development. It‟s only

data types were numbers and strings of text. It also allowed for these to be grouped into arrays

and records, so that data could be tracked and organised better (Ferguson, 2000).

In 1958, John Mc Carthy of MIT created the LISt Processing (or LISP) language. According to

Verkeyn (2005) this language was designed for the manipulation of symbols and patterns

(characters, words, etc) and also designed for Artificial Intelligence (AI) research. Ferguson

notes that the original release of LISP had a unique syntax because it was designed for a

specialised field. Programmers wrote code in Parse trees, which are usually a compiler –

generated intermediary between higher syntax (such as in C or Java) and lower – level code.

Another obvious difference between this language (in original form) and other languages is that

the basic and only type of data is the list; in the mid – 1960, LISP acquired other data types. The

LISP syntax was known as “Cambridge Polish” as it was different from standard Boolean logic

(Wexelblat, 1981): xVy – Cambridge polish, what was used to describe the LISP program; oR

(x, y) – parenthesized prefix notation was what was used in the LISP program; x OR y – standard

Boolean logic.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

38

Another programming language that was developed in 1958 is Algol (ALGOrithmical

Language). Edsger Dijksta, Nicolaus Wirth and Naur were active in the committee that

developed Algol. It was designed to be the successor of FORTRAN (Venkeyn, 2005). (Ferguson,

2000) stated that Algol‟s major contribution is being the root of the tree that has led to such

languages as Pascal, C, C++ and Java. It was also the first language with a formal grammar,

known as Backus – Naar Form or BNF (McGraw – Hill Encyclopedia of Science and

Technology, 1997). Though Algol implemented some novel concepts, such as recursive calling

of functions, the next version of the language Algol 68 became bloated and difficult to use

(www.byte.com). This led to the adoption of smaller and more compact languages, such as

Pascal.

Pascal was developed in 1968 (Ferguson, 2000) or in 1971 (Verkeyn, 2005) by Niklaus Wirth.

It‟s development was mainly out of necessity for a good teaching tool. In the beginning, the

language designers had no hopes for it to enjoy widespread adoption. Instead, they concentrated

on developing good tools for teaching such as a debugger and editing system and support for

common early microprocessor machines were in use in teaching institutions (Ferguson, 2000).

Pascal was named after Blaise Pascal who built the first mechanical calculation device which

could only add and subtract. It was designed in a very orderly approach; it combined many of the

best features of the languages in use at the time, COBOL, FORTRAN, and ALGOL.

While doing so, many of the irregularities and oddball statements of these languages were

cleaned up, which helped it gain users (Bergin, 1996). The combination of features, input /

output and solid mathematical features, made it a highly successful language. Pascal also

improved the “pointer” data type, a very powerful feature of any language that implements it. It

also added a CASE statement, that allowed instructions to branch like a tree in such a manner:

CASE expression OF

Possible – expression – value -1:

Statements to execute.....

Possible – expression – value – 2:

Statements to execute:

 END

http://www.byte.com/

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

39

According to Bergin (1996), Pascal helped the development of dynamic variables, which could

be created while a program was being run, through the NEW and DISPOSE commands.

However, Pascal did not implement dynamic arrays or groups or variables, which proved to be

needed and led to its downfall. Wirth later created a successor to Pascal, Modula-2, but by the

time it appeared, C was gaining popularity and users at a rapid pace.

C was developed in 1972 by Dennis Ritchie while working at Bells Lab in New Jersey. Verkeyn

(2005) noted that C is a successor to B (which was developed by Ken Thompson at Bell Labs)

and CPL was developed by the Universities of Cambridge and London; Martin Richards later

developed BCPL (Basic CPL). Ferguson (2000) quickly added that the transition in wage from

the first major languages to the major languages of today occured with the transition between

Pascal and C. Its direct ancestor are B and BCPL, but its similarites to Pascal are quite obvious.

All of the features of Pascal including the new ones such as the CASE statement are available in

C. C uses pointers extensively and was built to be fast and powerful at the expense of being hard

to read. But because it fixed most of the mistakes Pascal had, it won over former – Pascal Users

quite rapidly.

Ritchie developed C for the new UNIX system being created at the same time. Because of this, C

and UNIX go hand in hand. Unix gives C such advanced features as dynamic variables,

multitasking, interrupt handling, forking and strong, low – level, input – output. Because of this,

C is very commonly used to program operating systems such asUnix, Windows, the MacOS and

Linux. Verkeyn (2005) submits that C was one of the most powerful languages of all times, used

for almost all purposes (operating systems, wordprocessors, database, games, computer

animations in movies etc) and that it was the first language designed by programmers which was

very well structured, powerful, portable and flexible. However, it allows for very cryptic

expression and dirty “pointer” hunting.

In the late 1970‟s and early 1980‟s a new programming method was being developed. It was

known as Object Oriented Programming or OOP for short. Objects are pieces of data that can be

packaged and manipulated by the programmer. Bjarne Stroustrop liked this method and

developed extensions to C known as “C with classes”. This set of extensions developed into the

full – featured language C++ which was released in 1983 (Ferguson, 2000).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

40

C++ was designed to organize the raw power of C using OOP, but maintain the speed of C and

able to run on many different types of computers. C++ is most often used in simulations, such as

games. C++ provides an elegant way to track and manipulate hundreds of instance of people in

elevations, or armies filled with different types of soldiers. It is the language of choice in today‟s

AP Computer Science courses (Ferguson, 2000).

In the early 1990‟s, interactive TV was the technology of the future. Sun Microsystems decided

that interactive TV needed a special, portable (can run on many types of machines)language.

This language eventually became Java. In 1994, the Java project team changed their focus to the

week, which was becoming “the cool thing” after interactive TV failed. The next year, Netscape

licensed Java for use in their internet browser, Navigator. At this point, Java became the

language of the future and several companies‟ annonuced applications which would be written in

Java, none of which came into use (Ferguson, 2000). Though Java has very lofty goals and is a

textbook example of a good language, it may be the “language that wasn‟t”. It has serious

optimization problems meaning that programs written in it run very slowly. And Sun has hurt

Java‟s acceptance by engaging in political battles over it with Microsoft. But Java may wind up

as the instructional language of tomorrow as it is truly object – oriented and implements

advanced techniques such as true portability of code and garbage collection (Ferguson, 2000).

Visual Basic often taught as a first programming language today as it is based on the BASIC

language developed in 1964 by John Kemeny and Thomas Kurtz. BASIC is a very limited

language and was designed for non – Computer Science people. Statements are chiefly run

sequentially, but program control can change based on IF...THEN, and GOSUB statements

which execute a certain block of code and then return to the original point in the program‟s flow

(Ferguson, 2000)

Microsoft has extended BASIC in its Visual Basic (VB) product. The heart of VB is of the form

or blank window on which a user drags and drop components such as menus, pictures and slider

bars. These items according to Ferguson, (2000) are called “widgets”. Widgets have properties

(such as its colour) and events (such as clicks and double-clicks) and are central to building any

user interface today in any language. VB is most often used today to create quick and simple

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

41

interfaces to other Microsoft products such as EXCEL and ACCESS without needing a lot of

code, though it is possible to create full applications with it.

Perl has often been described as the “duct tape of the internet”, because it is most often used as

the engine for a web interface or in scripts that modify configuration files. It has very strong text

matching functions which make it ideal for these tasks. Perl was developed by Larry Wall in

1987 because the Unix Sed and awk tools (used for text manipulation) were no longer strong

enough to support this needs. Depending on whom you ask, Perl stands for Practical Extraction

and Reporting Language or Pathologically Electic Rubbish Lister (Ferguson, 2000).

Other programming languages include PL/I, Simula, Logo, Prolog, Smalltalk, Scheme, Ada,

Objective – C, Eiffel, Object Pascal, Haskell and CLOS (Verkeyn, 2005).PL/I (Programming

Language I) was developed around 1964. One of the goals of developing PL/I was to combine

FORTRAN and COBOL (which turn out to be a monumental failure). It was better than COBOL

but not as efficient as FORTRAN. The program was well structured for its time, but was overly

complex for the moderate programmer (Verkeyn, 2005).

SIMULAtion was developed in 1967 by Ole – Johan and Kristen Nygaard. Simula was designed

for simulation and modelling purposes, however, the language could be used as a general –

purpose language. It was the first language with object oriented features but it was never really

successful (Verkeyn, 2005). Logo was developed in 1968 by Seymour Papert at Massachusetts

Institute of Technology (MIT). It was a versatile computer language that provides a friendly

introduction to programming, a serious tool for advanced programmers and a medium for

educational discovery. Verkeyn (2005) also noted another language; Prolog (that is

PROgramming in LOGic) which was developed in 1972 by Alain Colmerauer (University of Aix

- Marseille), Philipe Roussel (University of Edinburgh). It was a logic – language based on

logical rewrite systems and used for automatic proof verification systems and other Artifical

Intelligence Applications (Verkeyn, 2005). Smalltalk was introduced in 1972 at Xerox Palo Alto

Research Center (PARC) by Alan Kay, Daniel Ingalls, Adele Goldberg, David Robson and

others. It‟s an extreme Object Oriented language which is completely dynamic, interpreted (and

thus rather slow) and allows for very fast programming (very well suited for prototyping). Guy

Lewis Steels and Gerald Jay Sussman developed “Scheme” (another programming language) in

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

42

1975 which was a statistically and properly tail-recursive dialect of the LISP programming

language designed to have an exceptionally clear and simple semantics and few different ways to

form expressions (Verkeyn, 2005). Named after the first female programmer Lady Ada

Lovelace, the programming language called “Ada” was based on the specifications of the USA

department of Defence developed in 1983 by Jean Ichbiah, Bernd Krieg – Brueckner, Brian

Wichmann and others. The goal was to develop a common, powerful language that could be used

by all official (governmental) institutes of the USA. Ada was very well structured and powerful,

with a lot of features that are missing from other languages (such as real – time, parallel and

distributed systems). It is surprising that nowadays, Ada is still used in some governmental USA

institutes (Verkeyn, 2005). “Object - C” was developed in 1986 by Brad Cox who wanted to add

object oriented facilities to the popular C languages but based his features on the dynamic

Smalltalk system. Objective – C could never compete with C++. “Eiffel” was conceived by

Bertrand Meyer in 1986 but was never really successful (Verkeyn, 2005). Object Pascal was

developed in 1986 by Apple Computer and Nicolaus Wirth. It adds object oriented features to

Pascal. Infact the popular graphical developement environment Borland Delphi is based on this

Language (Verkeyn, 2005). In 1987 “Haskell” (named after the mathematician Haskell Curry

who developed the formal foundation of functional programming languages) was developed to

create a standardized functional programming language with easy evaluation. In 2002, Haskell

was the functional language on which most research was being performed (Verkeyn, 2005).

Lastly, we shall consider CLOS in this section. CLOS (Common Lisp Object System)was

developed by Daniel Bobrow, Sonya Keene, Linda De Michiel, Patrick Dussurd and others in

1988 which served as the standardised object oriented dialects of Common Lisp.

Programming languages have been under development for years and will remain so far many

years to come. They got their start with a list of steps to wire a computer to perform a task. These

steps eventually found their way into software and began to acquire newer and better features.

The first major languages were characteristed by the simple fact that they were intended for one

purpose and one purpose only, while the languages of today are differentiated by the way they

are programmed in, as they can be used for almost any purpose; and perhaps the languages of

tomorrow will be more natural with the invention of quantum and biological computers

(Ferguson, 2000).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

43

2.2.2 Historical Development of C++ Programming Language

The name C++ was coined by Rick Mascitti and it means C + 1 in the C-language. In addition,

C++ was developed in 1985 by Bjarne Stroustrup at AT & T Bells Labs. An attempt to add

object oriented facilities (from Simula) to the popular C language informed the development of

C++ which was later standardised by ANSI/ISO, including a standard library (STL, Standard

Template Library) (Verkeyn, 2005). C++ evolved from an earlier version called C with classes.

The work and experience with C with classes from 1979 to 1983 determined the shape of C++.

The C++ programming language is basically an extension of the C programming language. The

C programming language was developed from 1969 – 1973 at Bells Lab, at the same time the

UNIX operating system was being developed there. C was a direct descendant of the language B

which was developed by Ken Thompson as a systems programming language for the Fledgling

UNIX operating system. B, in turn, descended from the language BCPL which was designed in

the 1960s by Martin Richards while at MIT (Schildt, 1999; Berkakatin, 1995). In 1971 Dennis

Ritchie at Bells Lab extended the B language (by adding types) into what he called NB; for

“New B”. Ritchie credits some of his changes to language constructs found in Algol68, although

he states “although it (the type scheme) perhaps did not emerge in a form that Algol adherents

would approve of ” after restructuring the language and rewriting the compiler for B, Ritchie

gave his new language a name “C” (Schildt, 1999; Berkakatin, 1995).

In 1983 with various versions of C floating around the computer world, ANSI established a

committee that eventually published a standard for C in 1989. In 1983 Bjarne Stroustrup at Bell

Labs created C++. C++ was designed for the UNIX system environment, it represents an

enhancement of the C programming language and enables programmers to improve the quality

of code produced, thus making reusable code easier to write (Schildt, 1999; Berkakatin, 1995).

Stroustrup (1995) outlines the history of the C++ programming language in his paper “A history

of C++: 1979-1991”. His approach of the historical developement of C++ emphasized on the

ideas, constraints and people who shaped the language rather than the minutiae of language

features. He traced the evolution of C++ from C with classes to the current ANSI and ISO

standards work and the explosion of use, interest, commercial activity, compilers, tools,

environment and libraries.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

44

The prehistory of C++ (which refers to the couple of years before the idea of adding Simula –

like features to C occured to him (Bjarne Stroustrup) is important because during this time the

criteria and ideas that later shaped C++ emerged. He was working on his Ph.D thesis in the

Computing Laboratory of Cambridge University in England. His aim was to study alternatives

for the organisation of system software for a distributed system. The conceptual framework was

provided by the capability – based Cambridge CAP computer and its experimental and

continously evolving operating system. The details of this work and its outcome (Stroustrup,

1979) are of little relevance to C++. What is relevant, though, was the focus on composing

software out of well – delimited modules and that the main experimental tool was a relatively

large and detailed simulator he wrote for simulating software running on a distributed system.

The initial version of this Simulator was written in Simula and ran on the Cambridge University

computer center‟s IBM 360 / 165 main frames. The way Simula classes can act as co – routines

made the inherent concurrency of his application easy to express. For example, an object of class

computer could trivially be made to work in pseudo – parallel with other objects of class

computer. Class hierarchies were used to express variants of application level concepts. For

example, different types of computers could be expressed as classes derived from class computer

and different types of inter – module communication mechanisms could be expressed as classes

derived from class IPC. The use of class hierarchies was not heavy, though; the use of classes to

express concurrency was much more important in the organisation of his simulator.

Stroustrup further noted that during writing and initail debugging, he acquired a great respect for

the expressiveness of Simula‟s type system and the ability of its compiler‟s ability to catch type

errors. The observation was that a type error almost invariably reflected either a silly

programming error or a conceptual flaw in the design. The latter was by far the most significant

and a help that he had not experienced in the use of more primitive “strong” type systems. In

contrast, he found Pascal‟s type system worse than useless – a strait jacket that caused more

problems than it solved by forcing him to warp his designs to suit an implementation – oriented

artifact. The perceived contrast between the rigidity of Pascal and the flexibility of Simula was

essential for the developement of C++. Simula class concept was seen as the key difference and

ever since he submits that classes are the proper primary focus of program design. Link times for

separately compiled classes were abysmal: it took longer to compile 1/30th of the program and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

45

link it to a precompiled version of the rest than it took to compile and link the program as a

monolith. This, he believed to be a more a problem with the mainframe linker than with Simula,

but it was still a burden. On top of that, the run – time performance was such that there was no

hope of using the simulator to obtain real data. The poor run-time characteristics were a function

of the language and its implementation rather than a function of the application. The overhead

problems were fundamental to Simula and could not be remedied. The cost rose from several

language features and their interactions: run – time type checking, guaranteed initialisation of

varibles, concurrency support and garbage collection of both user – allocated objects and

procedure activation records. For example, measurements showed that more than 80% of the

time was spent in the garbage collector despite ever produced. Simula implementations are better

these days (15 years later), but the order – of – ever magnitude improvement relative to systems

programming languages still has not materialised.

To avoid terminating the project, he re-wrote the simulator in BCPL and ran it on the

experimental CAP computer. The experience of coding and debugging the simualtor in BCPL

was horrible. BCPL makes C looks like a very high level language and provides absolutely no

type checking or run - time support. The resulting simulator did, however run suitably fast and

gave a whole range of useful results that clarified many issues for me and provided the basis for

several papers on operating system issues (Stroustrup, 1978; 1979b, 1981a). Stroustrup

emphasized that his background in operating systems work and his interest in modularization and

communication had permanent effects on C++.

In April, 1979, a work started in the Computing science Research Center of Bell Laboratories in

Murray Hill, New Jersey. This work on what eventually became C++ started with an attempt to

anlyse the UNIX Kernel to determine to what extent it could be distributed over a network of

computers connected by a local area network. Two problems soon emerged: how to analyse the

network traffic that would result from the kernel distribution and how to modularize the kernel.

Both required a way to express the Modula structure of a complex system and the

communication pattern of the modules. This was the kind of problem he had become determined

never to attack again without proper tools. Consequently, he set about developing a proper tool.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

46

In October, 1979 he had a pre-processor called Cpre, that added Simula – like classes to C

running and in March 1980 this pre – processor had been refined to the point where it supported

one real project and several experiments. His records showed that the pre-processor in use on 16

systems by then. The first key C++ library, the task system supporting a co-routine style of

programming (Stroustrup, 1980b, 1987), was crucial to the usefulness of “C with classes” as the

language accepted by the pre-processor was called in these projects.

During the April to October 1979 the transition from thinking about a “tool” to thinking about a

“language” had occured, but C with classes was still thought of primarily as an extension to C for

expressing modularity and concurrency. A crucial decision had been made, though. Even though

support of concurrency and Simula – style simulations was a primary aim of C with classes, the

language contained no primitives for expressing concurrency; rather a combination of

inheritance (class hierarchies) and the ability to define class member functions with special

meanings recognized by the pre – processor was used to write the library that stopped the desired

styles of concurrency. There are many applications for which support for concurrency is essential

but there is no one dominant model for concurrency support; thus when support is needed it

should be provided through a library or a special purpose extension so that a particular form of

concurrency support does not preclude other forms.

This, the language provided general mechanisms for organizing programs rather than support for

specific application areas. This was what made C with classes and later C++ a general – purpose

language rather than a C variant with extensions to support specialised applications. Later, the

choice between providing support for specialised applications or general abstraction mechanisms

has come up repeatedly. Each time the decision has been to improve the abstraction mechanisms.

An early description of C with classes was published as a Bell Labs technical report in April

1980 (Stroustrup, 1980a) and later in SIGPLAN notices. The SIGPLAN paper was in April 1982

followed by a more detailed Bell Labs technical report “Adding Classes to the C language: An

Exercise in Language Evolution” (Stroutrup, 1982) that was later published in software: Practice

and Experience.Stroustrup further stated that another major concern was to avoid restrictions on

the domain where C with classes could be used. The idea (which was achieved) was that C with

classes could be used for whatever C could be used for.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

47

This implied that in addition to matching C in efficiency, C with Classes could not provide

benefits at the expense of removing “dangerous or ugly” features of C. The alternative way of

providing “safety” inserting run – time checks for all unsafe operations, was (and is) considered

reasonable for debugging environments but the language could not guarantee such checks

without leaving C with a large advantage in run – time and space efficiency. Consequently, such

checks were not provided for C with classes, though C++ environments exist that provide such

checks for debugging. In addition, users can and do insert run-time checks (assertions

(Stroustrup, 1991) where needed and affordable.

C allows quite low – level operations such as bit manipulation and choosing between different

sizes of integers. There are also facilities, such as explicit unchecked type conversions for

deliberately breaking the type system. C with classes and later C++ follow this path by retaining

the low-level and unsafe features of C. In contrast to C, C++ systematically eliminates the need

to use such features except where they are essential and performs unsafe operations only at the

explicit request of the programmer.

Stroustrup summarised the features provided in the initial 1980 implementation as classes,

derived class, public/private access control, constructors and destructors, call and return

functions, friend classes, type checking and conversion of function arguments. During 1981 three

more features were added: inline functions, default arguments, overloading of the assignment

operator.

Since a pre-processor was used for the implementation of C with classes, only new features, that

is features not present in C, needed to be described and the full power of C was directly available

to users. Both of these aspects were appreciated at the time. Having C as a subset dramatically

reduced the support and documentation work needed. C with classes was still as a dialect of C.

Furthermore, classes were referred to as “An Abstract Data Type Facility for the C language”

(Stroustrup, 1980a) supports for object – oriented programming was not claimed until the

provision of virtual functions in C++ in 1983 (Stroustrup, 1984a).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

48

Clearly, the most important aspect of C with classes and later of C++ - was the class concept.

Many aspects of the C with classes‟ class concept can be observed in Stroustrup (1980a).A class

is a user defined data type. A class specifies the type of the class members that define the

representation of a variable of the type (an object of the class), specifies the set of operations

(function) that manipulate such objects, and specifies the access users have to these members.

2.2.3 Historical Development of Java Programming Language

According to the designing team of Aptech limited (2005), Java is a programming language

popularly used to build programs that can work on the internet. Its primary features are that it is

object – oriented and a cross platform language. By cross platform, they mean that the programs

can run across several platfoms such as Microsoft Windows, Apple Macintosh, and Linux and so

on. Java is not only used for stand alone applications and Net based programs but also to create

consumer devices and accessories programs such as cellular phones, palm pilots and other

gadgets.

In 1994, James Gosling (Sun Microsystems) introduced Java – a new programming language

which before then meant „Island‟ in Indonesia or a particular blend of hot drink (Verkeyn,

2005).Aptech limited (2005) notes that although Java‟s initial development began as early as

1991, it took sometime for the final working version to reach the market. The basic objective

behind developing the language was to create software that could be embedded in consumer

electronic devices. Efforts were taken to produce a portable, platform independent language and

the result of this led to the birth of a new language. Java was initially called “oak” slowly but

gradually it was found that the internet users had similar problems of portability and platform

independence and were looking for software that could address these issues. The language was

found to be small, secure and portable. Thus Java which was initially developed to cater for

small – scale problems was found capable of addressing large-scale problems across the internet.

Carter(1997) reviewed the history of Java and traced it to 1991 when a group of Sun

Microsystems engineers led by James Gosling decided to develop a language for consumer

devices (Cable box, etc). They wanted the language to be small and use efficient code since these

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

49

devices do not have powerful CPUs. They also wanted the language to be hardware independent

since different manufacturers would use different CPUs. The project was code – named Green.

These conditions led them to decide to compile the code to an intermediate machine – like code

for an imagimary CPU called a virtual machine (actually, there is a real CPU that implements

this virtual CPU now). This intermediate code (called typecode) is completely hardware

independent. Programs are run by an interpreter that converts the bytecode to the appropriate

native machine code. Thus, once the interpreter has been ported to a computer, it can run any

bytecoded program (Carter, 1997).

Sun uses UNIX for their computers so the developers based their new language on C++. They

picked C++ and not C because they wanted the language to be object – oriented. The original

name of the language was Oak but they soon discovered that there was already a programming

language called oak, so they changed the name to Java (Carter, 1997).The Green project had a lot

of trouble getting others interested in Java for smart devices. It was not until they decided to shift

gears and market Java as a language for web applications that interest in Java took off. Many of

the advantages that Java has for smart devices are even bigger advantages on the web (Carter,

1997).

According to “The history and Evolution of Java”printed by Mc – GrawHill; between the initial

implementation of Oak in the fall of 1992 and the public announcement of Java in the spring of

1995, many more people contributed to the design and evolution of the language. Bill Joy, Arther

Van Hoff, Jonathan Payne, Frank Yellin and Tim Lindholm were key contributors to the

maturing of the original prototype. The original impetus for Java was not the internet, instead,

the primary motivation was the need for a platform- independent (that is, architecture - neutral)

language that could be used to create software to be embedded in various consumer electronic

devices, such as microwave ovens and remote controls. Many different types of CPUs are used

as controllers. The trouble with C and C++ (and most other languages) is that they are designed

to be compiled for a specific target. Although it is possible to compile a C++ program for just

about any type of CPU, to do so requires a full C++ compiler targeted for that CPU. The problem

is that compilers are expensive and time – consuming to create. An easier and more cost –

efficient – solution was needed. In an attempt to find such a solution, Gosling and others began

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

50

work on a portable, platform – independent language that could be used to produce code that

would run on a variety of CPUs under differing environments. This effort ultimately led to the

creation of Java (http://books.mcgraw-hill.com) .

About the time that the details of Java were being worked out, a second and ultimately more

important factor was emerging that would play a crucial role in the future of Java. This second

force was of course, the WorldWide Web. Had the web not taken shape at about the same time

that Java was being implemented, Java might have remained a useful but obscure language for

programming consumer electronics (http://books.mcgraw-hill.com).

However, with the emergence of the World Wide Web, Java was propelled to the forefront of

computer language design, because the web too, demanded portable programs

(www.books.mcgraw-hill.com).

Most programmers learn early in their careers that portable programs are as elusive as they are

desirable. While the quest for a way to create efficient, portable (platform - independent)

programs is nearly as old as the discipline of programming itself, it had taken a back seat to

other, more pressing problems.

By 1993, it became obvious to members of the Java design team that the problems of portability

frequently encountered when creating code for embedded controllers are also found when

attempting to create code for the internet. In fact, the same problem that Java was initially

designed to solve on a small scale could also be applied to the internet on a large scale. This

realization caused the focus of Java to switch from consumer electronics to internet

programming. So, while the desire for architecture – neutral programming language provided the

initial spark, the internet ultimately led to Java‟s Large – scale success

(www.books.mcgrawhill.com) According to Carter (1997), there are currently two versions of

Java, the original version of Java is 1.0. As at November 1997, most browsers only support this

version. The newer version is 1.1 (in addition 1.2 is in beta). Only MS internet Explorer in 4.0

and Sun‟s Hot Java browsers currently support it. Carter (1994) notes that the biggest differences

in the two versions are in the massive Java Class libraries. Unfortunately, Java 1.1 applets will

not run on web browsers that do not support 1.1 (however it is still possible to create 1.0 applets

with Java 1.1 development systems).

http://books.mcgraw-hill.com/
http://books.mcgraw-hill.com/
http://www.books.mcgraw-hill.com/
http://www.books.mcgrawhill.com/

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

51

In summary, it is important to note that Java started out as a research project which began in

1991 as the Green project. The project was chartered to anticipate and plan for next wave of

computing. The „Green Team‟ determined consumer devices and computers would cover and

also focused on TV set – top boxes and interactive TV industries. Research efforts on Java gave

birth to a new language „OAK‟ and were created by James Gosling (the father of Java). Java

language was created with 5 main goals: it should be object – oriented, a single representation of

a program could be executed on multiple operating systems, it should fully support network

programming, it should execute code from remote sources securely, it should be easy to use. Oak

was renamed in 1994 and Java was publicly released in May, 27, 1995. As a product, it was

targeted at internet development and in general, it was marketed as the language to add dynamic

features to the web, also known as Applets. Java had early support from companies like Netscape

communications. (www.Develop/intelligence.com,2003-2007 Develop/intelligence LLC).

As mentioned earlier, Java derives much of its character from C and C++. Thus, it becomes

interesting at this stage to consider the relationship that exists (if any between C++ and Java).

The fact that Java derives much of its character from C and C++ is by intent. The Java designers

knew that using the familiar syntax of C and echoing the object-oriented features of C++ would

make their language appealing to the legions of experienced C/C++ programmers. In addition to

the surface similarities, Java shares some of the other attributes that helped make C and C++

successful. (www.books.mcgraw-hill.com)

First, Java was designed, tested and refined by real, working programmers. It is a language

grounded in the needs and experiences of the people who devised it. Thus, Java is a

programmer‟s language. Second, Java is cohesive and logically consistent. Third, except for

those constraints imposed by the internet environment, Java gives the programmer ful control.

The quality of program outcome depends on the programmer. Thus, Java is not a language with

training wheels but a language for professional programmers (www.books.mcgraw-hill.com..)

Although, Java and C++ are related, Java has significant practical and philosophical differences.

While it is true that Java was influenced by C++, it is not an enhanced version of C++. For

example, Java is neither upwardly nor downwardly compatible with C++ (www.books.mcgraw-

http://www.develop/intelligence.com,2003-2007
http://www.books.mcgraw-hill.com/
http://www.books.mcgraw-hill.com/
http://www.books.mcgraw-hill.com/

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

52

hill.com..) Of course, the similarities with C++ are significant, a C++ programmer is usually

comfortable with Java.

It is worthy of note that Java was not designed to replace C++. Java was designed to solve a

certain set of problems. C++ was designed to solve different set of problems and both C++ and

Java will coexist for many years to come.

As reviewed already, computer languages evolve for two reasons: to adapt to changes in the

environment and to implement advances in the art of programming. The environmental change

that prompted Java was the need for platform – independent programs destined for distribution

on the internet. However, Java also embodies changes in the way that people approach the

writing of programs (www.books.mcgraw-hill.com..)

Specifically, Java enhances and refines the object – oriented paradigm used by C++. Thus Java is

not a language that exists in isolation. Rather, it is part of an ongoing process begun many years

ago. This fact alone is enough to ensure Java a place in computer language history. Java is to

internet programming what C was to systems programming: a revolutionary force that changed

the world.

2.3 Self Efficacy and Achievement in Computer Programming

Jegede (2009a) conducted a study in the Engineering faculty of the Obafemi Awolowo

University, Ile – Ife, Nigeria to verify whether some computing and programming related

background variables will predict Java self efficacy. The results show that the analysis of

variance of the multiple regressionsthat yielded an F – ratio of 19.821 which was significant.

This implies that a combination of computing and programming background variables related to

Java self efficacy of the engineering students. The multiple regression analysis on the

relationship between the dependent variables (Java self efficacy) and the combination of the four

independent variables shows that using the four independent variables to predict Java

programming self – efficacy gives a coefficient of multiple regression of 0.545 and a multiple

correlation square (R
2
) of 0.297. These values are statistically significant at 0.05 level, which

suggests that only 29.7 percent of the variance of Java self efficacy were explained by the

combination of the four independent variables. In the same study, he made a further attempt to

determine the relative power of each of the independent variables to predict Java self – efficacy

http://www.books.mcgraw-hill.com/

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

53

of engineering students. The findings show that the number of programming courses taken and

the average score in programming courses taken had t-values of 7.520 and 4.397 respectively.

The values of Beta weights for the two variables are 0.469 and 0.272 respectively. These values

are significant at 0.05 level of confidence which implies that the two variables contribute majorly

to the prediction of Java self efficacy. From the values of Beta weights and t – ratios for each

independent variable, it is clear that the number of programming courses offered had the highest

impact in the prediction of Java programming self efficacy followed by the average score of the

programming courses offered.

Ramalingan and Wiedenbeck (1998) present a 32 – item self efficacy scale for computer

programming. This scale as well as the rest of the article is fequently referred to in recent studies

concerning programming self efficacy (Askar and Daveport, 2009; Weindebeck, 2005;

Weindeback, LabBelle and Kain, 2004).

In Ramalingam and Wiedenbeck (1998) study, the Self – Efficacy scale was handed out to 421

students in the beginning of a C++ programming course as a pre – test. The students were asked

to rate their confidence in doing programming task uisng a Likert scale 1 (not all confident) to

7(absolutely confident). In the end of the course, the same scale was administered to the same

student group as a post – test.

Ramaligan and Wiedenbeck (1998) assessed their scale and found it to be highly reliable with a

score of 0.98. Looking at their results an increase in self – efficacy between the pre – test and

post – test is found, especially among the students with initial low self efficacy. No substantial

difference was found between males and females.

Since Ramalingan and Wiedenbeck (1998) studied C++ programming students, a closer look at

the study made by Askar and Davenport (2009), including 326 Java programming computer

engineering students, gives wider perspective on programming self efficacy.

Askar and Davenport (2009) developed an instrument assessing Java programming self –

Efficacy from the self efficacy scale of Ramalingam and Wiedenbeck (1998). This test consisted

of 32 stems and the reliability was even greater (0.99). The results show with a significant

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

54

differencce between male and female respondents with males having higher self efficacy than

their female counterparts. The overall self – efficacy score increased with the

students‟experience, frequency of computer usage as well as mother‟s and siblings‟computer

usage.

A close relationship could be established between the findings of Jegede (2009a) and Askar &

Davenport (2009). Jegede (2009a) found that the number of programming courses already

offered could predict Java programming self efficacy. The result obtained by Askar and

Davenport (2005) appear to confirm the relevance of self – efficacy to the acquisition of Java

programming skills.

It should be noted that self efficacy is specific to a certain activity. Therefore, a person may have

high self – efficacy in one domain, such as gardening and low self – efficacy in another such as

computer programming Ramalingan, LaBelle and Wiedenbeck, (2004). However, self effficacy

can be investigated among related tasks, an example is trying to investigate the self efficacy

across different programming languages.

Several research studies have been conducted on computer programming (Mc Namarah & Pyne,

2004; Bryne & Lyons, 2001; Begum, 2003; Fowler, Campbell, mcGill & Roy, 2002). Today,

many industries are keen to accept as many graduates as the academic institutions can produce

and there is an assumption that any bright student can be successful in computer programming.

However, experience in the classroom would suggest that this is not true. Students who are

proficient in many other subjects sometimes fail to achieve success in programming (Byrne &

Lyons, 2001). This is because a number of factors affect computer programming performance.

Taylor and Mounfield (1989) conducted a study on the predictors of computer programming

performance among college students. They used gender, high school computer science and work

to predict performance in computer science at the college. They found that prior exposure

whether at the high school or college level is an important factor to students‟ success in computer

programming.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

55

2.4 Intrinsic and Extrinsic Factors

In a research conducted by Van der Westhuizen and Du Toit (1994) on the factors influencing

job satisfaction among black female teachers in South Africa indicated that intrinsic factors

played an important role in determining job satisfaction. In another study by Nhundu (1994),

intrinsic and extrinsic factors played an important role as precursor to perceived job satisfaction

among the population of teachers. Generally, studies grouping predictor variables into intrinsic

and extrinsic factors seem to be very rare. In particular, computer programming related studies

grouping predictor variables into intrinsic and extrinsic factors appear to be very very rare. This

study has filled that gap. The variables grouped as intrinsic factors in this study are: gender,

computer experience, computer ownership, mathematics background, Locus of control,

background in C++, and numberof programming courses taken before entering Java

programming class. Institutional type was taken as the extrinsic factors. These factors have each

been linked with the dependent variables and reviewed in the sections that follow.

2.5 Computer Experiences, Self Efficacy and Achievement in Programming

Like computer Anxiety, there is little agreement in the literature on a precise definition of

computer experience (Garland and Noyes, 2004). Some researchers define it by the number of

years of computer use, while others state that it is the number of hours of usage per week.

Computer experience is the phrase used to refer to whatever exposure an individual has on

computer whether in school, at home or anywhere. It is obvious that a student who already has

prior knowledge of the computer will require less time to learn a programming language when

compared to a computer novice who of course, will have to spend quality time learning how to

effectively operate the computer effectively before mastering computer programming.

However this does not imply that students with a good computer experience will perform better

or will have a better self efficacy in a programming course than those with little or no

experience. This is an argument that has caught interest of many researchers over the years. It is

interesting to note, however, that the findings on this issue has been consistent. The trend in self

efficacy since 1987 has been fairly constant. Hill, Smith & Mann (1987) found a significant

correlation between computer experience and self efficacy beliefs in computer courses (including

programming) among a sample of 133 female undergraduates. They found that experience

influenced bahavioural intentions to use computers indirectly through self efficacy. Thus,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

56

positive past experience with computers will increase self efficacy beliefs. Ertmer, Evenbench,

Cennamo and Lehman (1994) found that although positive computer experience increased

computer self efficacy, the actual amount of experience (i.e time on task) had no correlation with

the self efficacy beliefs of undergraduate students. Houle (1996) found prior computer training to

be significantly correlated with self efficacy in computer courses. More recent findings on

computer experience include those of Hoskey and Maurimo (2010), Byrne & Lyons (2001),

Hagan & Markhan (2000), Wilson & Shrock (2001), Askar and Davenport (2009), Doyle,

Stamouli & Huggard (2005).

Doyle, Stamouli, and Huggard (2005) conducted a study on computer anxiety, self efficacy and

computer experience among first year, second year, third year and fourth year students. They

found that there was a correlation between self efficacy and computer experience, their study

show the existence of a significant positive relationship which demonstrates that as the level of

computer experience increases so does the level of self efficacy. Thus, students level of belief in

their abilites increases as they progress with their course of study.

Research by Bandura (1986) showed that efficacy perceptions develop gradually with the

attainment of skills and experience. Individuals form their self – efficacy beliefs by interpreting

information primarily from their previous experience (Bandura, 1994b, 1995). In addition to

mastery experience, self efficacy appraisals are partly influenced by vicarious experience of

observing others perform similar tasks. Ramalingan, LaBelle and Wiedenbeck (2004)

investigated the effects of self efficacy and mental models of programming. Their results showed

that self – efficacy for programming was influenced by previous programming experience.

Askar and Davenport (2009) carried out a similar study among freshman engineering students

enrolled on an introductory Java computer programming course at Bilkert University, Ankara,

Turkey using an instrument assessing Java programming self efficacy developed from the

computer programming self efficacy scale of Ramalingan& Wiendenbeck (1998). Their simple

Regression analysis revealed that the number of years experience a student had with computers

had a significant linear contribution to their self – efficacy scores. Their result also shows a

tendency to gain self – efficacy in computer programming as the computer experience increases.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

57

These results appear to confirm the relevance of computer experience to self efficacy in Java

programming language skills and are in agreement with Bandura‟s theory.

Achievement in computer course (including computer programming courses) is another area that

has attracted the interest of researchers. Of recent, researchers have been looking into academic

achievement in computer programming (McNamarah & Pyne, 2004; Byrne & Lyons, 2001;

Begum, 2003; Fowler, Campbell, McGill & Roy, 2002 and Erdogan, Aydin & Kabaca,

2007).Several factors have been shown to influence achievement in computer programming

courses. Among factors such as gender (Cassidy and Eachus 2002; Jegede, 2007), mathematics

or science background (Byrne & Lyons, 2001; Wilson & Shrock, 2001,Byrne & Lyons, 2001;

Thomas, Woodbury & Jarman, 2002) and others, computer experience is most frequently

mentioned (for example, Byrne & Lyons, 2001; Hagan & Markham, 2000; Wilson & Shrock,

2001). These studies provide converging evidence that computer experience has a positve effect

on success in a programming course.

2.6 The Influence of Gender on Achievementand Self Efficacy in Computer

Programming

Available literatures reveal that some variables have been identified as predictors of students‟

achievement in general compùting as well as in programming. Generally computers are

identified with the areas of mathematics and science. It is commonplace that these areas are

known for sex-related differences. Expectedly these sex-related differences had overtime been

noticed in the computer technology disciplines.

Various studies had been reported on gender differences in general computing and various

aspects of computing (programming inclusive).Nourbakhsh, Hammer, Crowley & Wilkinson

(2004) carried out a study to investigate gender differences over a 7- week robotics course for

high school students. Findings showed that girls were more likely to have struggled with

programming than boys. Wilson (2002) conducted a study to determine factors that promote

success in an introductory college computer science course and also to determine what, if any,

differences due to gender exists. His model included twelve (12) possible predictors for success

in a computer science course. The predictors were: mathematics background, previous

programming experience, previous non programming experience, Attribution (Luck), Attribution

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

58

(Difficulty), Attribution (Effort), Attribution (Ability), Comfort level, Work preference, Self

efficacy, Encouragement and gender. In any of the full – model significant variables identified in

the study at the alpha level of 0.05, no signifcant differences between females and males were

found. However, a significant difference between genders was found on playing games on the

computer.

It then follows generally that in most of the studies the gender based differences are not

significant. The differences noticed could be explained by reasons suggested by Authors like

Bolan (2000). According to Bolan (2000), female disaffection from the disciplines traditionally

identified as a precursor or gateway to a career in the field of IT (Mathematics and Sciences)

begins as early as the 8th grade. Other factors that would also affect female participation and

performance in computers were also identified as; (i) lack of female role models (Bolan, 2000);

(ii) conceptualising their computer skills differently (Clegg & Trayhurn, 1999); and (iii) lack of a

supporting academic computer science environment (Cohoon, 2001).

Owing to the reasons given above for the better performance of male students compared to their

female counterparts, it has been hypothesised that the young age of participants and their limited

cultural indoctrination regarding gender stereotypes would allow boys and girls to have equal

success in programming related tests (Sullivan & Bers, 2012). Research findings has also

suggested that children who are exposed to science, technology, engineering, mathematics

(STEM) curriculum and programming at an early age demonstrated fewer gender-based

stereotypes regarding STEM careers (Metz, 2007).

Sullivan & Bers (2012) carried out a study on a program named “The Tangible K Robotics

Program”. The study was meant to determine whether kindergarten boys and girls would be

equally successful in a series of building and programming task. Kindergarten teachers were

trained to implement the tangible K curriculum in their classrooms.

The training lasted for 3 hours. During the trainning, the teachers worked with a research

assistant in order to learn how to use the programming language and robotics kits and completing

each of the curriculum activities.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

59

Also, while teaching, each of the teachers received technical and assessment support in their

classrooms from research assistants. During each lesson in the curriculum, children were

assessed by their classroom teachers or a research assistant. To ensure proper assessment,

research assistants and teachers were both trained on administration of the assessment tools

before the implementation of the study and no other adults were allowed to assess the children.

Because of the uniqueness of the curriculum a new assement tool was created for the purpose of

the study. Based on the data collected from assessments, classroom observations, interviews with

students and teachers and analysis of students‟work, the assessment tools developed for tangible

K were refined several times to increase the face validity of the measurements based on teacher

and researcher feedback.

Besides, outside consultants were also asked to evaluate and improve the measurements.

In addition to taking notes on children‟s key understandings and misconceptions, children were

also, each assessed in small groups (approximately 4 children) on each child‟s achievement of

the core goals of the activity. Children‟s learning achievement was determined based on

conversation with the child during the activity, interview questions looking at what they built and

looking at the programs they created. Children were assessed on the thoroughness of their

understanding and application of core concepts and skills in each lesson using the Tangible K

assessment form, on a 6 -Point likert scale, as follows:

5 – complete achievement of the goal, task or understanding;

4 – mostly complete achievement of the goal, task or unnderstanding;

3 – partially complete achievement of the gaol, task or understanding;

2 – very incomplete achievement of the goal, task or understanding;

1 – did not complete the goal, task or understanding;

0– did not attempt task.

Specifically, for programming, participants used the CHER P (Creative Hybrid Environment for

Robotic Programming) program, the LEGO
(R)

 brick from the LEGO
(R)

MINDSTROM
TM

 kit, and

a variety of art materials to build and program their robots. CHER P, designed for the Tangible K

Robotics Program, is a hybrid tangible / graphical computer language designed to provide young

children with an engaging introduction to computer programming. The findings from the study

showed that; although boys had a higher mean score than girls on more than half of the tasks,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

60

very few of these differences were statistically significant. Boys scored significantly higher than

girls in two areas namely: properly attaching robotics materials and programming using IFS.

Overall, both boys and girls were able to successfully complete the program.

Owing to the evidences from the literatures reviewed it is reasonable to agree with Sullivan and

Bers (2012) that early introduction to programming and the proper orientation of the female

students that programming is not solely a male domain, boys and girls would end up having

equal success in programming related tests.Studies have indicated that many different factors can

influence self efficacy in computer generally as well as in computer programming

Researches investigating the self efficacy beliefs in various tasks showed varied results with

respect to gender. A study was conducted by Momanyi, Ogoma and Misigo (2010) on gender

differences in self efficacy among science students in Lugari district in Kenya. One objective of

the study was to investigate the influence of gender on self efficacy in science subjects among

secondary school students. The participants responded to the items in a self efficacy

questionnaire and the mean scores were computed. An independent sample t-test to compare the

mean scores of male and female students showed that there was no significant difference

between the self efficacy scores of boys and girls, (t(228) = 0.36, p > 0.05). It was therefore

concluded that boys and girls in secondary schools do not differ in self efficacy in science

subjects. The result of the study conducted by Momamyi,Ogoma and Misigo (2010) conducted

among secondary school students agrees with that of Witt-Rose (2003) in a study conducted

among college students enrolled in the course Anatomy and Physiology 1 (A & P) at Chipeira

Valley Technical College (CVTC) in Eau Claire, Wisconsin in 2002. He found no significant

relationship between gender and self efficacy.

This finding however contradicted that of previous reseachers. Past researches especially among

secondary school students showed that girls had lower self efficacy than their female

counterparts in science subjects. For instance De Backer & Nelson (2000) found that female

students had lower self efficacy in mathematics and science compared to their male

counterparts.Interestingly, Schunk & Lily (1984) found that gender differneces in mathematics

self efficacy disappered when girls recieved clear performance feedback. Another study by

Kenny – Benson, Pomerantz, Ryan & Patrick (2006) reported no gender differences in

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

61

mathematics self efficacy.However, girls showed higher self efficacy in language arts than their

male counterparts (Mecce, Ghenke & Burg, 2006).

Most of the studies on gender differences in computer self efficacy recoreded higher scores for

male students than females. Cassidy and Eachus (2002) examined self efficacy beliefs in relation

to computer use, experience and familiarity with a range of computer programs. The study was

conducted among university students. The findings of that study was that men reported

significantly higher computer self efficacy than women. The same study also reported that men

were more experienced and familiar with more computer programs than the women. The study

also showed that trainning received did not infleunece the trend in self efficacy scores reported

as men still reported higher self efficacy than women even after the trainning they received.

Similarly, Durndell, Haag, Asemora & Laithwaite (2000) in a study found that male participants

had higher computer self efficacy than females especially in advanced skills. Czaja, Charness,

Fisk, Hertzog, Nair &Rogers (2006) also mentioned that women had lower computer self

efficacy than men. Jegede (2007) in a study of factors affecting computer self efficacy among

south – western Nigeria College of education lecturers however found that male lecturers

(teacher educators) had a mean score of 85.51 while their female counterparts had 86.47. This

showed a higher mean score in favour of the female lecturers. The study however showed that

there was no significant difference between the computer self efficacy of male and female

lecturers (teacher educators). Similarly, Busch (1995) studied gender differneces in self efficacy

regarding complex tasks in word processing and spreadsheet software. The study found no

gender differences in self efficacy regarding these computer tasks.

Computer self efficacy could be viewed from different perspectives. It is therefore a complicated

concept with several determinants. Downey & McMurtrey (2007); Marakas, Johnson & Clay

(2007) theorized that computer self efficacy is a multi-dimensional constructs that exists on

several levels. In other words, computer self efficacy can exist at the levels of general computing

and specific applications. Cassidy and Eachus (2002) noted that gender plays the most divisive

role in people‟s perceptions about complex technical tasks including programming skills.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

62

According to Cassidy and Eachus (2002), the possible reason for this is that “the more complex

the task is, the higher is the perceived masculinity factor, and hence men show higher self

efficacy for such tasks”.

Research reports on the relationship of gender and self efficacy in computer programming are

scarce. The few available results however tend to show that men are more confident in computer

programming than women. Wilson (2002) in a study looked at the relationship between 130

undergraduates‟ academic self efficacy and academic success. The primary focus of the study

was to look at factors (self efficacy inclusive) associated with the academic success of female

students compared to their male counterparts in a C++ programming course. The self efficacy

factors were evaluated in terms of subject specific self efficacy. The computer programming self

efficacy scale was administered to assess computer programming self effciacy of the participants

in the study. Male students were reported to have higher programming scores when compared to

their female counterparts. Also, in a study conducted by Vekiri & Chronaki (2008), the

relationships between boys‟ and girls‟ computer experience, social support for using computers

and motivational beliefs were examined. This was done to explore the possible gender

differences in students‟ self efficacy and value beliefs. Results of the study showed that boys had

more positive self efficacy and value beliefs about computers compared to girls and were more

likely to engage in computer activities such as programming. Similarly, Busch (1995) found that

males demonstrated higher perceptions in computer self efficacy and at the sametime had more

experience with computer programming than females. Based on the strong relationship between

experience with programming languages and computer self efficacy beliefs, gender differences

in computer self efficacy may be attributed, in part to gender differences in experience with

programming languages.

Askar and Davenport (2009) in a study conducted among 326 engineering students (200 first

year students from the computer, electronic and industrial engineering departments and 20 first

year science students, all of whom were enrolled in an introductory Java programming course,

plus 106 second , third and forth year computer engineering students who volunteered to take

part). The students were served a Java programming self efficacy scale along with a

questionnaire consisting of demographic data including age, gender, department etc. The results

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

63

of the study indicate that female students had significantly lower initial self efficacy beliefs

compared with those of their male counterparts.

2.7 Computer Ownership, Self Efficacy and Achievement in Programming

Another factor found to have an impact on self efficacy and achievement in programming is

computer ownership. Chilson, Carrey & Hemandez (2002) confirmed a positive effect of

computer ownership on self efficacy. However Cassidy & Eachus (2002) in their study on the

relationship between computer self efficacy, gender and experience with computers found that

owning a computer was not a significant predictor of computer self efficacy.

Wilson (2000) studied factors that contribute to success in computer using computer ownership

as one of the predictors. He found that computer ownership was the single most significant factor

in course success for boys and girls at the 0.01 alpha levels. Only high school programming

experience and owning a computer were significant in predicting success in computer science for

males. A dramatic difference in the female success rate was shown for high school computer

science courses where 30% more females who had taken the course succeeded compared to those

who had not taken such a course.

Ogunkola (2008) conducted a similar research on computer attitude, ownership and use as

predictors of computer literacy of science teachers in Nigeria. The subject for his study included

one hundred and twenty science teachers drawn from the four political divisions of Ogun state in

Nigeria. Two valid and reliable instruments named Computer Attitude, Ownership and Use Scale

(CAOUS) and computer literacy self Assessment scale (CLASS) were used to collect the needed

data, with a relaibility of 0.76 and 0.73 respectively through test – retest method of two weeks

interval. Percentages, standard deviation and multiple regression statistics were employed in data

analysis and findings reveal that a little above half of the science teachers had personal

computers and not all the teachers used computer frequently. From his study, 14.3% of the

variance in the teachers‟computer literacy can be explained by the combined influence of the

three variables.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

64

The beta weights provide an indication of relative effects of each of the variables on the

prediction of science teachers‟ computer literacy when other variables are controlled. The value t

– ratio associated with the teachers‟computer attitude and ownership are not significant at the

0.05 level but that of computer use is significant.

Although literatures are scare on the effects of computer ownership on computer programming

self efficacy and achievement, yet this does not imply that computer ownership cannot be a

predictor.On this ground computer ownership has been included as one of the variables in this

study.

2.8 The Influence of Locus of Control on Self Efficacy And Achievement In Computer

Programming.

In life, various things happen to individuals. Sometimes, they are pleasant and sometimes they

are not. Individuals also see different people as responsible for whatever happens. Generally,

according to Fakeye (2011) individuals have diverse beliefs about who controls his or her

destiny. Some believe that ones destiny could be controlled by oneself, fate, God or powerful

others.

Similarly students who pass or fail examinations tend to see either themselves or other people as

responsible for their success or failure. The name given to this concept in literature is “Locus of

control”. Locus of control is an important aspect of psychology developed by Julian Rotter in

1966. Fakeye (2011) sees Locus of Control (LOC) as a generalised belief about the underlying

causes of events of his or her life. Specifically, Araromi (2010) sees it as a sense of control. He

therefore defines it as the extent to which an individual beliefs that he or she has control over an

outcome. Rotter (1996) defines LOC as the degree to which a person belief that control of

reinforcement is internal versus the degree to which it is external. Links have been found

between Locus of control and behavior patterns in different areas. For instance, adults and

children with an internal locus of control are inclined to take responsibility for their actions and

are not easily influenced by the opinions of others. They also tend to do better at tasks when they

can work at their own pace. By comparison, people with an external Locus of control (LOC) tend

to blame outside circumstances for their mistakes and credit their success to luck rather than to

their own efforts. They are readily influenced by the opinion of others and are more likely to pay

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

65

attention to the status of the opinion holder, while people with an internal locus of control pay

more attention to the content of the opinion regardless of who holds it. For instance; if a child

with an internal Locus of control does badly in a test, she is likely to blame either her own lack

of ability or preparation for the test. Whereas a child with an external Locus of control will tend

to explain a low grade by saying that the test was too hard or that the teacher graded unfairly.

In the context of education therefore, locus of control refers to the type of attributions we make

for our successes and/or failures in school tasks. Research has shown that having an internal

Locus of control is related to higher academic achievement. The Locus of control construct is

one of the most consistently researched variables in the social sciences (Lefcourt, 1992; Rotter,

1990). According to Rotter (1966) and Skinner (1996) the construct is based upon the principles

from social learning theory and it captures people‟s general expectancies about the causes of

rewards and punishments. It consists of two dimensions of causes: internal and external. Those

with an internal Locus of control (LOC) generally expect that their actions will produce

predictable outcomes. Those with an external Locus of control (LOC) generally expect that

outcomes are due to external variables such as fate, luck or powerful others. Initially, the

construct was conceptualized as uni-dimensional with internal and external Locus of control as

opposite ends of a bipolar continuum. The “instrument of choice” for accessing adult‟s Locus of

control across different situations has been Rotter‟s (1996). This was consistent with the

conceptualization that internal and external Locus of control categories are mutually exclusive,

this classic scale uses a forced- choice format.

However, the use of this scale in the 1960s and 1970s led to a series of inconsistent findings and

consequently led to calls for revisions of this scale (Joe, 1971; Lefcourt, 1972). The result of

these was the development of a multidimensional scale of control (Levenson, 1974). Levenson

(1974) proposed that the inconsistencies in findings across research studies were not only due to

the treatment of Locus of control as a unidimensional construct but also because there are

actually two types of externals: (i) those who believe that the world is ordered and powerful

others are in control; and (ii) those who believe that the world is unordered and events are due to

non-human forces (such as chance, fate, luck etc.).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

66

The Levenson (1974) scale which used the likert format (thus allowing the dimensions to be

statistically used independently) the likert- format rather than a forced-choice format address the

above concerns and thus became a common alternative to the standard Rotter scale. Furthermore,

in the scale, the external dimension is categorized as either a belief that control is in the hands of

human forces (i.e powerful others) or non-human forces (i.e chance). For those individuals who

believe in powerful others, outcomes are unpredictable and control is not possible. Conclusively,

according to Walkey (1979) and Skinner (1996), it is now generally accepted in the

psychological literature that Locus of control is a multidimensional construct; and that Internal

(I), powerful others (P) and choice (C) controls are theoretically independent constructs.

Amadi (2010) and Araromi (2010) in their studies posited that internal and external Locus of

Control are important predictors for academic achievement. In paticular, Amadi (2010) is of the

opinion that a more internal LOC is generally seen as desirable and relates to a higher academic

achievement. According to Araromi (2010), those with a higher internal LOC belief that events

results primarily from their own behaviour and actions; while those with a high/external LOC

believe that powerful others, fate or chance primarily determine events. He also opined that those

with a high internal LOC have better control of their behaviour, tend to exhibit more political

behaviours and are more likely to attempt to influence other people than those with a high

external LOC. They are also more likely to assume that their efforts will be successful and are

also more active in seeking information and knowledge concerning their situation.

A number of previous studies have identified significant relationships between LOC and

academic achievement. Stubbs (2001) in a study conducted concluded that internals tend to show

superior achievement when compared to their external counterparts. Fakeye (2011) carried out a

study among senior secondary school two (SSS2) students randomly selected from ten (10)

secondary schools in Ibadan North Local Government. In that study, thirty (30) male and female

students were randomly selected from each of the ten schools. In all three hundred (300) students

participated in the study. He administered to the participants of the study, two (2) instruments

namely; the Locus of Control scale and English Language achievement test. The Locus of

Control scale was adapted from Araromi (2010) and was re – validated through a pilot survey.

The reliability analysis using Cronbach alpha (r) yielded a co-efficient of 0.72. The English

Language achievement test was adapted from West AfricanExamination Council (WAEC) paper

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

67

two questions. It was revalidated using test – retest which gave the correlation coefficient value

as 0.87. The data analysis used Pearson product moment correlation (PPMC) coefficient to

determine the relationship between LOC and achievement in English Language. The T-test

analysis was used to determine the significant difference in the English Language achievement

of students with internal and external LOC. The result of the analysis revealed that there was a

significant relationship between Achievement in English Language and LOC (r = 0.670, p <

0.05). The result of the analysis also showed that there was a difference which is not significant

in the Achievement test in English Language of students with internal and External LOC (t =

4.513; df = 298, P > 0.05). The students with internal LOC performed better (mean = 41.4274)

compared to their counterparts with external LOC (mean = 40.8295).

For sometime now, researchers have begun to examine the relationship between locus of control

and information and communication technology in general and then specifically the relationship

between Locus of control and Programming. More specifically, there has been a number of

studies that examined relationship between Locus of control and programming skills. Bishop-

Clarke (1995) identified personality traits such as Locus of control as factors that may help

explain variability in Programming achievement.Jegede (2009a) opines that assessing the

attribution classification of students and its relationship with programming skills might provide

information that will facilitate better programming skills acquisition among students.

Consequently Jegede (2009a) conducted a study using as participants 184 final year students in

six departments of the Faculty of Technology of a University situated within the south western

region of Nigeria. The departments included: Electrical and Electronic Engineering, Civil

Engineering, Mechanical Engineering, Metallurgy and material Engineering, Chemical

Engineering and Computer Engineering. In the study, it was found that programming

achievement of engineering students has no significant relationship with the faith they have in

their own life (internality; r = 0.095, p 0.05). Similarly, programming achievement of

engineering students has no significant relationship with the belief in the irresistible power of

others on their own lives (powerful others: r = 0.068, p 0.05). In addition the findings showed

that the trust Engineering students place on chance in determining their own course of life is not

a factor while considering programming achievement (Chance: r = .017, p 0.05).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

68

In the same study the relationship between Locus of control and training initiatives in

programming skills were studied. A significant relationship was found between internality and

training initiatives in programming skills (𝝌 2
1.184 = 0.043, p 0.05). The implication is that

those with internal Locus of control do take the initiative of either registering for private training

class in skills or undertake to learn those skills on their own as they perceive the needs. Also,

significant relationship was not obtained between powerful others and training initiatives in

programming skills among engineering students (𝝌2
1.184 = 0.069, p> 0.05). Similarly, there was

no significant relationship between those that believe in chance and their decision to embark on

personal training on programming skills (𝝌 2
1.184 = 0.733, p > 0.05).

The studies on locus of control previously reviewed were mostly western based. Since, the

society‟s belief also has cultural dimensions. There is the need to carry out the same study using

the Nigerian participants. Jegede (2009b) that used the Nigerian respondents examined the

relationship between the dynamics of locus of control on the programming skills of engineering

students in a Nigerian University. Considering the challenges of epileptic power supply and

lower accessibility to computers and software which may pose as challenges to continued

personal development in programming skills, it becomes necessary to also look at the influence

the locus of control of students have on their self efficacy in the relatively new object-oriented

programming languages. Besides, since the participants in the previous studies were engineering

students, it has become necessary to carry out an independent study using those who are

supposed to be specialists in the field (the Computer Science students).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

69

2.9 Mathematics Background, Self Efficacy and Achievement in Programming.

Mathematics background has, for a long time remained a predictor of programming ability (e.g

Chung, 1988; Myloy & Burton, 1988; wilson, 2000).Wilson (2000) in a study of contributing

factors to success in computer science found that mathematics background was the second (after

comfort level) in importance in predicting success in the computer science class. The findings of

the studies above confirm that mathematics is directly realted to programming performance

ability. It has also been established in literature that high perceived self – efficacy could impact

postively on performance and past performance as highlighted in Bandura‟s theory of self

efficacy has the capability to increase perceived self efficacy in a particular task.

The link between mathematics and computer programming is widely accepted (Byrne & Lyons,

2001; Fowler et al, 2002). This may be becaue mathematics which has a fairly complex nature

requires logical thinking and other features of computer porgramming. Thus the concepts which

a student has to comprehend are similar to those in programming. Mathematics aptitude is thus

often a pre – requisite for acceptance into computer science programs (Bryne & Lyons, 2001).

Hoskey and Maurino (2010) used mathematics and Logic background as one of the variables in

their study on success factors for advanced programming. Previous programming experience and

a mathematics background seem to be positvely related to success in introductory programming

(Bryne & Lyons, 2001; Bennedson & Caserson, 2005; Wilson & Shrock, 2001; Rountreee,

Rountree, Robins & Hannah, 2004). The subject used by Hoskey and Maurino (2010) have

already completed two semester and had taken calculus and methods in operation research in

mathematics (but this was not a pre – requisites for any of the programming classes, thus some

students procrastrate and put it off).It was found that there was no significant difference between

students who took calculus before the advanced Java course and students who took calculus after

the Java course. Their result contradicts those obtained in the literatures already reviewed.

2.10 C++ Background, Self Efficacy and Achievement in Programming

Several studies have looked at the programming language used in the classroom. Of these, some

analysed the programming languages for their teaching efficacy (Mannila, Peltomaki & Slakoski,

2006; Mannila & De Raadt, 2006) and others looked at the reasons colleges selected a particular

programming language for an introductory programming course (Parker, Chao, Ottaway

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

70

&Chang, 2006). There was no conscensus on the best programming language to use. However,

Mannila, Peltomaski and Salakoshi (2006) found that students did just as well learning a simple

language and then moving on to a more complex one. They also found that the best languages to

use in teaching programming were the languages designed with teaching in mind. They noted

that a programming language is selected for many reasons beyond pedagogical benefit. In a

study of employers and educators by Bhatnager (2009), the teaching of more than one language

was recommended.

Hoskey and Maurino (2010) conducted a reasearch on success factors for advanced

programming (Java programming language in particular) at Farmingdale State College where all

students in the computer system Department in the school of Business were required to take two

semester of programming at an introductory level. Students were offered a choice of C++ or

Visual Basic and required to take an additional upper level programming course in Java. All

students must achieve a “C” or better in both introductory programming classes to enter the

advanced Java class.

Hoskey and Maurino (2010) had however observed that students entering the advanced class do

not have the entry level programming skills needed to succeed in the upper level class. This may

be due to the fact that students wait too long to take the advanced course and as a result, have

forgotten what they learned in the introductory classes. Betterstill, students may not be able to

cope with the change in programming language.

Hoskey and Maurino (2010) also noticed that although some students pass the introductory

programming courses, yet they do not know how to program. Thus they were motivated to

embark on a research investigating the predictors of advanced programming taking Java

programming into consideration. They obtained records from the college to create a database

containing information about all two hundred students who took Java porgramming language

from 2005 through the fall of 2009 semester. It was found that students who took C++ for

introductory programming classes were more successful than students who took Visual Basic for

introductory programming classes using a one – tailed Mann – Whitney U test. Thus a student‟s

self efficacy and achievement in an advanced programming language (such as Java) may be

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

71

predicted by the kind of introductory programming language he/she has been taught and

mastered.

2.11 Number of Programming Courses Taken Before Java, Self Efficacy and

Achievement in Programming.

In most academic institutions, Java programming language is not usually the first programming

language. Jegede (2009c) in an attempt to examine the nature of programming preparatiom of

trainee engineers conducted a study on computer programming curriculum of engineering

undergraduates in a Nigerian University. His findings agree with the position of Schonberg and

Davar (2008) that Java should not be introduced as an introductory programming course for the

following reasons: Java hinders the understanding of code performance; the design

methodologies of Java lead to a proliferation of objects, heavy use of dynamic storage and data

structures that are pointer heavy and this considered wasteful; the model of concurrency in Java

is low – level and error – prone and garbage – collected environment prevents its use in real –

time application; the fundamental separation between specification and implementation is absent

in Java. Wilson and Shrock (2001) investigated several factors (mathematics background,

attribution for success / failure, domain specific work style preference, previous programming

experience, previous non – programming experience amd gender) that can predict success in an

introductory computer science course.

Their subjects included about 130 students who were enrolled in six sections of CS 202

Introduction to computer science at a Comprehensive Midwestern University during the spring

of 2000. CS 202 was the first programming class required in the computer science major and

uses C++ as the programming language. They used the computer programming selfefficacy

Scale developed by Ramalingam & Wiedenbeck (1998) to collect data on domain – specific as it

relates to tasks in C++ prorogramming language and reported an overall alpha reliability of 0.98

on the instrument. Programming experience which is a dichotomous variable determined by

whether the subjects had engaged in any programming prior to the course was divided into the

number of formal programming course taken and self – initiated programming experience. The

result showed that the number of programming courses taken had a positive influence on

midterm grade (programming achievement). Hoskey and Maurino (2010) found however, that

there was no significant difference in the final Java grades for students who took more

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

72

programming courses than required. Thus the number of programming courses already taken by

some students did not contribute significantly to their success or achievement in Java

programming course. This may be due to the factthat course taken (except Java) only serves to

reinforce and reiterate materials already covered. Another explanation might be that students

may have difficulty transfering the skills from one language to another (Hockey and Maurino,

2010). It is surmised that the logic course may help prepare the students for progamming, but not

actually increase their programming ability (Hockey and Maurino, 2010).

However, Jegede (2009a) studied the predictors of Java programming self efficacy among

engineering students in Obafemi Awolowo University, Ile-Ife, Nigeria by randomly selecting

one hundred and ninety two final year engineering students randomly selected from six

engineering departments of the University using programming Background Questionnaire and

Java programming selfefficacy scale. The resulting data were analysed using Pearson Product

Correlation and Multiple regression analysis. He found that Java programming self efficacy has

no significant relationship with each of the computing and programming background factors.

Jegede (2009) establishes that the number of programming courses offered by students and their

achievement in the programming courses (based on scores) significantly predict their Java

programming self efficacy. This appear consistent with the findings of Wiedenbeck (2005) who

obtained that programming experience affected perceived self efficacy in programming and

performance in programming courses.

In an earlier study, Ramalingan, La Belle and Wiedenbeck (2004) had come out with the results

that self efficacy for programming was influenced by programming experience. Bandura (1986)

also opined that self efficacy perceptions develop gradually with the attainment of skills and

experience. The fact that self efficacy in programming domain becomes predictable by

performance in programming course is logical. This is because learners with high self – efficacy

are more likely to undertake challenging tasks and to expend considerably greater efforts to

complete them in the face of unexpected difficulties, than those with lower self efficacy (Askar

& Davenport, 2009).

However Jegede (2009a) argues that the number of years a student had been introduced to

programming did not significantly predict Java self efficacy unlike the number of programming

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

73

courses taken although both variables reflect programming experience. Jegede (2009a) explains

that this may be understood in this way: experience in programming by year may not necessarily

imply continuous active programming experience, for example, many of the engineering students

in the various departments that he used for his study did offer for the first time programming

courses in their second year. Apart from this, students might not just get involved in

programming except in the semester during which programming as a course was compulsory,

hence years of programming (which does not imply number of programming courses taken) did

not predict Java self – efficacy.

2.12 Rationale for Multilevel Analysis

Investigating factors influencing students‟self efficacyand achievement is complex. This is

because some factors are peculiar to the students (Intrinsic factors) while others are outside

students‟control (extrinsic factors). Students (especially the subjects of this study) are trained by

various institutions. Therefore, predicting variables of academic achievement and self efficacy at

the universities can be viewed as a product of both the students‟ background variables (intrinsic

factor) and their institutions (extrinsic factor). In this work, as in most educational researches, the

population consisted of universities and undergraduates within the universities. In the sampling

procedure, first we took a sample of institutions and then a sample of students in the computer

departments of those schools. Therefore, it is clear that students are nested within the various

institutions.

Specifically, we have student - level variables (gender, computer experience, locus of control,

mathematical background, computer ownership, number of programming courses taken before

entering the Java class and background in C++) describing individuals and the individuals are

grouped into larger or higher order unit (institutions). This type of data nested within groups or

collected at multiple levels simultaneously is known as multilevel data and the appropriate data

analysis for them is known as the multi-level data analysis. In this instance, levelsrefers to how

the data are organised and more important, statistically to whether observations are dependent or

not(Nezlek, 2008). Normally, these levels are referred to by number (Level 1, level 2, level 3,

etc) with larger numbers indicating levels that are higher in the hierarchy (Enders & Tofighi,

2007). For example, in this study, measures describing individuals would constitute the level 1

data, and measure describing the group (Institutions) would constitute the level 2 data. The

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

74

number of levels in this work is limited to 2 because single classes have been chosen in each of

the institutions. There are sets of data in educational settings that are collected in three or more

levels. An example is a data of students nested within classes, classes nested within schools and

schools nested within regions or countries.

In hierarchical data, individuals in the same group are also likely to be more similar than

individuals in different groups. As a result, variations in outcome (e.g achievement in computer

programming, self efficacy in Java programming) may be due to the difference between groups

and to individual differences within the group. Therefore a model where disturbance may have

both a group and an individual component can be of help in analysing data of this nature. This

model known by various names in the literature (Multi-level models, hierarchical linear models,

mixed–effects models, random effects models, random coefficient regression models, covariance

component models) have led to new developments in the field of educational research.

According to Raudenbush and Bryk (2002), failure to consider the hierarchical structure of

eductional data coud cause unreliable estimation of the effectiveness of school context or teacher

quality on student learning outcomes and could misdirect educational policies and

practices.Traditionally, the fixed parameter linear regression models are used for the analysis of

such educational data which are hierarchical in nature and statistical inferences are always based

on the assumptions of linearity, normality, homoscedasticity and independence. Because of the

nested structure of the data in this work therefore, hierarchical linear modelling is important in

analysing the data without bias (Akyuz, 2006). According to Raudenbush and Bryk (2002), not

considering the multilevel structure of the data in the analysis, results in problems such as

Aggregation bias, Misestimated standard errors and heterogeneity of regression.

Aggregation bias can occur when a variable takes on different meanings at different levels. For

example, the institution of a student may have an infuence on a student‟s achievement above and

beyond the effect of the students‟ related background factors. The multilevel analysis solves this

problem by facilitating the decomposition of any observed relationship between variables into

separate level – 1 (for students) and level – 2 (for institutions) component (Akyuz, 2006).

Misestimated standard errors occur when the dependence among individual responses within the

same organisation such as classroom or institution (as seen in this study) is not taken into

account. The reason for the dependence may be shared experience of the individuals within the

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

75

classrooms and institutions or due to the sampling procedures. According to Akyuz (2006),

hierarchical linear models solve this problem by incorporating into the statistical model a unique

random effect for each institution. The variability in these random effects is taken into account in

estimating standard errors. Heterogeneity of regression occurs when the relationships between

individual characteristics and outcomes vary across organisation. This problem is solved by

estimating a separate set of regression coefficients for each institution and then modelling

variation among the institutions as multivatirate outcomes to be explained by institutional

factors.

According to Wang and Bird, (2011), three major concerns should be taken into consideration

when analysing multi – level data:(i) Unit of analysis (ii) Statistical procedures and

(iii)Conceptual fallacy.

(i) Unit of Analysis – For most statistical analytic data procedures, the majorassumptions is

independent observation (i.e students are independent from each other). But because students are

somewhat alike within a particular classroom and somewhat different across classrooms,

educational researchers often face the dilemma regarding what the unit of analysis should be.

They are faced with the option of either analysing the data at the classroom / school level or the

student level. When a teacher variable is involved, one way to examine the relationships between

a student level variable and a classroom level variable is to aggregate student level variable with

in each classroom (now using the classroom as the unit of analysis) and then correlate this

aggregated means with teacher – level variables. According to Adams and Forsyth(2006) this

method is limited because it reduces the statistical power significantly because, the sample size is

now smaller. Besides, the procedure fails to consider within – classroom differences. Also the

student – level variables aggregated to the classroom or school level are often highly correlated

to each other and are likely to cause problems of multi-collinearity in regression analysis

(Keeves & Sellin, 1990).

The second option opened to the researcher in examining these relationships is to conduct

student – level analyses with all classroom level variables assigned to individual students (in this

case using the student – level as the unit of analysis). It is obvious also that student within a

particular calssroom is more like each other than they are like the students in any other

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

76

classroom. Therefore the residuals involving student – level variables cannot be assumed to be

independently and randomly distributed. Using the student- level as the unit of analysis therefore

would be inappropriate for most commonly used inferential statistical tests. Additionally, by this

method, the sample size for the classroom level variables is multiplied by the number of students

in each calssroom and therefore the estimation of the coefficients between classroom level

variables is likely to have a Type – 1 error (when an hypothesis is rejected when it should be

accepted).

(ii) Statistical Procedures

According to Wang and Bird (2011), many statistical models have been developed for multi –

level data analysis so that relationships between both student – level and classroom level

variables can be analysed simultaneously and at individual and group – levels). Goddard,

Tschannen – Moran and Hoy (2001) and Stapleton (2006) concluded that the use of a multi –

level approach allows the researcher to examine relationships among variables within and

between classrooms.

(iii) Conceptual Falacy

According to Hox (2002), a conceptual falacy occurs when researchers make interpretations of

relationships at the individual level based upon aggregated data.Schwenkglenks (2007) gave the

following as the potential evidence of ignoring hierarchical data in statistical analysis:

(i) A decrease in statistical efficiency and inflated standard errors may occur as no full use is

made of the available information (Rice, 2001) Also, violation of the independence assumption

can lead to false low standard error estimates (Hox, 2002). For both reasons, there is a risk of

incorrect inferences regarding the existence of statistical associations and of incorrect decisions

regarding the inclusion of exclusion of model parameters.

(ii) Effects on the response variables occuring at different hierarchical levels cannot be

appropriately identified and explained (Hox, 2002). Related difficulties to interprete regression

results may lead to an arbitrary choice of models and impact negatively as predictive ability

(Woodhouse, Goldstein, 1989)

(iii) Variation of the response variable of interest occuring at the higher level (s) cannot be

quantified at the population level, i.e any statement is at best possible for the higher level units

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

77

directly observed (iv) Ultimately, wrong conclusions may occur (Aitkin, Anderson & Hinde,

1981).

In conclusion there are different techniques that reaserchers had used and are still using to

address the problem of multi – level data structure in statistical analysis in research.

Schwenkglenks (2007) observed that most of the proposed techniques provide only partial

solutions and suffer from sub–optimal use of the available information. For instance, some of

them are suitable if the researchers‟interest is restricted to either the lowest or the highest level in

the hierarchy of observation and allow estimating unbiased standard errors. However according

to Schwenkglenks (2007) a meaningful quantification of higher level variation in the total

population of interest is only achieved by random effects analysis or multi – level modelling, and

only the latter techniques is suitable to satisfactorily assess effects occuring at different levels or

involving several levels (Austim, Goel & Walraven, Diez – Roux, 2002, Diez – Roux, 2000).

2.13 Appraisal of Literature Reviewed

Computer literacy has become a priority at all levels of our educational institutions today. In

tertiary institutions for instance, a student before graduation must have offered and passed at

least two computer courses. This is because, it is intended that all graduates are computer

literate. Moreover, computer literacy is a requirement for employment in virtually all

establishments nowadays. According to Kay (1989) and Van Dyke (1987), the knowledge and

skills of a computer literate person may be divided into four basic categories; computer attitudes,

computer application, computer systems and computer programming. Much has been studied

about the first three categories. Programming which was not emphasized initially is now

becoming more popular. This is because; people have now realized that programming is an

important aspect of computing. Salomon and Perkins (1987) argue that programming provide an

opportunity to develop rigorous thinking, learn the use of heuristics, nourish self consciousness

about the process of problem solving, and in general achieve significant cognitive advances.

Soloway (1993) further described programming as the new latin that enables learning in various

other subject areas. Computers work with programs and so programmers are needed to develop

more programs.

According to Mancy & Reid (2004), introductory programming courses are known for their

notoriously poor pass rates. Such low pass rates indicate that students experience difficulties with

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

78

programming. Many studies have been carried out to highlight the reasons for poor achievement

in programming. According to Zimmerman and Schunk (2003)the predictive power of self

efficacy beliefs on students‟ academic functioning has been extensively verified.

 The predominant finding is that students‟ self efficacy beliefs are significantly and positively

related to academic performance. Educational researchers recognize that, because skills and self

efficacy beliefs are so intertwined, one way of improving students‟ performance is to improve

student self efficacy (Wiedenbeck, Labelle & Kain, 2004). Several studies have found that self

reported measures of computer experiences and software packages used are significant predictors

of computer self efficacy (Hill, Smith & Mann, 1987); Torkazadeh and Koufterous, (1994) and

Houle (1996) found prior computer training to be significantly correlated with computer self

efficacy. In addition, Houle (1996) also found that high school courses with spreadsheet and

databases and having worked at a job with computers contributed to higher computer self

efficacy. According to Houle (1996), a prior high school programming class did not increase

computer self efficacy.

Generally results of studies dealing with gender and self efficacy are inconsistent and the finding

inconclusive. Boys are seen to report higher self efficacy than do girls in mathematics and

science, whereas girls show higher self efficacy in language arts (Junge & Dretzke, 1995; Meece,

Ghenke, & Burg, 2006; Siegle & Reis, 1998; Terwilliger & Titus, 1995). However, Schunk &

Lily (1984) found that gender differences in mathematics self efficacy disappeared when girls

received clear performance feedback. A more recent study by Kenny-Benson, Pomerantz, Ryan

& Patrick (2006) reported no gender differences in mathematics self efficacy.

Research findings on the relationship of gender and self-efficacy in the computer programming

are scarce. The few available literature, however, tend to show that men are more confident in

computer programming than their female counterparts. Wilson (2002) in a study looks at

relationship between 130 undergraduates‟ academic self-efficacy and academic success. The

primary focus of the study was on the factors associated with the academic success of female

students compared to male students enrolled in a C++ programming 1 course. The factors

associated with academic success in the introductory programming course included previous

computer experience, hostile environment and culture, attribution theory and self-efficacy.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

79

The Locus of control construct is one of the most consistently researched variables in the social

sciences (Lefcourt, 1992; Rotter, 1990). According to Rotter (1966) and Skinner (1996) the

construct is based upon the principles from social learning theory and it captures people‟s

general expectancies about the causes of rewards and punishments. It consists of two dimensions

of causes: internal and external. Those with an internal Locus of control (LOC) generally expect

that their actions will produce predictable outcomes. Those with an external Locus of control

(LOC) generally expect that outcomes are due to external variables such as fate, luck or powerful

others. Research has shown that having an internal Locus of control is related to higher academic

achievement.

There have been a number of studies that examined relationship between Locus of control and

programming skills. Bishop-Clarke (1995) identified personality traits such as Locus of control

as factors that may help explain variability in Programming achievement. Similarly Chin and

Zecker (1985) obtained that internals were more likely to succeed at program implementation

than externals. Jegede (2009b) based on research findings opines that assessing the attribution

classification of students and its relationship with Programming skills might provide information

that will facilitate better programming skills acquisition among students.

Chung (1988) identified mathematics as a predictor of programming ability. Similarly Wilson

(2002) in a study of contributing factors to success in computer science; mathematics

background was found to be second (after comfort level) in importance in predicting success in

the computer science class. The findings of the studies above confirm that mathematics is

directly related to programming performance ability. It has also been established in literature that

high perceived self-efficacy could impact positively on performance and past performance as

highlighted in Bandura‟s theory of self efficacy has the capability to increase perceived self-

efficacy in a particular task. Mc Coy & Burton (1988) study on the relationship of computer

programming and mathematics in secondary school indicated a good mathematical ability as a

success factor in beginners‟ programming.However literature on the influence of mathematical

ability on perceived self-efficacy is scarce. This study will be investigating this influence.

Another factor that research has found to be impacting on computer self efficacy and

achievement is computer ownership. Torkzadeh, & Koufterous (1994) and Houle (1996) in their

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

80

studies found that owning a computer is found to be significantly correlated with computer self

efficacy. Busch (1995) in a study carried out found that students who have access to their own

computer cooperated more in front of the computer than any other group. Chilson, Carrey &

Hemandez (2002) confirmed the positive effect of computer ownership on computer self

efficacy. Cassidy & Eachus‟s (2002) study however showed that owning a computer was not a

significant predictor of computer self efficacy.

2.14 Gaps of Literature Reviewed

This study was an attempt to bridge up deficit in research on computer programming

achievement and self efficacy in Nigeria. Many researchers have studied on Achievement and

self efficacy in areas different from computing and programming. Another major concern is that

multilevel research on computer programming seems to be very rare generally all over the globe.

In particular in Nigeria multilevel research reports appear to be very rare generally. Yet the

Educational data we collect in most researchers are hierarchical in nature. Oftentimes, the fixed

parameter multiple level regressions are used to analyse such data. In the process vital

information are lost. This may lead to wrong conclusions. This study attempted to fill this gap.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

81

CHAPTER THREE

METHODOLOGY

This chapter addresses the research design, population, sampling procedure and sample,

instrumentation, procedure for data collection, method of data analysis as well as methodological

challenges.

3.1 Research Design

The study was a correlational type of survey research. This is because it established relationships

between predictor and criterion variables.

3.2 Variables In the Study

The variables involved in the study were as follows:

Predictor variables:

a. Computer Experiences

b. Gender

c. Mathematics Background

d. Computer Ownership

e. Locus of Control

f. Background in C++

g. Number of programming courses offered before entering Java class

h. Type of institution

Criterion variables:

The criterion variables are:

(i) Java Programming Self Efficacy

 (ii) Java Programming Achievement.

3.3 Target Population

The target population for this study consisted of computer majors in Federal and state owned

Universities in South–West, Nigeria. The choice of this group of students was based on the

following assumptions:

1. Programming is an essential part of their training as computer majors.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

82

2. Java programming is relatively new in Nigerian universities. Therefore the probability of

getting respondents for the study among computer majors is higher than from Computer

non – professionals.

3. Java programming is more dynamic and recent compared to some other programming

languages offered by computer majors in Nigerian Universities.

4. The recommendations from the study will be most applicable to computer majors who by

training have the option of becoming programmers rather than mere users.

3.4 Sampling Procedure and Sample

This study adopted purposive sampling for the selection of participants‟ universities and levels of

study. The Universities of respondents were selected based on the following criteria:

(i) The university is owned by federal or state government

(ii) There is a computer science department where potential computer professionals are being

trained

(iii) Java programming language is taught in the computer science department of the

university.

In all, at the time of the study, five (5) Universities within the South – West, Nigeria satisfied the

three criteria above. One of the five (Federal University of Technology, Akure, Ondo State,

Nigeria) was used for the trial testing, validation and reliability of the instruments before the

main study. The remaining four (4) Universities(University of Lagos, Obafemi Awolowo

University, Ile-Ife, University of Ibadan and Adekunle Ajasin University, Akungba – Akoko,

Ondo State, Nigeria) were used for the real study.

The levels of the participants for the study were selected based on the following criteria (i) the

students at that level had been taught or are being taught Java in the previous or current semester,

For those who are currently on it, they had covered enough ground to enable them answer the

questions set. Different levels based on the programmes and peculiarities of each Universities

were therefore used. At the university of Lagos, 200 level students who were almost through

with the course participated in the study. The 200 level students were preferred because the

present 300 level students were not taught Java when they were in 200 level. At the Obafemi

Awolowo University, (O.A.U) the 400 level students were preferred and used for the study. At

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

83

the O.A.U, the duration of computer science related courses is five years. Java programming

language is taught at the 300 level. The year four students were taught in their second semester at

the 300 level. At the time of data collection they just started the first semester in their 400 level.

At the University of Ibadan, the course is taught during their second semester at the 200 level.

The 300 level students who were in their first semseter were therefore preferred and used for the

purpose of the study. The 400 level student in their first semester were preferred at the Adekunle

Ajasin University Akungba Akoko (AAUA). This is because they were taught Java on their

second semester year three.

Each participant used was selected based on the following criteria: (i.)he / she is a full time

student in the Department ofComputer Science in any of the chosen Universities; (ii.) he / she

had been taught Java programming Language; (iii.) he / she is available at the time of data

collection and (iv.) he / she is patient and willing to participate in the study.All the students in the

selected levels that were available weregiven the questionnaire. Some of the questionnaires were

however not returned. Some that were returned were not properly filled. After scrutinisng the

returned questionnaires only those that were properly filled were used for the study.

A total of 254 questionnaires and Java Programming Achievement Test question papers that

were properly filled were used for the study.Table 3.1 shows the population of the levels

sampled in each of the four universities and the number of completed questionnaire that were

found useful

Table 3.1: The distribution of Respondents Across the Four Public Universities Used

S/N Institution Population No of those given the

Questionnaire

Returned questionnaire

that were usable

1. University of Lagos 85 82 68

2. Obafemi Awolowo

University, Ile Ife

129 111 76

3. University of Ibadan 79 68 50

4. Adekunle Ajasin

University, Akungba-

Akoko

120 60 60

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

84

3.5 Instrumentation

Instruments

Five instruments were used in the study. They were:

1. Computer Background Questionnaire (CBQ);

2. Computer Experience Scale

3. Java Programming Self efficacy scale (JPSES)

4. Java Programming Achievement Test (JPAT)

5. Levenson Locus of Control Scale (LLCS)

3.5.1. Computer Background Questionnaire (CBQ)

The Computer background questionnaire (CBQ) was used to obtain data on the biography of

undergraduate computer students. Specifically, data on the following variables were collected

with the use of the CBQ:

i. Computer Experience

ii. Gender

iii. Mathematics Background

iv. Computer Ownership

v. Background in C++

vi. Number of programming courses offered before entering Java class.

3.5.2. Computer Experience Scale

Computer experience is multidimensional. Different aspects of this variable is therefore

highlighted in this work.Specifically the following 10 areas of computing were highlighted:Word

Processing, Spread Sheet, Data Base, Presentation Software, Operating System Software,

Computer Graphics, Computer Games, Internet, Statistical Package, Programming. The

participants were given instruction to rate their experiences in the different areas of computing

using a scale of 1 to 10. Maximum score obtainable is 100 while the minimum score is 10. The

scale was also trial – tested on computer undergraduates at the Federal University of

Technology, Akure, Nigeria (a group parallel to the subjects of the main study). The aim was to

establish its reliability among computer undergraduates in South –West, Nigeria. The reliability

coefficient using Cronbach Alpha was found to be 0.84. It was therefore found to be very reliable

and fit for the study.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

85

3.5.3 Java Programming Self Efficacy Scale (JPSES)

The C++ and Java programming languages have some similarities. Java programming language

more or less grew out of the C++ language. Consequently the idea of C++programming self

efficacy scale developed by Ramalingam and Windenbeck (1998) was used by Askar &

Davenport (2009) to developed the Java Programming Self Efficacy Scale (JPSES). The JPSES

was therefore the adapted version of the C++ programming Self Efficacy Scale of Ramalingam

and Wiedenbeck (1998). The JPSES consisted of 32 items bothering on respondents‟

understanding of certain concepts in the language, possession and the ability to display certain

skills as well as the will to persevere when writing the programs in Java. The participants were

given instructions to rate their confidence in understanding and doing the Java programming

related tasks using a scale of 1 (Not confident at all) to 7 (Absolutely confident). Maximum score

obtainable is 224, while the minimum score is 32. Askar and Davenport (2009) administered it to

Engineering undergraduates in Turkey who had been instructed in Java programming. They

computed the JPSES scores and the reliability to be 0.99. The same instrument was trial tested on

Computer undergraduates at the Federal University of Technology, Akure, Nigeria (a group

parallel to the subjects of the main study) who had also been instructed on Java programming.

The aim was to establish its reliability among Computer undergraduates in South-West, Nigeria.

The reliabilty coefficient was found to be 0.96. It was found to be very reliable and fit to be used.

The instrument as it is was therefore adopted for the study.

3.5.4 Java Programming Achievement Test (JPAT)

Achievement test in Java programming used for the study were of two types:

(a) Multiple choice questions in Java Programming (MCQJP) and

(b) Essay questions in Java programming (EQJP)

MCQJP was a 20 – item multiple choice objective questions selected and adapted by the

researcher from a battery of questions available at http://india.com/java–programming and

cs.dinke.edu/courses/fall 01/cps 001/quiz/online–questions. Questions were selected to cover

three major topics in Java programming language that are being taught across the universities

used for the study.They are: (1) Language fundamentals, (ii) Declaration and Access control and

(ii) Arrays.

The researcher started with a pool of 94 questions. The draft copy of the pool of items was

revised by two (2) computer science lecturers from two separate universities in the south –

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

86

western Nigeria each of which was given a copy of the draft question. Based on their reactions,

sixty of the questions were selected for administration and item analysis. The sixty (60) items

were administered to eighty (80) students in a university that was not part of the sample of the

main study. Their responses to the items were scored;item analysis was carried out using

discriminating power and difficulty index to collect the best 20 items that constitute the MCQJP

(see Appendix V). The distribution of the 20 selected items was indicated in Table 3.2. The

Reliability co efficient of 0.7was recorded for the MCQJP using KR – 20

A Table of Specification drawn for the final items selected to reflect the level of behavioural

objectives; Knowledge, Comprehension and Application is shown in Table 3.2.

Table 3.2: Test blue print for the 20 multiple choice items on Java programming language

Content area Knowledge Comprehension Application Total

Language

fundamental

1, 20, 5, 6 16, 17 12, 13, 14, 15,

18, 19

12

Declaration and

access control

10 8, 9, 4, 7, 5

Arrays 3, 11, 2 3

Total 5 6 9 20

The Essay Question in Java Programming (EQJP) comprised of 2 programs originally written

with some errors. The first one was written to compute the factorial of Numbers while the second

one was written to compute the sum of two numbers (see Appendix). The respondents wereasked

to identify the errors in the programs and then rewrite the codes for each of the lines with errors

as indicated in the appendix. The programs were certified suitable by two lecturers in two of the

Universities used for the study.

3.5.4. Levenson Locus of Control Scale

The Levenson Locus of Control scale was designed and validated by Levenson (1974). The

Levenson scale conceptualized Locus of Control as multi-dimensional. The dimensions captured

in the scale were: Internal (I), Powerful others (P) and Chance (C).Powerful others and chance

were constructed as two components of externals. The scale has 24 items. Eight items each

addressed each of the three dimensions. Each item is an attitude statement which represents a

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

87

commonly held opinion to which the respondents indicated the extent to which they agreed or

disagreed using the following response format:

Strongly agree: +3

Somewhat agree: +2

Slightly agree: +1

Slightly disagree: - 1

Somewhat disagree: -2

Strongly disagree: -3

The instrument was trial tested on computer undergraduates at the Federal University of

Technology, Akure, Nigeria (a group parallel to the subjects of the main study). The aim was to

establish its reliability among computer undergraduates in South – West, Nigeria. The reliability

coefficient was found to be 0.88. it was therefore found to be very reliable and fit for the study.

The instrument as it is was therefore adopted and used for the study.

3.6. Data Collection Procedure

The researcher engaged one research assistant who is very experienced in the administration of

research instruments. The research assistant was trained on the administration of the instruments.

He was also trained on how to handle the administration of the research instruments effectively.

The research assistant handled the administration of the instrument in two universities (the

university used for the pilot study and one of the four universities used for the main study). The

researcher personally handled the administration of the research instruments in the remaining

three (3) universities used for the main study. The data collection exercise lasted for four months.

At the time of data collection, some of the universities were on vacation. The researcher had to

wait for the schools to resume in order to get the computer undergraduates to respond to the

instrument. This was responsible for the comparatively long period of data collection.

3.7 Scoring of the instruments

3.7.1 Computer Background Questionnaire

Gender was coded 1 and 2 for male and female respectively. Ownership of computer was

coded 1 and 2 for yes and no respectively. For Mathematics background; the number of

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

88

previous mathematics courses taken was coded using the number indicated by the

respondents.Background in C++ was simply coded 1 and 2 for Yes and No respectively.

3.7.2 Computer Experience Scale

Each of the ten (10) items under Computer Experiences was coded using the numbers from 1 to

10 (to indicate the level of experience) filled in the spaces provided in the front of the various

computer experiences highlighted.

3.7.3 Java Programming Self Efficecy Scale (JPSES)

The coding pattern for all the 32 items that make up the JPSES

is as follows: Not at all confident = 1; mostly not confident = 2; slightly confident = 3; 50/50 = 4;

fairly confident = 5 ; mostly confident = 6; absolutely confident = 7.

3.7.4 LevensonLocus of Control (MLOC).

The coding for the 24 items under MLOC scale is as follows:

Agree Strongly = +3

Agree Somewhat = +2

Agree Slightly = +1

Disagree Somewhat = -2

Disagree Strongly = -3

3.7.5 Multiple Choice Question on Java Programming (MCQJP)

Dichotomous scoring pattern of 1 and 0 for correct and incorrect responses was adopted.

3.7.6 Essay Question onJava Programming

Scores ranging from 0 to 5 were awarded for writing the correct codes. The maximum obtainable

score is fifty four (54)

3.8 Data Analysis Procedure

The data collected was analysed using the Statistical Package for Social Sciences (SPSS) version

17.0 and Linear Structural Relations (LISREL) version 8.80 (Jӧreskog & Sӧrbom, 2006). The

following statistical procedures were used: Mean, Standard Deviation, Pearson Product Moment

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

89

Correlation (PPMC) Coefficient (Research Questions 1 and 2) and Multilevel Analysisusing

LISREL 8.80 (Research Questions 3, 4, 5 and 6).

3.9 Methodological challenges

Below are some of the methodological challenges faced by the researcher in the course of this

study.

3.9.1.1 The challenge of the Availability of literature

One of the challenges faced by the researcher during the preparation of the proposal is the dearth

of empirical studies on the subject especially on studies carried out in Nigeria. After an extensive

search, the researcher was able to discover only one Nigeria scholar who conducted a research

that was not detailed on a small portion of the work. To solve this problem, the researcher was

compelled to rely majorly on foreign authors for the review of literature.

3.9.1.2 Challenges from Sampling Techniques

Java programming language was adjudged the best for the study because of its advantages over

other programming languages offered in the Nigerian Universities‟ computer curricula and its

relationship with the internet. The researcher at the time of survey of the programming languages

taught in the universities discovered that not all the universities have introduced Java

programming language into their curricula. Five (5) (4 federal and 1 state) of the public

Universities in South-West, Nigeria have Java in their curricula. Of the five (5), one of the

federal universities was used for the pilot study while 3 federal and 1 state universities were used

for the real study.

3.9.3 Instrumentation challenges

Generating multiple choice and essay questions in a programming language like Java that would

be answered by students from different universities posed a challenge. To overcome this, the

pool of questions adapted were taken to two of the universities (one state, one federal) situated in

different states. There, the computer science lecturers validated the content. Based on their

reactions to the pool of questions, sixty questions were generated and trial tested in one of the

federal universities. From the item analysis carried out based on item difficulty and

discrimination indices, the best 20 of the questions emerged for the real study.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

90

CHAPTER FOUR

RESULTS AND DISCUSSION

This chapter presents the results and discussion of the findings. The presentation follows the

order in which the research questions were presented in chapter one. The level of significance

was set at p <0.05.

Research Question One: What type of relationship exists among intrinsic factors (gender,

computer experience, computer ownership, Locus of control, background in C++, and numberof

programming courses taken before entering Java programming class), extrinsic factor (type of

institution)and computer undergraduates‟ Java programming self efficacy?

Table 4.1 presents the intercorrelation matrix of the correlation coefficients of the intrinsic

factors (gender, computer experience, computer ownership, Locus of control, background in

CPP, and numberof programming courses taken before entering Java programming class),

extrinsic factor (type of institution)and Java programming self efficacy.

Table 4.1: Inter correlation Matrix of Intrinsic and Extrinsic factors and Self efficacy

Var GD MB CE CO LOC BCPP NPCS INST JPSES

Gd 1.000

MB 0.091 1.000

CE 0.226* 0.232* 1.000

CO 0.009 -0.225* 0.024 1.000

LOC -0.011 0.111 0.084 -0.131* 1.000

BCPP 0.037 0.247 0.212* -0.160* -0.266* 1.000

NPCS 0.030 0.245 0.154* -0.181* 0.023 0.208* 1.000

INST 0.010 .481* .214* 0.260* 0.327* 0.628* 0.292* 1.000

JPSES 0.104 0.270* 0.468* -0.081 0.187* 0.350* 0.266* 0.431* 1.000

Mean 1.30 4.58 53.07 1.17 74.24 1.60 1.63 1.24 139.55

SD 0.46 2.40 14.98 0.38 20.97 0.49 1.05 0.26 44.15

Note: Gd = Gender; MB = Mathematics Bachground; CE = Computer Experience; CO =

Computer Ownership; LOC = Locus of Control; BCPP = Background in C++; NPCS = Number

of programming course; JPSES = Java programming Self Efficacy Scores; INS Institution-level

differences.. * p < .05

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

91

From Table 4.1, it can be observed that in some, the relationship is positive and statistically

significant at p < .05. For example, the relationship between Java programming self efficacy and

computer experience is high and statistically significant (r = 0.468, p < 0.05). This relationship

shows that as computer experience increases there is tendency for the undergraduate to have high

computer programming self efficacy.The Table also shows that in some, the relationship is

negative and also statistically significant. For example, the relationship betweennumber of

programming courses and computer ownership is negative and statistically significant (r = -

0.181, p < 0.05).Computer ownership was coded 1, while non-ownership was coded 2. This

means that there is a positive relationship which is very weak between ownership of computer

and number of computer programming courses offered. Generally the highest relationship is

between Java programmingself efficacy and computer experience (r = 0.468, p < 0.05), while the

lowest is between locus of control andbackground in C++ (r = - 0.266, p < 0.05). The main

criterion beingJava programming self efficacy, the Table shows that it has positive relationship

with mathematics background (r = 2.270, p < 0.05), computer experience r = 0.468, p < 0.05,

locus of control (r = 0.187, p < 0.05), background in C++ (r = 0.350, p < 0.05), and number of

programming courses (r = 0.266, p < 0.05). However, Java programming self efficacy has the

strongest relationship with computer experience.

Institution-level differences have significant relationships with mathematics background (r =

0.481, p < 0.05), computer ownership (r = 0.260, p < 0.05), background in C++ (r = 0.628, p <

0.05), Number of programming courses (r = 0.292, p < 0.05) computer experience (r = 0.214, p

< 0.05), locus of control (r = 0.327, p < 0.05) and Java programming self-efficacy (r = 0.431, p

< 0.05). Some of the relationships are weak, low and non-significant. For example, the

relationship between mathematics background and gender (r = 0.091, p < 0.05) and that between

Locus of control and computer experience (r = 0.084, p < 0.05) are both low and non-significant.

Discussion

Computer experience was found to have a positive and significant relationship with Java

programming self efficacy (r = 0.468, p < 0.05). Thisfinding is in agreement with the findings of

Koohang and Byrd (1987) as well as that of Taylor and Mounfield (1989). Jegede (2009a)

however found out that number of years of programming experience and Java programming self

efficacy were not significantly related.The inconsistency in the finding of this study and that of

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

92

Jegede (2009a) might have occured because of the differences in the measurement items and the

respondents. Jegede (2009a) used number of years of programmingas the measure for computer

experience; this study generated the measure of computer experience from the participants‟self

rating of their experience in ten areas of computing. Besides, Jegede‟s respondents were non

computer majors (Engineering students) while this study used computer majors. For a non –

computer major, longer years of programming experience may not be a good predictor of skill

acquisition or self confidence in programming. Where there is no consistency in computer usage,

years of computerusage might not be a good measure of computer experience. Also, consistency

in utilisation of computer should be better among computer majors compared to their non

computer major counterparts.

Another predictor that related positively and significantly with Java programming self efficacy is

background in C++ (r = 0.350, p < 0.05). The implication is that those that had experience with

CPP had higher self efficacy in their ability to write program using Java. This is expected as they

are both object-oriented. The approach is quite similar. There is every likelihood that experience

in C++ would boost their self efficacy in Java programming.

Mathematics background in this study was also found to have a relationship which is positive

and significant with Java programming self efficacy. This finding could be because mathematics

problem solving and programming require similar skills and ability to succeed. According to

Harkins (2008), problem solving strategies employed in a traditional college mathematics course

are essentially the same in a first course in computer programming.

Java programming self-efficacy was found to have very low and negative relationship with

computer ownership. Ownership of computer was coded 1 while non-ownership was coded 2.

The negative relationship therefore suggests that there is a positive relationship between

ownership of computer and Java programming self-efficacy. The low relationship however show

thatownership of computer does not necessarily affect Java programming self-efficacy of

computer undergraduates. The implication is that those that own computer might have been

occupied with carrying out activities other than Java programming on their computers.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

93

The relationship between number of programming courses and computer ownership is negative

and statistically significant (r = - 0.181, p < 0.05).Computer ownership was coded 1, while non-

ownership was coded 2. This means that there is a positive relationship which is very weak

between ownership of computer and number of computer programming courses offered. This

then means that the relationship between computer computer ownership and offering of

programming courses is very low.This might be explained by the poor achievement in computer

programming which could in turn be a source of discouragement towards further participation in

programming even when there is unrestricted accessibility to the computer.

The Institutional level differences was seen to relate positively and significantly with all the

independent variables (except gender) and Java programming self-efficacy. The implication of

this is that institution plays a very significant role in influencing undergraduates‟ intrinsic

variables (such as mathematics background, computer experience, computer ownership, locus of

control background in C++ and number of programming courses offered) and java programming

self-efficacy. The institutional based factors should therefore be given attention when

considering factors that could influence self-efficacy in Java programming.

Research Question Two: What type of relationship exist among intrinsic factors (gender,

computer experience, computer ownership, Locus of control, background in C++, and numberof

programming courses taken before entering Java programming class), extrinsic factor (type of

institution)and Java programming achievement?

Table 4.2 presents the intercorrelation matrix of the correlation coefficients of the intrinsic

factors (gender, computer experience, computer ownership, Locus of control, background in

C++, and numberof programming courses taken before entering Java programming class),

extrinsic factor (type of institution)and Java programming achievement.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

94

Table 4.2: Inter correlation Matrix of Intrinsic and Extrinsic factors and achievement

Var GD MB CE CO LOC BCPP NPCS INS JPAT

Gd 1.000

MB 0.091 1.000

CE 0.226* 0.232* 1.000

CO 0.009 -0.225* 0.024 1.000

LOC -0.011 0.111 0.084 -0.131* 1.000

BCPP 0.037 0.247 0.212* -0.160* -0.266* 1.000

NPCS 0.030 0.245 0.154* -0.181 0.023 0.208* 1.000

INS 0.010 0.481* 0.214* 0.260* 0.327* 0.628* 0.292* 1.000

JPAT 0.071 0.086 -0.023 -0.089 -0.046 -0.091 0.125* 0.058 1.000

Mean 1.30 4.58 53.07 1.17 74.24 1.60 1.63 1.24 21.10

SD 0.46 2.40 14.98 0.38 20.97 0.49 1.05 0.26 17.34

Note: Gd = Gender; MB = Mathematics Bachground; CE = Computer Experience; CO =

Computer Ownership; LOC = Locus of Control; BCPP = Background in C++; NPSS = Number

of programming course; JPAT = Java programmingAchievement; INS Institution-level

differences. * p < .05

From table 4.2, it can be observed that it is only the relationship between Java programming

achievement and number of programming courses that is positive and significant at p < 0.05;

others are not statistically significant. Institution-level differences are significant with

mathematics background, computer owneship, background in C++, Number of programming

courses before entering Java programming class, computer experience and locus of control. It is

not significant with gender and Java Programming achievement.

Discussion

The number of programming courses taken before entering the Java programming class has a

weak, positive relationship which is statistically significant with Java programming achievement.

This suggests that the computer undergraduates that took more courses in computer

programming tend to perform better in Java programming achievement testswhen compared to

their counterparts that took fewer courses in computer programming. This finding supports the

findings of Taylor and Mounfield (1989). According to them, prior experience in programming

provides a significant predictor of students‟ performance in programming courses. They

submitted that students‟success in computer programming is influenced significantly by their

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

95

exposure either at the high school or college level.There is therefore the probability that

computer undergraduates‟ exposure to variety of programming courses would enhance

performance in Java programming. This is expected as there are some similar skills and

procedures in the different programming languages. It is therefore reasonable to believe that

repeated exposures to different programming languages would enhance both the understanding

and performance in new programming languages to be learnt.

Research Question Three:How much of the total variance in Java programming self efficacy of

computer undergraduates is accounted for by institution-level and student-level differences?

To answer this research question, a multilevel analysis was conducted with ordinary least square

option of LISREL. The model used is known as null model in that only the intercept of

institution-level (macro level) was entered. That is the focus was on variance decomposition of

programming self efficacy on the basis of student-level differences (level 1) and institution-level

differences (level 2).

Statistically, the null modelling for variance decomposition of self efficacy is given by

Self efficacyij = β0 + u0i + eij

Where self efficacyij represents score “j” for student “i”; β0 represents the intercept of the fixed

part of the model anduoi represents the random variation in intercepts at level – 2 of the model

and eij denotes the random variation at level – 1 of the model.Table 4.3and 4.4 present the fixed

part of the model and random part of the model.

Table 4.3: Fixed Part of the Null Model for computer programming self efficacy

Co-efficients BETA-HAT STD.ERR Z – VALUE PROB MODEL-FIT

Intercept 13.21 2.96 4.67 .001 2107.10

The results in Table 4.3 indicates that the intercept of the fixed part ofthe model is 13.21 and it is

statistically significant at p< .05. The model fit statistics given by -2 log – likelihood = 2107.10,

p <.05 indicates that the null model adequately fit the data.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

96

Table 4.4: Random Part of the Null Model for computer programming self efficacy

LEVEL THAU – HAT STD.ERROR Z – VALUE PROB

LEVEL2

Intercept / intercept

22.39 21.36 1.04 0.294

LEVEL 1

Intercept / intercept

228.94 20.44 11.20 0.001

We estimate the total variance in Java programming Self efficacy byusing equation 4.1 below:

𝛷1

𝛷2+𝛷1
= Total Variance ...(4.1)

Where 𝛷2represent between group variability (Variance of level-2) and 𝛷1represent within

group variability (variance of level-1).

From table 4.4, 𝛷2 = 22.39 and 𝛷1 = 228.94

:. Total variance in Programming self efficacy =
𝛷1

𝛷2+𝛷1
..(4.2)

This is given as
228.94

22.39+228.94
 =
228.94

251.33
 = 0.91

Therefore the total variance in Java programming self efficacy accounted for by institution-

leveldifferences is 0.91. This result indicates that about 91.0% of the total variation in

programming self efficacy is explained by the differences ininstitution.

To obtain total variance accounted for by student-level differences (level 1) we use the formula.

Micro level differences for null model = 1 – Total variance at level 2

This gives

1 – 0.91 = 0.09

Therefore total variance accounted for by student-level differences is about 9.0%.

Discussion

The results of this study indicated that 91.0% of the total variation in programming self efficacy

was accounted for by institution–level differences. The remaining 9.0% was accounted for by the

student-level differences.Institutional – level differences contributed more to variation in

programming self efficacy in this study compared to student level contributions. It then follows

that institution – level differences play a significant role in determining the confidence computer

undergraduates have in their ability to program (otherwise called self efficacy in computer

programming).This claim could be supported by the finding of Gisemba (2011) in a study carried

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

97

out to determine the extent to which teacher self efficacy and students mathematics self efficacy

could enhance secondary school students‟ achievement.In that study, it was found that teachers

frequent use of mathematics homework and level of interest and enjoyment of mathematics as

well as their ability and competence in teaching mathematics played a key role in promoting

students mathematics self efficacy.

To boost students‟ self efficacy in computer programming, students should not only be the focus,

the institutions must also create an enabling environment that encourages and simplifies the

learning of Java programming.It is reasonable to think that teachers that are part of the system,

by using home work often, carrying out activities that would raise their level of interest and

making Java programming very interesting are likely to increase their self-efficacy level in Java

programming as revealed from the findings of Gisemba (2011).The learning environment for

Java programming also includes the laboratory. A laboratory equipped with computers that

contains the compilers of Java and that of other programming languages affords students access

to practice writing programs as well as opportunities to see others write programs. Seeing others

write correct programs (vicarious experiences) is a source of self efficacy. A good laboratory

equipped with compilers of programming languages including that of java where students have

access and also see others write programs becomes an enabling environment for the learning of

Java.

Research Question Four: How much of the total variance in Java programming achievement of

computer undergraduates is accounted for by institution-level and student-level differences?

To answer this research question, a multilevel analysis was conducted with ordinary least square

option of LISREL. The model used is known as null model in that only the intercept of

institution-level (macro level) was entered. That is the focus was on variance decomposition of

programming achievement on the basis of student-level differences (level 1) and institution-level

differences (level 2).

Statistically, the null modelling for variance decomposition of achievement is given by

achievementij = β0 + u0i + eij

Where achievementij represents score “j” for student “i”; β0 represents the intercept of the fixed

part of the model anduoi represents the random variation in intercepts at level – 2 of the model

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

98

and eij denotes the random variation at level – 1 of the model.Table 4.5and 4.6 present the fixed

part of the model and random part of the model.

Table 4.5: Fixed Part of theNull Model for computer programming achievement

Co-efficients BETA-HAT STD.ERR Z – VALUE PROB MODEL-FIT

Intercept 21.10 1.09 19.39 .001 69366.65

The results in Table 4.5 indicate that the intercept βoof fixed part of the null model is 21.10 and it

is statistically significant at p< .05. The model fit statistics given by -2 log – likelihood =

69366.65, p <.05 indicates that the null model adequately fit the data.

Table 4.6: Random Part of the Null Model for computer programming achievement

LEVEL THAU – HAT STD.ERROR Z – VALUE PROB

LEVEL2

Intercept / intercept

61.49 0.83 74.01 0.001

LEVEL 1

Intercept / intercept

273.67 0.09 3065.86 0.001

We estimate the total variance in Java programming achievement byusing equation 4.1 below:

𝛷1

𝛷2+𝛷1
 = Total Variance ...(4.1)

Where 𝛷2represent between group variability (Variance of level-2) and 𝛷1represent within

group variability (variance of level-1).

From table 4.6, 𝛷2 = 61.49 and 𝛷1 = 273.67

:. Total variance in Programming achievement =
𝛷1

𝛷2+𝛷1
..(4.2)

This is given as
273.67

61.49+273.67
 =

273.67

335.16
 = 0.82

Therefore the total variance in Java programming achievement accounted for by institution-

leveldifferences is 0.82. This result indicates that about 82.0% of the total variation in

programming achievement is explained by the differences ininstitution.

To obtain total variance accounted for by student-level differences (level 1) we use the formula:

Micro level differences for null model = 1 – Total variance at level 2

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

99

This gives

1 – 0.82 = 0.18

Therefore total variance accounted for by student-level differences is about 18.0%.

Discussion

The result indicated that 82.0% of the total variance in programming achievement is explained

by the differences in students‟institutions. The remaining 18.0% is accounted for by the student

level differences. Institutional – level differences contributed more to variation in programming

achievement compared to the contributions of student-level differences.Studies that employed

multilevel analysis of factors influencing students‟achievement in programming are very rare.

Specifically none was available to the researcher. However, there are several studies that were

conducted to answer the level of contribution of institutiional – differences to achievement in

mathematics. Research findings had consistently shown that mathematics ability is a good

predictor of performance in Computer programming (Byrne & Lyons, 2001; Wilson & Shrock,

2001). Besides Erdogan, Aydin, and Kabaca (2007) submitted that computing as a subject

requires a structure and appproach with which students have same experience and similar

cognitive skills used in the study of mathematics. Since there seems to be a dearth of literature

from studies on Computer programming, an attempt was therefore made to compare the results

of this study with the similar ones done with mathematics.

Proportion of variance in achievement due to institutional – differences varies from one place to

another. Park and Park (2006) found that in SouthKorea, about 4% of the total variance of

mathematics achievement was due to institutional – level factors. For south african students it

was 55% (Howie, 2006). Similarly for Australian students 27% and 47% formed the percentage

contributions of institutional – level differences in the Trends in mathematics and science study

(TIMSS) conducted in 1995 and 1999 respectively (Fullarton, 2004). In Singapore 45%,

Botswana 27%, Chiki 30% and Flenders 14% were the percentage contributions found (Chepete,

2008, Mohammadpour, Maradi & Najid, 2009; Ramirez, 2006; VandenBrock, VanDamme,

Opdenkker, 2006). Recently, a study carried out by Ghagar, Othman, MohammadPour (2011)

among eight graders in Malaysia indicated that 57.28% of the total variance in mathematics

achievement of eight graders in Malaysia was accounted for by institutional level differences.

Also Stemler (2001) studied school effectiveness in mathematics and science at the 4th grade,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

100

using data from International Educational Assessment (IEA‟s) TIMSS study. 14 countries were

included in the study. In general, about one – quarter (25%) of the variability in mathematics and

science achievement was found to lie between schools.

A key result from the findings of this study and the previous studies reviewed is that institutions

make a difference in students‟ achievements whether in mathematics or computer programming.

The level of influence however differs. Comparatively, the percentage influence of institution –

level differences in this study appears to be the highest when compared with the other studies in

mathematics. In some of the previous studies like the ones conducted in South-Africa (Howie,

2006), Australia (Fullarton, 2004), Singapore (Chepete, 2008) and Ghagar et al (2011); the

percentage influence were lower. The percentage influences of institution-level differences in

those studies ranged between 27% and 57.2% while the one from this study was 82.0%.

The possible explanation for this could be the style of curriculum implementation in the Nigerian

tertiary institutions including the institutions studied. In the Universities studied, lecturers only

have access to the synopsis of the courses. The detailed specifications of the topics and the extent

of coverage are not specified. The lecturer in charge is therefore left to use his discretion to

determine the deatils of the content to be covered as well as the style of instruction. Since

individuals are always unique in the way they do things, it is reasonable to think that the

opportunities available to the different groups of students in the various schools studied and their

experiences in the Java programming class differed. Differencesin the experiences could be the

cause of the institutional level differences discovered in the present study. Unlike in the present

study, the participants of the previous studies were Basic School students. At the Basic level of

education, curriculum given to the teachers are more detailed. The content of what to be taught

are well spelt out. Uniformity of content and general implementation of the curriculum is

relatively uniform at this level unlike at the tertiary level.

Research Question Five: How much of the student-level variance in Java programming self

efficacy of computer undergraduates is associated with gender, ownership of computer,

mathematics background, background in C++, computer experience, LOC and number of

programming courses taken before entering Java programming class.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

101

To answer this research question, a multilevel analysis was conducted with ordinary least square

option of LISREL. The model used is known as model 1in that explanatory variables of student-

level differences plus the intercept of institution-level (macro level) were entered. That is, the

focus was on linear growth model with random intercepts and their slopes

Statistically, the null modelling for variance decomposition of self-efficacyis given by

Self efficacyij = β0 +β1 X Gdij +u0i +uij XGdij+ +βnX NPCSij +u0i +uij XNPCSijeij

Where self efficacyij represents score “j” for student “i”; β0 represents the intercept of the fixed

part of the model anduoi represents the random variation in intercepts at level – 2 of the model

and eij denotes the random variation at level – 1 of the model,uij represents the random variation

in slopes for each of the intrinsic factors.Table 4.7and 4.8 present the fixed part of the model and

random part of the model.

Table 4.7: Fixed Part of the Linear Growth Model 1 of Intrinsic factors

 COEFFICIENTS BETA-HAT STD.ERR Z-VALUE PR > |Z|

Intcept 4.08 8.68 0.47 0.641

Gender 2.87 2.18 1.32 0.191

Owncomp 2.39 2.71 0.88 0.377

MBCGUNI 0.43 0.44 0.98 0.328

CPPBGD 3.31 2.19 1.52 0.130

NPGRMCS 1.15 0.59 1.96 0.050

COMPEXP -0.03 0.07``````-0.49 0.627

LOC -0.04 0.05-0.75 0.452

 DEVIANCE= -2*LOG (LIKELIHOOD) = 53228.78

 NUMBER OF FREE PARAMETERS = 45

Table 4.7 shows that out of the seven intrinsic factors considered, only number of programming

courses taken by the computer undergraduates significantly contributed to the prediction model

that is undergraduates self efficacy.Other intrinsic factors do not contribute significantly to the

prediction model 1

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

102

Table 4.8: Random Part of the Linear Growth Model 1 of Intrinsic Factor
LEVEL 2 TAU-HAT STD-ERR Z-VALUE PR >|Z|

Intercept/Intercept -111.46 1.83 -60.91 0.001

Gender/Intercept 24.19 0.94 25.65 0.001

Gender/Gender -15.75 0.90 -17.55 0.001

Npgrmcs/Intercept 10.77 0.91 11.79 0.001

Npgrmcs/Gender 0.86 0.61 1.41 0.160

Npgrmcs/ Npgrmcs -0.60 0.82 -0.73 0.465

Owncomputer/Intercept -14.35 0.97 -14.83 0.000

Owncomputer/Gender 11.88 0.67 17.61 0.000

Owncomputer/Npgrmcs -2.68 0.65 -4.13 0.001

Owncomputer/Owncomputer -6.64 1.00 -6.63 0.000

Mbcguni/Intercept 6.44 0.91 7.07 0.000

Mbcguni/Gender -0.64 0.61 -1.05 0.293

Mbcguni/Npgrmcs 0.75 0.58 1.29 0.198

Mbcguni/owncomputer -3.48 0.65 -5.36 0.000

Mbcguni/ Mbcguni -0.98 0.82 -1.19 0.233

Cppbgd/Intercept 62.88 0.99 63.35 0.000

Cppbgd/Gender -6.16 0.66 -9.33 0.000

Cppbgd/Npgrmcs 4.62 0.63 7.30 0.000

Cppbgd/owncomputer -20.88 0.71 -29.51 0.000

Cppbgd/Mbcguni 4.04 0.63 6.38 0.000

Cppbgd/Cppbgd -14.04 0.96 -14.56 0.000

Compexp/Intercept 0.34 0.91 0.37 0.710

Compexp/Gender -0.33 0.61 -0.54 0.590

Compexp/Npgrmcs -0.06 0.58 -0.11 0.912

Compexp/owncomputer 0.14 0.65 0.22 0.827

Compexp/Mbcguni -0.00 0.58 -0.00 0.998

Compexp/Cppbgd -0.05 0.63 -0.08 0.934

Compexp/Compexp -0.01 0.82 -.0.02 0.985

LOC/Intercept -0.47 0.91 -0.52 0.603

LOC/Gender 0.27 0.61 0.45 0.650

LOC/Npgrmcs -0.14 0.58 -0.24 0.814

LOC/owncomputer 0.73 0.63 1.13 0.258

LOC/Mbcguni -0.09 0.58 -0.15 0.883

LOC/Cppbgd -0.48 0.63 -0.76 0.445

LOC/Compexp 0.01 0.58 0.01 0.992

LOC/LOC 0.00 0.82 0.01 0.996

LEVEL 1 TAU-HAT STD.ERR. Z-VALUE PR > |Z|

intcept /intcept 226.77 0.09 2436.20 0.001

We estimate the student-level (intrinsic factors) variance in Java programming Self efficacy

byusing equation 4.1

𝛷1

𝛷2+𝛷1
 = Total Variance ...(4.1)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

103

Where 𝛷2represent between group variability (Variance of level-2) and 𝛷1represent within

group variability (variance of level-1).

From table 4.8, 𝛷2 = 2.15 and 𝛷1 = 226.77

:. Total variance in Programming self efficacy =
𝛷1

𝛷2+𝛷1
..(4.2)

This is given as
226.77

2.15+226.77
 =

226.77

228.92
 = 0.99

Therefore the total variance in Java programming self efficacy accounted for bystudent-

leveldifferences is 0.99. This result indicates that about 99.0% of the student-level variation in

programming self efficacy is explained by the differences in undergraduates‟ intrinsic factors.

However, it is the interaction of computer ownership with gender, number of programming

courses, mathematics background and background in C++; C++ with gender, number of

programming courses, and mathematics background that accounted for the observed variance.

The other individual explanatory factors such as computer experience, and locus of control as

well as their interactions do not significantly contribute to the observed variance in computer self

efficacy.

Discussion

The result from table 4.7 which is the fixed part of the Linear Growth Model 1 of Intrinsic

factorsshowed that only number of programming courses taken before Java class contributed

positively to variation in Java programming self efficacy. The result also showed that 99.0% of

the variance in Java Programming Self Efficacy across the institutions was accounted for jointly

by student-related factors (computer experiences, LOC, gender, mathematics background in C++

and number of programming courses offered before entering the Java class). The implication is

that students‟ background variables are forces to reckon with in the effort to improve Java

Programming Self Efficacy of Computer undergraduates in our various institutions.

Computer experience in this study did notcontribute significantly to the variation in Java

programming self efficacy. This finding agrees with that of Jegede (2009a) in a study carried out

among Engineering students in a South west Nigerian University. The finding however

contradicts that of Askar &Davenport (2009).In their study of factorsrelated to Java

programming self efficacy among engineering students in Turkey they found that the number of

years of computer experience had a significant linear contribution to Java programming self-

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

104

efficacy scores. Since the findings of this study agrees with the one of Jegede (2009) conducted

within the same region of Nigeria but contradicts that of Askar and Davenport (2009) carried out

in Turkey, it is reasonable to think that the location and the level of technological advancement

might be having a stronger influence on programming self efficacy than computer experience is

having.

Research Question Six:How much of the student-level variance in Java programming

achievement of computer undergraduates is associated with gender, ownership of computer,

mathematics background, background in C++, computer experience LOC and number of

programming courses taken before entering Java class.

To answer this research question a multilevel analysis was conducted with ordinary least square

option of LISREL. The model used is known as model 1in that explanatory variables of studen-

level differences plus the intercept of institution-level (macro level) were entered. That is the

focus was on linear growth model with random intercepts and their slopes

Statistically, the growth modelling for variance decomposition of achievement is given by

achievementij = β0 +β1 X Gdij +u0i +uij XGdij+ +βn X NPCSij +u0i +uij XNPCSij+ eij

Where achievementij represents score “j” for student “i”; β0 represents the intercept of the fixed

part of the model anduoi represents the random variation in intercepts at level – 2 of the model

and eij denotes the random variation at level – 1 of the model,uij represents the random variation

in slopes for each of the intrinsic factors.Table 4.9and 4.10 present the fixed part of the model

and random part of the model.

Table4.9: Fixed Part of the Linear Growth Model 1 of Intrinsic factors

COEFFICIENTS BETA-HAT STD.ERR Z-VALUE PR > |Z|

Intcept 7.26 9.68 0.75 0.451

 Gender 2.75 2.43 1.130.261

 Owncomp 2.33 3.02 0.77 0.440

 MBCGUNI 0.65 0.49 1.31 0.191

 CPPBGD 3.74 2.44 1.53 0.126

 NPGRMCS 1.21 0.65 1.84 0.065

 COMPEXP -0.020.08 -0.29 0.772

 LOC -0.03 0.05 -0.54 0.587

DEVIANCE= -2*LOG(LIKELIHOOD) = 64192.09
 NUMBER OF FREE PARAMETERS = 45

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

105

Table 4.9 shows that none of the seven intrinsic factors considered, significantly contributed to

the prediction model that is undergraduates programming achievement.

Table 4.10: Random Part of the Linear growth model 1 of Intrinsic Factors

LEVEL 2 TAU-HAT STD-ERR Z-VALUE PR >|Z|

Intercept/Intercept -82.65 1.83 -45.16 0.001

Gender/Intercept 23.30 0.94 24.71 0.001

Gender/Gender -16.64 0.90 -18.55 0.001

Npgrmcs/Intercept 17.03 0.97 -17.60 0.001

Npgrmcs/Gender 18.88 0.67 27.99 0.001

Npgrmcs/ Npgrmcs -8.67 1.00 -8.67 0.001

Owncomputer/Intercept 6.23 0.91 6.84 0.001

Owncomputer/Gender -0.85 0.61 -1.40 0.162

Owncomputer/Npgrmcs -2.34 0.65 -3.61 0.001

Owncomputer/Owncomputer -0.91 0.82 -1.10 0.270

Mbcguni/Intercept 73.86 0.99 74.42 0.001

Mbcguni/Gender -9.96 0.66 -15.08 0.001

Mbcguni/Npgrmcs -19.65 0.71 -27.77 0.001

Mbcguni/owncomputer 5.32 0.63 8.40 0.001

Mbcguni/ Mbcguni -17.95 0.96 -18.61 0.001

Cppbgd/Intercept 14.81 0.91 16.21 0.001

Cppbgd/Gender 0.35 0.61 0.58 0.563

Cppbgd/Npgrmcs -2.31 0.65 -3.28 0.001

Cppbgd/owncomputer 1.01 0.58 1.74 0.082

Cppbgd/Mbcguni 5.64 0.63 8.91 0.001

Cppbgd/Cppbgd -0.68 0.82 -0.83 0.408

Compexp/Intercept -0.17 0.91 -0.18 0.855

Compexp/Gender -0.34 0.61 -0.57 0.569

Compexp/Npgrmcs 0.21 0.65. 0.32 0.747

Compexp/owncomputer -0.04 0.58 -0.08 0.938

Compexp/Mbcguni -0.24 0.63 -0.39 0.699

Compexp/Cppbgd -0.13 0.58 -0.23 0.822

Compexp/Compexp -0.01 0.82 -0.01 0.990

LOC/Intercept -0.54 0.91 -0.59 0.553

LOC/Gender 0.40 0.61 0.66 0.509

LOC/Npgrmcs 0.73 0.65 1.13 0.257

LOC/owncomputer -0.09 0.58 -0.16 0.877

LOC/Mbcguni -0.49 0.63 -0.78 0.434

LOC/Cppbgd -0.15 0.58 -0.26 0.794

LOC/Compexp 0.01 0.58 0.02 0.958

LOC/LOC 0.00 0.82 0.00 0.998

-----LEVEL 1 TAU-HAT STD.ERR. Z-VALUE PR > |Z|

Intcept /Intcept 273.720.092940.54 0.001

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

106

We estimate the student-level (intrinsic factors) variance in Java programming achievement by

using equation 4.1

𝛷1

𝛷2+𝛷1
 = Total Variance ...(4.1)

Where 𝛷2represent between group variability (Variance of level-2) and 𝛷1represent within

group variability (variance of level-1).

From table 4.10, 𝛷2 = 182.60 and 𝛷1 = 273.72

:. Total variance in Programming achievement =
𝛷1

𝛷2+𝛷1
..(4.2)

This is given as
273.60

182.60+273.72
 =

273.72

456.32
 = 0.60

Therefore the total variance in Java programming achievement accounted for bystudent-

leveldifferences is 0.60. This result indicates that about 60.0% of the student-level variation in

programming achievement is explained by the differences in undergraduates‟ intrinsic factors.

However, it is the interaction of computer ownership with gender, number of programming

courses, and background in C++; background in C++with gender, number of programming

courses, and mathematics background accounted for the observed variance. The other individual

explanatory factors such as computer experience, and locus of control as well as their

interactions do not significantly contribute to the observed variance in computer programming

achievement.

Discussion

The result from table 4.9 which is the fixed part of the Linear Growth Model 1 of Intrinsic

factors showed that none of the intrinsic factors contributed significantly to the variance in

programming achievement. The result from table 4.10 however showed that the interaction of

computer ownership with gender, number of programming courses and background in C++;

background in C++ with gender, number of programming courses and mathematics background

accounted for the observed variance. The finding of this study contradicts the findings from the

studies of Byrne and Lyons (2001), Hagan and Markham (2000); Ramalingan, Labelle and

Wiedenbeck (2004); Wilson and Shrock (2002). In their various studies with different categories

of participants, they all found out that previous programming experience had a positive effect in

introductory programming courses.The contradiction between the findings of this work and the

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

107

previous works above might be because they all used students taken introductory courses in

computer programming which is not the case with the present study.

The result from table 4.8 showed that the combination of differences in students‟ gender, LOC,

mathematics background, computer ownership, background in C++, number of programming

courses taken before entering Java class and computer experiences contributed about 60% to the

total variation in programming achievement across the institutions.

The positive contribution of computer experience corroborates the findings of Byrne and Lyons

(2001), Hagan and Markham (2000); Ramalingan, Labelle and Wiedenbeck (2004); Wilson and

Shrock (2002). In their various studies with different categories of participants, they all found out

that previous programming experience had a positive effect in introductory programming

courses. It appears that there is a consistency in the finding that previous programming

experience impacts positively on performance of students at various levels in programming

examination.

LOC did not contribute positively to programming achievement. This result agrees with the

findings of Jegede (2009b). Jegede (2009b) found that programming achievement had no

significant relationship with the faith students have in their own lives (internality), the belief in

the irresistible power of others on their lives (powerful others) and the trust they place on chance

in determining their course in life (chance).However, Bishop-Clark (1995) and Chim and Zecker

(1985) opined that LOC could be used to explain variability in programming achievement.

Obviously, the claims of Bishop-Clark (1995) and Chin and Zecker (1985) were opposed to that

of Jegede (2009b) and this study.

This may be because of the following two reasons: (i). the Bishop-Clark (1995) and Chin and

Zecker (1985) merely expressed their opinions, their claims were not research findings but mere

opinions. This study and that of Jegede (2009b) were products of research findings; (ii). Bishop-

Clark (1995) and Chin and Zecker (1985) made their claims 17 years and 27 years ago

respectively. Jegede‟s (2009b) study and the present study are more recent. Given these two

reasons, the opposing views and claims are expected. Conclusively, LOC does not seem to

impact significantly on programming achievement.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

108

The findings of this study showed that mathematics background did not contributesignificantly to

programming achievement. There is a dearth of literature on the influence of mathematics

background and performance in programming. There are however researches on the influence of

mathematics ability on programming achievement. The finding of this study is opposed to that of

Wilson and Shrock (2002) and Byrme and Lyons (2001). The two studies showed a positive

relationship of performance in mathematics and computer programming. Interestingly, there had

been a kind of consensus that mathematics ability predicts performance in computer

programming. Erdagan, Aydin and Kabaca (2007) submits that computing as a subject requires a

structure and approach with which students have some experience and similar cognitive skill

used in the study of mathematics. Byrne and Lyons (2001) also opined that mathematics

aptitude should be a pre-requisite for acceptance into computer science programs. There is

therefore a contradiction between the findings of this study on the influence of mathematics

background on computer programming achievement and the previous studies on the influence of

mathematics ability on programming achievement. Mathematics background in this work was

measured by the number of mathematics courses the respondents had taken as at the time of the

study. This implies that the more mathematics courses taken the lower the performance in Java

programming.This trend might be explained by the fact that the types of mathematics courses

taught are not relevant to programming There is therefore the need to ensure that the curriculum

is revisited so that courses that are pre-requisites for good performance in computer

programming are available to the computer undergraduates and also properly handled by

experienced instructors.

The result also showed that 60% of the variance in programming achievement was accounted for

by student level differences. This is in agreement with the findings of Vanden Broeck, Van

Damme and Opdenakker (2005). The authors analysed the effects of student-teacher – and

school-level factors on students‟ achievement in Belgium. Two classes from each school were

selected; this made it possible to build three-level hierarchical model. As a national option, the

extended versions of student, teacher and school questionnaires were used. By means of null

model, it was found that almost 58% of the total variance in mathematics scores was situated at

the student level, 28% was due to differences between classes and 14% was due to differences

between schools. Infact, after adding student level factors to the model, some of the class and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

109

school level factors were no longer significant. The finding of this study which was also

corroborated by Van den Broeck, Van Damme and Opdenakker (2005) has implication. The

implication is that students‟ background variables are also forces to reckon with in the effort to

improve the general performance of Computer undergraduates in Computer programming in our

various institutions.

HypothesisOne: There is no significant difference, in the mean score of self-efficacy in Java

programming, between undergraduates in Federal and State Universities

To test the hypothesis, independent smple t-test was used.

Table 4.11: T-test comparison of Self-Efficacy in Java Programing,

BetweenUndergraduates in Federal and State Universities

Inst. Type N Mean S.D tcal Df p-value Remark

Federal 194 128.05 44.57 7.57 252 0.001* S

State 60 173.97 26.39

 S – Significant

Table 4.11 presents the t-test comparison of the scores ofself-efficacy in Java Programming,

between undergraduates in Federal and state universities. The t-test comparison showed a

statistically significant difference between the mean scores of self-efficacy in Java Programming,

between undergraduates in Federal and State Universities(Tcalculated = 7.57, df = 252, p <

0.05). We therefore reject the null hypothesis.Therefore there is a significant difference in the

mean score of self-efficacy in Java programming, between undergraduates in Federal and State

Universities.

Discussion

The result in table 4.11 showed a significant difference in the mean self-efficacy scores across

institution type; with the state Universities having higher mean scores. This finding is in

agreement with the finding of Gisemba (2011) in a study carried out to determine the extent to

which teacher self efficacyand students mathematics self efficacy could enhance secondary

school students‟ achievement. Teachers form part of the institution and hence coud be used to

explain institutional differences. In the study by Gisemba (2011), it was found that teachers

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

110

frequent use of mathematics homework and level of interest and enjoyment of mathematics as

well as their ability and competence in teaching mathematics played a key role in promoting

students mathematics self efficacy.To boost students‟ self efficacy in computer programming,

students should not only be the focus, the institutions must also create an enabling environment.

In this work the mean scoresin table 4.11 showed a higher mean self-efficacy score from the

undergraduates in state university. It therefore follows that the meanself-efficacy in Java

Programming of undergraduates in the state university(mean = 173.97, standard deviation =

26.39) is significantly higher than that oftheir counterparts in the Federal universities(mean =

128.05; standard deviation = 44.57). The mean self-efficacy score in the state-owned institution

could be explained by the fact that unlike in the federal Universities, the state Universities are

used to providing and doing things for themselves. Consequently ownership of computer which

is expected to be more in the state owned Universities might have affected their self-efficacy in

Java programming.

Hypothesis Two: There is no significant difference, in the mean score of achievement in Java

programing, between undergraduates in Federal and State Universities.

Table 4.12: T-test comparison of Achievement in Java Programing, Between

Undergraduates in Federal and State Universities.

Inst. Type N Mean S.D tcal df p-value Remark

Federal 194 20.54 18.72 8.67 252 0.250 N.S

State 60 22.92 11.78

 N.S – Not Significant

Table 4.12 presents the t-test comparison of the scores ofachievement in Java Programing,

between undergraduates in Federal and state universities. The t-test comparison showed a

difference which is not statistically significant between the mean scores of achievement in Java

Programing, between undergraduates in Federal and State Universities(Tcalculated = 8.67, df =

252, p > 0.05). We therefore accept the null hypothesis.Therefore there is no significant

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

111

difference, in the mean score of achievement in Java programing, between undergraduates in

Federal and State Universities.

Discussion

The result in table 4.12 showed a difference which is not statistically significant in the mean

achievement scores across institution type. Variance in achievement due to institutional –

differences varies from one place to another. Park and Park (2006) found that in SouthKorea,

about 4% of the total variance of mathematics achievement was due to institutional – level

factors. For south african students it was 55% (Howie, 2006). Similarly for Australian students

27% and 47% formed the percentage contributions of institutional – level differences in the

Trends in mathematics and science study (TIMSS) conducted in 1995 and 1999 respectively

(Fullarton, 2004). In Singapore 45%, Botswana 27%, Chiki 30% and Flenders 14% were the

percentage contributions found (Chepete, 2008, Mohammadpour, Maradi & Najid, 2009;

Ramirez, 2006; VandenBrock, VanDamme, Opdenkker, 2006). Recently, a study carried out by

Ghagar, Othman, MohammadPour (2011) among eight graders in Malaysia indicated that

57.28% of the total variance in mathematics achievement of eight graders in Malaysia was

accounted for by institutional level differences. Also Stemler (2001) studied school effectiveness

in mathematics and science at the 4th grade, using data from International Educational

Assessment (IEA‟s) TIMSS study. 14 countries were included in the study. In general, about one

– quarter (25%) of the variability in mathematics and science achievement was found to lie

between schools. In the present study however, state University had higher mean achievement

scores when compared with their federal University counterparts; although the difference is not

significant. The difference in the mean achievement in Java programming across institution type

as observed among the respondents of this study might also be explained by the fact that the state

Universities are used to providing and doing things for themselves. Consequently ownership of

computer which is expected to be more in the state owned Universities might have affected their

achievement in Java programming.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

112

CHAPTER FIVE

SUMMARY OF FINDINGS, IMPLICATIONS, RECOMMENDATIONS

AND CONCLUSION

This chapter presents the summary of findings discussed in chapter four and the educational

implications of the study. The recommendations, limitations of the study as well as suggestions

for further research are also presented .

5.1 Summary of Findings

Observation and research have shown that learning computer programmingis a problem to many

computer majors. By design, the computer curricula in various Universities are supposed to

produce graduates with positive self efficacy and skill in writing programs some of which are

also to take to software development as their future career. Due to the difficulty encountered in

learning programs at school, many of them graduate neither having the required competence in

programming nor even having confidence in their ability to program (self efficacy).

Consequently many of them do not take to programming and software development after

graduation.

Ironically, programmers are now much in demand in the information Technology industry

because of the increasing need of application software in the operations of medium and large

scale industries, schools, government establishments etc . Acquisition of skills and self efficacy

do not exist in isolation, they are influenced by some factors. Some of those factors are peculiar

to the students (intrinsic). The institution factor (extrinsic) is also germane. In this survey study,

intrinsic factors (computer experience, gender, mathematics background, computer ownership,

Locus of control, background in C++ and number of programming courses offered before

entering Java class) were measured and their relationship with computer undergraduates‟

achievement and self efficacy in Java programming language was investigated.

Because of the hierarchical nature of the data collected (the computeer undergraduates studied

are nested within their various institutions), a multilevel analysis study of the data was done to

ascertain the variation in dependent variables (Achievement and self efficacy in Java

programming) caused by the interaction of both the student related factors (intrinsic factors) and

their institutions (extrinsic factors).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

113

The major findings of this study are summarised below:

i. The Java programming self efficacy scores of the computer undergraduates was

found to be above average. Achievement in Java programming was however found to

be below average.

ii. The computer undergraduates took more of mathematics courses than programming

courses. Mathematics background related positively and significantly with Java

programming self efficacy. The same mathematics background correlated negatively

with Java programming achievement.

iii. Mathematics background, computer experience, Locus of control, Background in

C++ and Number of programming courses taken before entering the Java

programming class all had positive and significant relationships with Java

programming self efficacy.

iv. Number of programming courses taken before entering the Java programming class

and Java programming self efficacy both had a positive significant relationship with

Java programming achievement of computer undergraduates.

v. 91.0 percent of the total variance in programming self efficacy of the computer

undergraduates was accounted for by institution level differences. The remaining 9.0

percent was accounted for by the student – level differences.

vi. 82.0 percent of the total variance in Java programming achievement of the computer

undergraduates was explained in the study by the differences in their institutions. The

remaining 18.0 percent was accounted for by the student-level differences.

vii. The fixed part of the Linear growth Model 1 of Intrinsic factors showed only the

number of programming courses offered before entering Java programming class

contributed significantly to the variation in computer undergraduates‟ Java

programming self efficacy.

viii. The combination of differences in students‟computer experiences, gender, LOC,

mathematics background, computer ownership, background in C++ and number of

programming courses taken before entering Java programming class contributed

about 99% to the total variation in programming self efficacy.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

114

ix. The fixed part of the Linear growth Model 1 of Intrinsic factorsshowed that none of

the factors contributed significantly to the variance in Java programming achievement

of the computer undergraduates.

x. 60.0 percent of the variance in Java programming achievement were accounted for

jointly by the intrinsic factors (computer experiences, LOC, gender, mathematics

background, background in C++ and number of programming courses before entering

the Java class).

5.2 Implications And Recommendations

The findings of this study (on the multilevel analysis of intrinsic and extrinsic factors predicting

self efficacy and achievement in computer programming of computer undergraduates in South –

West Nigeria) have a number of useful implications and recommendation for stakeholders in

education and IT industries.

(i) The level of computer undergraduates‟confidence in their ability to write programs using

Java (self efficacy) was far higher than the competence displayed by them in the Java

programming achievement test (Achievement in Java programming test). Obviously, the

computer undergraduates were not exposed to enough exercises in programming. Since

practice make for perfection, it is therefore recommended that students are given enough

experiences to practice with, individually and in groups. Tutorial classes on programming

that will afford the students the opportunity to interact freely with their instructors should

also be organised in each of the programming courses at the departmental level. The

chapters of National Association of Computer Science Students (NACOSS) in each

university should also corroborate the efforts of the department in this regard. The

Nigeria computer society (NCS), the umbrella association of computer professionals

should organise seminars, workshops as well as competitions on programming principles

and practice. More programming courses should also be introduced at the secondary

school level.

(ii) The computer undergraduates that took more programming courses did better in Java

programming achievement. Also those with higher Java programming self effciacy did

better in Java programming achievement compared with their counterparrs with lower

Java programming self efficacy. Since programming forms the heart of computing and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

115

there is a dearth of programmers, computer undergraduates should be exposed to more

programming courses. Attempts should be made to increase computer

undergraduates‟programming self efficacy using the knowledge of the four sources of

self efficacy (mastery experiences, vicarious experiences, verbal persuasion and

psychological traits). For instance, since mastery experiences could boost self efficacy,

the test questions given at the initial stage should be relatively easy for the beginning

programmer. Also they should not be tested on what they have not been taught. If these

are put in place, they are likely to perform well in those inital tests. Good performance in

the initial tests would in turn build a robust sense of self efficacy in them which would in

turn increase their performance in programming. Opportunities should also be given to

them to watch their colleagues write programs. Seeing this will enhance their self-

efficacy that they could do it. This is what is called Vicarious Experiences in self-efficacy

theory. Besides, Verbal Persuasion in the class by their lecturers according to self-

efficacy theory would boost their sense of self-efficacy. Beyond facilitating in the

programming class, the lecturers also need to be trained to also ensure that the students

are in physical and emotional state that will enhance their self-efficacy in Java

programming. In summary, the Java programming lecturers need to be trained on how to

take advantage of the four sources of self-efficacy to enhance their students‟ self-efficacy

in the programming language of instruction. If the knowledge of sources of self-efficacy

is properly applied in the class; it is hoped that students‟ sense of self-efficacy would be

enhanced and consequently achievement would be positively affected.

(iii) Higher scores in the measurement of five of the student related variables (mathematics

background, computer experience, LOC, background in C++ and the number of

programming courses taken before entering the Java programming class) related with

higher scores in Java programming self efficacy. The implication of this findings is that,

to increase the level of confidence students have in their ability to program using Java,

the computer undergraduates should be made to take more mathematics and

programming (C++ language inclusive) courses before the Java programming class. They

should also be exposed to more computer algebra softwares instead of packages.

(iv) Mathematics background (signified by the number of mathematics courses taken by the

students) correlated positively and significantly with Java programming self efficacy. The

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

116

relationship between mathematics background and Java programming achievement is

however very low and also not significant at p < 0.05.The implication is that the more

mathematics courses they took, the higher their self efficacy in Java programming.

However, the number of mathematics courses they took did not significantly relate with

their achievement in Java programming. This research findings especially on the

relationship of mathematics background and Java programming achievement is in

contrast with many of the findings on the relationship of mathematics achievement and

Java programming achievement. Therefore, it is reasonable to conclude that taken many

mathematics courses without the necessary skills acquired may not significantly impact

on achievement in a mathematics related area like computer programming. It is therefore

recommended that some Computer Integrated Mathematics courses where some

computer topics are introduced into the curricula of those mathematics courses should be

introduced. Those courses could be given codes in the computer departments and taught

by computer lecturers.

(v) The joint contribution of the student-level factors (computer experiences, gender,

mathematics background, computer ownership, LOC, background in C++ and number of

programming courses taken before entering the Java programming class) was 9.0 percent.

However the institution type contributed 91.0 percent to the variation in computer

undergraduates self efficacy in Java programming. The implication is that the

contributions of institution-level (Level -2) variables far outweigh that of the student-

level (Level - 1). Therefore creating a good environment for learning programming is

germane.A conducive and enabling environment for effective learning and acquisition of

programming skills must not be neglected. Compilers of various computer languages as

well as other materials useful for learning programs should be installed in the computers

that are in the computer laboratories. Pair programming strategy should be employed in

the during instructions. Discussion groups should also be encouraged among the

computer undergraduates. The quality assurance unit of the Universities must also

monitor students‟attitude to learning and variables peculiar to them that could increase or

decrease achievement in programming.

(vi). As high as 60.0 percent of the variation in Java programming achievement across the

institutions were accounted for jointly by student – level (Level -1) variables.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

117

Studentsshould be part of the focus in intervention measures to be put in place in order to

increase students‟ self efficacy in programming. The notion that they are matured enough

and should be taught anyhow should be discarded.Beyond covering the course content, it

is recommended that lectures and instructors are mindful of these student-level variables

(Level -1) in this study. The findings of this study has shown that non-cognitivevariables

contribute meaningfully to Java programming achievement and self efficacy of computer

undergraduates. This finding therefore confirms the need for professionalism in teaching

at all levels of education (Universities inclusive). In order to stop producing graduates

that are neither competent nor confident in their ability to do what they are trained for,

those lecturing in the universities (at least in computer) should in addition to the

Knowledge of what they are teaching and the skills required to teach, be made to go

through some trainings in human psychology and necessary pedeagogiacl strategies.

(vii) The combination of differences in the intrinsic factors (computer experiences, gender,

mathematics background, computer ownership, LOC, background in C++ and number of

programming courses offered before entering Java programming class) contributed about

99 percent and 60.0 percent respectively to the variations in self efficacy and

achievement. The implication is that the factors peculiar to students together have very

high influence on the self efficacy and performance in Java programming. Again, beyond

creating an environment conducive for learning and monitoring how lecturers facilitate in

their classes. The authorities of the institutions would also need to provide counselling

services for those computer undergraduates on the personality factors in this study. The

information provided in the findings of this study should also be used regularly by course

advisors in guiding their students on choice of courses and their experiences on the

programme. Counselling units could design relevant instruments for them to fill. Based

on the data gathered and the subsequent findings, workshops, group and/or individual

counselling sessions could be organised for the students to address the challenges

discovered.

5.3 Conclusion

This study utilised the Multiple Linear Regression and Multilevel analysis using the Statistical

Package for Social Sciences (SPSS) and Linear Structural Relations (LISREL) software

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

118

packages respectively. The influence of some (student level variables) and institution-level

variable on both the Java programming self-efficacy and achievement of computer

undergraduates in Public Universities in South – West, Nigeria was examined.

The institution-level variable was seen to have some influence on students‟ self efficacy and

achievement in Java programming (91.0% and 82.0% respectively) of computer undergraduates.

The combination of student level variables (computer experiences, gender, LOC, mathematics

background, computer ownership, background in C++ and number of programming courses

taken before entering Java programming class) contributed as high as 99.0% and 60.0%

respectively to the variation in Java programming self efficacy and Java programming

achievement across the various institutions.

It is important that the computer undergraduates themselves, computer lecturers, the university

authorities and the monitoring agencies (such as the Nigeria Universities Commission, NUC as

well as the Federal and State ministries of education) utilise the research findings to improve

Java programming self efficacy and achievement in computer programming. All the

stakeholders highlighted above should therefore think seriously about implementing the various

suggestions proposed in this work. By so doing, to a great extent the difficulties encountered in

learning programming and low self efficacy may be overcome. This would in turn help the

various computer departments in our Universities to produce graduates who are not only

competent but have confidence in their ability to program. This would in turn solve the problem

of the dearth of programmers and software experts in our IT industry. This, if done would

eventually bring about the realisation of that vision of a Nigeria which is IT capable and self

reliant andalso a key player in the information society.

5.4 Limitations And Suggestions For Further Studies.

This study was limited to the South Western part of Nigeria. It was also limited to Federal and

State owned institutions. There is the need for a replication of the study in the other geo –

political zones of the country. A more elaborate study which will cover all the Universities in the

entire country could be undertaken. An attempt should also be made to include private

institutions in the study. This would afford the comparison across institution types.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

119

The multilevel analysis was limited to two – levels in this study. A more elaborate multilevel

research at three or more levels could also be done. For instance student – level, classroom –

level, institution – level variables could be considered simultaneously.

The findings of this study borders on computer majors in Public Universities in South – West,

Nigeria. It is suggested that similar studies be carried out in Polythecnics, Colleges of Education

and even Secondary schools. The study could also be carried out among computer non – majors

in the various tertiary institutions.

An experimental study on instructional strategies in computer programming aimed at

recommending the best instructional approach that could produce graduates that would be

interested in and competent to program will provide useful result.

Finally, this type of research should be an ongoing one repeated from time to time to see whether

the situation has improved.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

120

REFERENCES

Adams, C.M., & Forsyth, P. B. 2006. Proximate sources of collective teacher effciacy. Journal

of Educational Administration, 15, pp.625 - 642

Agarwal, R., Sambamurthy, V., and Stair, R. 2000.Research Report: The Evolving Relationship

between General and Specific Computer Self-Efficacy-An Empirical

Assessment.Information Systems Research, 11(4) pp. 418-430.

Aitkin M, Anderson D and Hinde, J. 1981. Statistical modelling of data on teaching styles (with

discussion). Journal of the Royal Statistical Society A (144), pp. 148 – 161

Akyuz, G., 2006.Teacher and Classroom characteristics: Their Relationship with Mathematics

Achievement in Turkey, European Union Countries and candidate countries. A thesis

submitted to the Graduate school of Natural and Applied Science of Middle East

Technical University in partial fulfillment of the requirements for the doctor of

Philosophy in secondary science and mathematics Education.

Amadi, M. 2010. Affective determinants of ESL success. Unpublished M.Ed project, department

of teacher education, University of Ibadan.

Aptech Limited 2005. Java Simplified -1. Aptech Limited. Mumbai.

Araromi, M 2010. Motivation, Verbal Ability, Attitude, Gender And Locus Of Control As

Predictors Of Academic Achievement In French. A seminar paper. In Fakeye D.O (2011).

Locus of Control as a correlate of Achievement in English Language as a second

language in Ibadan. The Journal of International Social Research; 4 (17), pp 546-552.

Askar, P. & Davenport, D. 2009. An investigation of factors related to self-efficacy for Java

Programming Among Engineering Students. Turkish Online Journal of Education

Technology 8(1)

Babbage, C. 1961.Charles Babbage and his Calculating Engines.In Morrison P.And Marrison E.

(Eds). New York: Dover.

Bandura, A. 1977a. Self efficacy: Towards a Unifying Theory of Behavioural Change.

 Psychological Review. 27(1), 13-15

_________1977b. Self Efficacy: Towards a Unifying Theory of behaviour. Psychological

Review, 84(2), 191-215. Retrieved from the World Wide

web:http//www.ncbi.nih.gov/pubmed/847064.

_________1986.Social foundation of thought and actions: A social cognitive theory. Englewood

cliffs, New Jersey: Prentice Hall.

_________ 1993. Perceived Self Efficacy in Cognitive Development and Functioning.

Educational Psychology. 28, 117-148

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

121

_________1994a. Perceived Self Efficacy in Cognitive Development and Functioning

(Electronic Version).Educational Psychologist 28(2), 117 – 148

_________1994b. Self eficacy.In V.S Ramachaudran (Ed.), Encyclopedia of human behaviour,

4, 71 – 81. New York: Academic Press. Retrieved from the World Wide Web,

http://des.emory.edu/mfp/BanEncy.html

_________ 1996. Assessing self-efficacy beliefs and academic outcome: The case for

 specific city and correspondence. A paper presented at the annual meeting of the

 American Educational Research Association, New York, NY.

________1997. Self – Efficacy: The exercise of self control. New Terk; W.H Freeman and

company.In Shaw N.E 2008.The Relationship between Perceived Parenting style,

Academic Self-Efficacy and College Adjustment of Freshman Engineering

Students.Master of Thesis. University of North Texas.

_________2006a. Adolescent Development from an Agentic Perspective.In F. Pajares and T.

Urdan (Eds.).Self Efficacy beliefs of Adolescents (pp. 1-43). Greenwich, Connecticut:

Information Age publishing.

_________ 2006b. Guide for Constructing Self Efficacy Scales. In F. Pajares & T. Urdan

(Eds.).Self Efficacy beliefs of Adolescents (pp. 307-337). Greenwich Connecticut:

Information Age publishing.

Beas, M.I & Salanova, M. 2006.Self-efficacy Beliefs, Computer Training and Psychological

Well-Being among Information and Communication Technology Workers.Computers in

Human Behavior, 22, 10431058. Impact Index JCR = 0.808

Begum, M. 2003.An Ontology for Teaching Programming. Association For Computer

Machinery 43, 69 – 182

Bergin, Thomas J. And Richard G. Gibson, (Eds) 1996.History of programming Languages-II.

New York: ACM Press.

Berkakatin (1995). Objects-oriented programming in C++ PHI 1995.

Berndt, T. J., & Keefe, K. 1992. Friends‟ influence on adolescents‟ perceptions

 BETA programming Language, Addison – Wesly/ ACM Press, 1993.

Bennedsen, J. And Caspersen M.E. (2006). Abstraction ability as an indicator of success for

learning object-oriented programming? SIGCSE Bull., 3812; 39-43 1138430.

Bishop-Clark, C. 1995.Cognitive Style Personality and Computer Programming.Computers in

Human Behavior, 11, 241-260

Bolan, S. (2000). Women in IT on decline .Computing Canada, 26 (22), 29

http://des.emory.edu/mfp/BanEncy.html

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

122

Bozionelos, N. 2001. Computer Experience: Relationship with Computer Experience and

Prevalence. Computers in Human Behaviour, 17, 213-224

Busch, T. 1995. Gender Differences in Self Efficacy and Attitudes towards Computers.Journal

of Educational Computing Research, 12, 147-158.

Byrne, P., & Lyons, G. 2001. The Effect of Student Attributes on Success in Programming.

ITiCSE: Proceedings of the 6
th

 Annual Conference on Innovation and Technology in

Computer Science Education. ACM Press, NY, 49-52

Carter ,P. 1997. An introduction to the Java programming language

www.cs.binghamton.edu/~guydosh/cs350/Javaprimer.pdf last accessed, November

7,2012, 5:05pm

Cassidy, S and Eachus, P. 2002. Developing the Computer User Self-Efficacy (CSUE) Scale:

 Investigating the Relationship between Computer Self-Efficacy, Gender and Experience

with Computers. Educational Computing Research, 26(2), 133-153.

Chepete, P. 2008. Modeling of the Factors Affecting Mathematics Achievement of Form 1

Students In Bostwana Based On The 2003 Trends In International Mathematics And

Science Study. Unpublished doctor of philosophy, Indiana University.Child Quarterly,

42, 39-48.

Chilson, I. M, Carey, J., and Hernandez. 2002. Information Technology Skills for a Pluralistic

Society: Is the playing field level? Journal of Research on Technology in Education 35:

38 – 79.

Chin, J.B and Zecker, S.G. 1985. Personality and Cognitive Factors Influencing Computer

Programming Performance. Paper Presented at the Annual Meeting of the Eastern

Psychological Association, Boston. March 21-24, 1985.

Chung, C. 1988. Correlates of problem solving in programming.The Chinese University

Educational Journal, 16(2), 185 – 190.

Clegg, S. Trayhura, D. (1999). Gender and computing: not the same old story, British

Educational Research Journal, 25, 5 pp 75-89

Cohoon J.M (2001). Towards improving female retention in the computer science

major.Communications of the ACM 44(5); 108-114.

Compeau, D.R. & Higgins, C.A. 1995. Computer Self-Efficacy: Development of a Measure

 and Initial Test. MIS Quarterly, 19 (2), 189-211Computer Studies 51, 71- 87

Czaja, S.J., Charness, N., Fisk, A.D., Hertzog, C., Nair, S.N., Rogers, W.A, et al 2006. Factors

Predicting the use of Technology: Findings from the Center for Research and Education

on Aging and Technology Enhancement. Psychology and Aging 21(2), 333-352

Debacker, T.K and Nelson, R.M (2000). Motivation to learn science: Differences related to

gender, classtype and ability. Journal of Education Research, 93(4), 245-255.

http://www.cs.binghamton.edu/~guydosh/cs350/Javaprimer.pdf

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

123

Downey, J.P., & McMurtrey, M. (2009). Introducing task – based general computer self-

efficacy: An empirical comparison of three general self-efficacy instruments. Interacting

with computers19, 382-396

Doyle E., Stamouli, I., & Huggard. M. 2005. Computer Anxiety, Self – efficacy, Computer

Experience: An Investigation through a Computer Science Degree. A Paper Presented at

the 35
th

 ASEE / IEEE Frontiers in Education Conference, Indiana Polis, IN.

Durndell, A., Hagg, Z., & Laithwaite, H. 2000. Computer self-efficacy and gender: A cross

 Cultural study of Scotland and Romania.Personality and Individual Differences.

28, 1037 – 1044

Emeke E.A., Adeoye, H.A., & Torubeli, V.A. 2006. Locus of Control, Self Concept and

Emotional Intelligence as Correlates of Academic Achievement among Adolescents in

Senior Secondary Schools in Oyo State. Nigerian Journal of Clinical and Counselling

 Psychology 12 (2), 122-137.

Emeke E.A., & Yoloye, T.W., 2000. An Investigation into the effect of Locus of Control on the

Adjustment of Foreign Students at University of Ibadan, Ibadan, Nigeria. African Journal

 of Cross Cultural Psychology and Sport Facilitation Volume 2 pp 31-35.

Erdogan, Y., Aydin, E., Kabaca, T. 2007. Exploring the psycholgical predictors of programming

achievement, Journal of Instructional Psychology, September. 2008

Ertmer, P.A., Evenbech, E., Cennamo, K.S., & Lehman, J.D. 1994. Enhancing self-efficacy for

computer technologies through the use of positive classroom experience 42(3), 45 – 62.

Fakeye D.O. 2011.Locus of Control as a Correlate of Achievement in English as a Second

Language in Ibadan.The Journal of International Research 4(17), 546 – 552.

Fergusson A.D. 2000.A history of computer programming

Languages.www.csbrown.edu/~adf/prgramming_languages.html. Last

Accessed:November 7,2012, 5:05pm.

Fowler, L., Campbell, V., McGill, D. & Roy G. 2002. An Innovative Approach to Teaching First

year programming supported by learning style investigation. Paper presented at the

Australasian Association for Engineering Education, Melbourne.

Fullarton, S. 2004. Closing the gaps between schools, accounting for variation in mathematics

achievement in Australian schools using TIMSS 95 and TIMSS 1999. Paper presented at

the The 1
st
 IEA International Research Conference, IRC – 2004.

Garland, K.J and Noyes, J.M (2004). Computer experience: a poor predictor of computer

attitudes, computers in Human behaviour 20(6) pp 823-840

http://www.csbrown.edu/~adf/prgramming_languages.html

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

124

Ghagar, M.N.A, Othman, R., & Mohammedpour 2011. Multilevel Analysis of Achievement in

mathematics of Malaysian and Singaporean students. Journal of educational psychology

and counseling vol 2, pp 285 – 304.

Gisemba, B.J. 2011. The role of teacher characteristics and practice on upper secondary school

students‟ mathematics self efficacy in Nyanza Pronvice of Kenya: a multilevel analysis.

International Journal of science and mathematics education 9(4), 817 – 842.

Glanz, K; Rimer, B.K & Lenis, F.M 2002.Health Behaviour and Health Education. Theory,

Research and Practice. Sam Fracid: Wiley and Sons, Pp 14,17.

Goddard, R. D., Tschannen – Moran, M., & Hoy, W.K. 2001. A Multi – Level Examination of

the distribution and effects of teacher trust in students and parents in urban elementary

schools. The Elementary School Journal, 102, Pp 3 – 17.

Grant, D.M, Malloy, A.D. and Murphy, M.C 2009. A Comparison of Student Perceptions of

 their Computer Skills to their actual abilities. Journal of Information Technology

 Education. 8, 141-160.

Guzdial, M & Soloway, E. 2002. Log on Education: Teaching the Nintendo Generation to

 Program.Communication of the ACM, 45(4), 17-21.

Hagan, D & Markham, S. 2000. Does it help to have some Programming Experience before

 beginning a Computer Degree program? Proceedings of the 5
th

 Annual

 SIGCSE/SIGCUE ITiCSE Conference on Innovation and Technology in Computer

 Science Education, ACM, NY, 25-28

Harkins, R.J. 2008. The design and implementation of a first course in computer

 programming for computing majors, non-majors and industry professionals within a

 liberaleducation frame work. Information system Educational Journal 6(60).

Harrison, A.W and Rainer, K. 1992. The Influence of Individual Differences on Skill in End

user Computing. Journal of Management Information Systems, 9(1), 93-111.

Hasan, B. 2003. The Influence of Specific Computer Experiences on Computer Self Efficacy

 Beliefs. Computers in Human Behaviours 19, 443-450.

Hill, T., Smith, N.D. & Mann, M.F. 1987. Role of efficacy expectations in predicting the

decision to use advanced technologies: Case of computers. Journal of Applied Psychology,

72(2), 307 – 313.

Hoskey.A.,& Maurino. P.S.A. 2010. Beyond Introductory Programming: Success factors for

Advanced Programming. Proceedings of the Information System Educators Conference

Nashville Tennesse, USA.

Houle, C. 1996. The Design of Education 2nd ed. San Francisco: Jossey-Bass, 173-235.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

125

Howie, S. 2003. Languages and other background factors affecting secondary pupils‟

performance in Mathematics in South Africa.African Journal of Research in SMT

Education,7, 1-20

________ 2006. Multi- level Factors Affecting the performance of South African Pupils in

Mathematics. In S. Howie & T. Plomp (Eds.), Contexts of Learning Mathematics and

Science (157 - 176): Routledge.

Hox, J.J. 2002.Multileve analysis techniques and applications. Mahwah, NJ: Lawrence Erlbaum

Associates, Inc.

Hoxmeier, J.A, Nie, W. and Purvis, G.T. 2000.The Impact of Gender and Experience on User

Confidence in Electronic Mail.Journal of End user Computing. 12(4), 11-20.

Hsiao, H.C., Lin Y.R. and Tu, Y.L. 2010.Gender Differences in Computer Experience and

 Computer Self-Efficacy among High School Teachers. A paper Presented

 at the Second Asian Conference on Education, Saka, Japan.

Jegede P.O.2007. Factors in computer Self-Efficacy among South-Western Nigeria College of

 Education.Teachers Journal of Psychology in Africa 17(1).

_________2009a . Predictors of Java Programming self-Efficacy among engineering

 students in Nigeria University. International Journal of Computer Science and

 information security (IJCSIS), available at http:/site.google.com/site/ijcsis/.

__________ 2009b.Locus of Control and Computer Programming skills acquisitioin among

engineering students in a Nigeria university.Proceedings of 8th Internet Education

Conference, Cairo, Egypt

_________ 2009c. A study of computer programming preparation of Engineering

undergraduates in a Nigerian University. A Paper presented at the 1st National

Conference of the Faculty of Technology, Obafemi Awolowo University, Ile-Ife, Nigeria,

Volume 1

.

Jenkins, T 2001.The Motivation of Students of Programming. A Thesis Submitted to the

 University of Kont at Canterbury in the Subject of Computer Science for the degree of

 Master of Science. 1- 5

Joe, V.C. 1971, “Review of the Internet-External Control Construct as a Personality Variable,”

Psychological Reports, 28, 619-640.

Junge, M.E., & Dretze, B.J. 1995. Mathematical self efficacy gender differences in

 gifted/talented adolescents. Gifted child quarterly, 39, 22-28.

Karsten, R., and Roth, R.M. 1998. Computer Self Efficacy: A Practical Indicator of Student

 Computer Competency in Introductory Information System Courses. Information

 Science, 1(3), 61-68.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

126

Kay, R. H. 1989. A Practical and Theoretical Approach to Assessing Computer Attitudes: The

Computer Attitude Measure (CAM). Journal of Research on Computing in Education,

21, 457-463.

Keeves, J. P., & Sellin, N. 1990.Some problems of analysis.InternationalJournalof Educational

Research, 14, 219- 224.

Kenney – Benson, G.A.,Pomerantz, E.M., Ryhan, A.M., & Patrick .H. 2006. Sex differences in

Math performance: The role of children‟s approach to school work.

 Developmental Psychology, 42, 11-26.

Knuth D.E & Pardo L.T. 1976.The Early Development of Programming.Computer Science

Department, school of Humanities and sciences.Stanford University.

_________ 1976: Ancient Babylonian algorithms, Comme.ACM 15 (1976) 671-677. Encarta in

com.ACM19 (1976)108

Koohang & Byrd, D. M. 1987.. A study of Attitudes Towards the Usefulness of the Library

Computer System and selected Varaibles: A further study. Library and Infromation

Science Research 9 (2): 105 – 111.

Kreft, I, G, G., & Deleeuw, J. (1998). Introducing multilevel modelling.Sage publications

Lefcourt, H.M.1972, Recent Developments in the study of Locus of Control.In B.A. Maher

(Ed.), Progress in Experimental Personality Research, Volume 4. New York:

Academic Press.

___________1992. Durability and Impact of the Locus of Control Construct, Psychological

Bulletin, 112 (November), 411-414.

Levenson, H. 1974. “Activism and Powerful others: Distinctions within the concept of Internal-

External Control”. Journal of personality Assessment, 38, 377-383.

Lin, M.C. 1985. Gender Equity in Computer Learning Environments.Computers and the Social

Sciences, 19-27

Mancy, R &Reid, N. 2004. Aspects of Cognitive Style and Programming. A paper presented at

the 16th Workshop of the Psychology of Programming Internet Group, Carlow, Island.

Mannila, L., & De Raadt M. (2006). An objective comparison of languages for teaching

introductory programming. Proceedings of the 6th Baltic Sea conference on computing

research pg 32-37.

Mannila, L., Peltoma Ki, M., and Salakoshi, T (2006). What about a simple language? Analysing

the difficulties in learning to program. Computer Science Education 16(3), 2006, 211-228

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

127

Marakas, G.M, Yi, M.Y., and Johnson, R. 1998. The Multilevel and Multifaceted Character

 of Computer Self Efficacy: Toward a Clarification of the Construct and an Integrative

 Framework for Research. Information Systems Research, 9(2), 126-163.

McGraw – Hill. The history and Evolution of Java.Downloaded from www.books.mcgraw-

hill.com.

McKinney, S & Denton L.F (2004). Houston, we have a problem: there is a leak in the CSI

affective oxygen tank. Proceedings of the 35th SIGCSE Technical Symposium on

Computer Science Education. ACM Press, NY, 236-239.

McNamarah, S. & Pyne, R. 2004. Teaching a first level programming course: strategies for

improving students performance, Journal of Art science and technology, 1.,pp 42 – 49

Meece, J.L., Ghenke, B.B., & Burg. S. 2006. Gender and Motivation. Journal of School

Psychology, 44, 351 – 373.BETA programming Language, Addison – Wesly/ ACM

Press, 1993.

Metz, S.S. (2007). Attracting the engineering of 2020 today. In R. Burke & M.Matlis (Eds.),

Women and minorities in science, technology, engineering and mathematics: upping the

numbers pp 184-209. Northampton, M.A: Edward Elgar Publishing.

Mohammadpour, I., Moradi, G.F., & Naijib Abdul Ghafar, M. 2009. Modeling affecting factors

on mathematics performance for Singapore eight – grades students based on TIMSS

2007. Paper presented at the proceedings of 2009 International Conference on Social

Science and Humanities (ICSSH 2009). Singapore.

Momanyi J.M., Ogoma S.O., Misigo B.L (2010). Gender differences in self-efficacy and

academic performance in science subjects among secondary school students in Lugari

district.

Myloy, L.P. & J.K. Burton 1988. The Relationship of computer Programming and

Mathematics in secondary students. Computers in the schools; 4(3/4): pp 159-166.

Nhundu T.J. 1994. Facet and overall satisfaction with teaching and employment conditions of

teachers in Zimbabwe. Zimbabwe Journal of Educational Research, 6: 152-194

Norwawi, N.M., Hibadullah, C.F., and Osman, J. 2005. “Factors Affecting Performance in

Introductory programming”. [CDROM]. In Proceedings of the International Conference

on Qualitative Sciences and Its Applications (ICOQSIA)

Nezlek, J.B. (2001). Multilevel random coefficient analyses of event and interval contigent data

in social and personality psychology research. Personality and Social Psychology

Bulletin, 27, 771-785.

__________(2007). Multilevel modelling in research on personality. In R.Robins, R.C, Fraley, &

R. Krueger (Eds.) Handbook of research methods in personality psychology (pp. 502-

523) New York: Guilford.

http://www.books.mcgraw-hill.com/
http://www.books.mcgraw-hill.com/

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

128

__________2008. An Introductory to Multilevel Modelling for Social and Personality

psychology..Social and Personality Psycholofy Compass2 (2) pp 842 – 860.

Nourbachsh, I., Hammer, E., Crowley, K., and Wilkinson, k (2004). Formal measures of learning

in a secondary school mobiterobotics contest. In JEEE international conference on

robotics and automation (ICRA)

Ogunkola, B.J. 2008. Computer Attitude, Ownership and use as predictors of computer Literacy

of science Teachers in Nigeria.International Journal of Environmental & Science

Education, Australia pp 53 – 57. (in press)

Pajares, F. 1997. Current directions in self efficacy research.In H.W Marsh, R.G. Graven & D.M

Mclnerney (Eds). International Advances in Self research (pp 1 - 49). Greenwich,

Connecticuit: Information Age Publishing.

Park.C.,& Park. D. 2006. Factors Affecting Korean Students‟ Achievement in TIMSS 1999. In

S. Howie & T. plomp (Eds.), Contexts of Learning Mathematics and Science: Routledge.

 Parsimonions measure. Humanfactors,32, 477 – 491.

Parker, K.R., Chao, J.T., Ohaway, T.A., and Chang, J. (2006). A formal programming language

selection process for introducing courses. Journal of Information Technology Education,

(5), pp. 133-151.

Peyton – Jones, S., Blackwell, A. Burnett, M. A 2003 user – centered approach to functions in

Excel.Proceedings of the 8th ACM SIGPLAN international conference on functional

programming, (Uppsula, Sweden, August 25 – 29, 2003), ACM, NY, 165 – 176.

Pintrich , P.R, and De Groot, E.V 1990. Motivational and Self regulated learning components of

classroom academic performance. Journal of Educational Psychology, 82 (1), 33-40

Pioro B.T 2004.Performance in an Introductory Computer Programming Course as a

 Predictor of future Success for Engineering and Computer Science majors. A Paper

 delivered at the International Conference on Engineering Education at Gaines-Ville,

 Florida October 16-21, 2004.

Potosky D. 2002 A Field study of Computer Efficacy beliefs as an Outcome of Training: the

 Role of Computer Playfulness, Computer Knowledge, and Performance during

 Training. Computers in Human Behaviour, 18, 241-255

Ramalingam, V. and Wiedenbeck, S. 1998 Development and Validation of Scores on a

Computer Programming Self-efficacy Scale and Group Analysis of Novice Programmer

Self-efficacy. Journal of Educational Computing Research, Vol. 19 (4), .37-386.

______________ LaBelle, D. and Wiedenbeck, S 2004.Self efficacy and Mental Models in

Learning to Program. The 9
th

 annual SIGCSE Conference on Innovation and Technology

in Computer Science, Leeds, United Kingdom, pp 171 – 175.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

129

Ramirez, M. J. 2006. Factors Related to Mathematics Achievement in Chile. In S. Howie & T.

plomp (Eds.), Contexts of learning Mathematics and science: Routledge.

Randell B(1973). The origins of Digital Computers.Selected papers. Berlin: Springer.

Raudenbush, S.W., and Bryk, A.S 2002. Hierarchical Linear models: Applications and data

analysis methods. Thousand Oaks, CA: Sage.

Rice, N 2001.Binomial Regression. In Leyland AH, Goldstein H (eds) multilevel modelling of

Health Statistics. Wiley, Chichester, Pp 27 – 44.

Robins A, J. Rountree & N. Rountree 2003. Learning and Teaching programming: A review

 and Discussion. Computer Science Education 13(2), Pp. 137-172.

Rosson, M.B., Ballin, J., and Nash, H. 2004 Everyday programming: challenges and

opportunities for informal web development. Proceedings of the IEE symposia on Visual

Languages and Human – Centric Computing, (Rome, Italy, September 26 – 29, 2004),

IEEE Press, , 123 – 130.

Rothermel, G., Burnett, M., Li, L., Dupuis, C., and Sheretov, A. 2001.A methodology for testing

spreadsheets.ACM Transactions on Software Engineering and Methodology, 10, 1, 110 –

147

Rotter, J. B. 1966, “Generalized Expectancies for Internal Versus External Control of

 Reinforcement,” Psychological Monographs, 80, (1, whole no. 609)

____________1990, “Internal Versus External Control of Reinforcement: A case History of a

Variable,” American Psychologist, 45 (April), 489-493

Rural Education Action Project (REAP). (2010). Ownership, Access and Use of computers,

information Technology and other e-technologies by students in suburban Beijing

schools.Standford University and Chinese Academy of Sciences.

Salamon, G. & Perkins, D. N. 1987. Transfer of cognitive skills from programming: When and

how? Journal of Educational Computing Research, 3(2), 149-169.

Sammet J.E 1972. Programming Languages: History and Future.Association for computing

machinery, inc.Scale and the Impact of Computer Training.Educational and

Psychological Measurement, 54(3): 813-821

Scharzer, R 2004.“General Perceived Self Efficacy in 14 Cultures” user page fu-

berlin.de/health/selfscal.htm.

Schildt, H (1995). C++ the complete Reference III edition, TMH (TATA McGraw Hill)

Schonberg, E and Drivar, R. (2008). A principled approach to software engineering Education or

 Java considered harmful. Ada User journal, 29)(3).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

130

Schunk, D.H., & Lilly, M.W. (1984). Sex differences in self efficacy and attributions:

Schunk, D.H., & Meece J. L. 2006.Self efficacy development in adolescence.In F. Pajares, & T.

Urban (Eds).Self efficacy beliefs of adolescents (pp 71 - 96). Greenwich, connecticuit:

Information Age Publishing.

Schwenkglenks, M.M., 2007. Multilevel modelling in the analysis of observational datasets in

the health care setting.Inagural dissertation zur Erlangung der Wirde eines Doktors der

Philosophie Vorgelegt der Philosophis – National wissenschaftlichen Fakultat der

Universitat Basesscience.New York Prentice hall.

Shukur, Z., Alias, M., Hanawi, S.A and Arshad, A (2003). “Faktor-faktor Kegagalan: Pandangan

pelajar Yang mengulang Kursus Pengaturcaraan C”, Paper presented in Bengkel Sains

Pengaturcaran (ATUR03). Kuala Lumpur.

Siegle, D., & Reis, S.M. 1998. Gender differences in teacher and students‟ ability. Gifted

Skinner, Ellen A. 1996. “A Guide to Constructs of Control,” Journal of Personality and Social

Psychology, 71, 549-570.

Soloway, E. & Ehrlich,1993. Should we teach students to program? Communications of the

ACM, 36(10), 21-24.

Stappleton, L.M., 2006. Using multi – level structural equation modelling techniques with

complex sample data (Pp 345 - 383). In G.R Hancock & R.O. Mueller (Eds)., Structural

Equation modelling : A secnd course. Charlotte N.C: Information Age Publishing

.

Stemler, S.E 2001. Examining School Effectiveness at the Fourth Grade: A Hierarchical

Analysis of the Third International Mathematics and Science Study (TIMSS).

Dissertation Abstracts International 62(03A), P. 919.

Stronstrup .B 1979, Bjarne Stoustrup:An intermodule communication system for a distributed

computer system. Proc..1st Int‟l Conf.On distributed computing system. October 1979.

pp412-418.

___________1980a, Bjarne Stoustrup: Classes: An abstract Data Type Facility for the C

Language. Bell Laboratories Computer Science Technical Report CSTR-84. April 1980.

Also Sigplan Notice January, 1982.

___________1980b, Bjarne Stoustrup:A set C Class for Co-routine Style Programming. Bell

Laboratories Computer Science Technical Report CSTR-90. November 1980.

___________1982, Bjarne Stoustrup}:Adding Classes to C: An Exercise in Language Evolution.

Bell Laboratories Computer Science internal document. April 1982.

____________1984a, Bjarne Stoustrup: The C++ Reference Manual. AT &T Bell Laboratories

Computer Science Technical Report No.108 January 1984. (Written in the summer of

1984).Revised version November 1984.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

131

___________1991, Bjarne Stoustrup: The C++ Programming Language (2nd edition). Ndison

Wesley. 1991. ISBN 0-201-53992-6s

___________1995. A history of C++: 1979 – 1991.AT&T Bell Laboratories.Murray Hill, New

Jersey 07974 www.stroustrup.com/hopl2.pdf. Last accessed November 7, 2012,

5:05pm

Stubbs, M 2001. Words and phrases: Corpus studies on Lexical semantics, Oxford: Blackwell

Publishers Limited.

Sullivan A and Bers M.U (2012). Gender difference in Kindergarteners‟robotics and

programming achievement. Internationale Journal Technology Des Educ.Springer.

Taylor, H. & Mounfield, L. 1989.Exploration of the Relationship between Prior Computing

Experience and Gender on Success in College Computer Science.Journal of Educational

Computing Research, 11(4), 291-306

Terwilliger, J.S., & Titus, J.C. 1995. Gender differences in attitudes and attitude changes,

The 35
th

 SIGCSE technical symposium on computer science education, Norfolk.

Torkzadeh, G., & Koufterous, X. 1994. Factorial Validity of a Computer Self Efficacy

 Scale and the Impact of Computer Training.Educational and Psychological

 Measurement, 54(3): 813-821

Van den Broeck, A., Van Danme, J., & Opdenakker, M. C. 2006.The effects of student, Class

and School Characteristics on TIMSS 1999 Mathematics Achievement in Flanders. In S.

Howie & T. plomp (Eds.), Contexts of learning Mathematics and Science: Routledge.

Van der Westhuizen P.C & Du Toit S.C. 1994. Werksbevrediging by die swart onderwysers.

South African Journal of Education, 14: 145-149

Van Dyke, C. (May 1987). Taking “Computer Literacy” literally. Communications of the ACM,

 30(5), 366 – 374.

Vekiri, I., and Chronaki, A. (2008). Gender issues in Technology use: Perceived Social Support,

computer self efficacy and value beliefs, and computer use beyond school. Computers

and Education, 51(3), 1392 – 1404.

Verkeyn, A 2005. History of Programming Languages.Last Accessed: November 7, 2012,

5:05pmVirginia, USA: ACM Press.

Wahab, M.H.A, Farhan, m.m.m., Norwawi, N.M., Hibadullahi, C.F., Zaiyadi M.F. 2010.An

investigation into influence factor of student programming Grade using Association Rule

Mining. Advanced in information sciences and service sciences. Vol 2 No 2, Pp 19 – 27

http://www.stroustrup.com/hopl2.pdf

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

132

Walkey, F.H. 1979. “Internal Control, Powerful others, and chance: A Confirmation of

Levenson‟s Factor Structure,” Journal of Personality Assessment, 43(5), 532-535.

Wang, C. And Bird, J.J 2011. Selecting statistical procedures for multi – level Data: examinig

relationship between principal authenticity and teacher trinst and Engagement. A brief

report services of the centre for Educational measurement and Evaluation. Department of

Educational Leadership, UNC Charlotte.

Wexelblat, Richard L., 1981(ed.) History of programmiing Languages. New York:Academic

Press

Wiedenbeck, S. & Ramalingham, V.and Engerbretson, A. 2004. Comprehension strategies of

end – user programmers in event driven application.Proceedings of the IEEE Symposia on

Visual Languages and Human – Centric Computing, (Rome, Italy, September 26 – 29,

2004), IEEE Press, 2004, 207 – 214.

_______________LaBelle.D & Kain, V.N.R. 2004.Factors Affecting Course Outcomes in

Introductory Programming.Proceedings of the 16
th

 Workshop of the Psychology of

Programming Interest Group. Carlow, Ireland, 97 -110.

______________ 2005. Factors affecting the success of non-majors in learning to

program.Proceedings of the first International Workshop of Computing Education

Research. Seatle, 13-24.

Wilson, B. C 2000.Contributing factors to success in computer science: A study of Gender

differences. A dissertation submitted in partial fulfillment of the requirements for the

Doctors of Philosophy Degree of the Department of Curriculum and instruction in the

Graduate school, Southern ilinois

____________& Shrock S. 2001.Contributing to success in an Introductory Computer Science

Course: a study of twelve factors.Proceedings of the 32
nd

 SIGCSE technical symposium

on computer science Education. ACM press, NY, pp 184 – 188

____________2002.A study of Factors Promoting Success in Computer Science including

Gender Differences.Computer Science Education Volume, 12, No 1 – 12, pp 141 – 164.

Witt – Rose D.L (2003). Student Self Efficacy in College Science: An investigation of geder, age

and Academic Achievement. A Research Paper Submitted to the Graduate School,

Universty of Wisconsin-Stout in Partial Fulfilment of the Requirements for the master of

Science degree with a major in Education

Woodhouse, G. Goldstein, H 1999. Multilevel statistical models.1st Internet Edition.Edward

Arnold London.

Yukselturk, E. & Bulnut, S. 2007. Predictors for student success in an online course. Educational

Technology & Society, 10(2), Pp 71 – 83.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

133

Zimmerman, B.J, & Schunk, D.H 2003. Albert Bandura: The Scholar and his Contributions

 to educational psychology: A century of contributions (pp 431 – 457). Mahwah, NJ.

 L. Erlbaum Associates.

Zuse K 1976. Kommentar Zum Plankalkul in Berichte der Gesellschaft fϋr Mathematik und

Daten verarbeitung. No. 63 (Bonn, 19767), 21 – 41

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

134

APPENDIX I

COMPUTER BACKGROUND QUESTIONNAIRE

Thank you for your willingness to participate in this study. Your individual responses to this

questionnaire will be kept confidential, and will be destroyed after the collective data is gathered

and analysed. Please be as honest and accurate as you possibly can, so that the data given to the

researcher can be relied upon for research purposes.

Demographic & Background Data:

Gender: Male ______ Female _______ (Tick on.

Ownership of Computer: Yes ______ No _____ (Tick one)

Mathematics Background:

(a) Did you take Further Mathematics in WASSCE/NECO/NABTEB etc?

 Yes___ No ____ (Tick one)

(b.) Indicate how many Mathematics courses you took in the University before entering the

Java class ______

Background in C++

Have you taken a course in C++ before? Yes ________ No _______

Please indicate other programming languages you learnt before entering Java class

APPENDIX II

COMPUTER EXPERIENCES SCALE

Indicate your level of experience (prior to taking the Java programming language course) with

the following on a ten-point interval from 1 (no experience) to 10 (very experienced).

i. Word processing experience (eg Microsoft Word) ______

ii. Spreadsheet experience (eg Microsoft excel) _____

iii. Database experience (eg Microsoft Access) _____

iv. Presentation Software experience (e. g Microsoft Power Point) _____

v. Operating System experience _____

vi. Computer Graphics experience ______

vii. Computer Games experience _____

viii. Internet experience ______

ix. Statistical Package experience (eg SPSS, AMOS, MINITAB) _____

x. Programming experience _____

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

135

APPENDIX III

JAVAPROGRAMMING SELF-EFFICACY SCALE

Rate your confidence in doing the following Java programming related tasks by filling the

number that best represents your level of experience in front of each task using a scale of 1 (not

at all confident) to 7 (absolutely confident). If a specific task is totally unfamiliar to you, please

fill 1.

Not at all

confident

Mostly not

confident

Slightly

confident

50/50 Fairly

confident

Mostly

confident

Absolutely

confident

1 2 3 4 5 6 7

1. I could write syntactically correct Java statements. _______

2. I could understand the language structure of Java and the usage of the reserved words. __

3. I could write logically correct blocks of code using Java _______

4. I could write a Java program that displays a greeting message. _______

5. I could write a Java program that computes the average of three numbers. _______

6. I could write a Java program that computes the average of any given number of numbers.

7. I could use built-in functions that are available in the various Java applets. _______

8. I could build my own Java applets. _______

9. I could write a small Java program given a small problem that is familiar to me.

10. I could write a reasonably sized Java program that can solve a problem that is only

vaguely familiar to me. _

11. I could write a long and complex Java program to solve any given problem as long as the

specifications are clearly defined. _______

12. I can organize and design my program in a modular manner. ____

13. I understand the object-oriented paradigm. ____

14. I can identify the objects in the problem domain and declare, define, and use them. ____

15. I can make use of a pre-written function, given a clearly labeled declaration of the

function. ____

16. I can make use of a class that is already defined, given a clearly labeled declaration of the

class. ____

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

136

17. I can debug (correct all the errors) a long and complex program that I had written and

make it work. _____

18. I can comprehend a long, complex multi-file program. ____

19. I could complete a programming project if someone showed me how to solve the problem

first. ____

20. I could complete a programming project if I had only the language reference manual for

help. ____

21. I could complete a programming project if I could call someone for help if I got stuck.

22. I could complete a programming project once someone else helped me get started. ____

23. I could complete a programming project if I had a lot of time to complete the program.

24. I could complete a programming project if I had just the built-in help facility for

assistance. ____

25 I could find ways of overcoming the problem if I got stuck at a point while working on a

programming project. ____

26 I could come up with a suitable strategy for a given programming project in a short time.

_

27 I could manage my time efficiently if I had a pressing deadline on a programming project

28 I could mentally trace through the execution of a long, complex, multi-file program given

to me. ___

29 I could rewrite lengthy confusing portions of code to be more readable and clear. ____

30 I can find a way to concentrate on my program, even when there were many distractions

around me. ____

31 I can find ways of motivating myself to program, even if the problem area was of no

interest to me. ____

32 I could write a program that someone else could comprehend and add features to at a later

date. ____

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

137

APPENDIX IV

LEVENSON LOCUS OF CONTROL

Instruction: Following is a series of statements. Each represents a commonly held opinion.

There are no rights or wrong answers. You will probably agree with some items and disagree

with others. We are interested in the extent to which you agree or disagree with such matters of

opinion. Read each statement carefully, then indicate the extent to which you agree or disagree

using the following responses:

If you agree strongly, respond +3

If you agree somewhat, respond +2

If you agree slightly, respond +1

If you disagree slightly, respond -1

If you disagree somewhat, respond -2

If you disagree strongly, respond -3

1. Whether or not I get to be a leader depends mostly on my ability. ______

2. To a great extent my life is controlled by accidental happenings. ______

3. I feel like what happens in my life is mostly determined by powerful people ______

4. Whether or not I get into a car accident depends mostly on how good a driver I am. ______

5. When I make plans, I am almost certain to make them work. ______

6. Of ten there is no chance of protecting my personal interests form bad luck happenings.

7. When I get what I want, it is usually because I‟m lucky. ______

8. Although I might have good ability, I will not be given leadership responsibility without

appealing to those positions of power. ______

9. How many friends I have depend on how nice a person I am. ______

10. I have often found that what is going to happen will happen. ______

11. My life is chiefly controlled by powerful others. ______

12. Whether or not I get into a car accident is mostly a matter of luck. ______

13. People like myself have very little chance of protecting our person interests when they

conflict with those of strong pressure groups. ______

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

138

14. It is not always wise for me to plan too far ahead because many things turn out to be a matter

of good or bad fortune. ______

15. Getting what I want requires pleasing those people above me. ______

16. Whether or not I get to be a leader depends on whether I‟m lucky enough to be in the right

place at the right. ______

17. If important people were to decide they didn‟t like me, I probably wouldn‟t make many

friends. ______

18. I can pretty much determine what will happen in my life. ______

19. I am usually able to protect my personal interests. ______

20. Whether or not I get into a car accident depends mostly on the other driver. ______

21. When I get what I want, it‟s usually because I worked hard for it. ______

22. In order to have my plans work, I make sure that they fit in with the desires of people who

have power over me. ______

23. My life is determined by my own action ______

24. It is chiefly a matter of fate whether or not I have a few friends or many friends. _____

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

139

APPENDIX V

JAVA PROGRAMMING ACHIEVEMENT TEST

SECTION A: MUTIPLE CHOICE QUESTIONS

Instruction: The Java multiple choice questions is aimed at assessing students‟ achievement in

few of the Java programming language topics. The purpose is strictly for research work only.

Your cooperation will be highly appreciated. Under this section; you are to circle the correct

option in each question.

1. If s = “text”, the value returned by s.length () is (a) false (b) true (c) 4 (d) 5

2. What is the value of k after the following code fragment? Int k = 0j; int n = 12 while

(k < n) { k = k + 1} (a) 0 (b) 11 (c) 12 (d) unknown

3. Given the following code fragment int A []; int i = 0; A = new int A [4]; while (i < 4)

{A [i] = 10 i = i + i;} what is the value of A []? (a) 0 (b) 3 (c) 10 (d) unknown

4. What is the purpose of this bit of code

void int ()

{

 …

}

?

(a) a class that initializes the applet (b) a required method in an applet

(c) a place to declare variables (d) interacting with the user

5. A compound statement is: (a) a collection of one or more statements enclosed in braces

(b) a statement involving if and else (c) a way of declaring variables (d) a way of setting the

value of a variable

6. The method set label can be used with what type of object?

(a) Double field (b) int (c) text field (d) string

7. Consider the following code:

int x, y, z;

y = 1,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

140

z = 5

x = 0 – (++y) + z++;

After execution of this, what will be the values of x, y and z?

(a) x = 4, y = 1, z = 5 (b) x = -7, y = 1, z = 5 (c) x = 4, y = 2, z = 6 (d) x = 3, y =

2,z =6

8. You want subclasses in any package to have access to members of a superclass. Which is

the most restrictive access that accomplishes this objective?

(a) Public (b) private (c) protected (d) transient

9. Which three form part of correct array declarations?

(1) Public int a [] (2) static int [] a (3) public [] int a

(4) Privateint a [3] (5) private int [3] a [] (6) public final int [] a

(a) 1, 3, 4 (b) 2, 4, 5 (c) 1, 2, 6 (d) 2, 5, 6

10. Given a method in a protected class, what access modifier do you use to restrict access to

that method to only the other members of the same class?

(a) final (b) static (c) private (d) protected

11. Which four options describe the correct default values for array elements of the types

indicated?

(1) int - > 0

(2) String - > "null"

(3) Dog - > null

(4) char - > '\u0000'

(5) float - > 0.0f

(6) boolean - > true

(a) 1, 2, 3, 4 (b) 1, 3, 4, 5 (c) 2, 4, 5, 6 (d) 3, 4, 5, 6

12. Which one of these lists contains only Java programming language keywords?

(a) class, if, void, long, Int, continue

(b) goto, instanceof, native, finally, default, throws

(c) try, virtual, throw, final, volatile, transient

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

141

(d) strictfp, constant, super, implements, do

13. Which is a reserved word in the Java programming language?

(a) method (b) native (c) subclasses (d) reference

14. Which three are legal array declarations?

(1) int [] myScores [];

(2) char [] myChars;

(3) int [6] myScores;

(4) Dog myDogs [];

(5) Dog myDogs [7];

(a) 1,2,4 (b) 2,4,5 (c) 2,3,4 (d) all are correct

15. Which three are valid declarations of a char?

(1) char c1 = 064770;

(2) char c2 = 'face';

(3) char c3 = 0xbeef;

(4) char c4 = \u0022;

(5) char c5 = '\iface';

(6) char c6 = '\uface';

(a) 1, 2, 4 (b) 1, 3, 6 (c) 3, 5 (d) 5 only

16. Which is the valid declarations within an interface definition?

(a) public double methoda();

(b) public final double methoda();

(c) static void methoda(double d1);

(d) protected void methoda(double d1);

17. Which one is a valid declaration of a boolean?

(a) boolean b1 = 0;

(b) boolean b2 = 'false';

(c) boolean b3 = false;

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

142

(d) boolean b4 = Boolean.false();

18. Which is a valid declarations of a String?

(a) String s1 = null;

(b) String s2 = 'null';

(c) String s3 = (String) 'abc';

(d) String s4 = (String) '\ufeed';

19. Which is valid declaration of float?

 (a.) float f = 1F; (b.) float f = 1.0; (c.) float f = “1”; (d.) float f = 1.0d;

20. Which of the following are Java reserved words?

 1. run 2. import 3. default 4 implement

 (a.) 1 and 2 (b.) 2 and 3 (c.) 3 and 4 (d.) 2 and 4

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

143

SECTION B : ESSAY TYPE QUESTIONS

The following two programs have some errors; identify these errors and rewrite the preceding

codes on the dotted lines provided .

PROGRAM 1: A Program to Compute the Factorial of Numbers

package testquestions;

import java.util.scanner;

……………………………………….

public Class Factorial {

……………………………………………………………………

int x;

public Factorial(String number)

 {

 x = number;

 ……………………………………………………………..

 }

private void computeFactorial()

 {

int counter,factorialNumber = 1;

for(counter = 1;counter<x;)

 ……………………………………………………………..

 {

factorialNumber * = counter;

 ………………………………………………………….

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

144

 }//end of forloop

System.out.println("The factorial of %d is %d",x,factorialNumber);

 …………………………………………………………………………………………………

 }//ends method compute factorial

public static void main(String[] args) {

System.Out.println("Enter the number to find its factorial: ");

 ………………………………………………………………

scanner input = new Scanner(System.in);

 ………………………………………………………….

 String factorialNumber = input.Next();

 …………………………………………………………

 Factorial objectFactorial = new Factorial(factorialNumber);

objectFactorial.computeFactorial();

 }//ends main method

}// end of class factorial

PROGRAM 2: A Program to Compute the Sum of Two Numbers

package testquestions;

Import java.Util.Scanner;

……………………………………..

public class SumNumbers {

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

145

 Public static void main(string[] args) {

 …………………………………………………….

 Int a,b;

 …………………………………………………..

 Scanner input = Scanner(System.in);

 ……………………………………………………….

System.Out.println("Enter the value of the first Number: ");

 ………………………………………………..

 a = input.nextInt();

System.Out.println("Enter the value of the Second Number: ");

 ………………………………………………………………………………………………

 b = input.nextInt();

int c = Sum(a,b);

 ……………………………..

System.out.println("The sum of %d and %d is %d",a,b,c);

………………………………………………………………………………………..

 }

private static int sum(int a , int b)

 {

return (a+b);

 }

}

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

146

APPENDIX VI

SOLUTION TO THE JAVA ACHIEVEMENT TEST

SECTION A

1. C

2. D

3. D

4. A

5. A

6. D

7. D

8. C

9. C

10. C

11. A

12. B

13. B

14. A

15. A

16. A

17. C

18. A

19. D

20. D

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

147

SECTION B

PROGRAM 1: A Program to Compute the Factorial of Numbers

package testquestions;

import java.util.scanner;

import.java.util.Scanner

……………………………………….

public Class Factorial {

public.class factorial

……………………………………………………………………

int x;

public Factorial(String number)

 {

 x = number;

x = integer.parseInt (number);

 ……………………………………………………………..

 }

private void computeFactorial()

 {

int counter,factorialNumber = 1;

for(counter = 1;counter<x;)

for (counter = 1: counter < = x; counter ++)

 ……………………………………………………………..

 {

factorialNumber * = counter;

factorialNumber * = counter

 ………………………………………………………….

 }//end of forloop

System.out.println("The factorial of %d is %d",x,factorialNumber);

System.out.printf (“The factorial of % d is % d” ; x, factorialNumber);

 …………………………………………………………………………………………………

 }//ends method compute factorial

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

148

public static void main(String[] args) {

System.Out.println("Enter the number to find its factorial: ");

System.out.println (“Enter the number to find its factorial: ");

 ………………………………………………………………

scanner input = new Scanner(System.in);

Scanner input = new Scanner(System.in);

 ………………………………………………………….

 String factorialNumber = input.Next();

String factorialNumber = input.next();

 …………………………………………………………

 Factorial objectFactorial = new Factorial(factorialNumber);

objectFactorial.computeFactorial();

 }//ends main method

}// end of class factorial

PROGRAM 2: A Program to Compute the Sum of Two Numbers

package testquestions;

Import java.Util.Scanner;

Import java.util.Scanner;

……………………………………..

public class SumNumbers {

 Public static void main(string[] args) {

public static void main(string[] args) {

 …………………………………………………….

 Int a,b;

int a,b;…………………………………………………..

 Scanner input = Scanner(System.in);

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

149

Scanner input = new Scanner(System.in);

 ……………………………………………………….

System.Out.println("Enter the value of the first Number: ");

System.out.println("Enter the value of the first Number: ");

 ………………………………………………..

 a = input.nextInt();

System.Out.println("Enter the value of the Second Number: ");

System.Out.println("Enter the value of the Second Number: ");

 ………………………………………………………………………………………………

 b = input.nextInt();

int c = Sum(a,b);

int c = sum(a,b);

 ……………………………..

System.out.println("The sum of %d and %d is %d",a,b,c);

System.out.printf ("The sum of %d and %d is %d",a,b,c);

………………………………………………………………………………………..

 }

private static int sum(int a , int b)

 {

return (a+b);

 }

}

