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ABSTRACT 
 

Heavy metal contamination in soil may be reflected in food crops due to plant uptake and 

such crops when consumed may cause adverse health effects. The assessment of toxic 

metal burden of soils and the capacity of food crops to accumulate these metals are 

essential. Such studies have not been reported in literature for Kogi State, a state noted 

for intense agricultural activity. The aim of this study was to determine heavy metals in 

soils, food crops, irrigation waters and sediments of dam of selected farms in Kogi State 

and also metals uptake potentials and toxicity threshold limits in crops. 

 

Soils and plants from nine major farms, three from each senatorial district, and a control 

site (another farm), were randomly sampled quarterly from May, 2007 to February, 2009. 

Thirty-two soil samples were obtained from 0-15 and 15-30 cm depths in each farm and 

control site, to make 320 composite samples. A total of 640 plants samples (leaves and 

edible parts each of pumpkin 64, passion fruit 96, maize grain 96, sugar cane stem 64 and 

tubers of cassava 320) were collected. Fifty-six samples of each of irrigation waters and 

sediments were collected. Soils, water and sediments were each digested with HNO3 

while 3:1 HNO3:HClO4 was used to digest the crops. Digests were analysed for Cd, Co, 

Cu, Ni, Pb and Zn by atomic absorption spectrophotometry. Speciation of metals in soil 

was done by Tessier sequential extraction procedure and soil-plant transfer factor was 

determined as the ratio of metal concentration in plants to soil. A soil-plant equilibrium 

model (STRATA) was used to analyse soil-plant metal data in order to obtain crop uptake 

characteristics and toxicity threshold limits. Data were analysed using ANOVA at p = 

0.05. 

 

The mean concentrations of Cd, Co, Cu, Ni, Pb and Zn in top soils were 0.6±0.7, 5.4±3.9, 

4.3±2.3, 15.7±9.2, 11.8±6.1 and 26.0±17.0 mg/kg respectively, while subsoil values were 

0.7±0.7, 5.0±3.3, 3.9±2.1, 14.6±8.3, 11.7±5.4 and 25.0±14.0 mg/kg respectively.  These 

did not vary significantly among farms. Proportions in non-residual soil phases were 

82.6% Cd, 48.6% Co, 72.5% Cu, 73.2% Ni, 41.9% Pb, and 84.3% Zn. Mean 

concentrations (mg/kg) in edible crop parts were: Cd 0.5±0.1, Co 4.4±3.0, Cu 4.4±0.2, Ni 

25.5±9.2, Pb 0.2±0.1 and Zn 20.1±1.3. Nickel levels in cassava tubers and leaves 
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(34.5±19.0 and 29.0±16.0 mg/kg respectively) were significantly higher than in the 

control (3.1±0.5 mg/kg) and exceeded Chinese standard limit of 10 mg/kg. Metals levels 

in water and sediments were within standard limits of 0.001-3.0 and 6.0-25.0 (mg/kg) 

respectively. Soil-plant transfer factors indicated low accumulation into crops. Transfer 

factors for Cd, Co, Cu, Ni, Pb and Zn in maize grain were: 0.4, 0.01, 0.6, 1.9, 0.02, and 

1.2 respectively, and in tubers were: 0.4, 0.01, 1.8, 2.5, 0.01 and 0.7 accordingly. Metal 

concentrations in crops parts were generally lower than model-derived threshold limits 

for toxicity in plants. 

 

There was no heavy metal contamination in investigated food crops except nickel in 

cassava. Therefore, the soil may not require any form of remedial action. 

 

Keywords: Heavy metals in food crops, Soil and sediment contamination, Metal uptake, 

Metal speciation, Toxicity in plant. 

 

Word count: 497 
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CHAPTER ONE 

           INTRODUCTION 

1.1 ENVIRONMENTAL POLLUTION 

Pollution can be defined as the introduction by man, directly or indirectly of substances 

or energy into the environment, liable to cause hazards to human  health, harm to living 

resources, hindrance to marine activities including fishing,  impairment of quality for use 

of seawater and reduction of amenities (GESAMP, 1993). Such a substance has to be 

present in the environment above a set of tolerance limits, before it is considered a 

pollutant. Environmental pollutants from many different sources contaminate air, land, 

and water, putting humans and ecosystems at risk (Gleick, 2001; Khan et al., 2010). Over 

the past decades, there has been increasing global concern over increased disease burdens 

resulting from environmental pollution. The World Health Organization (WHO) has 

estimated that about a quarter of the diseases facing mankind today are the results of 

prolonged exposure to environmental pollution (Khan et al., 2010).   

 

Since the industrial revolution, man‟s activities have progressively altered the structures 

and functions of the environment. Human population growth has placed ever-increasing 

demands on both aquatic and terrestrial ecosystems, and the use of up to one-half of the 

land's surface has been transformed. Man has dramatically changed the globe by land 

clearing, agriculture, forestry, animal husbandry and urbanization, and by altering 

hydrological cycles (Vitousek et al., 1997). There has also been significant alteration of 

the composition of many natural biological communities through harvesting activities, 

and by the unintentional and deliberate introduction of non-native species (Chapin, et al., 

1993; Matson et al., 1997; Bottsford et al., 1997; Dobson et al, 1997; Noble and Dirzo, 

1997). Human activities have also had profound impacts upon the global biogeochemical 

cycles of carbon, nitrogen, and phosphorus (Schlesinger, 1991; Vitousek and Howarth, 

1991; Vitousek et al.,1997). Addition of agrochemicals to soils and crops is an important 

practice in agriculture, for nutrient supply in soil and crop protection and disease control. 

As a result, this may cause chemical degradation of the soil as the contaminants are 

accumulated (Garcia et al., 1995). The fertilizers and the pesticides usually contain 

http://login.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3X3BXS6-C&_user=2789858&_coverDate=12%2F31%2F1999&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%231999%23998999998%23113313%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=19&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a9364a2e9fc9cf2d091aee638e770868#bib1#bib1
http://login.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3X3BXS6-C&_user=2789858&_coverDate=12%2F31%2F1999&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%231999%23998999998%23113313%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=19&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a9364a2e9fc9cf2d091aee638e770868#bib2#bib2
http://login.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3X3BXS6-C&_user=2789858&_coverDate=12%2F31%2F1999&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%231999%23998999998%23113313%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=19&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a9364a2e9fc9cf2d091aee638e770868#bib3#bib3
http://login.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3X3BXS6-C&_user=2789858&_coverDate=12%2F31%2F1999&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%231999%23998999998%23113313%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=19&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a9364a2e9fc9cf2d091aee638e770868#bib4#bib4
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http://login.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3X3BXS6-C&_user=2789858&_coverDate=12%2F31%2F1999&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%231999%23998999998%23113313%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=19&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a9364a2e9fc9cf2d091aee638e770868#bib6#bib6
http://login.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3X3BXS6-C&_user=2789858&_coverDate=12%2F31%2F1999&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%231999%23998999998%23113313%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=19&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a9364a2e9fc9cf2d091aee638e770868#bib7#bib7
http://login.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3X3BXS6-C&_user=2789858&_coverDate=12%2F31%2F1999&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%231999%23998999998%23113313%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=19&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a9364a2e9fc9cf2d091aee638e770868#bib1#bib1
http://login.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3X3BXS6-C&_user=2789858&_coverDate=12%2F31%2F1999&_rdoc=15&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%231999%23998999998%23113313%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=19&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a9364a2e9fc9cf2d091aee638e770868#bib1#bib1
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significant amounts of heavy metals such as Cu, As, Co, Cr, Mo, Sr, Ti, V, Mn, Fe, Ni, 

Zn, Cd, Pb, Hg, Ba and Sc (Garcia et al., 1995; Abdel-Haleem et al., 2001; El-Bahi et al., 

2004). Long term application of these agrochemicals may lead to pollution of soils and 

crops and subsequently affects man and other resources through the food chain. It is 

therefore important to closely monitor the agricultural environment where agrochemicals 

are applied. 

 

1.2 TYPES OF POLLUTION 

 1.2.1 Air Pollution  

Air pollution is the contamination of indoor or outdoor environment by any chemical, 

physical or biological agent that modifies the natural characteristics of the atmosphere. 

Household combustion devices, motor vehicles, industrial facilities and forest fires are 

common sources of air pollution. Pollutants of major public health concern include 

particulate matter, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide (WHO, 

2013). Serious concerns have been raised about the health hazards of air pollution in a 

number of countries (Kandlikar and Ramachandran, 2000). World Health Organization 

(WHO, 2002) points out that outdoor air pollution contributes as much as 0.6 to 1.4% of 

the burden of disease in developing regions. 

 

1.2.2 Water Pollution  

Water pollution is the degradation of water quality as measured by biological, chemical, 

and physical criteria. The main sources of water pollution include inorganic and organic 

wastes, such as wastes from industries, municipal wastes, agricultural wastes, and acid 

mine drainage. Human diseases and casualty arising from water pollution attracted 

worldwide attention after the „„Minamata disease‟‟ and „„itai-itai-byo‟‟ episodes which 

occurred in Japan during the 1940s and 1950s. Minamata disease was caused by eating 

fish and shellfish laden with highly toxic methylmercury, while itai-itai-byo disease was 

mainly attributed to ingestion of rice contaminated with high levels of cadmium (Ming-

Ho, 2004). 
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1.2.3 Land or Soil Polution 

 Soil pollution is a buildup of toxic chemical compounds, salts, pathogens (disease-

causing organisms), or radioactive materials that can affect plant and animal life. 

Unhealthy soil management methods have degraded soil quality, causing soil pollution, 

and enhanced erosion. Treating the soil with chemical fertilizers, pesticides, and 

fungicides interferes with the natural processes occurring within the soil and destroys 

useful organisms such as bacteria, fungi, and other microorganisms. For instance, 

strawberry farmers in California (Pandey, 2006) fumigate the soil with methyl bromide to 

destroy organisms that may harm young strawberry plants. This process indiscriminately 

kills even beneficial microorganisms and leaves the soil sterile and dependent upon 

fertilizer to support plant growth. This results in heavy fertilizer use and increases 

polluted runoff into lakes and streams. 

 

1.2.4 Noise Pollution 

Unwanted sound, or noise, such as that produced by airplanes, traffic, or industrial 

machinery, is considered a form of pollution. Noise pollution is at its worst in densely 

populated areas. It can cause hearing loss, stress, high blood pressure, loss of sleep, 

distraction, and loss of productivity (Pandey, 2006). Sounds are produced by objects that 

vibrate at a rate that the ear can detect. Most humans can hear sounds between 20 and 

20,000 hertz, while dogs can hear high-pitched sounds up to 50,000 hertz. While high-

frequency sounds tend to be more hazardous and more annoying to hearing than low-

frequency sounds, most noise pollution damage is related to the intensity of the sound, or 

the amount of energy it has. Measured in decibels, noise intensity can range from zero, 

the quietest sound the human ear can detect, to over 160 decibels. Conversation takes 

place at about 40 decibels, a subway train is about 80 decibels, and a rock concert is from 

80 to 100 decibels. The intensity of a nearby jet taking off is about 110 decibels a 

(Pandey, 2006; Vimalha, 2012). The threshold for pain, tissue damage, and potential 

hearing loss in humans is 120 decibels. Long-lasting, high-intensity sounds are the most 

damaging to hearing and produce the most stress in humans (Pandey, 2006; Vimalha, 

2012). 
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1.3 HEAVY METAL POLLUTION OF AGRICULTURAL SOIL 

1.3.1 Natural Source 

The initial sources of heavy metals in soils are the parent materials from which the soils 

were derived, but the influence of parent materials on the total concentrations and forms 

of metals in soils is modified to varying degrees by pedogenetic processes (Herawati et 

al., 2000). In areas affected lightly by human activities, heavy metals in the soils derived 

mainly from pedogenetic parent materials, and metals accumulation status was affected 

by several factors such as soil moisture and management patterns (Herawati et al., 2000). 

In Gansu province, China, Li et al. (2008) concluded that the main factor for heavy 

metals accumulation was lithological in three arid agricultural areas. Soil aqua regia 

soluble fraction of Co, Ni, Pb, and Zn were highly correlated with soil Al and Fe. These 

elements were associated with indigenous clay minerals in the soil high in Al and Fe. 

 

1.3.2 Mining as Source of Heavy Metals 

Mining is one of the important sources by which soils, plants, and surface waters are 

contaminated. Sources of metal contamination in mining areas, includes grinding, 

concentrating ores and disposal of tailings (Adriano, 1986; Wang et al., 2004). 

Inappropriate treatment of these tailings and acid mine drainage could pollute the 

agricultural fields surrounding the mining areas (Williams and Lei, 2009). In Tongling 

copper mine of Anhui province in China, metal mining had been an important economic 

base from ancient time. The major mining areas have been concentrated in a narrow star-

shaped basin called Fenghuang Mountain. Long-term mining activities in this area caused 

widespread metal pollution. The soil concentration of average total Cu was 618 mg/kg, 

with a wide range of 78-2830 mg/kg. Lead concentration in soil also showed a large 

variability with a mean of 161 mg/kg. The total Zn concentration varied from 78 to 1280 

mg/kg, with an average of 354 mg/kg (Wang et al., 2004). It was reported that the 

majority of agricultural soils were contaminated with As (Patel et al., 2005). High As 

concentration in these soils may be attributed to arsenopyrite which is known to occur in 

many areas of Southeast Asia, especially in tin mining regions (Patel et al., 2005). 
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1.3.3 Heavy Metals from Smelting and Fly Ash  

In the smelting of metal ores, emissions from non-ferrous metal smelters produce a fly 

ash. Such particles usually contain heavy metals. Atmospheric deposition has been 

responsible for 43%-85% of the total As, Cr, Hg, Ni and Pb inputs to agricultural soils in 

China (Luo et al., 2009). Most heavy metal pollutants in air derived from fly ash are 

caused by anthropogenic activities (Liu et al., 2005) such as electric power generation, 

mining, metal smelting and chemical plants. The most common elements derived from 

such atmospheric deposition are Hg, Pb, As, Cd and Zn. Non-ferrous metal smelting and 

coal combustion are two of the most important sources of metal pollutants in the air. 

Streets et al. (2005) have pointed out that in China, approximately 38% of Hg comes 

from coal combustion, 45% from non-ferrous metal smelting, and 17% from 

miscellaneous activities, of which battery and fluorescent lamp production and cement 

production are of most importance. Zn was the metal deposited in agricultural soils in 

largest amount from the atmosphere in China, followed by Pb and Cu. 

 

1.3.4 Heavy Metals from Fertilizers and Agrochemicals. 

Heavy metals occur naturally in soils and in source materials used to manufacture 

fertilizers.  In addition, heavy metals (and other hazardous constituents) occur in products 

as a result of blending fertilizers with recycled industrial wastes (e.g., steel mill flue dust, 

mine tailings). These heavy metals present as minerals, salts and other compounds can be 

absorbed by plants and incorporated into the food chain. Lu et al. (1992) reported that the 

phosphate fertilizers were generally the major source of trace metals among all inorganic 

fertilizers. Much attention has also been paid to the concentration of Cd in phosphate 

fertilizers (Lu et al., 1992).  

Agricultural use of pesticides is another source of heavy metals in arable soils. Although 

pesticides containing Cd, Hg and Pb had been prohibited in China in 2002, there were 

still other trace elements-containing pesticides in existence, especially copper and zinc. It 

was estimated that a total input of 5000 tons of Cu and 1200 tons of Zn were applied as 

agrochemical products to agricultural land in China annually (Wu, 2005; Luo et al., 

2009). Coca, groundnut, mustard and rice had elevated concentrations of heavy metals 
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(especially Cu and Zn) (Luo, et al., 2009). This may have been contributed by the 

widespread use of Cu and Zn based pesticides on these crops. Another survey (Pandey 

and Pandey, 2009) showed that heavy metal concentration in surface horizon and in 

edible parts of vegetables increased over time. Pandey et al. (2000) reported that the 

metal concentration in soil increased from 8.00 to 12.0 mg/kg for Cd, and from 278 to 

394 mg/kg for Zn. They also suggested that if the trend of atmospheric deposition 

continues, it would lead to a destabilizing effect on sustainable agricultural practice and 

increase the dietary intake of toxic metals. In India, Sinha et al. (2006) found that 

vegetables and crops growing in areas with persistent application of inorganic pesticides 

constituted risks due to accumulation of metals.  

 

1.3.5 Heavy Metals from Wastewater Irrigation 

Sewage irrigation can alleviate water shortage to some extent, but it can also bring some 

toxic materials, especially heavy metals, to agricultural soils, and cause serious 

environmental problems. This is particularly a problem in densely populated developing 

countries where pressure on irrigation water resources is extremely great. For example in 

northern dryland China, the amount of wastewater released was 5.25×1010 tons in 2005, 

of which industrial wastewater accounted for 2.43×1010 tons (Luo et al., 2009; SEPA, 

2006). In Chhattisgarh, central India (Patel et al., 2005), soil was irrigated with arsenic 

polluted ground water. People in this region suffered from arsenic caused diseases. The 

arsenic concentration ranged from 15 to 825 μg/L in the polluted water, exceeding the 

permissible limit of 10 μg/L (Patel et al., 2005). The contaminated soil had the median 

level of 9.5 mg/kg. Many industrial plants in this region operate without any, or minimal, 

wastewater treatment and routinely discharge their waster into drains, which either 

contaminate rivers and streams or add to the contaminant load of biosolids (sewage 

sludge). Biosolids are increasingly being used as soil ameliorants and streams and rivers 

are the primary source of water for irrigation. 
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1.4 BEHAVIOUR OF TOXIC ELEMENTS IN THE SOIL-PLANT SYSTEM 

Toxic elements enter the soil-plant systems through a variety of sources. Sewage wastes 

and fertilizers are the major contributors. Once in the soil, these elements interact with 

organic and inorganic constituents. Transformations such as adsorption, chelation, 

dissolution-precipitation and methylation, control the availability of toxic elements to 

plants and consequently to humans and animals. The toxic effects of these elements are 

exhibited either through reduced plant growth or sick animal/humans. Among the various 

toxic elements, B and Ni are important in terms of their phytotoxicity. Cadmium, Pb and 

Hg, though potentially hazardous to animals, generally accumulate preferentially in 

leaves and roots rather than in fruits or grains (Singh and Sandana, 1987). Phytotoxicities 

of Zn, Cu, and Ni provide barriers to the toxic levels of Cd, Pb and Hg in the food chain. 

 

1.5 BACKGROUND AND JUSTIFICATION OF THE STUDY 

Prolonged farming activities involving the use of fertilizers, herbicides and insecticides 

tend to expose the environment to potential hazards of soil pollution. Once soil is 

polluted, the contaminants will be transferred to other environmental components, and to 

humans via the food chain (Cui et al., 2005; Zhang et al., 2007). Rapid industrialization 

during the 1960s brought about dangerous pollution of soil by heavy metals in Japan 

(Makino et al., 2010). The South and Southeast Asian countries, such as Peninsular 

Malaysia, Vietnam, India, Thailand, Philippines, Indonesia, Bangladesh, and Pakistan 

have paid much attention to contamination of agricultural soils and crops by heavy metals 

(Herawati et al., 2000).  

 

In a number of studies worldwide, high levels of heavy metals have been reported in soils 

and food crops (Lalor, 2008). This suggests that some kinds of food crops can accumulate 

heavy metals from the soil and this can endanger human health. The concentration of 

cadmium in soils of certain regions of Jamaica has been reported to be remarkably high 

(Lalor et al., 1998). Mean soil concentrations of naturally occurring lead and cadmium 

are much higher than worldwide average values (Waldron, 1980). It has been reported 

that Cd concentrations in non-mineralized Jamaican soils varied from less than 0.3 mg/kg 

to over 400 mg/kg (Lalor et al., 1998). The average level of Cd in Jamaican soils was 20 

http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4NN1TS3-3&_user=2789858&_coverDate=01%2F31%2F2008&_alid=766801056&_rdoc=1&_fmt=high&_orig=search&_cdi=5917&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=534bedce245fcafadd5f7602ade289bb#bib4
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4NN1TS3-3&_user=2789858&_coverDate=01%2F31%2F2008&_alid=766801056&_rdoc=1&_fmt=high&_orig=search&_cdi=5917&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=534bedce245fcafadd5f7602ade289bb#bib40
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mg/kg compared with a world average of less than 1 mg/kg; and concentrations as high 

as 409 mg/kg
 
had been observed by Lalor et al. (1998). Levels of some other metals (As - 

373, Cr - 1063, Cu - 657, Pb - 897, Hg - 830, and Zn - 936 mg/kg) were also 

exceptionally high in these Jamaican soils (Lalor, 1995). Heavy metal pollution of soils is 

also of concern in China (Luo and Teng, 2006; Brus et al., 2009). Wei and Chen (2001) 

estimated that nearly 20 million hectares of arable soils (approximately one fifth of the 

total areas of farmland) were contaminated by heavy metals, and this has resulted in a 

reduction of more than 10 million tons of food supplies in China annually. In Dabaoshan 

mined area of Guangdong Province, China, surrounding farmlands have been seriously 

contaminated with Cd and other toxic metals as a result of long-term mining (of mainly 

iron and copper) as well as discharge of untreated wastewater. The paddy soil at Fandong 

village was heavily contaminated with Cu (703 mg/kg), Zn (1100 mg/kg), Pb (386 

mg/kg) and Cd (5.5 mg/kg) (Zhuang et al., 2009). The proportion of exchangeable 

fractions of Cd in soil of Zhangshi irrigation area in Shenyang, Liaoning province of 

China with the history of sewage irrigation over 45 years was much higher than that of 

Cu and Pb. It was suggested that Cd would be the most mobile element in the soil (Xiong 

et al., 2003) and more available to crop, with great risk of moving into the food chain. As 

a consequence, Cd contamination in the arable soils became the most serious problem in 

this region (Xiong et al., 2003).  

 

Accumulation of heavy metals in crops grown in metal-polluted soils may cause damage 

to human health through the food chain. Fu et al., (2008) conducted an investigation on 

heavy metal contents in rice sampled from Taizhou city in Zhejiang province in China, 

and found that the geometric mean of Pb in polished rice 0.69 mg/kg was 3.5-folds higher 

than the maximum allowable concentration (MAC) (0.20 mg/kg) (Fu et al., 2008) of the 

safety criteria for milled rice. In Japan, the average levels of Cd, Cu, and Zn in rice-fields 

were 446 mg/kg, 19.5 mg/kg, and 96.4 mg/kg, respectively (Herawati et al., 2000). The 

estimated average levels of Cd, Cu and Zn in rice were 75.9 mg/kg, 3.71 mg/kg and 22.9 

mg/kg
-
 respectively (Herawati et al., 2000).  In Dabaoshan Mined area of Guangdong 

Province, China, the average concentration of cadmium in rice exceeded 150 times of the 

State Food and Health Standards (Lin et al., 2005). Norra et al. (2005) reported the 
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concentration of As in the winter wheat grain as 0.7 mg/kg in cultivated agricultural area 

of west Bengal Delta Plain. Where agricultural activities are intensive and food 

production is high, it is very critically important to monitor contaminant levels in soils 

and food crops to determine the degrees of soil contamination and migration into food 

crops. Concerns about the effects of heavy metals such as cadmium on human health 

have led to numerous guidelines and regulations limiting their concentrations in soils and 

food and allowable human intakes (Lalor, 2008). These have socio-economical 

consequences in terms of land use and the marketing of food (Lalor, 2008). Jamaican 

agricultural soils are known to contain orders of magnitude higher than world normal 

concentrations of cadmium (Lalor, 2008) resulting in elevated Cd concentrations in 

several foodstuffs and significant transfers to humans, which represent a risk factor for 

increased mortality and/or morbidity in the local populations (Lalor, 2008). Exposures to 

heavy metals have caused a variety of clinical conditions and fatalities (Hallenbeck, 

1984; Lalor, 2008). 

 

1.5.1 Metals Pollution in Zamfara State 

The incidence of abnormally high levels of metals has been reported in Zamfara State 

northwestern Nigeria (Lar, 2013). The concentration of Pb in Anka town in Zamfara was 

found to range from 6.19 mg/kg to 4152 mg/kg, with a mean of 1171.4 mg/kg (Lar, 

2013). Other metals Cd, As and Hg had concentrations of 10 mg/kg, 173.2 mg/kg and 

12.9 mg/kg respectively in Anka while in Kwalli, maximum Zn concentration of 1657 

mg/kg was recorded. The concentration of Hg ranged from 2.15 mg/kg in Bagega to 12.9 

mg/kg in Anka mine processing sites (Lar, 2013). The high concentration of Pb in these 

areas was attributed to the release from the mine dumps around Kuba, Kwalli and 

Zuzzurfa State mines as well as the gold sulphide vein which contains some heavy 

metals. In many areas in all villages sampled in Zamfara State, Nigeria, including family 

homes and compounds, the soil lead concentration exceeded 100,000 mg/kg, far above 

the recommended maximum of 400 mg/kg considered acceptable for residential areas 

(Galadima and Garba, 2012). Surface water in ponds, rivers and lakes in Zamfara State 

were not spared. High concentrations of lead (1,000 μg/L) were often found in ponds, 

rivers and lakes sampled (Galadima and Garba, 2012). This is not surprising since surface 



 10 

water sources are often used for processing ore. Lead poisoning in Zamfara State have 

claimed the lives of over 500 children, and left thousands in severe health situations in 

2010 (Galadima and Garba, 2012). This shows that even in Nigeria, heavy metals 

pollution has not spared our environment. How can we be sure that such cases of heavy 

metals pollution will not occur in other parts of Nigeria? Some years ago there were no 

issues of lead poisoning in any part of Nigeria but has now been reported in Zamfara 

State. The major concern therefore is that, heavy metals in crops grown in these areas 

may eventually be transferred from soil to crops and eventually find their way to the food 

chain. 

 

1.5.2 Heavy Metals Study in the Kogi State Farmland Environment 

 Farming is a very important and major activity in Kogi State. The state is considered as 

one of the food basket regions of Nigeria. The farms are owned by government 

parastatals, corporate private organization, and individuals. The National Food Reserve 

Agency (2008) reported that cassava production in Kogi State increased from 2.8million 

metric tons to 3.6 million metric tons in 2003, which is the highest in Nigeria.  The state‟s 

per hectare yield is currently 14.88 tons, which is among the highest in Nigeria (Tables 

1.1). Table 1.2 shows a similar pattern for maize. Most farmers grow cassava as a source 

of cheap energy food, and it could be grown on marginal soils with the least input 

requirements. However, because of increasing demand for food production, fertilizers 

and other agrochemicals inputs are always applied. Given the issues highlighted in the 

foregoing section, the long term application of agrochemicals may lead to pollution of 

soils and crops. It is therefore imperative to monitor agricultural soils and examine food 

crops grown thereon. In the Kogi State farmland environment, there is paucity of data on 

the level of metals in soil and food crops as similar works recently carried out by Lar 

(2013) on Kogi State environment was sketchy and mainly focused on iron ore mining 

company site at Itakpe. Also the study carried out by Matthews-Amune and Kakulu 

(2013) focused on a farm at Adogo town and this may not give a general reflection of the 

Kogi State farmland soils. 
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Table 1.1: Cassava production („000mt) in North Central Zone of Nigeria 

 

Table 1.1 contd: 

 2004 2004 2005 2005 2006 2006 2007 2007 

 AC* AP* AC* AP* AC* AP* AC* AP* 

FCT 1.12 12.00 3.58 39.1 4.10 45.71 3.99 44.80 

Niger 57 450.00 50.94 448.24 56.07 456.00 71.04 584.20 

Benue 262.73 3,579.20 270.12 3,584.82 270.56 3,595.10 271.17 3,571.48 

Kogi 175.24 2,969.63 180.75 2,666.41 214.18 3,394.71 243.96 3,631.94 

Kwara 37 480 59.4 740.30 77.50 1,004.49 85.42 1.111.27 

Nassarawa 22.04 242.42 89.71 1,115.94 97.34 1,276.62 61.08 871.12 

Pleteau 26 294.83 27.5 323.94 28.54 350.15 29.45 334.79 
Source: National Food Reserve Agency, NFRA (2008) 

*AC: Area cultivated („000ha); *AP: Amount produced.  

 

State 1999            1999 2000           2000 2001           2001 2002          2002 2003             2003 

 AC* AP* AC* AP* AC* AP* AC* AP* AC* AP* 

FCT 0.83 7.01 0.71 6.37 0.85 8.19 1.03 10.21 1.02 10.21 

Niger 86.53 666.28 80 569.75 67 500 45.00 350.00 57.3 422.07 

Benue 286.09 3,531.67 252.2 3,516.15 269.39 3,585.22 269.45 3,578.09 269.88 3,577.92 

Kogi 200 2,793.30 186 2,506 182 2704 177.90 2,785.12 173.199 2854.83 

Kwara 33.91 455.76 30 438.40 29 411 35.00 500 36 510.00 

Nassarawa 36.92 338.19 25 250.00 25 245.5 23.00 240.00 19.17 204.76 

Pleteau 39.75 500.06 30.156 400.00 23.525 290.06 24.00 292.23 24.60 282.23 
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Table 1.2: Maize production („000mt) in North Central Zone of Nigeria 
 

 

 

Table1.2 contd: 

 2004 2004 2005 2005 2006 2006 2007 2007 

 AC* AP* AC* AP* AC* AP* AC* AP* 

FCT 12.6 27.27 16.45 34.26 19.87 508.31 20.43 446.42 

Niger 298.44 329.00 365.73 432.39 405.15 508.31 356.34 446.42 

Benue 109.51 148.41 109.55 149.48 109.57 152.78 109.74 151.05 

Kogi 132.14 256.00 120.48 213.95 150.64 264.52 180.81 289.29 

Kwara 64.4 87.22 82.9 112.40 110.42 150.35 109.22 149.89 

Nassarawa 57.34 91.92 70.12 124.46 72.35 125.90 69.73 128.00 

Pleteau 136.35 298.45 160.35 369.30 149.77 376.74 121.17 304.57 
Source: National Food Reserve Agency, NFRA, 2008 

*AC: Area cultivated („000ha). 

*AP: Amount produced 
 

 1999 

AC* 

1999 

AP* 

2000 

AC* 

2000 

AP* 

2001 

AC* 

2001 

AP* 

2002 

AC* 

2002 

AP* 

2003 

AC* 

2003 

AP* 

FCT 7.277 18.54 6.868 15.77 8.024 17.92 9.70 22.04 10.098 22.34 

Niger 328.82 493.36 276.51 384.71 290.116 369.79 282.14 323.46 311.89 377.08 

Benue 108.05 148.89 110.29 146.37 109.45 148.31 109.48 148.32 109.58 146.42 

Kogi 149.50 252.15 141.007 245.80 137.181 234.62 130.45 240.85 129.00 250.00 

Kwara 60.12 73.83 62.889 72.37 52.48 62.15 57.89 71.35 57.3 75.45 

Nassarawa 75.19 114.13 59.381 93.71 60.372 101.50 56.73 88.84 52.27 85.61 

Pleteau 236.93 473.90 217.85 458.93 185.687 353.68 180.13 382.44 172.16 352.45 
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1.6 AIMS AND SCOPE OF THE STUDY 

This study was designed with the overall aim of assessing the exposure risk of heavy 

metal contamination in man that may arise from the consumption of food crops grown in 

Kogi State farmland soils. The specific work objectives in achieving this include the 

following: 

 to determine selected physicochemical parameters of soils of selected farms in Kogi 

State;  

 to determine heavy metals (Cu, Co, Cd, Pb, Zn and Ni) levels in these soils and the 

speciation of metals in the soils; 

  to determine some physicochemical parameters in surface water and groundwater use 

for irrigation in some of the farms; 

 to determine heavy metals (Cu, Co, Cd, Pb, Zn and Ni) levels in the irrigation waters; 

 to determine heavy metals (Cu, Co, Cd, Pb, Zn and Ni) levels in sediments of the 

surface water bodies;  

 to determine the levels of the heavy metals in parts of food crops (leaves and edible 

plant parts) grown in the farms;    

  to estimate the transfer factors of heavy metals from soil into parts of the crops; and, 

 to assess the prevailing soil-plant heavy metal relationships, and fit these into an 

existing equilibrium model for determining the toxic metals threshold limits to the 

plants/crops.     . 

 

 

 

 

 

 

 



 14 

CHAPTER TWO 

     LITERATURE REVIEW 

 2.1 BIOACCUMULATION OF HEAVY METALS IN PLANTS 

The uptake and bioaccumulation of heavy metals in vegetables are influenced  by a 

number of factors such as climate, atmospheric depositions, the concentrations of heavy 

metals in soil, the nature of soil on which the vegetables are grown and the degree of 

maturity of the plants at the time of harvest (Lake et al, 1984; Scott et al., 1996; Voutsa 

et al., 1996). Air pollution may pose a threat to post-harvest vegetables during 

transportation and marketing, causing elevated levels of heavy metals in vegetables 

(Agrawal, 2003). Elevated levels of heavy metals in vegetables are reported from the 

areas having long-term uses of treated or untreated wastewater (Singh et al., 2004; Sinha 

et al., 2005; Sharma et al., 2006; Sharma et al., 2007). Other anthropogenic sources of 

heavy metals include the addition of manures, sewage sludge, fertilizers and pesticides, 

which may affect the uptake of heavy metals by modifying the physico-chemical 

properties of the soil such as pH, organic matter and bioavailability of heavy metals in the 

soil. Whatmuff (2002) and McBride (2003) found that increasing concentrations of heavy 

metals in soil increased the crop uptake. 

Cultivation areas near highways are also exposed to atmospheric pollution in the form of 

metal containing aerosols. These aerosols can be deposited on soil and are absorbed by 

vegetables, or alternatively deposited on leaves and fruits and then adsorbed. Voutsa et 

al. (1996) have reported high accumulation of Pb, Cr and Cd in leafy vegetables due to 

atmospheric depositions. Field studies have found positive relationships between 

atmospheric metal deposition and elevated concentrations of heavy metals in plants and 

top soil (Larsen et al., 1992; Sanchez-Camazano et al., 1994). The magnitude of heavy 

metal deposition on vegetable surfaces varied with morpho-physiological nature of the 

vegetables (Singh and Kumar, 2006). Jassir et al. (2005) have shown that unwashed leafy 

vegetables sold on roadside of Riyadh city, Saudi Arabia had higher levels of heavy 

metals compared to washed leafy vegetables. Demirezen and Aksoy (2006) have reported 

higher concentrations of Pb, Cd and Cu in Abelmoschus esculentus collected from urban 
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areas of Kayseri, Turkey compared to those from rural areas. The partitioning of heavy 

metals is well known, with accumulation of greater concentrations in the edible portions 

of leafy or root crops than the storage organs or fruits (Jinadasa et al., 1997; Lehoczky et 

al., 1998; Sharma and Agrawal, 2006). 

 

2.2 FACTORS AFFECTING METAL AVAILABILITY IN SOIL  

Plants usually cannot access the total pool of a metal present in a growth substrate. The 

fraction of metal which plants can absorb is known as the available or bioavailable 

fraction. Metals present in a soil can be classified into a number of fractions including, 

the soluble metal in the soil solution, metal-precipitates, metal sorbed to clays, hydrous 

oxides and organic matter, and metals within the matrix of soil minerals. These different 

fractions are all in dynamic equilibrium with each other (Norvell, 1991). However, while 

the soluble metal in the soil solution is directly available for plant uptake, other soil metal 

pools are less available (Davis and Leckie, 1978; del Castilho et al., 1993). For example, 

change in the concentration of metal in soil minerals matrix is slow relative to exchange 

and desorption reactions between clays, hydrous oxides, organic matter and the soil 

solution (Shuman, 1991; Whitehead, 2000). Metals in soil solution are the only soil 

fraction directly available for plant uptake (Fageria et al., 1991; Marschner, 1995; 

Whitehead, 2000). Hence, factors which affect the concentration and speciation of metals 

in the soil solution will affect the bioavailability of metals to plants. Soil factors which 

have an effect on metal bioavailability include the total metal present in the soil, pH, clay 

and hydrous oxide content, organic matter and redox conditions. 

 

2.2.1 Total Metal Concentration in Soil  

The total metal concentration of a soil includes all fractions of a metal, from the readily 

available to the highly unavailable. Other soil factors, such as pH, organic matter, clay 

and redox conditions, determine the proportion of total metal which is in the soil solution. 

Hence, while total metal provides the maximum pool of metal in the soil, other factors 

have a greater importance in determining how much of this soil pool will be available to 

plants (Wolt, 1994). In addition, researchers have found that while total metal correlates 
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with bioavailable soil pools of metal, it is inadequate by itself to reflect bioavailability 

(Lexmond, 1980; Sauve et al., 1996; McBride et al., 1997; Sauve et al., 1997a; 

Peijnenburg et al., 2000). 

 

2.2.2 Soil pH   

The equilibrium between metal speciation, solubility, adsorption and exchange on solid 

phase sites is intimately connected to solution pH (Olomu et al., 1973; Kalbasi et al., 

1978; Cavallaro and McBride, 1984; Sauve et al., 1997b). Hence, numerous studies have 

found soil pH to have a large effect on metal bioavailability (Turner, 1994; McBride et 

al., 1997). Metals bioavailability is strongly affected by soil pH (McGrath et al., 1988; 

Turner, 1994). As soil pH decreases, Mn and Zn compete with the extra H and Al for 

positions on the exchange sites, solubility of Mn and Zn increases in the soil solution and 

a greater proportion is present as highly available free metal ions in the soil solution 

(Kalbasi et al., 1978; McBride, 1982; Bar-Tal et al., 1988; Msaky and Calvet, 1990; 

Sauve et al., 1997b). This increases the concentrations of Mn and Zn in the directly 

bioavailable fraction, i.e., the soil solution (Jeffery and Uren, 1983). In accordance with 

the changes in metal bioavailability associated with a change in pH, many studies (Parker 

et al., 1990; Davis-Carter and Shuman, 1993) have found that plant uptake of Mn and Zn 

increases as soil pH decreases. Hence, in Zn contaminated soils, as pH decreased Zn 

concentration increased in shoots of Arachis hypogaea (peanut) (Parker et al., 1990; 

Davis-Carter and Shuman, 1993) and the potential for Mn toxicity in Vigna unguiculata 

(cowpea) (Vega et al., 1992) increased in acid soils.  

While solution pH affects Cu speciation, solubility, complexation and adsorption (Payne 

and Pickering, 1975; Msaky and Calvet, 1990; Reddy et al., 1995) some soil studies have 

found little relationship between soil pH and Cu concentration in the soil solution (Jeffery 

and Uren, 1983; McGrath et al., 1988; Sauve et al., 1997b). The reason for this is the 

strong affinity of Cu for organic matter (Norvell, 1991). Therefore, the amount of organic 

matter dissolved in soil solution, especially in soils high in organic matter, can be a more 

important determining factor on Cu solubility than pH. 
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2.2.3 Organic Matter in Soil  

Metal ions can be complexed by organic matter, altering their availability to plants. The 

COO
- 

groups in both solid and dissolved organic matter form stable complexes with 

metals (Stevenson, 1976; Baker and Senft, 1995). Hence, as the amount of organic matter 

present in soil increases, the opportunity for forming stable metal-organic matter 

complexes increases. In general, plants are unable to absorb the large metal-complexes 

and so the bioavailability of metals decreases. Copper ions form strong coordination 

complexes with organic matter (Stevenson, 1976, 1991). Hence, Cu is often 

predominantly found bound to the organic matter fraction in the soil and soil organic 

matter can be the most important soil factor in determining Cu bioavailability (del 

Castilho et al., 1993). In a Chernozem, between 37 and 91% of the total soil Cu was 

present in the organic fraction depending on level of Cu contamination (Pampura et al., 

1993). In a range of Cu contaminated soils, greater than 98% of the Cu in the soil 

solution was bound to organic complexes, irrespective of pH (Sauve et al., 1997b). Also, 

in a different range of soils, approximately 95% of soil solution Cu was complexed, 

irrespective of pH (Fotovat et al., 1997). Reddy et al. (1995) found that the proportion of 

Cu bound to organic matter in the soil solution increased from 37 to 95% as the pH 

decreased. In addition, Cu applied as sewage sludge was retained in the soil solution in 

greater quantities than Cu applied as a sulphate because it was bound to dissolved 

organics from the sludge (Miller et al., 1987) and the activity of the highly available Cu
2+

 

has been inversely correlated with soil organic matter (McBride et al., 1997).  

The amount of organic matter found in soils also affects the bioavailability of Zn 

(Shuman, 1975; Bar-Tal et al., 1988; del Castilho et al., 1993). However, while Zn 

readily forms complexes with organic matter, it does not compete for these sites as well 

as Cu (Cavallaro and McBride, 1984) and other more prevalent cations such as Ca
2+ 

(Fotovat et al., 1997). In the same Chernozem experiment as described in the paragraph 

above, between 2 and 6% of the total soil Zn was found in the organic fraction (c.f. 37 to 

91 % of Cu) (Pampura et al., 1993). In soil solution, the activity of the highly 

bioavailable Zn
2+

 in the soil solution decreased as organic matter increased across a range 
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of contaminated soils (McBride et al., 1997). Across a range of soils greater than 50% of 

the soil solution Zn was present as the free ion (Lorenz et al., 1997). Also, soil solution 

Zn was found to be between 23 and 93% organically complexed dependent on soil pH 

(Reddy et al., 1995). Hence, organic matter, while important, does not tend to be as big a 

factor as pH in determining Zn bioavailability (Elrashidi and O‟Connor, 1982).  

Manganese tends to form weak coordination complexes with organic matter (Olomu et 

al., 1973; McBride, 1982). This means that Mn
2+

 is unable to compete effectively with 

Cu
2+

, Zn
2+

 and other more prevalent cations, such as Ca
2+

 and Mg
2+

 for sites on organic 

matter, and hence, less Mn is generally found bound to organic matter than for Cu and Zn 

(McGrath et al., 1988). For example, across a range of soils approximately 30% of the 

soil solution Mn was present as organic complexes (Olomu et al., 1973). Complexed Mn 

in the soil solution of a sandy loam increased from 10 to 55% as the amount of organic 

matter in the soil increased (McGrath et al., 1988). In contrast, only one study has ever 

found Mn-organic matter complexation to approach that of Cu. Geering et al. (1969) 

found between 84 and 99% of the Mn present in the soil solution to be bound to organic 

matter in soils from a variety of areas. In majority of cases, organic matter has less 

importance in the bioavailability of Mn than for Zn and especially, Cu. 

 

2.2.4 Clays and Hydrous Oxides  

Clays and hydrous oxides, of Al, Fe and Mn, play an important role in the availability of 

metals. Clays and hydrous oxides determine metal availability mainly by specific 

adsorption to surface hydroxyl groups (Miller et al., 1987; Pampura et al., 1993). 

Nonspecific adsorption (exchange) (Kalbasi et al., 1978; Basta and Tabatabai, 1992), 

coprecipitation and precipitation occur as discrete metal oxide or hydroxide (Martinez 

and McBride, 1998). Hence, increasing clay and hydrous oxide contents in soils provides 

more sites for adsorption of metals, thus reducing the bioavailable metal directly 

(Shuman, 1975; Ghanem and Mikkelsen, 1988; Barrow, 1993; Qiao and Ho, 1996). 
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2.2.5 Oxidation and Reduction Conditions of a Soil 

The oxidation/reduction (redox) conditions of a soil can play a role in the availability of 

metals. The redox status of soils can be affected by many factors including waterlogging 

and compaction. Redox conditions can affect the availability of metals by affecting the 

proportion of particular metal species (e.g. Mn(II) vs. Mn(IV) in soil solution and by 

affecting solubility of metals in soil solution (Patrick and Jugsujinda, 1992; Evangelou, 

1998). Under waterlogged conditions, increases in Mn uptake and symptoms of Mn 

toxicity have been noted in Malus sp. (apple) and Pyrus sp. (pear) trees (Grasmanis and 

Leeper, 1966). Hence, reducing soil conditions, such as flooding and soil compaction, 

tend to increase the availability of soil Mn and enhance toxicity (Cheng and Ouellette, 

1971). 

Most Cu and Zn are present as the divalent forms in soils with the monovalent forms 

being highly unstable (Knezek and Ellis, 1980; Whitehead, 2000). Hence, neither Cu nor 

Zn tends to be significantly reduced under low redox conditions (Moraghan and Macagni 

Jnr, 1991; Whitehead, 2000). However, Zn deficiency has been noted in flooded soils and 

it was suggested that this was due to the precipitation of Zn as compounds such as 

ZnFe2O4 under reducing conditions (Sajwan and Lindsay, 1986; Moraghan and Macagni 

Jnr, 1991). As such, redox conditions play a smaller role in the availability of Cu and Zn 

when compared with Mn  

 

2.3 NUTRIENT AND METAL IONS FROM SOIL SOLUTION 

The immediate source of nutrient and metal ions to a plant is from the soil solution 

(Fageria et al., 1991; Marschner, 1995; Whitehead, 2000). The percentage of any metal 

occurring in the soil solution is usually small compared to the total metal pool in the soil 

(McGrath et al., 1988; Pampura et al., 1993; Sauve et al., 1997a). Metals in soil solution 

are in dynamic equilibrium with the larger soil solid fraction, and so, as metals are 

removed from the soil solution by plant uptake, or by other processes such as leaching, 

replenishment of the soil solution will occur. This replenishment can come from 

exchangeable ions, adsorbed salts, precipitated compounds, mineralisation of organic 

matter and weathering of soil minerals (Pearson, 1971; Whitehead, 2000).  
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To adequately assess the toxicity of a metal to plants, analytical approaches must quantify 

that portion of the total pool of metal in the soil which the plant can access, (the 

bioavailable fraction). The immediately bioavailable soil fraction is within the soil 

solution. However, because the soil is in dynamic equilibrium, measures of the ability of 

the soil to buffer and/or to replenish the concentration of metals in the soil solution could 

be important in determining bioavailability over a longer time frame. The criterion to 

assess whether metals present in soils are at toxic levels is not standardised world-wide 

and varies from one country and land use to another (Ross and Kaye, 1994). 

 

2.3.1 Measures of Total Metal  

Metals are frequently measured and regulatory decisions made, for toxicity, on the basis 

of the total metal concentration in a growth substrate (Gupta et al., 1996). Different 

extractants, generally strong acids such as HNO3, HF, HClO4 and aqua regia, have been 

utilised to determine the total or .pseudo-total metal in a soil (Becket, 1989). However, 

many factors control the availability of metals to plants, making total metal a poor 

measure of bioavailable metal. It is incorrect to assume that total metal concentration is 

just an indirect measure of available metal (Miles and Parker, 1979; Pampura et al., 

1993). Some studies have found good relationships between total metal and plant 

responses (Aery and Jagetiya, 1997). However these results have tended to be soil 

specific and, therefore, do not demonstrate the effectiveness of total metal as a tool for 

measuring the effects of excess metal on plants. 

 

2.3.2 Soil Solution and Pseudo-measures of Soil Solution    

The concentration of a metal in a soil solution is a measure of immediate bioavailable 

metal (Pearson, 1971). Soil solution is technically defined as the aqueous liquid phase of 

soil at field conditions. Thus, true measures of soil solution occur at moisture levels of 

field capacity or less (Wolt, 1994). Studies have regularly found good correlations 

between soil solution metal concentrations and factors affecting metal availability (Wolt, 

1994). For example, soil solution Cu, Zn and Cd have been found to correlate well with 

pH, organic matter, and total metal concentration in the soil (McBride et al., 1997).   
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2.3.3 Speciation and Toxic Forms  

The speciation of an element is the chemical form(s) that it takes in solution. Some 

researches suggest that the free metal ion is the most toxic form of metals (Reddy et al., 

1995; Sauve et al., 1997b). Free metal activity in a wide variety of soils and with a 

variety of metals correlates well with factors such as organic matter and pH, suggesting 

that it is a good measure of plant available metal (Reddy et al., 1995; Sauve et al., 

1997b). Research with plants, especially in solution culture, has supported the free metal 

ion hypothesis (Sparks, 1984; Bell et al., 1991; Ibekwe et al., 1998). Original suggestions 

that not all metal in solution was available to plants began with the findings of DeKock 

and Mitchell (1957) on the effect of chelators on uptake of metals. Subsequent work with 

Al has further supported this theory (Alva et al., 1986; Menzies et al., 1994).  

The “free ion as the bioavailable species” theory has often been assumed in the literature 

with very little rigorous research to ground the hypothesis (Parker and Pedler, 1997). 

Work with chelates and organic acids has shown that metals complexed with organic 

compounds are more available than the free-ion activity would suggest (Bell et al., 1991;  

Laurie et al., 1991a; Laurie et al., 1991b; Srivastava and Appenroth, 1995; Parker et al., 

2001). At a given activity in solution, plant uptake of Zn and Cd has been found to be 

greater in the presence of a ligand compared to the absence of a ligand (McLaughlin et 

al., 1997a) and that this difference was amplified as the metal-ligand binding constant 

increased (McLaughlin et al., 1997a). Work with Cd in both soil and solution culture has 

shown that Cl complexed Cd is also available to plants (Smolders and McLaughlin, 1996; 

Smolders et al., 1998). In contrast, research with Kandelia candel (mangrove) has 

suggested that NaCl reduces Zn and Cu toxicity (Chiu et al., 1995) but from the 

experimental design this could just as easily indicate competition between Na
+
 and 

Zn
2+

or Cu
2+

 for uptake, or a positive effect of NaCl on growth in this halophytic species. 

Research with Cu toxicity has shown that plant responses cannot be explained by the 

Cu
2+

 ion alone (Lexmond and van der Vorm, 1981). Parker and Pedler (1997) conducted 

computer simulations of various nutrient systems and found that while the free ion 

activity is generally a good measure of plant available metal, there are certain situations 

outside the bounds of the model. For instance, use of the free ion activity as the measure 
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of plant available metal assumes that the solution is not replenished from solid phases, 

while this holds in most solution cultures it does not in soil studies. They also found that 

larger deviations from the model were likely to occur at high root to solution ratios, as in 

soil.  

Research between metals and the free metal ion in soil solution is inconclusive on 

whether the free metal ion is the best predictor of metal availability (Reichman, 2002). In 

R. sativus, L. sativa and Lolium perenne (perennial rye grass) free ion activities were 

better measures of plant Cu uptake than total Cu or CaCl2 extracted Cu in eight 

contaminated urban soils (Sauve et al., 1996). Research with T. subterraneum and 

Panicum virgatum (switch grass) found plant uptake of Mn to be equally well correlated 

with Mn
2+

 activity and the soil solution Mn concentration across 11 soils (Wright et al., 

1988). The activity in soil solution has been found not to predict P. vulgaris Cu uptake 

(Minnich et al., 1987). Concentration of Cd in Solanum tuberosum (potato) tubers from 

50 soils was not related to the Cd
2+

 activity in the soil solution but rather to the degree of 

Cd-Cl complexation in the solution, suggesting a role for more than the free ion in Cd 

toxicity (McLaughlin et al., 1997b). While the debate continues, evidence suggests 

(McLaughlin et al., 1997b) that the immediately bioavailable fraction of a metal is 

somewhere between the total amount in the soil solution and the free ion activity. Until 

the answer is found for each metal either the free ion activity or total soluble metal in 

solution appear to be the best estimates. 

 

2.3.4 Plant Factors 

While soil factors have a large impact on the bioavailablity of metals to plants, different 

species or varieties grown on the same soil have different metal uptakes (Miles and 

Parker, 1979). Therefore, there are species specific factors affecting plant uptake. Jarvis 

and Whitehead (1981) suggested that a true measure of plant available metals will not be 

attained unless the extent of soil exploitation by the roots is accounted for. However, it 

should be noted that while two plant species may take up different amounts of metal 
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within a given time frame, it does not necessarily mean they are extracting from different 

soil pools of metal. 

 

2.3.5 Nature of Vegetation 

Vegetation or plant physiological uptake of elements from the subsurface and their 

release to the surface via litter is a potential mechanism of rapid metal transfer. However, 

the ability of plants to tap water sources for their nutrient content is critical to the transfer 

mechanism; otherwise higher metal content plants merely indicate recycling of a soil 

anomaly. The potential of plant-assisted metal transfer from deeper groundwater comes 

from deuterium isotopic studies on facultative pheratophytes plants having dimorphic 

roots systems with laterals and sinker or tap roots (vertical), the latter roots acquiring 

water and nutrients from deeper groundwater source, especially during summer (Pate et 

al. 1999). Previous work on plant-metal relationships in the Northern Yilgarn suggests 

plants take up ore-related metals from groundwater at depth (Pate et al. 1999). 

Additionally, hydraulic lift and redistribution of deeper water acquired by sinker roots to 

near surface soil horizons to be used by laterals (Caldwell et al. 1998) is capable of rapid 

transfer of water and possibly metals within the overburden. Diurnal uptake and transfer 

of groundwater to surface soil has been confirmed (Caldwell et al. 1998) but no data exist 

on ore metal transfer. 

The depth of rooting is critical to the ability of vegetation in transferring water and 

possibly ore metals upwards. A global survey indicates that deep roots, especially 

sinkers, are ubiquitous with > 10 m depths regularly reached and confirmed in several 

climatic settings (Canadell et al. 1996). Plants are known to take up mineral elements that 

are essential micronutrients (Zn, Mo, Se) plus other ore metals (Au, Ni, Cu, Pb) and even 

potentially toxic metals such as As in significant concentrations (Meharg and Hartley-

Whitaker 2002). Plant physiological processes biotransform specific metals within their 

tissues, thereby influencing the effectiveness of selective leaches and element mobility 

once the metals are released on the surface via litter. 
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2.4 HEAVY METALS SOLUBILITY IN SOILS 

Trace metal mobility is closely related to metal solubility, which is further regulated by 

adsorption, precipitation and ion exchange reactions in soils. Although much effort has 

been spent on modelling trace metal solubility (Sposito, 1984; Cederberg et al., 1985; 

Martin et al., 2003), such predictions under field conditions suffer from much 

uncertainty. This is partially due to the difficulty in assessing the effects of dynamic soil 

solution chemistry on trace metal speciation (Jensen et al., 1999). However, changes in 

soil solution chemistry, such as pH, redox potential and ionic strength, may also 

significantly shift the retention processes of trace metals by soils (Gerringa et al., 2001). 

These effects may be further complicated by ligand competition from other cations 

(Amrhein et al., 1994; Norrstrom and Jacks, 1998). 

Trace metals are highly persistent and widespread contaminants. They enter the food 

webs through pathways such as air, water, soil and living organisms, by agricultural 

runoff, industrial effluent, mining and mineral processing, storm-water runoff, volcanism, 

natural bedrock erosion atmospheric transport, and biogeochemical cycles (Burger and 

Gochfeeld, 1995). Once soil is polluted, the contaminants will be transferred to other 

environmental components, and indirectly threaten human health through water supply or 

food chain (Cui et al., 2005; Zhang et al., 2007 ). 

  

2.5 MOBILITY OF HEAVY METALS IN SOIL  

Pollution induced by trace elements in soils is a major environmental problem because, 

compared to atmospheric and water pollution; the soil environment is much less resilient. 

The total content of a trace element in the soil is a poor indicator of environmental risk. 

Mobility and bioavailability must be assessed to elucidate trace elements' behaviour in 

soils and prevent potential toxic hazards (Sauvé et al., 2000; Yin et al., 2002; Banat et al., 

2005; Wu et al., 2006; Navarro et al., 2006; Margui et al., 2007). The mobility and 

bioavailability of these elements depend on soil characteristics such as pH, organic 

matter, cation-exchange capacity, and soil redox potential (Adriano, 1986) and also on 

physical, chemical, and biological processes, including microbial activities (Deneux-
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Mustin et al., 2003). Organic matter plays a significant role in the availability and 

mobility of heavy metals in soils. The humified organic matter is involved in the 

formation of soluble complexes especially with Cu and Zn (Vega et al., 2004). The soil 

solution speciation of trace elements is critical for assessing their bioavailability and 

potential threat to the environment (Sauvé et al., 1997a). The effect of microorganisms on 

the fate of contaminants in soils can be direct or indirect. Microbial activity changes the 

physical and chemical characteristics of the environment and may, therefore, indirectly 

affect contaminant speciation and mobility. Microbial activity in soils is, in turn, strongly 

affected by physical and chemical soil characteristics (acidity, redox potential, nutrient 

availability, pore space, etc.). Biogeochemical processes in soils influence the fate of 

trace elements, that is, their speciation, mobility, and, therefore, their bioavailability and 

toxicity (Deneux-Mustin et al., 2003). 

 

 

2.6 MECHANISM OF UPTAKE OF SOIL HEAVY METALS BY PLANTS 

Uptake of metals into plant roots is a complex process involving transfer of metals from 

the soil solution to the root surface and inside the root cells. Understanding of uptake 

processes is hampered by the complex nature of rhizosphere which is in continual 

dynamic change interacted upon by plant roots, the soil solution composing it and 

microorganisms living within the rhizosphere (Laurie and Manthey, 1994). 

Plants have a natural ability to take up inorganic chemicals (including metals) from soil 

and sediment. Some of these mineral elements are essential nutrients to the plant, while 

others have no known physiological function in plants (Ernst, 1996). The most common 

route of chemical uptake into plants is through the root via an aqueous phase. Ions and 

organic molecules move to roots from soil and sediment through plant transpiration (ion 

transport from the soil water into the root occurs simultaneously with water transport), 

diffusive transport, and microbial facilitated transport (Committee on Bioavailability of 

Contaminants in Soils and Sediments, 2003). The plasma membrane serves as a barrier to 

uptake; chemicals need to cross the plasma membrane into the cytoplasm of the root 

cells. Different mechanisms have been identified which control chemical uptake by plants 

(Marschner, 1995). Some chemicals can enter root tissue by altering pH through efflux of 
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hydrogen (H
+
) ions, resulting in an electrochemical gradient that facilitates transport of 

cations and anions. This mechanism is termed a proton pump and requires cellular energy 

in the form of adenosine triphosphate (ATP). Most divalent cations are absorbed through 

ion channels. Ion channels can also mediate uptake and release potassium ions (K
+
). 

There is also evidence for carrier-mediated active transport of K
+
, SO4

2−
, NO

3−
, and Mg

2+
 

that uses ATP as an energy source (Marschner, 1995). For metals, another possible 

mechanism of uptake is transport of metal-chelate complexes. Whenever there is a metal 

deficiency, plants produce and release chelating agents into the rhizosphere. The 

complexed metal form is then transported into the plant through a transport protein 

specific for that metal (Kochian, 1993; Von Wiren, et. al., 1996). The selectivity of many 

of these mechanisms is limited; ions that have the same charge or same size can share the 

same carrier or channel with nutrients, resulting in an increased uptake of metal 

contaminants (Oliver et al., 1994; Fan et al., 2001). Plant-availability of nutrients as well 

as potentially risk elements is predominantly driven by soil conditions in rhizosphere 

(Schoettelndreier and Falkengren-Grerup 1999; Dakora and Phillips 2002). Organic 

acids, such as malate, citrate and oxalate, have been proposed to be involved in many 

rhizosphere processes, including nutrient acquisition and metal detoxification, alleviation 

of anaerobic stress in the roots, mineral weathering and pathogen attraction. 

Water temperature may influence water chemistry, metal solubility, and metal uptake by 

plants, and plant growth. According to Zumdahl (1992), seasonal variation in water 

temperature has no direct effect on the solubility of metals in water. However, cool water 

contains more dissolved oxygen than does warm water. Thus, metal concentration in the 

interstitial water of the sediment may decrease with decreasing temperature, as more 

metals are bound to sediment colloids at high rather than low redox potentials (Förstner, 

1979). In addition, temperature has a profound effect on plant growth rates and higher 

temperatures will thus result in greater biomass production and distribution of submersed 

macrophyte communities (Marschner, 1995; Rooney and Kalff, 2000). A plant of 

relatively high biomass may have a greater metal uptake capacity; this results from lower 

metal concentration in its tissue because of a growth rate that exceeds its uptake rate 

(Ekvall and Greger, 2003). Changes in temperature further change the composition of the 
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plasma membrane lipids (Lynch and Steponkus, 1987). This alters the plant membrane 

fluidity, resulting in lower membrane permeability at low temperatures and lower metal 

uptake (Marschner, 1995). In the aquatic environment, Cu adsorption to the alga 

Dunaliella tertilecta increases with increasing temperature (Gonzalez-Davila et al., 

1995). Further, in the lichen Peltigera horizontalis (Beckett and Brown, 1984) and the 

liverwort Dumortiera hirsute (Mautsoe and Beckett, 1996), both intracellular and 

extracellular uptake of Cd was stimulated by an increase in temperature. Similarly, 

several studies of terrestrial plants grown at high root temperatures found higher uptakes 

of Zn, Pb, Ag, Cr, Sb, and Cd than was the case with plants grown at low root 

temperatures (Hooda and Alloway, 1993; Macek et al., 1994; Baghour et al., 2001; 

Albrecht et al., 2002). Therefore, a general increase of metal uptake with increasing 

temperature seems likely. 

In order that measurement of the metal content of different cellular fractions is useful in 

biomonitoring studies, it is essential to understand the kinetics of metal uptake and 

discharge in each of these compartments; the kinetics data can then be fitted to suitable 

models, and the values of maximum uptake, time of uptake, etc. can be calculated. To 

date, most modelling studies of the kinetics of uptake and discharge of heavy metals in 

aquatic bryophytes have referred to total metal (Mouvet et al., 1988; Rasmussen and 

Andersen, 1999 ; Samecka-Cymerman et al., 2002), and to a lesser extent, extracellular 

and intracellular metal contents (Vazquez et al., 1999; Vazquez et al., 2000). 

There are, furthermore, diverse factors that influence the bioavailability of a metal to a 

bryophyte. One of these is the acidity of the environment, which determines the chemical 

speciation of the metal and therefore its affinity for extracellular binding sites and for 

membrane transporters. In conditions of high acidity, the protons compete with metal 

cations, and this may inhibit their uptake even though they are present in the environment 

(Vazquez et al., 2000). 

 

2.6.1 Plant Uptake of Cadmium 

 Cadmium background concentrations in soil depend predominantly on parent material 

and degree of weathering. After weathering of parent material, or dissolution of solid 
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phase Cd in fertilizers or sludges, Cd exists in solution mostly as the divalent cation, 

Cd
2+

. In some solutions, Cd may also be present as a complex ion in solution in 

association with inorganic ligands , the most important in soil solutions being complexes 

with Cl
-
, SO4

2-
 or HCO3

-
 (McLaughlin et al., 1996). In contrast to other trace metals, such 

as Cu or Zn, it seems that organic ligands do not have great significance in the overall 

speciation of Cd in soil solutions (Tills and Alloway, 1983; Holm et al., 1995). Cadmium 

tends to be very mobile in soil systems and therefore very available to plants. Cd
2+

 is the 

main species in soil solution. Accumulation of cadmium in food crops at soil 

concentrations that are not phytotoxic is a significant concern (Curtis and Smith, 2002; 

Fritioff et al. 2007). 

Anthropogenic additions of cadmium to soils occur via short- or long-range atmospheric 

deposition, additions in fertilizers/ manures and in municipal sewage wastes (effluents 

and biosolids), urban compost and industrial sludges. In fertilizers, Cd is found 

predominantly in phosphatic fertilizers due to the presence of Cd as impurity in all 

phosphate rocks. The contribution of the atmosphere, fertilizer, sludges, manure or 

compost to the total annual Cd addition to soils varies widely between countries and 

between regions within countries (Jensen and Bro-Rasmussen, 1992; McLaughlin et al., 

1996). Plant uptake of Cd is governed by a number of factors such as pH, total Cd 

concentration in soil, metal sorption capacity of soil (organic matter, cation exchange 

capacity, clay, Fe and Mn oxides), temperature, moisture content, compaction, aeration 

and flooding (Chaney and Hornick, 1978). John et al. (1972), and others have shown the 

effect of soil acidity on the uptake of Cd. Plant availability of Cd appears to be affected 

by soil acidity in a manner similar to that of other metals such as Ni, Zn, Fe, and Cu 

(Lindsay, 1972). Cd availability increases with increasing soil acidity, probably due to 

increased solubility of Cd compounds such as hydroxides, phosphates, and carbonates. 

 

2.6.2. Plant Uptake of Lead 

Lead is strongly retained by most soils such that in soil solution Pb concentrations are 

very low especially in relation to other metals such as Cd, Zn, and Cu (Brummer and 

Herms, 1983). Several factors affect Pb content in urban-grown vegetables, including soil 
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pH, level of Pb in the soil, organic matter content, cation exchange capacity, presence of 

other elements (especially P and S), plant age and species (Chaney, et al. 1984; Kneip, 

1978). Lead is especially accumulated in surface horizon of soil because its low water 

solubility within an environmentally relevant pH range results in very low mobility 

(Curtis et al. , 2002; Barkirdere et al., 2008). On account of the strong sorption by soils, 

surface applications of Pb, whether from atmospheric sources or inadvertent additions in 

fertilizers, manures or sludges or deliberate use of Pb-containing agricultural chemicals, 

are retained in the upper or plough layer of soil profiles (Cartwright et. al., 1977; Gulson 

et. al 1981; Merry et. al., 1983). Mechanism of Pb acquisition by plants are little 

understood, largely due to the difficulty of working at realistically low solution Pb 

concentrations and adequately accounting for surface contamination of plant surfaces 

(Peterson, 1978).    

 

2.7 IMPACT OF SOIL METAL POLLUTION ON PLANTS 

Soil serves many vital functions in our society, particularly for food production. It is thus 

of extreme importance to protect this resource and ensure its sustainability. Deteriorating 

environmental conditions and increasing reliance on agrochemicals have led to a growing 

public concern over the potential accumulation of heavy metals and other contaminants in 

agricultural soils (Nriagu and Pacyna, 1988; Alloway, 1990; Kabata-Pendias, 1995). 

Toxicity of heavy metals to plants depends on the bioavailability of the elements in the 

soil, length of exposure period and physiological activity of the plant roots and their 

associated microorganisms. The total concentration of metals in the soil is not 

representative of the metal available to plants (Ernst, 1974). Based on the experiences of 

determining deficiency or just efficiency of those heavy metals which are minor nutrients 

in agriculture (Cox and Kamprath, 1972) various types of extractants have been used to 

simulate bioavailability of metals in metal-enriched soils (Ernst et al., 1992; Prueess, 

1992; Carter, 1993;  Holm, 1995), but without any good correlation to plant responses. 

At high concentrations, some metals have strong toxic effects and are regarded as 

environmental pollutants (Nedelkoska and Doran, 2000; Chehregani et al., 2005). Heavy 

http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-44J6F8N-5&_user=2789858&_coverDate=08%2F31%2F2002&_rdoc=6&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235917%232002%23998809998%23290279%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=14&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=e16a79567d6898ab748efa46856e2985#bib28
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-44J6F8N-5&_user=2789858&_coverDate=08%2F31%2F2002&_rdoc=6&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235917%232002%23998809998%23290279%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=14&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=e16a79567d6898ab748efa46856e2985#bib3
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-44J6F8N-5&_user=2789858&_coverDate=08%2F31%2F2002&_rdoc=6&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235917%232002%23998809998%23290279%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=14&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=e16a79567d6898ab748efa46856e2985#bib15
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3YDGBF0-7&_user=2789858&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=769eb3ebb17b6d1ba1e5cb417a57dd7d#bib11
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3YDGBF0-7&_user=2789858&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=769eb3ebb17b6d1ba1e5cb417a57dd7d#bib8
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3YDGBF0-7&_user=2789858&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=769eb3ebb17b6d1ba1e5cb417a57dd7d#bib11
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3YDGBF0-7&_user=2789858&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=769eb3ebb17b6d1ba1e5cb417a57dd7d#bib31
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3YDGBF0-7&_user=2789858&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=769eb3ebb17b6d1ba1e5cb417a57dd7d#bib6
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-3YDGBF0-7&_user=2789858&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=769eb3ebb17b6d1ba1e5cb417a57dd7d#bib20
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metals are potentially toxic for plants. Phytotoxicity results in chlorosis, weak plant 

growth and yield depression, and may even be accompanied by reduced nutrient uptake, 

and disorders in plant metabolism (Dan et al., 2008). 

In soils polluted by metals, plant growth can be inhibited by metal absorption. However, 

some plant species are able to accumulate fairly large amounts of metals without showing 

stress, which represents a potential risk for animals and humans (Oliver, 1997). Metal 

uptake by crops growing in contaminated soil is a potential hazard to human health due to 

transmission in the food chain (Brun et al., 2001; Gincchio et al., 2002; Friesl et al., 

2006). There is also concern with regard to metal transmission through natural 

ecosystems (MacFarlane and Burchett, 2002; Walker et al., 2003). Parameters connected 

with metal uptake have been used as sensitive indicators of metal toxicity (Wilke, 1991; 

Nannipieri et al., 1997). The toxicity of metals in soil varies significantly according to the 

characteristics of the soil and the time elapsed after contamination by metals (Doelman 

and Haanstra, 1984; Speir et al., 1995). 

 

2.8 SOIL-PLANT TRANSFER FACTORS FOR HEAVY METALS 

Transfer factor is one of the key components of human exposure to metals through the 

food chain. The soil-to-plant transfer factor (also termed uptake factor, accumulation 

factor, and concentration factor) is an index for evaluating the transfer potential of a 

metal from soil to plant. The transfer factor is generally defined as the ratio of metal 

concentration in plant to the total metal concentration in soil (Chumbley and Unwin, 

1982; Cui et al., 2004; Harrison and Chirgawi, 1989). Sajjad et.al. (2009) defined transfer 

factor as the relative tendency of a metal to be accumulated by a particular species of 

plant. Generally, transfer factor expresses the bioavailability of a metal at a particular 

position on plant species. This is however, dependant on different factors such as the soil 

pH and the nature of the plant itself. Different authors have reported different transfer 

factors for the same species of plant and across different parts of the plants, such as roots 

and leafy parts (Ma et al., 2006). Transfer factor can also be calculated based on the total 

metal content of the whole plant without taking into consideration the various parts of the 

plant. Vegetables cultivated in contaminated soils may take up heavy metals in large 

http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4JD0H99-3&_user=2789858&_coverDate=11%2F30%2F2006&_alid=766921080&_rdoc=1&_fmt=high&_orig=search&_cdi=5917&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=2a58d760501296ecd1f8d94bdf82f2a4#bib4
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4JD0H99-3&_user=2789858&_coverDate=11%2F30%2F2006&_alid=766921080&_rdoc=1&_fmt=high&_orig=search&_cdi=5917&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=2a58d760501296ecd1f8d94bdf82f2a4#bib4
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4JD0H99-3&_user=2789858&_coverDate=11%2F30%2F2006&_alid=766921080&_rdoc=1&_fmt=high&_orig=search&_cdi=5917&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=2a58d760501296ecd1f8d94bdf82f2a4#bib5
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4JD0H99-3&_user=2789858&_coverDate=11%2F30%2F2006&_alid=766921080&_rdoc=1&_fmt=high&_orig=search&_cdi=5917&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=2a58d760501296ecd1f8d94bdf82f2a4#bib12
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4PHJMM2-1&_user=2789858&_coverDate=04%2F30%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=2806618aad6d3c194732c88c026daa54#bib13#bib13
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enough quantities to cause potential health risks to the consumers. In order to assess the 

health risks, it is necessary to identify the potential of a source to introduce risk agents 

into the environment, estimate the amount of risk agents that come into contact with the 

human-environment boundaries, and quantify the health consequence of the exposure 

(Ma et al., 2006). The higher the value of transfer factor, the more mobile/available the 

metal is. Hence, the high transfer factor values may exert potential risk to human health. 

Transfer factor values are always used to describe the accumulation of chemicals in 

organisms, especially, those that live in contaminated environments (Wang et al., 2004. 

According to USEPA (1992), transfer factor values are major parameters, determining 

the risk of human exposure to metals in soils. 

 

2.9 ENVIRONMENTAL ASSESSMENT INDICES   

2.9.1 Geoaccumulation Index (Igeo). Geoaccumulation index (Igeo) can be used to assess 

the extent of pollution of topsoil of a study area. Geoaccumulation index (Igeo) first used 

by Muller (1969), is a tool that indicates the extent of pollution of soil with regards to the 

background concentrations of the pollutants. The geo-accumulation index (I
geo

) was 

distinguished into seven classes by Müller (Buccolieri et al., 2006): I
geo

≤0, class 0, 

unpolluted; 0<I
geo

≤1, class 1, from unpolluted to moderately polluted; 1<I
geo

≤2, class 2, 

moderately polluted; 2<I
geo

≤3, class 3, from moderately to strongly polluted; 3<I
geo

≤4, 

class 4, strongly polluted; 4<I
geo

≤5, class 5, from strongly to extremely polluted; and 

I
geo

>5, class 6, extremely polluted. Igeo is estimated as indicated in the following equation: 
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where C
n 

is the measured concentration of the examined metal n in the soil, and B
n 

is the 

background concentration or reference value of the metal n. Factor 1.5 is used because of 

possible variations in background values for a given metal in the environment as well as 

very small anthropogenic influences. 

 

http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4PHJMM2-1&_user=2789858&_coverDate=04%2F30%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=2806618aad6d3c194732c88c026daa54#bib13#bib13
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2.9.2 Contamination Factor and Degree of Contamination. The assessment of soil 

contamination can also be carried out using the contamination factor (C
i

f
) and degree of 

contamination (Cd ). The C
i

f
 is the single element index, the sum of contamination 

factors for all elements examined represents the Cd of the environment and four classes 

are recognized (Hakanson, 1980). Contamination factor is estimated as indicated in the 

following equation:. 

                                         
)2(0

i

n

i
i

f C

C
C 

                                                                                           

 

Where 
iC0  is the mean of metals from at least five sampling sites and 

i

nC  is the pre-

industrial concentration of the individual metal. 

 

Table 2.1 Shows the different contamination factor classes and levels. 

 

 

 

2.9.3. Pollution Load Index (PLI) 

The pollution load index (PLI) was proposed by Tomlinson et al. (1980) for detecting 

pollution which permits a comparison of pollution levels between sites and at different 

times. The PLI is normally obtained as a concentration factor of each heavy metal with 

respect to the background value in the soil. According to Angula (1996), the PLI is able 

to give an estimate of the metal contamination status and the necessary action that should 

be taken. A PLI value of ≥100 indicates an immediate intervention to ameliorate 

pollution; a PLI value of ≥50 indicates a more detailed study is needed to monitor the 

site, whilst a value of <50 indicates that drastic rectification measures are not needed. PLI 

is estimated as follows: 

                                                  )3(.........21 nCfCfCfnPLI 
 

 

Where n is the number of determination, Cf is the concentration factor of each heavy 

metal with respect to the background value in the soil. 
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Table 2.1: Classification of contamination factor levels (
i

fC ) for soil 
i

fC Value
 Contamination factor level 

1i

fC  Low contamination factor indicating low 

contamination 

31  i

fC  Moderate contamination factor 

03  i

fC  Considerable contamination factor 

i

fC6  Very high contamination fact 
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2.10 SOIL-PLANT EQUILIBRIUM MODELING 

Scientific modeling is the process of generating abstract, conceptual, graphical and/or 

mathematical concepts and language. Modeling is an essential and inseparable part of all 

scientific activity, and many scientific disciplines have their own ideas about specific 

types of modeling. A scientific model seeks to represent empirical objects, phenomena, 

and physical processes in a logical and objective way. All models are simplified 

reflection of reality, but, despite their inherent falsity, they are nevertheless useful 

(George and Draper, 1987). Chemicals in soil enter plants primarily through the root 

system and the degree of uptake from soil into root tissues appears to be proportional to 

the octanol/water partition coefficient, Kow (Rippen, 2000). Thus, studies on the 

bioconcentration of nonionic organic chemicals have focused on correlations between 

partition factors and chemical properties that express relative solubility, such as Kow 

(Rippen, 2000). But the pool of data available for making soil-plant uptake models is 

limited. As a result, only relatively simple models are available to express plant uptake in 

terms of chemical properties such as Kow. Metal solubility in soils may be modeled using 

an equation based upon a pH-dependent Freundlich relation (Jopony and Young 1994). 

This can be used to predict free metal ion activity in the soil pore water [M
2+

] from total 

soil metal content [Msoil] and soil pH. As humus is often considered to be the primary 

adsorber of metal ions in the soil (Sauve et al., 2000), a further refinement is to assume 

that metals are exclusively adsorbed on humus to increase comparability between soils. 

Total metal concentrations in the soil [Msoil] were therefore re-expressed as if adsorbed 

on organic carbon [MC] 

De Leo et al. (1993) modeled the interaction between soil acidity and forest dynamics 

when aluminum is mobilized with acid deposition. Guala et al. (2009) simplified this 

model, in order to allow it to be validated experimentally. In their study, they consider the 

model applicable to other metals in soil, modifying it in order to make it independent of 

acid deposition, assuming the mobility of other metals in natural pH levels in soil. In 

order to model the dynamic interaction, general mathematical expression of the model 

that describes the dynamics of soil acidity with respect to aluminum mobility and the 
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characteristics of trees, according to the model proposed by De Leo et al. (1993), and 

modified by Guala et al. (2009) was adopted.  

The concentration of metals in plants, and in parts of plants, can be predicted by a simple 

kinetic model based on the concentration of metals in the soil. This fact can be linked to 

physiological absorption mechanisms in plants. Hamon et al. (1999) found out a plateau 

in the accumulation of metals by plants attributed to physiological reasons. The pattern of 

accumulation by plants is quite similar to saturable uptake of metals described for root 

membrane transporters of Cd, Zn or Hg (Esteban et al., 2008; Lombi et al., 2009). 

The model makes it possible to characterize the nonlinear behavior of the soil-plant 

interaction with metal pollution, in order to contribute towards establishing threshold 

values for the toxic effects of metals on plants and eventual plant mortality. The model 

can be applied to different plants or crops in order to understand how the different 

concentrations of metals that can be found in the soil can influence their growth. Also 

knowing the threshold values for toxic effects on plants and knowing the concentrations 

of metals that are in the soil will help to choose the most suitable crop for each field in 

order to remediate the soil contamination by means of biouptake. The effects of metals on 

plant development vary according to the different soil characteristics, the type of plant 

and the type of metal. As a result, the model makes it possible to directly compare the 

relative fragility of different environments to the same pollutant. However, many studies 

do not compare the metal uptake to the available metal concentration in soil denoted by 

A, but instead to the total metal content of soil, T (Poulik, 1997; Athar and Ahmad, 2002; 

Moreno et al., 2006; Ryser and Sauder, 2006). In this case, T was defined as a 

proportional sum of the places where the metal is located: the metal uptake S, the 

available metal content in soil A and the metal adsorbed in the soil matrix (assuming a 

Freundlich linear relationship for the purpose of simplicity). In equilibrium this is T= k1S 

+ A + k2A, where k1, k2 are the corresponding proportional coefficients for uptake and 

Freundlich adsorption, respectively. 

A soil-plant equilibrium model is a mathematical interaction model, validated by 

experimental result and can be employed to model the metal uptake by plants and used to 

determine threshold limits of heavy metal in plant, by knowing metals in soils (Guala et 
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al, 2010). The model relates the dynamics of the uptake of metals from soil to plants. In 

order to model the dynamic interaction, they adapted the general mathematical expression 

of the model that describes the dynamics of soil acidity with respect to aluminum 

mobility and the characteristics of trees (De Leo et al., 1993), and modified by Guala et 

al. (2009). According to their definition, the concentration of available metal in soil, A, is 

a function of the concentration of metals in plants, S, was explicitly written as: 
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Where A is the concentration of available metal in soil, S is the concentration of metals in 

plants, c/α, f/α, and e are the coefficients of absorption  

The process of determining coefficients is difficult, and the known empirical methods 

yield widely varying results (De Leo et al., 1993; Guala et al., 2009). Therefore, the 

model needs to be written in a way whereby the relationship A-S may be inferred from 

fitting Equation (4). However, the coefficients c/α, f/α, and e can be fitted by 

experimental results in order to establish the relationship between A and S. It should be 

noted that the relationship between A and S is independent of the growth function of 

plants, which makes it possible to generalize the model to a wide range of plants.  We can 

now test the model in order to verify whether it provides us with reliable results when we 

introduce realistic values, in this case testing the model when referring particularly to 

different parts of plants. This is possible by writing in a general mathematical form, 

where the constant terms are put together in aggregate coefficients to be fitted, giving us: 
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  C1, C2, C3 > 0. 
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However, many studies do not compare the metal uptake to the available metal 

concentration in soil A, but instead to the total metal content of soil, T (Poulik, 1997; 

Athar and Ahmad, 2002; Moreno et al., 2006; Ryser and Sauder, 2006).                                                                             
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 STUDY DESIGN 

The design and execution of the study included the following major components: 

(i) Selection of farms for study: Eight farms in various parts of Kogi State were selected 

for study. These are located at:   

 Ofoke (ADP farm),  

 Ankpa,  

 Ajaokuta,  

 Adavi (Macks Farm) 

 Ibaji,  

 Idah,  

 Ejule,  

 KSU,  

A control farm site was selected at Anyigba. A non-farm, forest location at Lokoja was 

also studied as part of the control system. The locations of the farms in Kogi State are 

given in Fig. 3.1. 

(ii) Study of the Topsoil and Subsoil Characteristics: 

Types of soils: Topsoil samples (0-15 cm) and subsoils (15-30 cm) were studied.  

Nature of soil collected: The soils were mainly ultisol and predominantly loamy sand. 

Location of soil sampling points within farms: Soil samples were obtained from the 

cropping areas. 

Periodicity of sampling: Samples were collected quarterly.  

Number of samples collected: At each farm, during each sampling visit, two composite 

topsoil samples were collected. Two sub-subsoils at these locations were also 

obtained. Numbers of soil samples collected are provided in Table 3.1. 

 

Parameters determined in soil samples: Soil samples were analyzed for heavy metals and 

some physicochemical parameters. 

(a) heavy metals determined were cadmium, cobalt, copper, lead, nickel and zinc. 
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Table 3.1: Number of soil and plant samples collected per farm 

Farms Soil* 
Food crops 

Leaves Edible parts 

Ofoke 32 40 40 

Macks 32 40 40 

KSU 32 40 40 

Ibaji 32 40 40 

Ankpa 32 35 35 

Ajaokuta 32 35 35 

Ejule 32 35 35 

Idah 32 35 35 

Anyigba (control) 32 20 20 

*Consist of topsoil and subsoil. 
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(b) Physicochemical parameters were pH, total organic carbon, total organic matter and 

mechanical properties (% sand, % silt and % clay).  

(iii) Study of irrigation water 

In farms where crops were irrigated using water from groundwater or surface water, such 

irrigation water samples were also analysed to determine possible contribution to the crop 

characteristics.     

 

(a) Surface water: This was available at three of the farms – Ofoke, Ibaji and Macks. 

Location of Sampling Point: Large pool of dam water from which channels are used for 

irrigation. 

Number of samples collected per trip: Two water samples each at Ofoke and Ibaji; and three at 

Macks farm. 

Periodicity of sampling: Water samples were collected quarterly. 

Parameters determined in irrigation water samples: Samples were analyzed for:  

 Physicochemical parameters - pH, temperature, alkalinity, total hardness, calcium, 

magnesium, sulphate, phosphate, nitrate, Dissolved Oxygen (DO) and Chemical Oxygen 

Demand (COD). 

 Heavy metals– cadmium, cobalt, copper, lead, nickel and zinc. 

 

(b) Groundwater (borehole): 

Number of samples collected per trip: Two water samples were collected. 

Periodicity of sampling: Samples were collected quarterly. 

Parameters determined in irrigation water samples: As determined in surface water.  

 

(iv) Study of bottom sediment irrigation streams: 

Number/Location of samples per sampling trip: Samples were obtained at same locations and 

time where/when surface water samples were collected.  

Periodicity of sampling: Samples were collected quarterly 

Parameters determined in sediment samples: cadmium, cobalt, copper, lead, nickel and zinc. 

 

(v) Study of metals levels in food crops. 

Types of food crops: The following crops were studied:  
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 pumpkin,  

 maize,  

 passion fruit,  

 sugar cane, and  

 cassava.  

In each farm, crops were sampled as available.    

Parts of crop sampled: The leaves, tuber, fruits, grains or stem as appropriate to a particular crop 

were sampled. 

Location of crop sampling points: Samples were collected in the general vicinities of the soil 

sampling point 

Number of sample collected per farm: For each crop collected during a sampling trip, four 

composite sample of each of a given crop parts were obtained. Details of number of samples 

collected and types of crop are provided in Table 3.1 and Table 3.2 respectively.. 

Periodicity of sampling: Sampling was carried out quarterly. 

Parameters determined in plant samples: Samples were analysed for heavy metals         

cadmium, cobalt, copper, lead, nickel and zinc. 

 

(vi) Modeling of metal concentration in soils and crops. 

Data of metal concentrations in soil and crops parts were fitted into an existing soil-plant 

equilibrium model. 

 

3.2 DESCRIPTION OF SAMPLING SITES  

 The soil and food crop samples were collected from sampling locations quarterly from May, 

2007 to February, 2009 across the three senatorial district of Kogi State, North Central, Nigeria. 

A schematic diagram of each of the sampled farm area is given in Figs 3.2 to Fig 3.10. Code 

names for sampled farms, soil, water, sediment and other acryonym used are given in Table 

3.3.The GPS and size of farm is given in Table 3.4 while the geological features and vegetation 

are on Table 3.5.  
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Table 3.2: Plant species sampled 

Sampling site English name Scientific name Part sampled 

Ofoke (ADP) Maize, Zea mays Linn Leaves and grain 

Macks Passion fruit Passiflora edulis Linn Leaves and fruit 

KSU  Pumpkin Cucurbita pepo Linn Leaves and fruit 

Ibaji Sugar cane Saccharum officinarium Linn Leaves and stem 

Ankpa Cassava Manihot esculenta Crantz Leaves and tuber 

Ajaokuta Cassava Manihot esculenta Crantz Leaves and tuber 

Ejule Cassava Manihot esculenta Crantz Leaves and tuber 

Idah Cassava Manihot esculenta Crantz Leaves and tuber 

Anyigba Cassava Manihot esculenta Crantz Leaves and tuber 
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Fig 3.2: Sketch of Macks farm showing the sampling points.
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Fig3.7: Sketch of Ofoke farm showing sampling points
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Fig3.9: Sketch of Anyigba (Control Site sampling points

Soil sampling points

Crops

Vegetation

Road

KEY

N

Trees 

A n y igb a  -E g um e Road

2km
 

R
oad

Ojikpadala

T
o

 E
ju

le

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

SL

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

SL

SL

SL

Plant sampling point

Fig3.8: Sketch of Ankpa farm showing sampling points

Plannt sampling points

Crops

Vegetation

Residential Areas

Road

KEY

N

Anyigba Road- Anyigba

Church

Ik
an

ek
po

A
c

ce
ss

 R
o

ad

SL

SL

SL

SL

SL

SL

SL

SL

SL SL

SL

SL

SL

SL

SL

SL

SL

SL

P

PP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P
P

Soil sampling points



 48 

Soil sampling points

Crops

Vegetation

Road

KEY

N

Trees 
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Table 3.3: Some features of the study sites 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station 
Descriptive 

key 

GPS position Sea level Size of farm Crop 

sampled Latitude Longitude 

Ofoke OFK 07
0
 24′ 9.5″ N 06

0
 46′ 34.2″ E 58m 20 hectares Maize 

Ajaokuta AJA 07
0 

31′ 40.6″  N 06
0 

40′ 24.8″ E 83m 20 hectares Cassava 

Macks MAC 07
0
 42′ 07.4″  N 06

0
 27′ 39.2″ E 157m 45 hectares passion fruits 

Idah IDA 07
0
 08′ 46.0″ N 06

0
 46′ 09.7″ E 80m 20 hectares Cassava 

Ibaji IBA 07
0
 03′ 47.8″ N 06

0
 44′ 10.9″ E 66m 25 hectares sugar cane 

Ejule EJU 07
0
 22′ 04.7″ N 07

0
 06 46.4″ E 365m 25 hectares Cassava 

Ankpa ANK 07
0
 22′ 46.4″ N 07

0
 37′ 54.2″ E 352m 20 hectares Cassava 

KSU KSU 070 28′ 41.9″ N 07
0
 10′ 50.1″ E 402m 20 hectares pumpkin 

Lokoja LKJ 07
0
 48′ 07.4″  N 06

0
 41′ 05.1″ E 110m 25 hectares uncultivated 

Anyigba (CTR)  ANY 07
0
 29′ 01.4″ N 070 10′ 43.2″ E 371m 25 hectares Cassava 

Sampled farms 

Major towns 

Cement factory 

Iron ore company 

Steel company 
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Table 3.4: Geological features and vegetation of sampled sites 

 

Sampling site GPS Topography Vegetation 

Latitude Longitutde 
Ofoke 07

0
 24′ 9.5″ N 06

0
 46′ 34.2″ E Undulating landscape to a flat and minimum rugged 

land form surface 

 

Typical of rainforest and 

Guinea savannah 

     

Ajaokuta 07
0
 31′ 40.6″  N 06

0
 40′ 24.8″ E Underlain by igneous and metamorphic rocks 

belonging to the basement complex composed of 

granite, miccshists, gneisses and metasediment which 

are igneous and metamorphic 

It lies within the savannah 

belt, 

     

Macks 07
0 
42′ 07.4″  N 06

0
 27′ 39.2″ E It is generally hilly and rocky underlain by igneous 

and metamorphic rocks belonging to the basement 

complex 

It lies within the savannah 

belt, an area characterized 

by tall trees and grasses 

     

Idah 07
0
 08′ 46.0″ N 06

0
 46′ 09.7″ E Underlain by sedimentary rock of upper cretaceous 

age which is of false embedded shales, sand clays, 

sandstone and mindstone. 

Wooded savannah, rain 

and mangrove forest 

     

Ibaji 07
0
 03′ 47.8″ N 06

0
 44′ 10.9″ E Underlain by sedimentary rock of upper cretaceous 

age which is of false embedded shales, sand clays, 

sandstone and mindstone. 

Wooded savannah, and 

rain and mangrove forest 

     

Ejule 07
0
 22′ 04.7″ N 07

0
 06 46.4″ E Underlain by sedimentary rock of upper cretaceous 

age which is of false embedded shales, sand clays, 

sandstone and mindstone. 

Typical of rainforest and 

Guinea savannah 

     

Ankpa 07
0
 22′ 46.4″ N 07

0
 37′ 54.2″ E Made of vast flat land towards the west and vast 

undulating plain coupled with hills to the east and the 

area is covered by sedimentary rock. The soil is 

predominantly deep sandy, derived from alluvium 

deposits 

Guinea savannah 
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Table 3.4: (contd): 

Sampling site GPS Topography Vegetation 

Latitude Longitutde 

KSU 07
0
 28′ 41.9″  N 07

0
 10′ 50.1″ E It is situated in part of the east-west of the Udi 

Pleateau with an undulating landscape to a flat and 

minimum rugged land form surface with a general 

elevation. Anyigba is underlain by sedimentary rock 

of upper cretaceous age which is of false embedded 

shales, sand clays, sandstone and mindstone. 

Typical of rainforest and 

Guinea savannah 

     

Anyigba  07
0
 29′ 01.4″ N 07

0
 10′ 43.2″ E Anyigba is underlain by sedimentary rock of upper 

cretaceous age which is of false embedded shales, 

sand clays, sandstone and mindstone. 

Typical of rainforest and 

Guinea savannah 

     

Lokoja 07
0
 48′ 07.4″  N 06

0
 41′ 05.1″ E Lokoja and its surrounding area are underlain by 

igneous and metamorphic rocks belonging to the 

basement complex composed of granite, miccshists, 

gneisses and metasediment which are igneous and 

metamorphic 

It lies within the savannah 

belt, an area characterized 

by tall trees and grasses.  
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3.2.1 Ajaokuta Farm 

Soil characteristics and types: The soil is ultisol and sandy loam 

Industrial activity: The site is about 500m from an abandoned old Quarry site and about 3 km 

from Ajoakuta Steel Company. 

Automobile traffic characteristics: Traffic density along a nearby road (100 m) is high. 

Crop selected for study: Cassava 

Application of agrochemical: NPK  

 

3.2.2 Macks Farm 

Soil characteristics and types: Soil is ultisol and loamy sand 

Industrial activity: No industrial activities near this farm. 

Automobile traffic characteristics: Traffic density in the area is low.  

Crop selected for study: Passion fruit 

Application of agrochemical: NPK fertilizer, alachlor, and butachlor. Cow dung was used as 

organic manure 

 

3.2.3 Idah Farm 

Soil characteristics and types: The soil is ultisol and sandy loam 

Industrial activity: There are no industrial activities.   

Automobile traffic characteristics: It is an urban–rural transitional area, situated in the eastern 

part of Kogi State with low traffic density. 

Crop selected for study: Cassava 

Application of agrochemical: Application of fertilizers and herbicide (atrazine and butachlor). 

 

3.2.4 Ibaji Farm 

Soil characteristics and types: The soil is ultisol and sandy loam 

Industrial activity: There are no noticeable industrial activities as the area is remote. 

Automobile traffic characteristics: Traffic is low. 

Crop selected for study: Sugar cane 

Application of agrochemical: NPK fertilizers and herbicides. 
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3.2.5 Ofoke Farm 

Soil characteristics and types: Ultisol and sandy loam 

Industrial activity: Remote area and no industrial activities 

Automobile traffic characteristics: There is high traffic density at a nearby major route (50 m 

away). 

Crop selected for study: Maize 

Application of agrochemical: NPK fertilizer and herbicides  

 

3.2.6 Ejule Farm 

Soil characteristics and types:  The soil is ultisol and sandy loam 

Industrial activity: No industrial activities 

Automobile traffic characteristics: Traffic is low. 

Crop selected for study: Cassava 

Application of agrochemical: NPK fertilizer and herbices (altrazine and butachlor). 

 

3.2.7 Ankpa Farm 

Soil characteristics and types: The soil is ultisol and loamy sand.  

Industrial activity: There is no industrial activity. 

Automobile traffic characteristics: Traffic is low. 

Crop selected for study: Cassava 

Application of agrochemical: No application of agrochemicals 

 

 3.2.8 KSU Farm 

Soil characteristics and types: Ultisol and loamy sand 

Industrial activity: No industrial activity. 

Automobile traffic characteristics: Traffic density is low 

Crop selected for study: Pumpkin 

Application of agrochemical: NPK and herbicides.  
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3.2.9 Lokoja Farm 

Soil characteristics and types: The soil is ultisol.and sandy loam 

Industrial activity: No industrial activities. 

Automobile traffic characteristics: Traffic density along a nearby route (100m away) is high. 

3.2.10 Anyigba (control) Farm. 

Soil characteristics and types: Ultisol and loamy sand 

Industrial activity: No industrial activities 

Automobile traffic characteristics: No traffic  

Crop selected for study: Cassava 

Application of agrochemical: No agrochemical inputs and fertilizer application. 

 

3.3 SAMPLING 

3.3.1 Collection of Soil Samples  

Soil samples were obtained from 0-15 and 15-30 cm depths in each farm and control site, to 

make 320 composite samples. Composite sample each of topsoil (0-15cm) was collected. 

Subsamples were collected within an area of 10m by 10m with auger sampler to make a 

composite. Similarly, subsoil (15-30 cm) was collected. Summary of number of soil samples 

collected is shown in Table 3.1. The air dried soil samples were ground and sieved through a 

plastic sieve of 2 mm mesh size, stored at ambient temperature in polyethylene bags till analysis 

time.  

 

3.3.2 Collection of Plant (food crops) Samples 

A total of 640 plants samples (leaves and edible parts) were collected,  

(i) Leaves: Leaves sample was collected by hand into new polyethylene bags composite. 

Subsamples of leaves of crops were collected within an area of 10m by 10m to make a 

composite. Samples where collected in the vicinities were soil samples were collected. 
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(ii) Fruits. Fruits sample was collected by hand into new polyethylene bags composite. 

      Subsamples of fruit of crops were collected within an area of 10m by 10m to make a 

      composite, 

(iii) Grain.  Sample of grains was collected by hand into new polyethylene bags composite. 

       Subsamples of grain of crops were collected within an area of 10m by 10m to make a 

       composite, 

(iv) Stem. Stem sample was collected by hand into new polyethylene bags composite. 

       Subsamples of stem of crops were collected within an area of 10m by 10m to make a 

       composite,  

(v) Tuber. Tuber sample was collected by hand into new polyethylene bags composite. 

      Subsamples of tuber of crops were collected within an area of 10m by 10m to make a 

      composite,  

 

In the laboratory, the leaf samples were washed with distilled water. The samples were then cut 

into small pieces, with stainless steel knife, air dry for 7 days. This was done to facilitate drying. 

The leaf samples were placed in clean acid-washed porcelain crucible labeled and oven-dried at 

60
o
C for 3 hours until they were brittle and crisp. The dried plant samples were ground using 

acid washed mortar and pestle and sieved to obtain fine powder. These were finally stored in 

screw capped plastic containers and labeled appropriately for analysis. Tubers of cassava were 

peeled prior to washing, stem and grains of samples were also washed with distilled water, cut 

into small pieces and dried at ambient temperature. Prior to grinding they were oven dried at 

60°C. The samples were subjected to chemical analysis. 

 

3.3.3  Collection of Water Samples  

56 samples irrigation waters (surface water) and16 underground waters were also collected. 

(a) Samples for physicochemical analysis: Water sample was collected from large pool of water 

in a dam with cleaned plastic bottles and kept in ice chest. Water for dissolved oxygen (DO) was 

collected in DO bottles and fixed on site.  
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(b) Samples for heavy metals analysis: Water sample was collected from a pool of water in dam 

with cleaned plastic bottles. Concentrated nitric acid (2ml) was added to each water sample and 

stored in ice chest. 

 

3.3.4 Collection of Sediment Samples 

 Sediments (56 samples) were collected from the top 10 cm layer of bottom sediment. A stainless 

steel trowel was used to scoop sediment samples into new polyethylene bags as composites. In 

the laboratory, sediment samples were air-dried, ground using mortar and pestle, sieved through 

a plastic sieve of 2 mm mesh size, and stored at room temperature in polyethylene bags. 

 

3.4 ANALYSES OF WATER SAMPLES 

Water samples were analysed by standard methods (APHA-AWWA-WPCF, 1998). 

 

3.4.1 Determination of pH 

The pH of water samples was determined using a portable pH meter (Mettler Toledo 420 model). 

The pH meter was calibrated with buffer solutions 7 and 4. All measurements were done at the 

sampling sites. 

Reagents:  

Buffer 7: A mass of 3.375g of KH2PO4 and 3.525g of Na2HPO4 were weighed and dissolved in 

little distilled water in a 1L volumetric flask and diluted to the mark.  

(Buffer 4: A mass of 10.21g of potassium hydrogen phthalate (KHP) was weighed and dissolved 

in little distilled water in a 1L volumetric flask, and diluted to the mark. 

 

3.4.2 Temperature Measurement 

Temperature of water samples was read with a thermometer at the point of collection.  

 

3.4.3 Determination of Alkalinity 

Alkalinity was determined by titration with standard hydrochloric acid to a methyl orange 

indicator endpoint. 
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3.4.4 Determination of Total Hardness 

Ethylenediaminetetra acetic acid (EDTA) titrimetric method was used in the determination of 

total hardness. 

 

3.4.5 Determination of Calcium 

Calcium was determined in the presence of magnesium by titration with disodium 

ethylenediaminetetraacetate dihydrate (EDTA). This method involved addition of dilute NaOH 

solution to raise the pH of sample to about 12, so that the magnesium is precipitated as 

hydroxide. The solution at pH of 12 to 13 was then titrated with standard EDTA solution, using 

calcon as indicator.  

 

3.4.6 Determination of Magnesium 

The difference in titre values between the total hardness and calcium was used as titre value for 

magnesium.  

 

3.4.7 Determination of Sulphate  

 The turbidimetric method was used. The principle involves precipitation of sulphate ions in acid 

medium with barium chloride to form barium sulphate crystals uniformly dispersed in a 

conditioning reagent. The absorbance of the turbid solution of standards and samples is then 

measured with a spectrophotometer at a wavelength of 420nm. The absorbance of blank solution 

was measured as well at the same wavelength.  

 

3.4.8 Determination of Phosphate 

Phosphate was determined by the molybdenum blue colorimetric method, which involves the 

reaction of phosphate ions with ammonium molybdate and potassium antimonyl tartrate in acid 

medium to form phosphomolybdic acid. This is then reduced to intensely coloured molybdenum 

blue by ascorbic acid and the absorbance was measured at a wavelength of 880nm. 

  

3.4.9 Determination of Nitrate  

Nitrate was determined using the phenoldisulphonic acid colorimetric method (Marczenko, 

1986). The nitration of 2, 4-phenoldisulphonic acid forms 6-nitrophenol-2, 4-disulphonic acid, 
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which on subsequent addition of ammonium hydroxide solution produces a yellow coloured 

compound whose absorbance is measured at a wavelength of 410nm.  

Reagents:  

Phenoldisulphonic acid reagent: Phenol (25g) was weighed and dissolved in 150ml conc. 

H2SO4. 75mL of 15% fuming sulphuric acid was added, and the mixture heated for 2 hours 

on a hot water bath. 

Nitrate stock solution: 0.7216g of KNO3 was weighed and dissolved in little distilled water and 

diluted to 1 litre in a volumetric flask, (1.0mL x 100µg NO3-). 

 Silver sulphate solution: 4.397g of silver sulphate crystal was weighed and dissolved in a    

 little distilled water, and diluted to 1 litre.  

Ammonium hydroxide solution (conc.) 

Nitrate Working Solution (10.0µg/mL): A 50mL of nitrate stock solution was 

transferred quantitatively into a 500ml volumetric flask and diluted with distilled water to mark. 

 

Instrument Calibration: Appropriate volumes (1.0, 2.0, 3.0, 4.0 and 5.0mL) of nitrate working 

solution were measured into a series of crucibles to cover the range 10 to 50µg NO
3-

. These were 

evaporated to dryness on a water bath. The residue in the crucibles was then rubbed with 2mL of 

phenoldisulphonic acid reagent, and heated mildly to dissolve the residue. A 5mL of ammonium 

hydroxide solution and 10mL of distilled water were added and mixed together. This solution 

was then transferred to 50mL volumetric flask and made up to mark with distilled water. 

Absorbance of this solution was measured at a wavelength of 410nm (Fig 3.6). Blank 

determination was done following the same procedure. Distilled water was used in place of 

nitrate working solution. 

Procedure for samples: A volume of silver sulphate solution equivalent to chloride contents of 

the water sample was added to 50mL clear water sample, mixed together and allowed to stand 

for 15 minutes to allow the precipitation of interfering chloride.  The precipitate was then filtered 

off. This sample solution was evaporated to dryness on a hot water bath.  The residue was then 

rubbed with 1mL of phenoldisulphonic acid reagent, heated mildly to dissolve all solids.  

Distilled water (10mL) was added followed by 3mL of ammonium hydroxide solution.  This 
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solution was then transferred to a 50mL volumetric flask and made up to mark with distilled 

water.  Absorbance of this solution was measured at a wavelength of 410nm. Blank 

determination was done using distilled water, and the same procedure was followed. Number of 

µg of nitrate in the sample was estimated from calibration curve, and the concentration 

calculated as: 

NO3- (µg/mL) = 
)(

. 3

mLSampleofVolume

ionextrapolatncalibratiofromNOgofNo




 

 

3.4.10 Determination of Dissolved Oxygen (DO)  

Dissolved oxygen contents were determined using the Winkler‟s titration method. This method is 

based on the addition of manganous sulphate solution and alkali-iodide-azide solution to the 

water sample. This results in the formation of manganous hydroxide precipitate. Any dissolved 

oxygen present in sample solution then rapidly oxidizes an equivalent amount of the dispersed 

manganous hydroxide precipitate to form higher hydroxide. Subsequent acidification of this 

solution liberates iodine in an amount chemically equivalent to the original dissolved oxygen 

content of the sample. The iodine is then determined by titration with a standard solution of 

sodium thiosulphate. 

  

3.4.11  Determination of Chemical Oxygen Demand  

Chemical Oxygen Demand was determined by using the method of oxidation with a measured 

amount of excess standard potassium dichromate, followed by titrimetric determination of the 

unreacted dichromate with standard iron (II).   

3.4.12 Deternination of Heavy Metals in Water Samples 

The method used involved digestion of water sample with concentrated nitric acid. The metal 

concentration in the digest was then determined using atomic absorption spectrophotometer 

(AAS).  

Sample Digestion for Heavy Metal Analysis: 200mL of a well-mixed water sample was 

measured into a clean beaker and 3mL of conc HNO3 was added. The beaker was heated on a 
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boiling water bath to concentrate the solution to about 15mL. The solution was allowed to cool 

and filtered into a 25mL volumetric flask. The beaker and filter paper were rinsed with a little 

amount of distilled water. The solution was made up to the mark with distilled water and 

transferred into a plastic bottle for instrumental analysis. Blank digestion was done following the 

same procedure with distilled water being used in place of sample. 

Instrument Calibration and sample reading: The equipment was calibrated with commercial 

stock standards of the metals to be run. Working standard solutions were prepared by diluting a 

volume of a stock standard solution of 1000ppm concentration of each of the metals to required 

concentrations in standard volumetric flasks. These were used to calibrate the AAS. The 

absorbance values of blank and working standard solutions were measured using a Buck 

Scientific (model 200A) flame atomic absorption spectrophotometer. The spectrophotometer of 

0.2nm slit width was operated in the air-acetylene flame mode. The lamps for heavy metals (Cd, 

Co, Cu, Ni, Pb, Zn) were operated at wavelengths specified by the manufacturer‟s manual. The 

operating condition of the spectrophotometer is shown on Table 3.6. A blank reading was 

subtracted from those of analyte samples and the corrected absorbance values obtained. Metal 

concentrations in the sample solutions were calculated using the expression below: 

Metal concentration, mg/L = 
C

BA
   

 Where   A = concentration of metal (instrument reading) in digested solution (mg/L) 

    B = final volume of digested solution after make up to the mark (mL) 

    C = initial sample volume taken (mL) 

  

3.5 ANALYSES OF SOIL SAMPLES 

3.5.1 pH Determination 

Soil and sediment pH were measured in H20 (1:1 soil to water) electrometrically (Page, 1982). 
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Table 3.5: Operating conditions for the atomic absorption spectrophotometer 

Element 
Wavelength 

(nm) 

Slit Width 

(nm) 

Lamps current 

(mA) 
Flame type 

Range of Working 

Standards (mg/L) 

Cd 228.8 3 2 Air-C2H2 0-10 

Co 240.7 1 6 Air-C2H2 0-15 

Cu 324.7 2 4 Air-C2H2 0-10 

Ni 232.0 1 8 Air-C2H2 0-10 

Pb 217.0 3 4 Air-C2H2 0-10 

Zn 312.9 2 4 Air-C2H2 0-10 
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3.5.2 Determination of Particle Size Distribution 

Particle size distribution was determined by Bouyoucos hydrometer method (Gee and Bauder, 

1979).  

3.5.3 Determination of Organic Carbon and Organic Matter 

Organic carbon of dry sediment and soil samples were determined using Walkley-Black method. 

The method measures the amount of degradable organic matter in sediment and soil. Sediment 

and soil organic carbon is almost completely oxidized with potassium dichromate (K2Cr2O7) in 

the presence of H2SO4, leaving the fraction present in inorganic form. The excess dichromate is 

determined by titration with ferrous sulphate (Nelson and Sommers, 1996). 

 

3.5.4 Analyses of Soil Samples for Heavy Metals 

Metals in dry samples were extracted with aqua regia. Determination of Cd, Co, Cu, Ni, Pb, and 

Zn, was carried out on the extracts using atomic absorption spectroscopy. 

Procedure for Digestion of Soil: Aqua regia was prepared by adding 150 mL of 36% 

hydrochloric acid to 50 mL of 70% nitric acid in a 500-mL conical flask. A mass of 1.0g of the 

sieved air-dried soil or sediment sample was weighed out into a clean 250mL beaker. Aqua regia 

(5ml) solution was measured and added to the contents in a beaker and covered with a watch 

glass. The beaker was placed in a boiling water bath to digest the sample. At intervals of 15 

minutes, the beaker was withdrawn, the contents swirled and the beaker then replaced. The 

digestion was carried out for 2 hours and the contents were allowed to cool. The extract was then 

filtered into a 25mL volumetric flask. A sample blank digestion was also carried out. The 

digested soil and sediment samples were analyzed for Cd, Co, Cu, Ni, Pb, and Zn, using the 

atomic absorption spectrometer. 

 

3.6 ANALYSES OF SEDIMENTS FOR HEAVY METALS  

The procedure is as describe for soil samples (section 3.5.4). 

 

http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4TKBP6N-1&_user=2789858&_coverDate=02%2F28%2F2009&_rdoc=43&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%232009%23998429997%23748103%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=47&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a45d1cc8ff61d368d8169617029967d7#bib86
http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4TKBP6N-1&_user=2789858&_coverDate=02%2F28%2F2009&_rdoc=43&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%232009%23998429997%23748103%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=47&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a45d1cc8ff61d368d8169617029967d7#bib86
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3.7 ANALYSES OF PLANT SAMPLES FOR HEAVY METALS 

Procedure for Digestion: Metals in dry samples were extracted with a mixture of 3:1 

HNO3:HClO4. A 0.5g powdered food crop sample was weighed into a 100 ml beaker. A 10mL 

mixture 3:1 HNO3:HClO4 was added to the sample in the beaker, and this was allowed to stand 

for few minutes. The mixture was heated at 70
o
C until a transparent solution was obtained 

(digestion complete). In some cases additional volume was added to complete the digestion. The 

sample was then cooled, diluted and filtered into a 25mL standard flask and two 5 ml portions of 

distilled water were used to rinse the beaker and the contents filtered into the 25 mL flask. The 

filtrate was allowed to cool to room temperature before dilution was made to the mark and the 

content mixed thoroughly by shaking. A sample blank digestion was also carried out. The 

digested plant samples were analyzed for Cd, Co, Cu, Ni, Pb, and Zn. 

 

3.8 METAL SPECIATION STUDY 

The sequential extraction procedure of Tessier et al. (1979) was used. The chemical partitioning 

of heavy metals allows distinguishing five fractions representing the following chemical phases: 

exchangeable metals, bound to carbonates, bound to Fe–Mn oxides, bound to sulphides and 

organic matter, and residual fraction. 

Procedure: The procedure was carried out with an initial weight of 1 g of sieved dry soil 

sample. 

Step 1: The exchangeable phase. The samples were extracted at room temperature for 1 h with 

8 ml of 1 M MgCl2 (pH 7) with continuous stirring. The extracts were centrifuged for 30 min to 

achieve good separation. The supernatant was removed with a pipette and used for metal 

measurement and the solid residues were subjected to subsequent extractions.  

Step 2: The carbonate phase. The washed residue from step 1 was leached at room temperature 

with 8 mL of 1M NaOAc (adjusted to pH 5 with HOAc) for 6 h with continuous stirring. The pH 

was controlled after 3 h and adjusted to pH 5 with HOAc at room temperature, centrifuged. The 

supernatant was collected and the solid residue was for the following extraction. 

http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6V7X-47CY4N3-2&_user=2789858&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=8691f8968c92ba2cd5b70fd6c8d7cba0#bib23
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Step 3: The oxide phase: The residue from step 2 was extracted with 20 mL of 0.04 M 

NH2OH.HCl in 25% HOAc (v/v) for 6 h at 96 °C in a water bath with occasional stirring. The 

supernatant was subjected to metal analysis and the solid residues were used in step four 

Step 4: The organic phase. To the solid residue from step 3 was added 3 mL of 0.02 M HNO3 

and 5 mL of H2O2 30% (adjusted to pH 2 with HNO3). The mixture was heated to 85 °C and 

occasionally stirred. After 2 h, 3 mL of 30% H2O2 was added once more (adjusted to pH 2 with 

HNO3). The temperature and the occasional stirring were maintained for another 3 hours. After 

cooling, 5 mL of 3.2 M NH4OAc (in 20% HNO3 (v/v)) and 4 mL of deionized water was added 

and the mixture was agitated continuously for 30 min. The supernatant was subjected to metal 

analysis and the solid residues were used in step five 

Step 5: Residual: The residue from step 4 was digested with 7 mL of HNO3 (65%) and 7 mL of 

HF (40%). The liquid was evaporated and after that, it was dissolved again with 2 mL of HNO3, 

2 mL of HCl and 10 mL deionized with low temperatures. The samples were diluted to 50 mL 

with deionized water. The supernatant was subjected to metal analysis. 

After each step, the extracts were centrifuged for 30 min to achieve good separation. The 

supernatant was removed with a pipette. The residue was washed with 8 mL of deionized water. 

After another 30 min of centrifugation, the wash solution was discarded. The mixtures were 

diluted to 20 ml with deionized water because of liquid losses due to evaporation. 

 

3.9 APPLICATION OF A PLANT-SOIL MODEL TO DETERMINATION OF 

      THRESHOLD LEVELS OF HEAVY METALS IN PLANTS 

Metals concentrations in soil and crops parts were fitted into an existing soil-plant equilibrium 

model. This was achieved with the aid of STRATA statistical software.  

 

3.10 STATISTICAL ANALYSIS OF DATA 

Data obtained were subjected to analysis of variance using the General Linear Models. Two way 

analysis of variance (ANOVA) (<0.05) were used to assess whether metal concentrations in soil 
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varied significantly between rainy season and dry season. All statistical calculations were 

performed with SPSS 17.0 for Windows.   

 

3.11 EVALUATION OF TRANSFER FACTORS FOR HEAVY METALS 

The transfer factors (TF) of Cd, Co, Cu, Ni, Pb, and Zn, from soils to crops were calculated as 

follows: 

TF = 
grownwasplantthewherefromsoilinionconcentratmetal

tissuecropinionconcentratmetal
 

 

3.12 ASSESSMENT OF METAL POLLUTION IN SOILS 

 

3.12.1 Index of geoaccumulation 

 The Index of geo-accumulation of metals in soil was calculated using the equation 

 

 

 

                           

 

 

where C
n 

is the measured concentration of the examined metal n in the soil, and B
n 

is the 

background concentration or reference value of the metal n. Factor 1.5 is used because of 

possible variations in background values for a given metal in the environment as well as very 

small anthropogenic influences. 

Table 3.6 shows the index of geoaccumulation (Igeo) for contamination levels in soil. 

 

 

3.13 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC) 

Quality Assurance (QA) is a set of operating principles that if strictly followed during sample 

collection and analysis will produce data of known and defensible quality, that is, the accuracy of 

the analytical result can be stated with high level of confidence. Some quality assurance 

measures were incorporated into various steps of the sampling and analyses. The essence was to  
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Table 3.6: Index of geoaccumulation (Igeo) for contamination levels in soil 

Igeo Class Igeo Value Contamination level 

0 Igeo  unpolluted 

1 0  Igeo≤1 unpolluted to moderately polluted 

2 1  Igeo≤2 moderately polluted 

3 2  Igeo≤3 Moderately to strongly polluted 

4 3  Igeo≤4 Strongly polluted 

5 4  Igeo≤5 Strongly to extremely polluted 

6 Igeo 5 Extremely polluted  
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detect and correct problems in the measurements and ensure that the analytical procedures were 

operating within acceptable control limits. 

 

3.13.1 QA/QC in Sampling 

 Plastic containers for the determination of general physicochemical parameters were      

     thoroughly washed with teepol detergent and rinsed with distilled water. Plastic sample 

     containers that were used for metal analysis were first soaked in HNO3 for two days, and 

    thoroughly rinsed with distilled water.  

 Hand trowel used for collecting sediment from the dam was made of stainless steel. The 

    polyethylene bags used for collecting sediment samples were new and clean. 

 Reagents used were of Analar-grade.  

 

3.13.2 QA/QC in Preparation and Preservation of Sample 

 The water samples collected for metals analyses were fixed on the field with concentrated 

nitric acid. 

 The samples collected for other general physicochemical parameters were stored in an ice 

chest right on site. On arrival in the laboratory, the samples were subsequently preserved in 

the fridge until the commencement of the analysis. 

 It was ensured that the mortar and pestle for grinding were washed with teepol detergent, 

rinsed with distilled water and dried before use.    

 

3.13.3 QA/QC in Calibration of the Instruments 

 The pH meter was frequently calibrated with buffer 4 and 7 solutions prepared from analar 

grade salts. 

 Appropriate standard solutions prepared from analar grade salts, were used to calibrate the 

atomic absorption spectrophotometer for metal analysis.  

 The instruments were generally operated according to manufacturer specifications and kept 

in good working conditions. 
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3.13.4 QA/QC in Sample Analysis 

 Sample blanks were measured for determination of anions and metals and appropriate 

corrections made.  

 Samples were generally analysed in duplicates. 

3.13.5 Recovery study of Heavy-Metal Determination in Samples 

Recovery study for heavy metal was carried out to check whether there could have been losses or 

contamination of samples in the process of sample preparation and analysis. This could have 

resulted from the digestion procedure and systematic errors in the instrument analysis with the 

atomic absorption spectrophotometer (Roshan, 2004).  

Procedure for Spiking and Re-determination of Metal Concentration in Soil Sample: 10.0g 

of previously analysed sample was weighed into a crucible. An appropriate volume of standard 

was carefully spiked into a cone shape made in the soil. The volume of the standard spiked was 

such as not to over-wet the soil sample in the crucible. The spiked soil sample was dried in an 

oven for another 30 minutes and allowed to cool in a desiccator. The spiked sample was then 

homogenised thoroughly with a glass rod. 5.0g of soil was then weighed out of the spiked 

homogenised sample into another clean crucible. The sample was re-dried in an oven for another 

30 minutes, cooled in a dessicator and re-weighed until constant weight was obtained. The 

sample was quantitatively transferred into a beaker and digested with aqua regia as previously 

described (section 3.5.4). The results of the recovery study for metal determinations are shown in 

Tables 3.7 to Table 3.24  

The level of increase achieved by spiking = 
takensampleofWeight

addedmetalofnumber of µg
 

Percent recovery = 
 

100
.

.




spikingbyachievedconcinIncrease

concmetalOriginalanalysisrefromconcMetal
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Table 3.7: Results of recovery study for copper determination in soil samples 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked (g) 

Conc. of 

standard 

for spiking 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Cu IBA-SL 7.82 5.0 50 0.8 8.0 15.8 16.0 103.0 

 MAC-SL 6.60 5.0 50 0.7 7.0 13.6 13.0 91.3 

 EJU-SL 4.13 5.0 50 0.4 4.0 8.1 7.8 92.4 

 LOK-SL 3.12 5.0 50 0.3 3.0 6.1 5.8 90.1 

 AJA-SL 2.13 5.0 50 0.2 2-0 4.1 3.9 89.0 

 

 

Table 3.8: Results of recovery study for zinc determination in soil samples 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked (g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Zn LOK-SL 63.2 5.0 250 1.3 65.0 128.2 129 102.3 

 IDA-SL 26.1 5.0 100 1.3 26.0 52.8 51.5 93.0 

 AJA-SL 15.8 5.0 100 0.7 14.0 29.8 28.5 91.0 

 ANK-SL 6.32 5.0 50 0.6 6.0 12.3 11.8 91.3 

 AYB-SL 6.12 5.0 50 0.6 6.0 12.1 12.0 98.2 
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Table 3.9: Results of recovery study for lead determination in soil samples 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Pb MAC-SL 17.6 5.0 100 0.9 18.0 35.6 36.2 103.3 

 IBA-SL 15.9 5.0 100 0.8 16.0 31.9 30.5 91.4 

 OFK-SL 7.21 5.0 50 0.7 7.0 14.2 13.5 90.3 

 AJA-SL 7.16 5.0 50 0.7 7.0 14.2 13.8 88.0 

 IDA-SL 5.36 5.0 50 0.6 6.0 11.4 11.8 106.0 

 

 

Table 3.10: Results of recovery study for cadmium determination in soil samples 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Cd ANK-SL 0.40 5.0 10 0.20 0.  4 0.80 0.73 82.5 

 IDA-SL 0.21 5.0 10 0.13 0.2 0.41 0.38 85.0 

 EJU-SL 0.26 5.0 10 0.13 0.26 0.52 0.50 84.6 

 OFK-SL 0.28 5.0 10 0.14 0.28 0.56 0.53 89.3 

 KSU-SL 0.07 5.0 10 0.05 0.1 0.17 0.19 120.0 
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Table 3.11: Results of recovery study for nickel determination in soil samples 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Ni LOK-SL 21.7 5.0 100 1.1 22.0 43.7 45.1 106.3 

 AJA-SL 12.6 5.0 100 0.6 12.0 24.6 23.8 93.3 

 KSU-SL 10.2 5.0 50 1.0 10.0 20.2 19.5 93.0 

 OFK-SL 7.32 5.0 50 0.7 7.0 14.3 15.2 12.9 

 IDA-SL 5.89 5.0 50 0.6 6.0 11.9 11.6 95.0 

 

 

Table 3.12: Results of recovery study for cobalt determination in soil samples 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Co IBA-SL 7.86 5.0 50 0.8 8.0 15.9 16.1 102.5 

 MAC-SL 5.26 5.0 50 0.5 5.0 10.3 9.8 90.1 

 EJU-SL 4.78 5.0 50 0.5 5.0 9.8 10.2 107.9 

 AJA-SL 2.89 5.0 50 0.3 3.0 5.9 6.5 119.9 

 OFK-SL 2.24 5.0 50 0.2 2.0 4.2 4.0 89.8 
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Table 3.13: Results of recovery study for copper determination in leaf samples 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Cu IDA 13.4 5.0 100 0.7 14.0 27.9 27.2 95.0 

 AJA 9.93 5.0 50 1.0 10.0 19.9 18.8 89.0 

 MAC 7.14 5.0 50 0.7 7.0 14.1 13.8 95.7 

 KSU 2.60 5.0 50 0.3 3.0 5.60 5.20 86.6 

  

 

Table 3.14: Results of recovery study for zinc determination in leaf samples 

Metal Sample 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Zn AJA 56.2 5.0 250 1.3 65.0 121 120 99.0 

 KSU 29..7 5.0 150 1.0 30.0 59.7 59.2 98.3 

 OFK 20.2 5.0 100 1.0 20.0 40.2 39.0 94.0 

 EJU 1.67 5.0 10 0.9 1.8 3.47 3.42 97.2 
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Table 3.15: Results of recovery study for lead determination in leaf samples 

Metal Sample 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Pb MAC 0.52 5.0 10 0.3 0.6 1.12 1.07 91.6 

 IBA 0.33 5.0 10 0.2 0.4 0…73 0.75 105 

 EJU 0.21 5.0 10 0.1 0.2 0.4 0.38 89.0 

 KSU 0.13 5.0 10 0.7 13 0.26 0.24 84.6 

  

 

 

Table 3.16: Results of recovery study for cadmium determination in leaf samples 

Metal Sample 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Cd IBA 0.90 5.0 10 0.5 1.0 1.9 1.7 80.0 

 IDA 1.67 5.0 10 0.8 1.7 3.4 3.3 97.6 

 KSU 0.23 5.0 10 0.2 0.4 0.63 0.58 87.5 

 ANK 0.06 5.0 10 0.03 0.06 0.12 0.1 66.7 
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Table 3.17: Results of recovery study for nickel determination in leaf samples 

Metal Sample 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Ni AJA 50.7 5.0 250 1.0 50.0 101 103 104.3 

 IDA 39.6 5.0 250 0.8 50.0 90 94 108.0 

 KSU 39.6 5.0 100 1.3 21.0 41.0 40.0 87.6 

 MAC 12.4 5.0 100 0.6 13.0 25.0 23.5 88.0 

 

 

Table 3.18: Results of recovery study for cobalt determination in leaf samples 

Sample 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 
 

ANK 30.1 5.0 250 0.6 30 60.1 59.0 96.7  

AJA 8.69 5.0 50 0.9 9.0 17.7 16.2 83.4  

EJU 3.59 5.0 50 0.4 4.0 7.6 7.2 90.0  

KSU 0.16 5.0 50 0.8 8.0 8.2 7.8 95.0  
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Table 3.19: Results of recovery study for copper determination in edibles 

Metal Sample 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. Of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Cu MAC 9.80 5.0 50 1.0 10 19.8 19.2 94.0 

 ANK 4.38 5.0 50 0.4 4.0 8.4 7.9 87.6 

 IDA 3.16 5.0 25 0.6 3.0 6.2 6.0 92.0 

 IBA 2.63 5.0 25 0.6 3.0 5.6 5.1 83.2 

  

 

 

Table 3.20: Results of recovery study for zinc determination in edible plant parts 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. Of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Zn OFK 36.7 5.0 250 0.7 35 72.0 69.3 93.1 

 MAC 18.3 5.0 100 1.0 20 28.3 28.0 97.0 

 KSU 10.9 5.0 100 0.5 10 20.9 19.3 84.0 

 EJU 5.93 5.0 50 0.1 1.0 7.0 6.83 84.1 
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Table 3.21: Results of recovery study for lead determination in edible plant parts 

Metal Sample 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. Of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Pb OFK 0.75 5.0 10 0.4 0.8 1.55 1.38 78.8 

 IBA 0.17 5.0 10 0.1 0.2 0.37 0.40 115.0 

 KSU 0.09 5.0 10 0.1 0.2 0.30 0.32 109.0 

 EJU 0.06 5.0 10 0.1 0.2 0.26 0.30 120.0 

  

 

 

Table 3.22: Results of recovery study for cadmium determination in edible plant parts 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Cd OFK 0.22 5.0 10 0.1 0.2 0.42 0.43 105 

 IDA 0.14 5.0 10 0.1 0.2 0.34 0.30 80.0 

 EJU 0.09 5.0 10 0.1 0.2 0.29 0.31 110.0 

 KSU 0.03 5.0 10 0.1 0.2 0.23 0.20 85.0 
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Table 3.23: Results of recovery study for nickel determination in edible samples 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Ni OFK 59.4 5.0 250 1.2 60 119 114 91.9 

 IBA 26.3 5.0 250 0.5 25 51.3 49.7 93.6 

 MAC 8.04 5.0 50 0.8 8.0 16.4 15.2 89.5 

 ANK 6.48 5.0 50 0.6 6.0 12.5 12.1 93.4 

  

 

 

Table 3.24: Results of recovery study for cobalt determination in edible plant parts 

Metal 
Sample 

site 

Original 

sample 

conc. 

(µg/g) 

Weight of 

sample 

spiked(g) 

Conc. of 

standard 

spiked 

(µg/mL) 

Volume of 

standard 

spiked 

(mL) 

Increased 

conc. 

Achieved 

(µg/g) 

Total 

expected 

by analysis 

(µg/g) 

Results of 

re-analysis 

(µg/g) 

% 

Recovery 

Co IBA 0.90 5.0 10 0.5 1.0 1.9 1.7 80.0 

 IDA 1.67 5.0 10 0.8 1.7 3.4 3.3 97.6 

 KSU 0.23 5.0 10 0.2 0.4 0.63 0.58 87.5 

 1BA 0.11 5.0 10 0.1 0.2 0.21 0.17 60.0 
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3.13.6 Summary result of recovery studies 

The summary result of the spike recovery test is presented in Table 3.25. The results show that 

the average heavy metals recoveries for soil and food crops (leaves and edibles) were in most 

cases within acceptable range of 90 – 100%.   In soil, recovery ranged from 80±38% in Ni to 

102±13% in Co. Corresponding range in leaves was 83±13% in Cd to 97.1±2.2% in Ni while in 

edibles the range of recovery was 81±16% in Co to 105±18% in Pb. The percentage recoveries 

for the metals were within 100±10%, a limit that demonstrates that uncertainties in the methods 

of analyses used were within acceptable limits. It therefore means that a good recovery was 

obtained for the metals with the methods employed and the results obtained were of good 

accuracies. 
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 Table 3.25: Average  recoveries (%)   

Metal Soil Leaves Edible 

Cd 92±16 83±13 95±15 

Co 102±13 91.2±6.0 81±16 

Cu 93.0±5.7 91.6±4.5 89.2±4.8 

Ni 80±38 97±11 92.1±1.9 

Pb 95.6±8.3 92.6±8.8 105±18 

Zn 95.0±4.8 97.1±2.2 89.6±6.5 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

4.1 PHYSICOCHEMICAL CHARACTERISTICS OF THE SOILS 

The soil physicochemical parameters are very important in understanding the characteristics and 

behaviour of heavy metals and contaminants present in the soil and the ability of soil to retain 

these metals, and subsequent release to crops.  

 

4.1.1 Mechanical Properties 

 Average levels of topsoil particle size were 72±15 %, 15.6±6.9 % and 12.6±7.3 % for sand, clay 

and silt respectively (Table 4.1). The differences between topsoil and subsoil values were 

statistically not significant. Average seasonal values of sand during rainy and dry seasons were 

73±13% and 70±14% respectively. Corresponding values for clay and silt were 15.3±6.3%, 

17.2±6.7% and 11.7±8.5%, 12.8±9.8% respectively. Soil high in sand retains fewer metals 

within it (Wenzel, 2005). The value obtained for topsoils at different sites compared with the 

control value is also not significant (Table 4.2). The clay contents of the studied soils were less 

than 20% therefore these soils can be classified as coarse textured soils in terms of Czech 

regulations (Komarek et al., 2008). Generally, the soil textural characteristics ranged from loamy 

sand to sandy loam.  

 

4.1.2 Percentage Organic Carbon and Organic Matter in Soil  

Average level of total organic carbon (TOC) in topsoil (0-15cm) was 4.87±0.47%, and in subsoil 

(15-30 cm) it was 4.55±0.24 % (Table 4.3). Values in topsoil ranged from 3.82% to 10.1% while 

corresponding subsoil values ranged from 3.43% to 6.74% (Table 4.4). Average values of total 

organic matter (TOM) in topsoil and subsoil were 8.42±0.78% and 7.87±0.39% respectively. 

The difference between rainy season average value (4.86±0.51 %) and dry season (4.89±0.49 %) 

in topsoil is not statistically significant. Values of TOM obtained in topsoil ranged from 6.60 to 

17.5% and subsoil ranged from 5.86% to 11.7% (Table 4.5). The TOC values are adequate for 
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Table 4.1: Average soil particle size (%)  

 

 

 

 

 

 

 

* CTR: control 

 

 

Depth (cm) 
Rainy season  Dry season  Mean (all seasons) 

Sand Silt Clay  Sand Silt Clay  Sand Silt Clay 

0-15 73±15 11.9±8.4 15.1±6.3  71±16 12.7±9.6 16.3±7.3  72±15 12.4±8.5 15.6±6.9 

15-30 73±13 11.4±8.9 15.6±6.3  69±14 13.0±8.7 18.0±5.9  71±13 12.2±9.6 16.8±6.3 

            

0-15 (CTR)* 78.9±3.7 7.3±1.5 13.8±2.9  79.9±4.2 5.3±1.1 14.8±3.5  79.4±4.6 6.3±1.8 14.3±3.6 

15-30 (CTR)* 76.5±6.2 10.4±5.8 13.1±7.4  73.9±5.3 6.0±1.9 20.1±3.6  75.2±5.9 8.2±4.8 16.6±6.1 
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Table 4.2: Physicochemical characteristics of soil at different depths 

 

       

 

 

Site code Depth (cm) pH %TOC %TOM % Sand %Silt % Clay Soil Type 

OFK-SL 0-15 5.59±0.78
 a
 5.3±1.1

 a
 9.1±1.9

 a
 59±18 23±12 18.0±8.8 Sandy loam 

 15-30 5.2±1.0 4.8±0.4 8.4±0.8 62±12 19.4±9.4 18.6±6.0  

         

ANK-SL 0-15 5.99±0.39
 abc

 4.33±0.3
 
 6

 a
 7.38±0.35

 a
 84.4±4.1 4.7±2.8 11.9±4.3 Loamy sand 

 15-30 5.55±0.66 4.53±0.04 7.28±0.25 82.4±5.3 4.6±1.7 13.0±5.4  

         

LKJ-SL 0-15 6.27±0.85
 bcd

 5.2±1.4
 a
 8.9±2.4

 a
 68±14 11.0±2.9 21±11 Sandy loam 

 15-30 5.83±0.41 4.8±0.3 8.25±0.49 72±11 9.5±5.0 18.5±7.8  

         

AJA-SL 0-15 6.9±0.7
 d
 4.29±0.37

 a
 7.42±0.63

 a
 78.9±5.5 9.3±4.8 10.8±2.1 Loamy sand 

 15-30 6.13±0.55 4.29±0.19 6.4±0.3 78.5±3.5 10.9±3.9 10.6±1.8  

         

MAC-SL 0-15 6.6±0.4
 cd

 5.1±1.2
 a
 8.8±1.9

 a
 78.9±5.7 8.5±4.0 12.6±3.4 Loamy sand 

 15-30 6.49±0.54 4.7±0.7 8.2±1.1 75.9±6.9 8.6±3.8 15.5±4.8  

         

IBJ-SL 0-15 6.41±0.6
 
4

 bcd
 5.25±0.5 8

 a
 9.1±1.0

 a
 47±15 36±11 17.0±5.7 Sandy loam 

 15-30 6.14±0.72 4.82±0.18 8.3±0.14 44.5±7.1 34.1±7.0 21.4±3.4  

         

IDA-SL 0-15 6.73±0.64
 d
 4.31±0.25

 a
 7.27±0.64

 a
 84.4±5.3 4.6±2.3 11.0±3.0 Loamy sand 

 15-30 6.33±0.56 4.17±0.09 6.86±0.64 80.8±7.5 5.8±3.9 13.4±4.2  

         

EJU-SL 0-15 5.79±0.25
 ab

 4.67±0.19
 a
 8.08±0.33

 a
 67.2±7.9 11.3±2.5 21.5±6.6 Sandy loam 

 15-30 5.41±0.23 4.41±0.08 7.63±0.17 63±11 14.6±5.3 22.4±5.7  
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Table 4.2: contd. 

 

 

 

 

 

 

 Values with different superscript (a,b,c,d) within the same column are significantly different at P=0.05 

 

 

     Table 4.3: Average TOC and TOM levels in the soil 

Depth (cm) 

TOC  TOM 

Rainy Dry Overall mean  Rainy Dry Overall 

mean 

0-15  4.86±0.51 4.89±0.49 4.87±0.47  8.40±0.88 8.45±0.77 8.42±0.78 

15-30 4.46±0.19 4.65±0.32 4.55±0.24  7.71±0.33 8.04±0.55 7.87±0.39 

        

        

0-15 (CTR)  6.2±3.3 4.94±0.36 5.6±2.3  10.7±5.9 8.54±0.61 9.6±4.0 

15-30 (CTR) 4.5±1.0 4.38±0.42 4.45±0.33  7.8±1.8 7.58±0.73 7.7±1.3 

Site code Depth (cm) pH %TOC %TOM % Sand %Silt % Clay Soil Type 

KSU-SL 0-15 6.81±0.35
 d

 5.5±2.1
 a
 9.1±4.1

 a
 78.3±7.9 5.9±1.6 15.8±6.8 Loamy sand 

 15-30 6.42±0.14 4.49±0.29 7.5±1.1 75.7±5.8 7.0±2.1 17.3±6.4  

         

Mean 0-15 6.29±0.27
 bcd

 4.87±0.47
 a
 8.42±0.78

 a
 72±15 12.4±8.5 15.6±6.9 Loamy sand 

 15-30 5.88±0.37 4.55±0.24 7.87±0.39 71±13 12.2±9.6 16.8±6.3  

         

CTR 0-15 6.87±0.76
 d

 5.6±2.3
 a
 9.3±4.6

 a
 76.7±4.6 7.0±1.9 14.3±3.9 Loamy sand 

 15-30 6.18±0.66 4.44±0.08 7.33±0.33 75.0±5.9 8.5±4.8 17.5±6.1  
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Table 4.4: Total organic carbon (TOC) in soil (%) 

 

 

 

 

Site code 
Depth 

(cm) 

Rainy season  Dry season 

May-07 Aug-07 May-08 Aug-08 Mean  Nov-07 Feb-08 Nov-08 Feb-09 Mean 

OFK-SL 0-15 3.82 6.56 4.68 4.90 5.0±1.1  6.67 6.44 4.51 4.44 5.5±1.2 

 15-30 3.43 6.19 4.17 4.38 4.5±1.2  6.28 5.70 4.37 4.31 5.17±0.98 

ANK-SL 0-15 4.06 4.69 3.93 4.77 4.36±0.33  4.78 4.16 4.14 4.08 4.29±0.32 

 15-30 3.51 5.83 3.77 4.94 4.5±1.1  5.88 4.56 3.92 3.86 4.56±0.94 

LOK-SL 0-15 3.82 7.18 4.12 5.14 5.1±1.6  7.58 4.56 4.46 4.41 5.3±1.6 

 15-30 3.39 6.64 3.69 4.53 4.6±1.5  6.74 4.58 4.40 4.23 5.0±1.2 

AJA-SL 0-15 4.1 4.07 3.98 5.13 4.32±0.54  4.24 4.45 4.17 4.20 4.26±0.13 

 15-30 4.3 4.06 4.09 5.26 4.43±0.57  4.44 4.23 3.97 3.99 4.15±0.22 

MAC-SL 0-15 3.98 6.68 4.36 5.24 5.1±1.2  7.00 4.74 4.32 4.26 5.1±1.3 

 15-30 3.51 6.03 4.03 4.93 4.6±1.1  6.17 4.36 4.11 3.96 4.7±1.0 

IBA-SL 0-15 5.23 4.84 4.55 6.16 5.20±0.70  4.91 5.94 5.52 4.83 5.30±0.52 

 15-30 4.23 4.75 4.14 5.96 4.77±0.84  4.79 5.95 4.35 4.42 4.88±0.74 

IDA-SL 0-15 4.11 4.34 4.12 4.40 4.24±0.14  4.40 4.78 3.97 4.40 4.39±0.33 

 15-30 3.82 4.18 4.06 4.34 4.10±0.21  4.22 4.53 3.82 4.34 4.23±0.30 

EJU-SL 0-15 4.35 4.79 4.43 4.71 4.57±0.21  4.84 4.87 4.66 4.71 4.77±0.10 

 15-30 3.95 4.63 4.26 4.54 4.35±0.31  4.375 4.90 4.08 4.54 4.47±0.34 

KSU-SL 0-15 10.1 4.77 4.54 4.23 5.9±2.8  7.3 5.08 4.11 4.08 5.1±1.5 

 15-30 4.49 4.33 4.15 4.13 4.28±0.17  6.08 4.90 3.98 3.97 4.7±1.0 

             

CTR-SL        0-15 11.3 4.68 4.32 4.53 6.2±3.3  4.71 5.46 4.82 4.77 4.94±0.35 

 15-30 6.01 3.73 4.06 4.26 4.5±1.0  3.76 4.5 4.64 4.63 4.38±0.42 
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Table 4.5: Total organic matter (TOM) in soil (%) 

Site code 
Depth 

(cm) 

Rainy season  Dry season 

May-07 Aug-07 May-08 Aug-08 Mean  Nov-07 Feb-08 Nov-08 Feb-09 Mean 

OFK-SL 0-15 6.60 11.3 8.09 8.47 8.6±1.9  11.5 11.1 7.80 7.68 9.5±2.1 

 15-30 5.93 10.7 7.20 7.57 7.9±2.0  10.9 9.86 7.56 7.45 8.9±1.7 

ANK-SL 0-15 7.01 8.11 6.79 8 .24 7.30±0.71  8.26 7.19 7.16 7.05 7.41±0.57 

 15-30 6.06 10.1 6.52 8.54 7.8±1.8  10.2 7.88 6.78 6.67 7.9±1.6 

LOK-SL 0-15 6.60 12.4 7.12 8.88 8.8±2.6  13.1 7.88 7.71 7.62 9.1±2.6 

 15-30 5.86 11.5 6.38 7.83 7.9±2.5  11.7 7.92 7.61 7.31 8.6±2.1 

AJA-SL 0-15 7.09 7.04 6.88 8.87 7.47±0.94  7.33 7.69 7.21 7.26 7.37±0.22 

 15-30 7.43 7.02 7.07 9.09 7.65±0.98  7.68 7.31 6.86 6.90 7.18±0.38 

MAC-SL 0-15 6.88 11.5 7.53 9.05 8.7±2.1  12.1 8.20 7.46 7.37 8.8±2.2 

 15-30 6.07 10.4      6.96 8.52 7.9±1.9  10.7 7.80 7.10 6.85 8.1±1.8 

IBA-SL 0-15 9.04 8.36 7.86 10.7 8.9±1.2  8.49 10.3 9.54 8.35 9.17±0.92 

 15-30 7.31 8.21 7.15 10.3 8.2±1.4  8.28 10.3 7.52 7.64 8.4±1.3 

IDA-SL 0-15 7.11 7.50 7.12 7.60 7.33±0.25  7.61 8.26 6.86 7.60 7.58±0.57 

 15-30 6.60 7.22 7.02 7.50 7.09±0.38  7.29 7.83 6.60 7.50 7.31±0.52 

EJU-SL 0-15      7.52 8.28 7.66 8.14 7.90±0.37  8.36 8.42 8.06 8.14 8.25±0.17 

 15-30 6.82 8.01 7.36 7.84 7.51±0.53  7.50 8.47 7.05 7.85 7.71±0.59 

KSU-SL 0-15 17.5 8.24 7.85 7.31 10.2±4.9  12.6 8.78 7.11 7.05 8.8±2.6 

 15-30 7.76 7.48 7.17 7.14 7.38±0.29  10.5 8.47 6.88 6.86 8.2±1.7 

             

CTR-SL 0-15 19.5 8.09 7.46 7.83 10.7±5.9  8.14 9.44 8.33 8.24 8.53±-0.61 

 15-30 10.4 6.45 7.02 7.36 7.8±1.8  6.50 7.78 8.02 8.00 7.58±0.72 
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agricultural farmland. Organic matter increases buffering and exchange capacity of soils and 

make nutrient available to crops. It also form chelates with metals such as Cu and Zn which 

increases their solubility and make them available to crops. However, an increase in organic 

carbon or organic matter leads to a stronger adsorption of heavy metals to soil particles and 

decreases their availability to crops. Organic carbon content of 2.5% is considered adequate for 

arable land crop production in Southwestern Nigeria. Eludoyin and Wokocha (2011) had 

reported a mean of 0.96% organic carbon in plots under repeated maize cropping and 2.02% 

organic carbon in forest soils around Ibadan. There is no significant difference between samples 

values and control value. This shows that there is no local difference in soil texture and general 

characteristics of these soils.     

 

4.1.3 pH of the Soil  

Table 4.6 shows the average pH (6.29±0.18) in topsoil and subsoil (5.89±0.15).There is no 

significant difference between rainy season value (6.33±0.16) and dry season (6.26±0.38) values 

in topsoil. Corresponding average seasonal pH in subsoil is 5.92±0.45 in rainy season while dry 

season value was 5.89±0.31. Soil pH were weakly acidic in the farmlands as shown in Table 4.2. 

The differences observed at various farms compared with control is not significant except at 

Ofoke, Ankpa and Ejule sampled sites (P=0.05). Average pH value of 6.29 in this study is higher 

than the average pH value of 5.2 reported for some Nigerian soils by Onofiok and Ojobo (1993). 

 

4.2 HEAVY METAL LEVELS IN THE SOILS 

4.2.1 Lead Levels in Soil 

Lead concentration varied from one farmland to another. The average lead concentration in 

topsoil was 12.8±8.2 mg/kg (Table 4.7). The values ranged from 6.1±2.3 mg/kg in Ankpa to 

27±11 mg/kg in Macks (Table 4.8). Corresponding subsoil values were not significantly different 

from topsoil values. The highest average value (27±11 mg/kg) recorded at Macks farm compared 

to other farms in this study could be as a result of the use of cow dung as manure. Davies (1990) 

had reported the presence of Pb and other heavy metals in animal manure including cow dung. 

The overall average concentration of lead for all farms is twice that of the control value (6.1±3.2 

mg/kg) in topsoil. The differences observed between the concentrations of lead in soil samples at             
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         Table 4.6: Average pH of the soils 

Depth (cm) Rainy season Dry season Mean 

0-15 6.33±0.16 6.22±0.38 6.29±0.18 

15-30 5.92±015 5.85±0.31 5.89±0.15 

    

0-15 (CTR) 6.98±0.17 6.8±1.1 6.87±0.57 

15-30 (CTR) 6.10±0.56 6.27±0.81 6.18±0.66 

 

 

 

 

 

 

      Table 4.7: Cumulated average concentrations (mg/kg) of heavy metals in soils (all farms).  

Heavy metals Depth (cm) All Rainy Seasons All Dry Seasons Overall Mean 

Cd 1-15 0.7±1.0 1.0±1.6 0.6±1.2 

 15-30 0.37±0.29 0.42±0.38 0.37±0.07 

     

Co 1-15 9.0±8.9 3.76±0.96 6.0±7.1 

 15-30 7.2±7.8 2.71±0.76 4.9±3.2 

     

Cu 1-15 6.1±4.8 3.89±0.28 4.8±3.9 

 15-30 5.0±3.7 2.81±0.25 1.5±2.4 

     

Ni 1-15 22±14 18±10 17±14 

 15-30 13.8±0.7 11.7±1.4 12.8±1.5 

     

Pb 1-15 15.0±5.5 12.0±2.4 12.8±8.2 

 15-30 13.2±3.9 10.1±2.1 11.7±2.2 

     

Zn 1-15 35±18 24.6±2.5 28±23 

 15-30 31±20 19.0±2.7 25.0±8.5 
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Table 4.8: Concentration of heavy metals (mg/kg) in soil at the sampled farmlands 

 

 

 

 

 

 

 

 

 

 

 

  Site code Depth (cm) Pb Cd Cu Co Ni Zn 

OFK-SL 0-15 9.1±3.2 0.40±0.11 7.4±2.1 3.0±2.2 9.2±1.6 20±17 

 15-30 5.7±1.0 0.32±0.15 6.9±1.6 2.6±2.2 8.8±4.9 24±17 

        

ANK-SL 0-15 6.1±2.3 0.35±0.11 2.7±5.7 5.0±8.0 16.8±7.8 16±25 

 15-30 7.3±5.0 0.47±0.41 2.1±4.4 4.5±8.4 15±11 12±18 

        

AJA-SL 0-15 8.4±1.9 0.28±0.16 3.0±3.6 4.1±2.7 14.5±5.7 20±14 

 15-30 10.2±4.7 0.27±0.20 2.7±2.9 3.1±1.3 12.8±3.3 22±25 

        

MAC-SL 0-15 27±11 1.4±3.4 7.1±4.0 9.2±5.6 19.8±1.8 21±23 

 15-30 20.8±5.8 0.8±1.9 5.5±2.9 5.2±4.9 14.4±2.8 18±26 

        

IBA-SL 0-15 18.4±3.9 0.24±0.17 7.9±2.5 12±11 20.3±8.5 25±12 

 15-30 16.3±3.6 0.7±1.7 5.4±2.3 8.1±4.5 16.7±5.8 23±14 

        

IDA-SL 0-15 6.2±1.2 1.0±1.5 2.3±2.4 2.7±3.4 6.8±2.5 27.0±1.5 

 15-30 5.2±0.8 1.6±1.9 2.1±2.2 2.1±3.2 4.9±2.6 24.3±4.1 

        

EJU-SL 0-15 17.4±6.4 0.50±0.37 5.5±4.6 8.1±9.0 24±27 54±13 

 15-30 14.8±3.5 1.4±3.2 3.4±2.9 7.8±11 17±13 40±15 

        

KSU-SL 0-15 16.7±5.2 0.51±0.82 3.7±3.1 8.4±9.1 14±13 17±10 

 15-30 14.0±2.8 0.40±0.61 2.9±2.9 6.0±7.0 11±11 13.5±9.8 

        

LOK-SL 0-15 12.2±5.3 0.22±0.29 5.4±2.4 5.2±7.9 36±19 69±12 

 15-30 10.7±4.0 0.44±0.94 4.2±2.6 5.4±8.6 31±16 48.4±5.2 

        

     MEAN 0-15 13.5±6.9 0.54±0.39 5.0±2.1 6.4±3.2 17.9±8.7 30.±18 

 15-30 11.6±5.2 0.71±0.48 3.9±1.6 4.97±2.1 14.6±7.2 25±12 
        

CTR 0-15 6.1±3.2 0.64±0.79 2.7±2.4 2.6±1.1 9.6±5.2 11.6±6.9 

 15-30 5.7±5.5 0.72±0.87 2.5±2.4 2.5±1.8 8.3±3.9 9.8±4.6 
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various farms and in the control were statistically significant except at Ofoke, Ankpa, Ajaokuta 

and Idah (P=0.05). Results obtained showed that average rainy season values were only slightly 

higher than those of dry season (Table 4.7) and the differences observed were not significant. 

However, among the various farms the differences were significant (Table 4.8). Cumulative 

average concentration of lead in rainy season (15.0±5.5 mg/kg) and dry season value (12.0±2.4 

mg/kg) were significantly higher than 3.32±1.99 mg/kg, 2.98±0.86 mg/kg, 3.22±1.34 mg/kg and 

1.3±1.0 mg/kg for Osun, Kwara, Oyo and Ogun respectively (Olatunji et al., 2013) in 

Southwestern Nigeria. The difference between the mean lead levels (12.8±8.2 mg/kg) from this 

study and the 18.0±7.5 mg/kg reported by Iyaka and Kakulu (2012), for agricultural soils in 

Minna, Niger State is not significant but it is significant with 23.4±0.2 mg/kg  for agricultural 

soils of Enyigba, Ebonyi State (Nweke et al., 2008), Nigeria. Average Pb concentration of 29.7 

mg/kg reported for agricultural soils in Yargalma area, Zamfara State, Nigeria (Tsafe et al., 

2012), is also significantly higher compared to this study. The range of Pb concentration 6.1±2.3 

mg/kg to 27±11 mg/kg of this study is not significantly different from 7.7 mg/kg to 22 mg/kg 

reported by Iyaka and Kakulu (2012) for agricultural topsoils in Niger State, Nigeria. However, 

the range is significantly different from 0.87 to 5.68 µg/g reported by Olatunji et al (2013) for 

agricultural soils in Southwestern Nigeria, 32.5mg/kg to 67.4mg/kg in peri-urban Han of 

agricultural soils in Vietnam (Marcusson et al., 2008), 8.9 mg/kg to 34.5 mg/kg (Mico et al., 

2006) for agricultural soils in Alicante, Spain. The mean (12.8±8.2 mg/kg) of this study is 

significantly lower than mean (47 mg/kg) value for Jamaica soils and Pb concentrations as high 

as 897 mg/kg has been reported (Lalor, 1995). Values obtained in this study fall within the 

Canadian Soil Quality Guidelines (70mg/kg) and within regulatory guidelines for agricultural 

soils (Table 4.9). There are no known Nigerian regulatory limits of levels of metals in 

agricultural soils. Table 4.10 provides comparison with studies from other countries. 

 

 4.2.2 Cadmium Levels in Soils  

Average Cd concentration was 0.6±1.2 mg/kg in topsoil while subsoil value was 0.37± 0.07 

mg/kg (Table 4.7). The concentration of Cd at the various farms ranged from 0.22±0.29 mg/kg in 

Lokoja to 1.6 ±1.9 mg/kg in Idah (Table 4.8). Average concentration of cadmium in dry season 

(1.0 ±1.6 mg/kg) is not significantly different from rainy season value of 0.7±1.0 mg/kg (Table 

4.7).  The cadmium concentration of 9.80 mg/kg at Macks farm and 9.43 mg/kg at Ejule farm in 
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 Table 4.9: Regulated limits of metal (mg/kg) in agricultural soils of selected countries 

 Cu Zn Pb Cd Ni Co Reference 

Canada 63 200 70 1.4 50 40 
 

CCME,1999
 

European Union Standard 140 300 300 3.0 75 - EU, 2002 

Nigeria(this study) mean 4.77 28.1 12.8 0.55 17.0 6.01  

 

 

Table 4.10: Comparison of metal concentrations (mg/kg) in agricultural soils of this study with values        

                  from other countries 

 Cu Zn Pb Cd Ni Co Reference 

Nigeria (this 

study) mean 
4.77 28.1 12.8 0.6 17.0 6.01 

 

England / Wales 

Mean 

 

23.1 

 

97.1 

 

74 

 

0.80 

 

- 

 

- 

Alloway,1995; MaGrath and 

Loveland, 1992 

USA 

Mean 

 

29.6 

 

56.5 

 

12.3 

 

0.27 
  

Alloway,1995; Holmgren, et 

al.,1993 

China 

Mean 

 

33.0 

 

84.7 

 

40 - - - Wong et al.,2002 

Italy 

Mean 

 

30.0 

 

94.0 

 

215 
- - - Abollino,et al., 2002 

Canada - - - 0.56 - - Frank, et al., 1976 

Netherlands - - - 0.40 - -- Ros and Slooff, 1988 

New Zealand - - - 0.44 - - Roberts et al., 1994 

Germany 

(Berlin) 
15 50 30 - 5 - 

Birke and Rauch, 2000 

 

 

 

 

 

 

 

 

 

http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6VB5-4TKBP6N-1&_user=2789858&_coverDate=02%2F28%2F2009&_rdoc=43&_fmt=full&_orig=browse&_srch=doc-info(%23toc%235917%232009%23998429997%23748103%23FLA%23display%23Volume)&_cdi=5917&_sort=d&_docanchor=&_ct=47&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=a45d1cc8ff61d368d8169617029967d7#bib4
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rainy season showed a high potential ecological risk and this may be attributed to the application 

of superphosphate fertilizers in these farms (Bohn et al., 1979). Increased Cd levels can also be 

attributed to widespread intensive use of organic and especially mineral fertilizers (Adriano, 

2001). There was no significant difference between the average values and control value 

0.64±0.79 mg/kg. Unlike other metals the concentration of Cd is higher in subsoil in most of the 

farms. However, the differences between topsoil and subsoil levels were not significant. The 

higher concentration of cadmium at the subsoil is supported by values obtained for the soil 

texture. At some of the farms were the concentration of Cd is highest at subsoil, % silt is highest 

at the subsoil and also the % sand is lowest at the subsoil. These factors will support higher 

capacity to retain pollutants. The variation of Cd levels among farms and control site was not 

significant. Average concentration of cadmium in dry season (1.0 ±1.6 mg/kg) was not 

significantly different from rainy season value of 0.7±1.0 mg/kg (Table 4.7). The average 

concentration of cadmium recorded in this study was lower than 2.55 mg/kg, 3.47 mg/kg, 2.29 

mg/kg, and 3.92 mg/kg reported by Olatunji et al. (2013) for agricultural soils in Kwara, Ogun, 

Oyo and Osun State respectively, 6.78±0.33 mg/kg in Zira and 10.6±1.1 mg/kg in Mirnga (Akan 

et al., 2013) both in Borno State, Nigeria. The difference between mean value (0.6±1.2 mg/kg) 

of this study and the mean of 10.3 mg/kg and 5.30 mg/kg of studies by Mashi and Alhassan 

(2007) and Awode et al. (2008) respectively in soils in vegetable garden irrigated with 

wastewater in Kano is significant. The range of cadmium concentration in this study is 

significantly different from range of values (2.3 mg/kg to 4.8 mg/kg) obtained from similar study 

in Kano (Abdu et al., 2011), and 0.26 mg/kg to 5.75 mg/kg (Olatunji et al., 2013) in southwest 

Nigeria.  The differences in range of Cd levels in Kogi State, Nigeria compared with range of 

0.35 mg/kg to 0.46 mg/kg and 0.46 mg/kg to 0.59 mg/kg (Abdu et al., 2011) in Bobo-Dioulasso 

(BurkinaFaso) and Sikasso (Mali) respectively are not significant but significant with levels 

reported in Jamaica. Lalor et al. (1998) reported that range of Cd concentration in non-

mineralized Jamaican soils varies from 0.3 mg/kg to over 400 mg/kg. Residual soils developed 

from shales have been reported (Lund et al., 1981) to have Cd mean concentrations of 7.5 mg/kg, 

whereas soils derived from sandstones and basalts have concentrations with a mean of 0.84 

mg/kg. Alluvial soils with parent materials from mixed sources have intermediate Cd levels of 

1.5 mg/kg (Adriano 1986). The average value of 20 mg/kg of Cd in soils in Jamaican has also 

been reported (Lalor et al., 1998). The overall average value 0.6±1.2 mg/kg of this study 
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compared with other values for agricultural soil from other countries of the world is given (Table 

4.10). Chen et al. (1999) reported that total mean concentrations of cadmium in rural soils of 

several countries (mg/kg) were 0.4 for Sweden; 0.8 for Denmark; 1.0 for Norway; 1.5 for Italy; 

2.0 for France, Australia, and S. Africa; 3.0 for U.K and Canada; 4.0 for Taiwan; 5.0 for 

Germany; 12.0 for Belgium; 20.0 for China; 20.0 and 39.0 for USA before and after using 

sewage sludge. The average concentration in this study soils contain lower concentrations of Cd 

than rural soils of all the above mentioned countries except Sweden. Cadmium overall average 

concentration 0.6±1.2 mg/kg for all farms in this study is within the regulated level of 1.4 mg/kg 

set by Canadian Soil Quality Guidelines for the protection of Environmental and Human Health 

and European Union (3.0 mg/kg) regulated limit (Table 4.9). Thefore the soils of farmlands 

studied do not need any clean up as present concentrations do not pose threat to humans. 

 

 

4.2.3 Copper Levels in Soil 

Table 4.7 shows average concentration of copper (4.8±3.9 mg/kg) in topsoil of farmland soils in 

Kogi State. Subsoil average value was 1.5±2.4 mg/kg. Average copper level ranged from 2.3±2.4 

mg/kg in Idah to 7.9±2.5 mg/kg in Ibaji (Table 4.8). The variation of Cu concentration among 

farms is statistically significant. The concentration of copper in soil decreases from topsoil to 

subsoil. The control value is not significantly different (P=0.05) from values obtained among the 

sites except at Ofoke, Macks and Ibaji. This is expected as there were no activities in the farms 

that will account for differences among sampled farms and control site. The area is mainly rural 

and there are no noticeable industrial activities that would influence high concentrations of 

metals in the soils. There is significant difference in range of value of copper (2.3±2.4 mg/kg to 

7.9±2.5 mg/kg) of this study and 12 mg/kg to 89 mg/kg reported by Iyaka and Kakulu (2009) for 

urban agricultural soils of Niger State, Nigeria, and 6.17 mg/kg to 20.87 mg/kg for agricultural 

soils in South Western Nigeria (Olatunji et al., 2013). The mean Cu concentration of 4.8±3.9 

mg/kg obtained for farmland soil samples was lower than the mean concentration for world soils 

of about 20.0ppm for Cu (Alloway, 1995) and also lower than 21.4mg/kg
 
reported by Zauyah et 

al. (2004) for some cultivated soils of Malaysia Peninsula. Average concentration of copper for 

all farms (Table 4.7) in topsoil was within regulated limit of 63 mg/kg of the Canadian Soil 

Quality Guidelines, Vietnamese limit of 50 mg/kg, European Union limit of 140 mg/kg and the 

50.0mg/kg established as the limit in Germany (Kabata-Pendias, 1995). Copper concentrations in 
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this study were compared with those of other countries in Table 4.10. The concentrations can be 

considered to be at natural background levels and present little or no environmental effects.  

 

4.2.4 Nickel Levels in Soil  

The average concentration of nickel in topsoil for all farms is 17±14 mg/kg (Table 4.7) and the 

values ranged from 6.8±2.5 mg/kg in Idah to 36±19 mg/kg in Lokoja (Table 4.8). The average 

nickel concentration decreases from topsoil to subsoil but inter and intra farm differences were 

not significant except at Ejule and Lokoja. The highest average concentration of Ni (36±19 

mg/kg) at Lokoja is four times higher than the control (Table 4.8). Nickel like copper and zinc 

have high mobility under acidic conditions due to formation of sparingly soluble sulphides. 

Metal sulphide has very low mobility under reducing conditions. These metals in soils can either 

be enriched or depleted relative to parent material and depending on the dominant factors that 

exist in the weathering environment (Mattigod and Page, 1983). The soil pH of this study is 

weakly acidic and can enhance the mobility of these metals. Average nickel concentration 17±14 

mg/kg in this study is significantly different from 1.9±1.0 mg/kg reported by Iyaka and Kakulu 

(2012). The average Ni concentration in this study in both seasons were well within Dutch limit 

of 35 mg/kg, Canadian Regulated limits (50 mg/kg) and European Union regulated limits (75 

mg/kg) for agricultural soils as given in Table 4.9. Values within standard limits suggest no 

enrichment of soil with nickel as average concentration lies within the threshold value and 

therefore the soils do not require clean up. There are no industrial activities around the sampled 

farms. The concentration of nickel is thus still within background levels.  

 

4.2.5 Zinc Levels in Soil  

Average zinc concentrations for all farms for the period of study (Table 4.7) is 28±23 mg/kg in 

topsoil, and this ranged from 16±25 mg/kg in Ankpa to 69±12 mg/kg in Lokoja (Table 4.8). 

Average value for subsoil was 25.0±8.5 mg/kg.  As is the case with other metals determined, the 

concentration of zinc during rainy season (35±18 mg/kg) is higher than dry season value of 

24.6±2.5 mg/kg; and the difference is significant. The relative increase in concentration of metals 

during rainy season would be attributed to enhanced dissolution of residual minerals (Sondag et 

al., 1997). However, the differences observed in zinc concentrations among farms are not 

significant. Cumulated average level (28±13 mg/kg) was more than twice the control value 
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(11.6±6.9 mg/kg), but this difference was not significant. The highest value 69±12 mg/kg was 

observed at Lokoja sample site which is an uncultivated farm. The level of Zn in these farms is 

largely governed by the amount of Zn in the parent material. The range of values is not 

significantly different from 12.9 mg/kg to 38.9 mg/kg reported by Olatunji et al. (2013) for 

agricultural soils in southwest, Nigeria, but differs from the 0.42mg/kg to 0.83 mg/kg obtained 

by Francis (2005) in his study of livestock farmlands in southern Nigeria. Iyaka and Kakulu 

(2009) also reported similar range of Zn concentration (2.8 mg/kg to 41 mg/kg in Minna and 

0.57 mg/kg to 36 mg/kg in Bida) in Niger State, Nigeria.  The 13 mg/kg to 285 mg/kg obtained 

by Nafiu, et al., 2011, also differs significantly from this study. In other parts of the world, a 

range of 1.0 mg/kg to 170 mg/kg was reported for surface soil samples of South Carolina 

(Canova,1999), and 2.8 mg/kg to 12.0 mg/kg was reported by Gough et al. (1994) as baseline 

elemental contents of the Bull Island soils in South Carolina, U.S.A. The average Zn 

concentration (28±23 mg/kg) obtained from this study is higher than the mean content of 20 

mg/kg found in Florida agricultural surface soils (Holmgren et al., 1993), but lower that the 

average 45 ppm value reported in the literature for world sandy soils by Kabata-Pendias and 

Pendias (1992). Average concentration of zinc for both seasons was within Canadian regulated 

limits (200 mg/kg) for agricultural soils and European Union limits of 300 mg/kg (Table 4.9). 

Table 4.10 provides further comparisons.The average values in this study are lower than those 

reported for different countries land use and did not exceed the regulated limits of metals in 

agricultural soils of selected countries.  

 

4.2.6 Cobalt Levels in Soil  

Table 4.7 shows average cobalt concentration for all farms as 6.0±7.1 mg/kg in topsoil. Among 

farms, cobalt levels ranged from 2.7±3.4 mg/kg in Idah to 12±11 mg/kg in Ibaji in topsoil (Table 

4.8). Corresponding subsoil average value was 4.9±3.3 mg/kg. Subsoil values ranged from 

2.1±3.2 mg/kg to 8.1±4.5 mg/kg. The difference in concentration of cobalt among farmland soils 

is not significant. All values obtain were higher than the control value 2.6±1.1 mg/kg. The 

highest value obtained at Ibaji is six times higher than the control and the difference compared to 

the control is statistically significant. The level of Co decreases from topsoil to subsoil at all 

sites. Result also shows that average rainy season concentration (9.0±8.9 mg/kg) is about three 
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times higher than dry season value (3.76±0.96 mg/kg) in topsoil as given in Table 4.7. Regulated 

limit (40 mg/kg) of cobalt concentrations in agriculture soil in Canada are given in Table 4.9.   

  

 

4.3   INTER-ELEMENT RELATIONSHIPS OF METALS AND SOIL PROPERTIES 

  The correlation coefficient (Pearson) matrixes between the metal concentrations and soil 

properties in the farmland soils are presented in Table 4.11. The pairs whose correlation 

coefficients are slightly significant at 0.05 are % organic carbon and nickel (0.142), zinc and lead 

(0.168), nickel and lead (0.193), but highly significant in cadmium and nickel (0.95). Some pairs 

have correlation coefficients that are significant at 0.01 confidence limit (99%), these pairs are 

indicated by double asterisks in Table 4.11. All the metal pairs that have high correlation 

coefficients (whose correlation coefficient are significant at α =0.05 or α =0.01) indicate 

identical sources for the metal pairs. There are no industrial activities that will introduce heavy 

metals into the farmlands. The significant correlation coefficients between the metals except zinc 

and % organic carbon show that the concentration of the metal depends on the retention ability of 

the soil. The greater the value of percentage organic carbon or organic matter the greater the 

retention ability of that soil. 

 

 

4.4   POLLUTION INDEX OF METAL IN FARMLAND SOIL 

4.4.1 Geoaccumulation index: Geoaccumulation index (Igeo) rating is presented in Table 4.12.    

The content accepted as background is multiplied in each case by a factor (1.5) in order to 

account for natural fluctuations of a given metal in the environment and as well as small 

anthropogenic influences (Loska and Wiechula, 2003). Geoaccumulation index (Igeo) rating 

indicated that all topsoil (0-15cm) analysed belong to unpolluted class (<0) except lead and Zn 

with Igeo value of 0.48 and 0.63 that fall within the category of class 1 of slightly polluted. 

Cadmium showed Igeo of <0 for all samples indicating that all soil samples were practically 

uncontaminated by Cd. 

This suggests that Cd input in the soil is associated with the parent material that formed the soil 

or other natural or small anthropogenic non-point sources. Geoaccumulation index of heavy 

metals in agricultural soil was compared with other countries (Table 4.13). This study results  
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Table 4.11: Correlation coefficient among metals and soil properties 

*Correlation is significant at the 0.05 level (2-tailed) 

** Correlation is significant at the 0.01 level (2-tailed) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 pH TOC TOM Cu Zn Pb Cd Ni Co 

pH 1         

TOC -0.096 1        

TOM -0.095 1.000.** 1       

Cu -0.113 0.043 0.043 1      

Zn -0.107 0.029 0.030 0.519** 1     

Pb   0.164 -0.171 -0.171 0.300** 0.168 1    

Cd -0.053 0.069 0.070 0.409** 0.238* 0.061 1   

Ni -0.107 0.142 0.143 0.514** 0.486** 0.193 0.95 1  

Co   0.167 -0.029 -0.028 0.752** 0.390** 0.346** 0.364** 0.644** 1 
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Table 4.12: Geoaccumulation index (Igeo) of heavy metals in top soil samples of farmland 

Sample site Cd Co Cu Ni Pb Zn 

OFK-SL -0.41 -0.03 0.28 -0.17 0.01 0.08 

ANK-SL -0.46 0.12 -0.86 0.10 -0.15 -0.02 

AJA-SL -0.57 0.03 0.19 0.03 0.48 0.11 

 MAC-SL -0.62 0.38 0.26 0.16 0.36 0.11 

IBA-SL -0.63 0.49 0.30 0.17 0.26 0.19 

IDA-SL -0.03 -0.15 -0.22 -0.30 -0.16 0.22 

EJU-SL -0.31 0.34 0.15 0.25 0.29 0.55 

KSU-SL -0.29 0.35 -0.02 0.003 0.28 0.02 

LOK-SL -0.68 0.13 0.14 0.42 0.14 0.63 
Igeo classification: Igeo≤0, class 0, unpolluted, 

0≤ Igeo≤1, class 1, from unpolluted to slightly polluted, 

1< Igeo≤2, class 2, moderately polluted, 

2< Igeo≤3, class 3, from moderately polluted to strongly polluted, 

3< Igeo≤4, strongly polluted, 

4< Igeo≤5, class 5, from strongly to extremely polluted, 

Igeo>5, class 6, extremely polluted. 
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compared well with values obtained in China and Banglandish but significantly different from 

results obtained in Greece. 

 

4.5 SPECIATION OF METAL IN SOIL 

Table 4.14 shows speciation of metals in soil. A speciation study of metals is a useful tool that is 

normally used to determine the concentrations of pollutants in fractions of soil samples. It gives 

an estimate of the amount of metals available to ecological materials. The results showed that the 

proportion in non-residual soil phases was  41.9% Pb, 48.7% Co, 72.5% Cu, 73.2% Ni, 82.6% 

Cd and 84.3% Zn. Cadmium, zinc and nickel are mostly abundant in exchangeable fraction. This 

means that these metals are more mobile in this environment than other metals that are mostly 

abundant in the remaining four geochemical phases. The presence of these metals in the highly 

mobile exchangeable phase and pH-sensitive carbonate-bound fractions than in residual or 

organic-bound fraction makes the metal even more bioavailable in the soil. The high 

exchangeability of Cd could be explained by the low adsorptive constant of the complex formed 

with organic matter (Ramos et al., 1994; Zerbe et al., 1999). The result also shows that Cu is 

mostly abundant (41.8±3.9%) in the fraction bound to organics. Copper can easily complex with 

organic matter because of high degree of formation of organic-Cu compounds (Haung et al., 

2007). The abundance of copper in the residual fraction was 27.5±8.1%. The bio-available (non-

residual) fraction of lead is 41.9% while the residual fraction has the largest percentage of lead - 

58.1%. This result is different from those of other workers (Levy et al., 1992; Ip et al., 2007) that 

have reported that lead has the highest concentration in the ferrous-manganese oxide bound 

fraction. Onianwa (2001) has also reported high Pb abundance in this phase. The low 

concentration of lead in the non-residual fraction (41.9 %) and the highly mobile exchangeable 

phase and pH sensitive carbonate phase shows no increase in anthropogenic input of Pb into the 

environment. Therefore, Pb cannot be easily released to other environmental component such as 

crops. The low percentage abundances exhibited by the metals in the oxidizable phase (organic-

bound phase) (except Cu) could be attributed to the level of organic matter load in the soil. Many 

of the metals determined show low abundances in the carbonate bound phase, except Ni (21.2%) 
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Table 4 13: Geoaccumulation index of heavy metals in agricultural soil compared with other     

                   countries. 

 Cd Pb Cu Co Ni Zn 

This study 

(mean) 

-0.20 -0.82 0.04 0.14 0.06 0.20 

China
a
 1.08 -0.04 -0.07 - -0.38 0.06 

Greece
b
 5.1 2.6 1.33 - - 2.27 

Bangladesh
c
 0.28 0.13 0.28 - 0.12 0.13 

a.Binggan and Linsheng, 2010 

b. Nikorlaidis et al., 2010 

c .Rahman et al., 2012 

 

 

 

Table 4.14: Average speciation (% in geochemical phases) of the metals in soil 

Phases Cu Zn Pb Cd Ni Co 

Exchangeable 3.5±1.2 37±12 3.1±1.5 41.5±3.2 35.3±2.6 6.9±1.3 

Carbonate- bound 4.6±2.4 9.8±2.3 8.6±3.1 15.9±1.5 21.2±4.7 10.1±2.5 

Fe-Mn Oxide bound 24.6±4.5 24.5±7.1 10.7±1.9 14.6±1.5 8.1±1.6 12.4±5.2 

Organic bound 41.8±3.9 13.0±7.1 19.5±2.7 11.0±1.6 8.6±1.6 19.2±2.2 

Residual 27.5±8.1 15.7±3.8 58.1±3.3 17.4±3.4 26.8±5.1 51.4±3.6 

 

 

 

 

 

 

 

 



 100 

and Cd (15.59%) which show relatively high percentage abundances. Lead and cobalt showed 

the highest phase (58.1±3.3% and 51.4±3.6% respectively) in the residual phase. This result 

agrees with that of Ramirez et al. (2005), who reported that Pb is mostly associated with the 

residual phase. The higher the metals present in this fraction the lower the degree of pollution 

(Howari and Benat, 2001). Sum of concentrations of metals in different geochemical phases can 

be used to express the potential mobility of metals. The potential mobility of a metal can be 

assessed by adding up the results of the exchangeable phase, carbonate phase, oxide and organic 

phase of that metal (Haung et al., 2007). The exchangeable phase represents the mobile and 

bioavailable heavy metal fraction. In this phase, the heavy metals can easily be released into the 

environment. The presence of heavy metals in this phase where they can be taken up by plants 

from the soils is hazardous to the ecosystem. In this study, Cd, Ni, and Zn had high fractions in 

the exchangeable phase and therefore could be highly mobile and available to plants. Despite this 

high concentration, the observed levels do not pose a serious risk since the overall concentrations 

of metals determined in the soil are within regulated limits  

 

 

4.6 IRRIGATION WATER QUALITY 

Irrigation, the addition of water to lands via artificial means is essential and profitable to crop 

production. Irrigation water maintains moisture in the soil and moisture is necessary for the 

germination of seeds. Seeds do not grow in dry soil. Irrigation is essential for the growth of the 

roots of crop plants. Thus irrigation is necessary for the absorption of mineral nutrients by the 

plant from the soil. It is essential for the general growth of plant.  

 

4.6.1. Variation of Physicohemical Parameters 

The parameters discussed here are pH, temperature, alkalinity, hardness, nitrate, sulphate, 

phosphate, dissolved oxygen and chemical oxygen demand. The overall average level of the 

physiochemical parameters in irrigation water at three locations is given in Table 4.15. Average 

pH of irrigation water was 6.86±0.62 and the values ranged from 6.36 to 7.23. Alkalinity and 

total hardness averaged 87±69 mg/L and 40±17 mg/L respectively.
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Table 4.15: Average quality of physicochemical parameters of irrigation water at each sampling station 

 

 

 

 

 

Sampling 

Site 
pH 

Temp. 

(
o
C) 

Alkalinity 

(mg/L) 

Total 

Hardness 

(mg/L) 

Calcium 

(mg/L) 

Magnesium 

(mg/L) 

Nitrate 

(mg/L) 

Sulphate 

(mg/L) 

Phosphate 

(mg/L) 

DO 

(mg/L) 

COD 

(mg/L) 

OFK-SW 7.02±0.83 28.3±2.2 40±21 35±21 2.99±0.86 7.9±5.2 5.74±3.3 19.9±8.5 0.34±0.16 3.93±2.6 86.0±8.4 

IBA-SW 6.39±0.29 29.0±1.3 64±20 42±18 3.4±1.2 9.0±4.2 6.4±3.9 24.7±7.8 0.51±0.63 1.5±1.5 115±19 

MAC-SW 7.15±0.35 30.0±1.6 154±78 43±13 3.85±0.91 9.1±3.2 8.4±6.8 37.9±8.3 8.9±10.1 3.9±2.4 140±41 

Overall 

mean 
6.86±0.62 29.5±1.7 87±69 40±17 3.4±1.0 8.7±4.1 6.8±4.9 27±11 3.3±6.9 3.1±2.4 114±40 
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The surface water at Macks farm had the highest value of alkalinity (154±78 mg/L). The 

differences observed in the level of a given physiochemical parameters among the three sampled 

stations were found not to be statistically significant. The quarterly variation of the parameters is 

illustrated in Appendix 4.1 to 410. The trend in monthly concentration of the parameters 

determined did not vary significantly. The parameters determined are within the various 

guidelines for irrigation water as given by Canadian Council of Ministers of the Environment 

(CCME, 1999) (Table 4.16). Therefore, there contamination of farmland and food crops is not 

likely to be derived from the application of irrigation water.  

 

 

4.6.2. Heavy Metals in Surface Water: Table 4.17 shows the average concentrations of heavy 

metals in the three sampling stations for surface water. A comparison of the mean values shows 

that there are no significant differences in any one metal among the stations, except for Cu. The 

concentration of copper was highest at Ofoke with a value of 0.16±0.17 mg/L. Figures 4.1, 4.2, 

4.3, 4.4, 4.5 and 4.6 illustrate the quarterly variation of cadmium, lead, copper, cobalt, nickel and 

zinc respectively at the different sampling locations. Copper and lead showed similar trends that 

differ from those of cobalt, nickel and zinc. The average concentrations of metals obtained in this 

study were within regulated limits for irrigation water for agricultural soils (Table 4.18) as given 

by the Canadian Council of Ministers of the Environment (CCME, 1999). 

 

4.6.3 Physicochemical Properties of Groundwater: Table 4.19 shows overall average of 

physicochemical properties of ground water. Result showed that all average values were within 

WHO limits (Table 4.20) for drinking water. Results were also within regulatory limits for some 

African countries (UNBS, 2008; MBS, 2005). 

 

 

4.6.4 Heavy metals in ground water: Average values of metal concentrations in ground water 

are given in Table 4.21. Zinc had the highest concentration (0.36±0.32 mg/L) followed by lead 

(0.04±0.09 mg/L). Copper and cadmium had similar concentration of 0.01±0.01 mg/L. The 

concentrations of metals determined were within WHO (2006) drinking water limit (Table 4.22) 

except Pb (0.04±0.09 mg/l). There is no guideline for zinc concentration for drinking water
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Table 4.16: Some water quality standards  

a: Ayers and Westcot (1985) 

Parameters This study Irrigation 

water
a
 

WHO 

(2006) 

 

Nigeria 

(FEPA, 1991) 

FAO 

(1984) 

Nigeria  

(SON, 2007) 

Uganda 

(UNBS, 2008) 
Malawi 

(MBS, 2005) 

pH 6.86 5.0-9.0 6.5-9.5 6-9 6.5-8.4 6.5-8.5 6.5-8.5 - 

Temp. (
o
C) 29.5 35

o
C 30-32 - - - -  

Alkalinity (mg/L) 87 120-200 200 - - - - - 

Total Hardness (mg/L) 40 - 500 - - 150 500 100 

Calcium (mg/L) 3.4 - - - - - - - 

Magnesium (mg/L) 8.7 - - - - - - - 

NO3
-
N (mg/L) 6.8 15 3 20 10 50-100 45 45 

Sulphate (mg/L) 27 250 250 500  100 200 200 

Phosphate (mg/L) 3.3 - 0.5 5 8.6 - - - 

DO (mg/L) 3.1 - 5-8 - - - - - 

COD (mg/L) 114 90 - 80 - - - - 
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Table 4.17: Average metal concentrations (mg/L) in surface water at sampling locations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.18: Comparison of mean of metals concentration (mg/L) with guidelines for irrigation 

                   water                          

 a: CCME, 1999 

 b: Ayers and Westcott, 1985 

 

 

        

       

 

 

  

Metals OFK IBA MAC 

Cu 0.16±0.17 0.02 0.02±0.01 

    

Zn 0.13±0.18 0.19±0.16 0.13±0.12 

    

Pb 0.01±0.01 0.02±0.01 0.07±0.05 

    

Cd 0.01±0.01 0.004±0.01 0.002 

    

Ni 0.03±0.01 0.045±0.02 0.03±0.02 

    

Co 0.01±0.01 0.03±0.02 0.01±0.01 

  Cd Pb Cu Co Ni Zn 

This study (mean) 0.01 0.03 0.06 0.02 0.03 0.15 

Guidelines
a
 0.01 2.0 0.2 0.05 0.2 2.0 

Guidelines
b
 10 65 17 50 1400 200 
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                             Fig 4.1: Variation of water Cd levels with sampling period 

 

 

 

                             Fig 4.2: Variation of water Pb levels with sampling period 
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                           Fig 4.3: Variation of water Cu levels with sampling period 

 

 

 

 

                             Fig 4.4: Variation of water Co levels with sampling period  
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                                     Fig 4.5: Variation of water Ni levels with sampling period 

 

 

 

 

                        Fig 4.6: Variation of water Zn levels with sampling period 
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Table 4.19: Overall physicochemical properties of ground water 

\ 

Sampling  

sites 

Season pH Tempt 

(
o
C) 

Alkalinity 

(mg/L) 

Total 

Hardness 

(mg/L) 

Calcium 

(mg/L) 

Magnesium 

(mg/L) 

No3
-
N 

(mg/L) 

Sulphate 

(mg/L) 
Phosphate 

(mg/L) 

DO 

(mg/L) 

COD 

(mg/L) 

 

MAC-UD Rainy 6.66±0.29 30.4±2.9 33.3±2.3 32.5±7.1 1.37±0.38 7.5±1.8 1.89±0.50 25±14 0.02±0.02 7.55±0.46 24.8±3.4 

 Dry 

 

6.81±0.50 

 

26.5±4.8 

 

51±14 

 

36.0±3.7 

 

2.1±0.9 

 

8.1±1.0 

 

1.12±0.12 

 

27±11 

 

0.07±0.08 

 

5.0±3.3 

 

25.4±1.0 

             

Overall 

mean  6.74±0.39 28.4±4.2 42±13 34.2±5.6 1.71±0.74 7.8±1.4 1.45±0.51 26±11 0.05±0.06 6.3±2.6 25.1±2.3 
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Table 4.20: Ground water quality compared with some water quality standards 

 

 
Parameters This study WHO 

(2006) 

 

Nigeria 

(FEPA, 1991) 

FAO 

(1984) 
Nigeria 

(SON, 2007) 

Uganda 

(UNBS, 2008) 

Malawi 

(MBS, 2005) 

pH 6.74 6.5-9.5 6-9 6.5-8.4 6.5-8.5 6.5-8.5 - 

Temp. (
o
C) 28.4 30-32 - - - - - 

Alkalinity (mg/L) 34.2 200 - - - - - 

Total Hardness 

(mg/L) 

34.2 500 - - - 500 100 

Calcium (mg/L) 1.71 - - - - - - 

Magnesium (mg/L) 7.8 - - - - - - 

No3
-
N (mg/L) 1.45 3 20 10 50-100 45 45 

Sulphate 

(mg/L) 

26 250 500 - 150 200 200 

Phosphate 

(mg/L) 

0.05 0.5 5 8.6 - - - 

DO (mg/L) 6.3 5-8 - - - - - 

COD(mg/L) 

 

25.1 - - - - 100 - 
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   Table 4.21: Overall concentration of metals (mg/L) in groundwater 

 Cu Zn Pb Cd Ni Co 

Rainy season 0.01±0.01 0.46±0.43 0.07±0.12 0.01±0.01 0.04±0.02 0.02±0.01 

Dry season 0.02±0.01 0.26±0.13 0.01±0.01 0.01±0.01 0.03±0.01 0.01±0.01 

Overall mean 0.01±0.01 0.36±0.32 0.04±0.09 0.01±0.01 0.03±0.02 0.02±0.01 
 

 

 

 

Table 4.22: WHO‟s drinking water standard, 2006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metals Levels normally found infresh 

water/surface water/groundwater 

Guidelines by the WHO 

Cd <1µg/L 0.003mg/L 

Pb - 0.01mg/L 

Co - - 

Cu - 2.0mg/L 

Ni <0.02mg/L 0.07mg/L 

Zn - no guideline 
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4.7. SEDIMENT QUALITY  

4.7.1 Concentration of Heavy Metals in Sediment:  

Overall mean metal concentrations in sediments is given in Table 4.23. Average copper 

concentration was 9.3±5.2 mg/kg. Average values for all season ranged from 4.15±0.33 mg/kg in 

Ibaji to 19±20 mg/kg in Macks (Table 4.24). The intra-farm and inter-farms variation of copper 

levels were statistically significant. The average concentrations of copper were within WHO 

(2004) regulatory limit of 25 mg/kg (Table 4.25). There are no industrial activities at the various 

dams sampled and no cases of discharge of effluent from industries. Therefore, high 

concentration of copper was not expected, as concentrations depended mainly on runoff from 

agricultural soils. Copper concentrations within regulatory limits had also been reported for soil 

samples and water samples in previous sections. Range of copper levels obtained in this study  is  

lower compared to  range of 26.3±0.02 mg/kg to 51.3±0.01 mg/kg obtained by Akan et al., 

(2010) from River Ngada in Maiduguri Nigeria sediment is significant. Abdo and El-Nasharty, 

(2010) have reported a range of 2 mg/kg to 36.4 mg/kg for Ismailia Canal sediment in 

Egypy.These values were significantly higher than the result of this study. 

 

Table 4.23 shows average concentration of lead as 19.8±7.4 mg/k, with values ranging from 

9.4±2.4 mg/kg in Macks to 29±14 mg/kg in Ofoke (Table 4.24). The differences observed in the 

concentrations of sediment Pb in the different sampled sites were statistically significant. 

However, the values were within regulatory limits (WHO, 2004) (Table 4.25). The highest mean 

concentration 29±14 mg/kg was observed during rainy season at Ofoke while the lowest value 

(9.4±2.4 mg/kg) was observed at Macks during dry season. The range of values from this study 

is within the range of 10 mg/kg to 43.2 mg/kg reported for Ismailia Canal sediment in Egypt. 

The same range has been reported for the Nile sediment in Egypt (Abdel-Satar, 2005). 

 

Average level of cadmium was 0.34±0.62 mg/kg (Table 4.23). Seasonal average values ranged 

from 0.01±0.01 mg/kg in Macks to 1.6±3.1mg/kg in Ibaji (Table 4.24). Cadmium concentration 

was the lowest of all the metals determined. The differences observed in cadmium concentrations 

among the farms during the period is not statistically significant (P=0.05). The average value of  
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Table 4.23: Overall concentrations (mg/kg) of heavy metals in sediment  

 Sampled sites Overall mean 

Heavy metals OFK IBA MAC  

 Cu 8.8±5.3
a
 5.9±3.6

 a
 13±15

 a
 9.3±5.2 

     

Zn 55±30
 a
 60±31

 a
 44±37

 a
 54±26 

     

Pb 27±11
 b
 16.2±5.9

 a
 15.5±8.7

 a
 19.8±7.4 

     

Cd 0.16±0.23
 a
 0.8±2.2

 a
 0.05±0.14

 a
 0.34±0.62 

     

Ni 10.5±5.5
 a
 21.2±7.5

 a
 18±15

 a
 16.7±6.5 

     

Co 6.8±5.9
 a
 7.5±4.2

 a
 8.7±10.2

 a
 7.6±3.0 

Values within column with different superscript (a, b) are significantly different at P=0.05 

  

 

 

 

 

 

Table 4.24: Seasonal concentrations of heavy metals (mg/kg) in sediment  

Heavy 

metals 

OFK  IBA  MAC 

Rainy  

season 

Dry  

season 

 Rainy 

season 

Dry  

season 

 Rainy 

season 

Dry 

season 

Cu 10.7±6.1 6.9±4.2  7.6±4.8 4.15±0.33  19±20 7.5±3.2 

         

Zn 67±37 45±21  68±36 53±28  62±43 27±24 

         

Pb 29±14 26.0±8.8  18.8±5.6 13.6±5.9  22±8.5 9.4±2.4 

         

Cd 0.20±0.34 0.12±0.04  1.6±3.1 0.01±0.01  0.10±0.20 0.01±0.01 

         

Ni 12.7±7.1 8.3±3.1  21.7±7.5 20.7±8.5  23±19 13.5±8.9 

         

Co 9.1±7.8 4.5±2.8  9.4±2.5 5.5±2.3  12±14 5.0±1.6 
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        Table 4.25: Comparison of average metal concentrations (mg/kg) in sediments with regulatory standard  

Metals 
This study 

WHO
 
(2004) USEPA

 
(1999) 

OFK-SD IBA-SD MAC-SD 

Cu 8.8 5.88 13.3 25 - 

Zn 56 60 44 123 - 

Pb 27.4 16 15.5 - 40 

Cd 0.16 0.8 0.05 6 - 

Ni 15.0 21.2 18.3 20 - 

Co 6.8 7.5 16.8 - - 

) 
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  Table 4.26: Average concentration of the present work compared with levels elsewhere 
 

 

 

       

       

       

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metals 
This study Egypt 

(Omer, 2003) 

Egypt 

 (Abdel 

Satar, 2005) 

Egypt 

(Moalla et 

al., 2006) 

New York 

(Mason and 

Moor, 1982) 

Netherlands  

(McLennan and 

Taylor, 1999) OFK-SD IBA-SD MAC-SD 

Cu 8.8 5.88 13.3 116 27 36 50 25 

Zn 58 61 45 227 162 170 90 70 

Pb 27.5 16 15.7 51 23 16 20 20 

Cd 0.16 0.8 0.06 1 3 3 0.3 0.5 

Ni 15.0 21.2 18.3 74 44 - 80 20 

Co 7.0 7.5 16.8 43 49 14 20 10 
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0.8 mg/kg obtained at Ibaji is not different from 0.99 mg/kg recorded by MacDonald et al. 

(1996) for Florida coastal sediment. The range of Cd concentration in this study is significantly 

lower than the range of 1.6 mg/kg to 9.00 mg/kg reported for Ismailia Canal sediment, Egypt 

(Abdo and El-Nasharty, 2010). All cadmium concentrations observed in this study were within 

regulatory sediment guidelines (Table 4.25). 

Average nickel concentration in sediment was 16.7±5.9mg/kg. Seasonal concentrations ranged 

from 8.3±3.1mg/kg in Ofoke to 23±19 mg/kg in Macks. The differences in concentration of 

nickel were found not to be statistically significant. The highest nickel concentration of 23±19 

mg/kg observed at Macks slightly exceeded the Effect Range Low value of 20.9 mg/kg and 

WHO (2004) value (20 mg/kg)(Table 4.25) but did not exceed Effect Range Median of 51.6 

mg/kg. Average values of Ni concentration also did not exceed probable-effects-level (PEL) 

guidelines (42.8 mg/kg) for toxic biological effects established by USEPA (1999).  

 

Average concentration of cobalt in sediment was 7.6±3.0 mg/kg. Average values ranged from 

4.5±2.8 mg/kg in Ofoke to 12±14 mg/kg in Macks. The differences in concentration of cobalt in 

the three sampled stations were found not to be statistically different. There was no available 

standard guideline for cobalt for comparison with the present study. Range of cobalt 

concentration of 2.0 mg/kg to 36.4 mg/kg has been reported for Ismailia Canal sediment in Egypt 

(Abdol and El-Nasharty, 2010). 

Overall average Zn concentration in sediment was 54±16 mg/kg and seasonal average ranged 

from 27±24 mg/kg to 68±36 mg/kg. This study range of value is within the range of 28 mg/kg to 

193.2 mg/kg for Ismailia Canal sediment in Egypt (Abdo and El-Nasharty, 2010). There was no 

significant difference in Zn concentration among sampled sites. All values obtained for Zn 

during the period of study were within WHO standard limit of 0.12 mg/kg for the survival of 

aquatic system and PEL guidelines (271 mg/kg). All zinc concentrations are also within the 

sediment quality guideline as given in Table 4.25. Table 4.26 compared this study sediment 

heavy metals concentrations results with others studies elsewhere. Figs 4.7 to 4.12 illustrate 

quarterly variations of metal concentrations in sediment. 
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                       Fig 4.7: Variation of sediment Cu concentration with location 

 

 

 

                       Fig 4.8: Variation of sediment Pb concentration with location 
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Fig 4.9: Variation of sediment Cd concentration with location 

 

 

 

Fig 4.10: Variation of sediment Ni concentration with location 
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Fig 4.11: Variation of sediment Co concentration with location 

 

 

 

 

Fig 4.12: Variation of sediment Zn concentration with location 
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4.8 CONCENTRATION OF HEAVY METALS IN PLANT SAMPLES  

4.8.1 Concentration of Heavy Metals in leaves and fruits of Pumpkin (Cucurbita pepo Linn)  

The average concentrations of cadmium in pumpkin leaves and edible part (fruits) were 

0.41±0.42 mg/kg and 0.05±0.01mg/kg respectively (Table 4.27). Seasonal concentration ranged 

from 0.19±0.03 mg/kg (dry season) to 0.7±1.0 mg/kg (rainy season) in leaves while in fruit 

levels ranged from 0.04±0.03 mg/kg to 0.05±0.02 mg/kg (Table 4.28). The average 

concentration of cadmium was higher in leaves and the difference is statistically significant. The 

leaves of pumpkin are edible and the presence of high level of Cd in leaves may expose 

consumers of such leaves to health hazards, if the concentration exceeds regulatory limits. 

Cadmium is a very toxic heavy metal that has no beneficial functions in the human body. 

Cadmium, unlike most heavy metals, can be taken up by several plants. It is capable of 

accumulating in food chains and the accumulation depends on factors such as pH and 

temperature (Voogt et al., 1981). Levels of cadmium in pumpkin were higher than control site 

values of 0.04±0.03 mg/kg and 0.03±0.01 mg/kg in leaves and fruits respectively and the 

differences were significant.  

 

The average lead concentration was 0.15±0.05 mg/kg in leaves and 0.08±0.05mg/kg in edible 

part (Table 4.27).  Dry season average value was 0.11±0.03 mg/kg while rainy season was 

0.19±0.08 mg/kg (Table 4.27) and the difference is not significant. Corresponding levels of Pb in 

fruits were 0.12±0.06 mg/kg and 0.28±0.11 mg/kg in rainy and dry season respectively. The 

variation of Pb concentrations in different parts of pumpkin is statistically significant. 

Concentration of Pb in samples is higher than in control (0.03±0.04 mg/kg). The differences 

between control value and average concentration was significant.  

Average concentration of copper in pumpkin was higher in edible parts, unlike the case with 

cadmium and lead that had higher concentrations in the leaves compared to the edible parts. The 

differences between average Cu level in leaves (1.76±0.19 mg/kg) and fruits (4.50±0.67 mg/kg) 

is significant.   

Average concentrations of cobalt were 0.47±0.82 mg/kg and 0.02±0.01mg/kg (Table 4.29) in 

leaves and fruits respectively. Seasonal average values in leaves were 0.09±0.08 mg/kg and 

0.8±1.5 mg/kg (Table 4.30) in dry and rainy season respectively. Corresponding values in fruits  
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            Table 4.27: Average concentrations (mg/kg) of Cd, Pb and Cu in parts of crops  

Crop specie 
Cd  Pb  Cu 

Leaves Edibles  Leaves Edibles  Leaves Edibles 

Pumpkin 0.41±0.42 0.05±0.01 
 

0.15±0.05 0.08±0.05 
 

1.76±0.19 4.50±0.67 

Passion Fruit 0.32±0.41 0.15±0.05 
 

0.30±0.13 0.29±0.17 
 

6.34±0.27 8.13±0.29 

Maize 0.53±0.50 0.19±0.03 
 

0.22±0.08 0.42±0.22 
 

7.2±2.4 2.43±0.29 

Sugar cane 0.47±0.35 0.14±0.04 
 

0.16±0.04 0.20±0.12 
 

2.95±0.77 2.88±0.23 

Cassava 0.58±0.52 0.13±0.01 
 

0.18±0.06 0.10±0.05 
 

3.95±0.54 2.44±0.17 

Control samples 0.04±0.08 0.03±0.01 
 

0.13±0.05 0.16±0.02 
 

1.30±0.28 0.76±0.35 
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Table 4.28: Concentrations (mg/kg) of Cd, Pb and Cu in parts of crops  

Crop  species Parts of crop 

Cd 

 

Pb 

 

Cu 

Rainy Dry Rainy Dry Rainy Dry 

season season Season Season Season Season 

Maize 
Leaves 0.69±0.79 0.38±0.23  0.25±0.08 0.19±0.16  5.5±2.6 9.0±1.3 

Grain 0.22±0.06 0.17±0.01  0.49±0.22 0.36±0.20  2.44±0.57 2.42±0.12 

          

Passion fruit 
Leaves 0.56±0.80 0.10±0.04  0.39±0.11 0.21±0.01  6.3±4.5 6.40±0.91 

Fruits 0.19±0.07 0.11±0.02  0.13±0.01 0.04±0.02  8.4±1.2 7.90±0.27 

          

Pumpkin 
Leaves 0.7±1.0 0.19±0.03  0.19±0.08 0.11±0.03  1.93±0.68 1.60±0.14 

Fruits 0.05±0.02 0.04±0.03  0.12±0.06 0.28±0.11  4.9±1.5 4.14±0.15 

          

Cassava 
Leaves 0.61±0.59 0.57±0.54  0.23±0.09 0.15±0.54  4.5±3.4 3.79±0.97 

Tubers 0.14±0.06 0.13±0.02  0.15±0.04 0.06±0.02  2.60±0.36 2.36±0.40 

          

Sugar cane 
Leaves 0.46±0.51 0.49±0.37  0.19±0.10 0.14±0.02  2.3±1.9 3.60±0.23 

Stem 0.18±0.06 0.11±0.02  0.12±0.06 0.28±0.11  2.73±0.23 3.02±0.44 
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     Table 4.29: Average concentrations (mg/kg) of Co, Ni and Zn in parts of crops  

Crop specie 
Co  Ni  Zn 

Leaves Edible  Leaves Edible  Leaves Edible 

Pumpkin 0.47±0.82 0.02±0.01  1.1±1.2 14.2±2.4  12.8±6.1 15.0±5.4 

Passion Fruit 4.8±8.1 0.02±0.01  18±20 14.7±6.2  16.7±1.3 12.2±3.1 

Maize 7.4±5.6 0.12±0.13  26.0±5.2 25±10  36±15 33.1±2.4 

Sugar cane 2.1±2.5 0.02  21.6.1±4.2 14.2±2.3  21.8±9.5 16.5±0.8 

Cassava 4.9±5.7 0.20±0.05  29±16 34±19  19.7±7.0 14.7±1.7 

Control samples 0.78±0.52 0.01  4.3±2.3 3.3±1.1  5.1±0.9 1.93±0.65 
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Table 4.30: Concentrations  (mg/kg) of Ni, Co and Zn in parts of crops 

Crop  species Parts of crop 

Ni 
 

Co 
 

Zn 

Rainy Dry Rainy Dry Rainy Dry 

Season Season  Season Season  Season Season 

Maize 
Leaves 28±53 23.8±1.1  11.7±9.2 3.2±1.3  51±56 21.6±1.0 

Grain 24±26 25±11  0.19±0.24 0.03±0.01  35.0±4.5 31.3±0.5 

          

Passion fruit 
Leaves 24±12 12.1±0.30  9±15 1.0±1.1  16.5±8.7 17.0±2.0 

Fruits 21±21 8.32±0.29  0.02±0.01 0.02±0.01  32±49 13.9±6.7 

          

Pumpkin 
Leaves 1.9±2.6 0.31±0.05  0.8±1.5 0.09±0.08  12±12 13.7±7.2 

Fruits 15.8±4.4 12.6±0.8  0.02±0.01 0.01±0.01  18±14 12.4±1.2 

          

Cassava 
Leaves 36±21 23.2±4.3  7±10 2.8±2.7  16±14 19.2±8.3 

Tubers 39±15 29.0±2.6  0.03±0.01 0.02±0.01  16.0±6.0 12.8±2.5 

          

Sugar cane 
Leaves 20.5±9.8 22.7±2.6  1.8±3.5 2.5±4.2  20±21 24±11 

Stem 17±18 21.5±5.4  0.02±0.01 0.02±0.01  16.7±0.9 16.3±3.2 
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were 0.01±0.01 mg/kg and 0.02±mg/kg. The level of cobalt in leaves is significantly different 

from the fruits.  

Average nickel concentration is given in Table 4.29. The average concentration in leaves was 

1.1±1.2 mg/kg while in fruits. it was 14.2±2.4 mg/kg. Copper concentration in leaves of pumpkin 

was significantly different from the levels at the control site. 

Table 4.29 shows that average nickel concentration in leaves was 1.9±2.6 mg/kg (rainy season) 

and 0.31±0.05 mg/kg (dry season), while in fruits it was 15.8±4.4 mg/kg and 12.6±0.8 mg/kg 

respectively. Nickel levels were higher in edible part of pumpkin than in the leaves. The 

accumulation in the edible parts is about fourteen times higher than in the leaves, and the 

difference is statistically significant.  

Average concentrations of Zn were 12.8±6.1 mg/kg in leaves and 15.0±5.4 mg/kg in fruits. In 

both seasons, average levels of Zn in leaves were 12±12 mg/kg and 13.7±7.2 mg/kg and in fruits 

were 18±14 mg/kg respectively (Table 4.30). 

   

4.8.2 Concentration of Heavy Metals in Leaves and Fruits of Passion Fruit (Passiflora 

edulis Sims) 

Average cadmium concentration in passion fruit leaves (0.32±0.41 mg/kg) was twice the level in 

the fruit (0.15±0.05 mg/kg) (Table 4.27). The observed differences is significant (P=0.05).  

Cadmium concentrations in the sample of passion fruit crop were higher than control site levels 

in leaves (0.04±0.08 mg/kg) and fruits (0.03±0.01 mg/kg). The differences were statistically 

significant.  

Average Pb concentration in leaves was 0.30±0.13 mg/kg while in the fruit, it was 0.29±0.17 

mg/kg. Seasonal average Pb concentrations in leaves were 0.39±0.11 mg/kg and 0.21±0.01 

mg/kg in rainy and dry seasons respectively, while in fruits was 0.13±0.01mg/kg and 0.04±0.02 

mg/kg (Table 4.28). The differences in concentration between leaves and fruits were not 

significant.   

Average Cu levels in leaves and fruits were 6.34±0.27 mg/kg and 8.13±0.29 mg/kg respectively 

and seasonal concentrations were 6.3±4.5 mg/kg and 6.40±0.91 mg/kg in leaves and 8.4±1.2 
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mg/kg and 7.90±0.27 mg/kg in fruits. Difference in concentrations between fruits and leaves 

were was significant. 

Table 4.29 shows average concentration of Co, Ni and Zn in passion fruits. Average cobalt 

concentration in leaves was 4.8±8.1 mg/kg and in fruit was 0.02±0.01 mg/kg. Rainy seasonal Co 

concentrations in leaves and fruits were 9±15 mg/kg and 0.02±0.01 mg/kg respectively, while in 

dry season there was no difference (0.02±0.01mg/kg) (Table 4.30). Differences between the 

concentration in leaves (4.8±8.1 mg/kg) and fruits (0.02±0.01 mg/kg) is statistically significant. 

The variation in seasonal concentrations in leaves was also statistically significant while in fruits 

variation was not significant. 

Average Ni concentrations in leaves and fruits were 18±20 mg/kg and 14.7±6.2 mg/kg 

respectively. Average concentration in leaves in rainy season was 24±12 mg/kg and in dry 

season was 12.1±0.30 mg/kg. Corresponding levels in fruits were 21±21 mg/kg and 8.32±0.29 

mg/kg in rainy and dry seasons respectively. The difference between Ni level in leaves (18±20 

mg/kg) and in fruits (14.7±6.2 mg/kg) was significant. 

Average Zn concentration in leaves was 16.7±1.3 mg/kg and in fruits was 12.2±3.1 mg/kg. The 

average concentration of Zn in leaves in rainy season is not significantly higher than dry season 

value. However, average concentration in fruit in rainy season (32±49 mg/kg) was significantly 

different from dry season value (13.9±6.7 mg/kg).    

 

 4.8.3 Concentration of Heavy Metals in Leaves and Fruits of Maize (Zea mays Linn) 

Average cadmium concentration in maize grain was 0.19±0.03 mg/kg, and in leaves was 

0.53±0.50 mg/kg (Table 4.27). Seasonal average levels of Cd ranged from 0.17±0.01 mg/kg in 

grain to 0.69 mg/kg in leaves (Table 4.28). Average level of Cd in leaves is higher than in the 

grain and the difference is significant. The control value result was lower than the samples 

concentrations. 

Average concentrations of Pb were 0.22±0.08 mg/kg and 0.42±0.22 mg/kg in leaves and grains 

respectively. Average seasonal levels in leaves were 0.25±0.08 mg/kg (rainy) and 0.19±0.16 

mg/kg (dry), and in fruits were 0.49±0.22 mg/kg and 0.36±0.20 mg/kg respectively (Table 4.28). 

The average concentration of Pb in leaves (0.42±0.22 mg/kg) was twice the level (0.22±0.08 
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mg/kg) in the grains. The observed differences were significant. High Pb concentration in maize 

is a potential threat to human health. However, the level of Pb in maize is within regulatory 

standards and therefore do no pose threat to human. 

 Copper average concentration in leaves was 7.2±2.4 mg/kg, while in grains this was 2.43±0.29 

mg/kg. Average concentration in leaves in rainy season (5.5±2.6 mg/kg) was lower than dry 

season (9.0±1.3 mg/kg). The difference between average concentration in leaves and grains was 

significant.  

Table 4.29 shows the average concentrations of Co, Ni and Zn in maize leaves and grains. 

Average Co concentration in leaves was 7.4±5.6 mg/kg, and in grains was 0.12±0.13 mg/kg. 

Average levels ranged from 0.03±0.01 mg/kg in grains to 11.7±9.2 mg/kg in leaves. The average 

level of Co in grains is lower than in the leaves. The average Co concentrations in the control in 

both seasons are higher than the sample concentrations 

Average Ni concentration in leaves was 26.0±5.2 mg/kg, and in grains was 25±10 mg/kg. The 

difference between average Ni concentration in leaves and grains is not significant. Average Ni 

concentration in leaves 26.0±5.2 mg/kg is significantly higher than the control value 4.3±2.3 

mg/kg. Also the observed difference between the grains (25±10 mg/kg) and control value 

(3.3±1.1 mg/kg) is significant.  

Average Zn concentration was 36±15 mg/kg in leaves, while in grains was 33.1±2.4 mg/kg. 

Table 4.31 shows that average Zn concentrations in leaves in rainy season (51±56 mg/kg) was 

twice the dry season value (21.6±1.0 mg/kg). In grains, observed average levels in both seasons 

were not significantly difference. Average Zn levels in leaves (36±15 mg/kg) and grains 

(33.1±2.4 mg/kg) were higher than corresponding control values of 5.1±0.9 mg/kg and 

1.93±0.65 mg/kg. 

 

4.8.4 Concentration of Heavy Metals in Leaves and Stem of Sugar cane (Saccharum 

officinarium Linn) 

Table 4.27 shows average concentrations of Cd, Pb and Cu in sugar cane. Cadmium 

concentrations were 0.45±0.35 mg/kg in leaves and 0.14±0.04 mg/kg in stem. Average level of 
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Cd in leaves (0.46±0.51 mg/kg) in dry season was not significantly different from rainy season 

value (0.49±0.37 mg/kg). The observed values in samples are significantly higher than control 

values.  

Average Pb concentration in leaves and stem were 0.16±0.04 mg/kg and 0.20±0.12 mg/kg 

respectively. Average Pb concentration in sugar cane ranged from 0.12±0.06 mg/kg in rainy 

season to 0.28±0.12 mg/kg in dry season (Table 4.28). The difference between average Pb 

concentration in leaves (0.16±0.04 mg/kg) and stem (0.20±0.12 mg/kg) was not significant. The 

observed concentrations in the samples were comparable to the control values. 

Average Cu level in leaves was 3.95±0.54 mg/kg while stem was 2.44±0.17 mg/kg. Season 

apparently had no influence on the concentration of Cu in sugar cane leaves and stem as 

observed Cu levels in both seasons in leaves and stem were not significantly different (Table 

4.28). Average Cu concentration in leaves and stem were higher than in control. The differences 

in stems were significant. 

Average concentrations of Co, Ni and Zn in sugar cane were given in Table 4.29. Average 

concentration of Co was 2.1±2.5 mg/kg in leaves. In the stem the level was 0.02±0.01 mg/kg. 

Cobalt average concentrations ranged from 0.02 mg/kg in leaves to 2.5±4.2 mg/kg in stem. The 

difference between leaves and stem was statistically significant.  

Average Ni concentration in leaves was 21.6±4.2 mg/kg and stem was 14.2±2.3 mg/kg. The 

difference between the concentration in leaves and stem is statistically significant. Tables 4.30 

provide further information on seasonal average concentrations in leaves and stem of sugar cane 

in both seasons.  

Average Zn concentrations in leaves and stem were 21.8±9.5 mg/kg and 16.5±0.8 mg/kg 

respectively. Seasonal average levels in leaves ranged from 20±21 mg/kg to 24±11 mg/kg in 

both seasons. These values were significantly higher than corresponding average levels in stem 

16.3±3.2 mg/kg and 16.7±0.9 mg/kg. Average control values (5.1±0.9 mg/kg) in leaves and 

(1.93±0.65 mg/kg) in stem were lower than average concentrations in the samples and the 

differences were significant. 
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4.8.5 Concentration of Heavy Metals in Leaves and Tuber of Cassava (Manihot esclenta 

Crantz) 

Table 4.27 shows average concentrations of Cd, Pb and Cu in cassava leaves and tuber. 

Cadmium average concentration in leaves (0.58±0.52mg/kg) is significantly higher than the 

tuber (0.13±0.01 mg/kg) value. The major consumed part of cassava is the tuber. The 

significantly lower Cd concentration in the tuber means cassava tuber in this study will not pose 

threat to consumers. Average values in tubers are within regulatory limits. This result is 

comparable with other findings (Sanita di Toppi and Gabbrielli, 1999) that the amount of 

cadmium accumulated in the aerial parts of a plant is higher than in the parts below the ground 

(tuber). Average seasonal concentration in leaves and stem is further provided in Table 4.28. 

Average concentrations of Cd in samples were higher than control values and the differences 

were statistically significant.  

Average Pb concentration in leaves (0.18±0.06 mg/kg) is about twice the average concentration 

(0.10±0.05 mg/kg) in tuber. In some parts of the world some people also eat the leaves. 

Therefore, if Pb concentration is above critical limits it will be of great concern both in the tubers 

and leaves. Generally in this study, average Pb concentrations observed in leaves and in tubers 

are within regulatory limits. Control sample average concentration (0.16±0.02 mg/kg) in tuber 

was higher than sample average (0.10±0.05 mg/kg) value. Average concentrations of metals 

were higher in samples of the study area than in control samples with the exception of Pb in 

cassava tuber. 

Average concentration of Cu in leaves was 3.95±0.54 mg/kg and stem was 2.44±0.17 mg/kg. 

Copper average concentration ranged from 2.36±0.40 mg/kg in tubers to 4.5±3.4 mg/kg in 

leaves. The concentration of Cu in food crop within regulatory limits is essentials because of its 

functions in human. Apart from its function as a biocatalyst, Cu is necessary for body 

pigmentation, maintenance of a healthy central nervous system and prevention of anaemia 

(Akinyele and Osibanjo, 1982). Generally, plants contain the amount of Cu, which is inadequate 

for normal growth of plants. Application of micronutrient fertilizers and copper based fungicides 

may sometimes increase it to alarming levels 

Table 4.29 shows average concentration of Co, Ni and Zn in leaves and tubers of cassava. 

Average Co concentration in leaves was 4.9±5.7 mg/kg and in tuber was 0.20±0.05 mg/kg. The 

http://www.aginternetwork.net/whalecomwww.sciencedirect.com/whalecom0/science?_ob=ArticleURL&_udi=B6T6P-4JDN6HW-1&_user=2789858&_coverDate=08%2F31%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000056118&_version=1&_urlVersion=0&_userid=2789858&md5=ed53aed12b8c930cbe756ab575146a8e#bib4#bib4


 129 

differences between average levels in leaves and tuber is significant. Table 4.31 provides further 

information on average Co concentrations in leaves and tubers in both seasons.  

Average Ni concentrations were 29±16 mg/kg and 34±19 mg/kg in leaves and tuber respectively. 

Seasonal average Ni concentrations ranged from 23.2±4.3 mg/kg in tubers to 39±15 mg/kg in 

leaves (Table 4.30). The concentration of nickel in leaves is significantly different from the 

tubers. Average Ni concentrations in leaves and tubers were higher than regulatory standards. 

Weigert (1991) had indicated that Ni concentrations up to 68 mg/kg may still be safe for 

consumption since more than 90 % of Ni taken in is held in the organic form that can be safely 

excreted. Thus the risk of exposure to Ni from cassava products of this study is low since 

concentrations are significantly lower than 68 mg/kg threshold limit reported by Weigert (1991). 

 

Average Zn concentration in leaves was 19.7±7.0 mg/kg and in tubers was 14.7±1.7 mg/kg. 

Seasonal concentrations ranged from 12.8±2.5 mg/kg to 19.2±8.3 mg/kg. The level of Zn in 

leaves is significantly different from the tubers. Like Cu, Zn is an essential element for plants 

and animals, but slight increase in its levels may interfere with physiological processes. 

 

4.9 COMPARISON OF CONCENTRATION OF HEAVY METALS IN PARTS OF 

         CROPS OF THE STUDY WITH OTHER STUDIES 

Table 4.31 shows the levels of heavy metals in crops from similar studies elsewhere. This study 

average concentrations of cadmium in pumpkin 0.41±0.42 mg/kg (leaves) and 0.05±0.01 mg/kg 

(fruits) are higher than average concentrations obtained by Oti Wilberforce and Nwabue (2012) 

for pumpkin 0.003±0.01 mg/kg in Enyigba and 0.002±0.01 mg/kg in Abakaliki both in Ebonyi 

State, Nigeria. Similarly average Cd concentrations in cassava were 0.58±0.52 mg/kg (leaves) 

and 0.13±0.0 1 mg/kg (tubers) in this study. Average concentration of cadmium in this study are 

generally lower than the average obtained by Gideon-Ogero (2008) for cassava 4.88 mg/kg, 

4.63mg/kg, and 4.52 mg/kg at Afiesere, Ekugbo and Ofoma respectively in Nigeria. They are 

also lower than 4.8±1.2 mg/kg for cassava in Wassa Amenfi in Ghana (Musah et al., 2013), and 

7.05 mg/kg for fresh fruits in Bangalorie City, Indian (Mahdavian and Somashekar, 2008). In 

this study, average Cd concentrations in maize 0.53±0.50 mg/kg (leaves) and 0.19±0.03 mg/kg 

(grians) are higher than 0.01 mg/kg (grains) and 0.01 mg/kg (leaves) in maize in Dunhua, China 
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(Liang et al., 2011). Average concentration of Cd in sugar cane leaves was 0.47±0.35 mg/kg and 

stem was 0.14±0.04 mg/kg. These values are lower than the values obtained by Wang et al. 

(2012) for the bagasse of various sugar cane varieties 0.99±0.29 mg/kg (Guitang21), 0.84±0.41 

mg/kg (Guiyin5), 0.60±0.11 mg/kg (Xintaitang92-2817) and 0.56± 0.25 mg/kg (Guitang00-122) 

in southern China. 

Average concentration of lead for pumpkin 0.15±0.05 mg/kg (leaves) and 0.08±0.05 (fruits) are 

comparable to average Pb concentrations reported by Oti Wilberforce and Nwabue (2012) for 

pumpkin 0.21±0.21 mg/kg and 0.20±0.21 mg/kg in Enyigba and Abakaliki respectively. Average 

Pb concentration of 19.1±3.2 mg/kg in shoot of maize obtained by Osiele et al. (2012) in 

Guadalupe, Zacatecas in Mexico is higher than the values for leaves of maize 0.22±0.08 and 

0.42±0.22 mg/kg in grains obtained in this study. Average lead concentrations 0.16±0.04 mg/kg 

(leaves) and 0.20±0.12 mg/kg (stem) of sugar cane in this study are lower than the 12.1±1.3 

mg/kg (sugar cane) reported by Evaristo (2013) in Mufulira in Zambia. Similarly, concentrations 

of 0.15±0.05 in leaves and 0.08±0.05 mg/kg in fruits of pumpkin are lower than 24.5 mg/kg in 

pumpkin obtained by Evaristo (2013) in Kafue in Zambia. Also average Pb concentration in 

cassava 0.18±0.06 mg/kg (leaves) and 0.10±0.05 mg/kg (tubers) are lower than 65.0±2.8 mg/kg 

for cassava in Ghana (Musah et al., 2013).  

Average copper concentrations in the studied species were: pumpkin - 1.76±0.19 mg/kg (leaves) 

and 4.50±0.67 mg/kg (fruits), passion fruit - 6.34±0.27 mg/kg (leaves) and 8.13±0.29 mg/kg 

(fruits), maize - 7.2±2.4 mg/kg (leaves) and 2.43±0.29 mg/kg (grains), sugarcane - 2.95±0.77 

mg/kg (leaves) and 2.88±0.23 mg/kg (stem), and cassava - 3.95±0.54 mg/kg (leaves) and 

2.44±0.17 mg/kg (tubers). They are comparable to the 2.86 mg/kg and 2.06 mg/kg obtained by 

Gideon-Ogero (2008) for cassava in Orogun and Ofoma respectively. This study results are 

lower than 789 mg/kg and 11.1±4.2 mg/kg obtained by Evaristo (2013) in Zambia for pumpkin 

leaves in hot wet season and hot dry season respectively. Similarly the results are also lower than 

29.5±2.0 mg/kg and 22.5±1.3 mg/kg for sugar cane stem in Zambia (Evaristo, 2013). The 99±23 

mg/kg in shoot of maize obtained by Osiel et al. (2012) in Guadalupe, Zacatecas in Mexico is 

higher than 7.2±2.4 mg/kg (leaves) of maize in this study.  
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 Table 4.31: Comparison of concentrations of heavy metals in food crops of this study with other studies elsewhere` 

 

Country location 
Plant 

species 

 Concentration (mg/kg) 
References 

 Cd  Pb Cu Co Ni Zn 

Nigeria Afiesere Cassava  4.88 <0.002 1.21 - - 111.6 Gideon-Ogero (2008) 

Nigeria Ekugbo Cassava  4.63 <0.002 1.93 - - 16.3 Gideon-Ogero (2008) 

Nigeria Orogun Cassava  4.28 <0.002 2.86 - - 23.9 Gideon-Ogero (2008) 

Nigeria Ofoma Cassava  4.52 <0.002 2.06 - - 14.3 Gideon-Ogero (2008) 

Nigeria Enyigba Cassava  - 0.21±0.21 - - -  Oti Wilberforce and 

Nwabue  (2012) 

Nigeria Abakaliki Manihot 

esculenta 

 - 0.20±0.21 - - - - Oti Wilberforce and 

Nwabue  (2012) 

Nigeria Okirika Cassava  BDL BDL 3.33±0.25 - 3.08±0.14 16.4 Akininwor et al. (2005) 
Ghana Wassa-

Amenfi 

Manihot 

esculenta 

 4.81±1.2 65.0±2.8 41.2±1.1 - 42.1±1.2 163.5 Musah et al. (2013) 

Ghana  Musa 

paradisiacal 

 5.58±0.18 54.0±5.9 88.6±5.1 - 37.3±2.7 297±6.3 Musah et al. (2013) 

Zambia Mufulira 

and Kafue 

Sugarcane  - 12.1±1.3 29.5±2.0 1.91±0.51 6.19±1.4 - Evaristo (2013) 
 

Zambia  Pumpkin  - 24.5 

0.31±0.31 

789 

11.1±4.2 

20.0 

ND 

31.6 

0.06±0.06 

- Evaristo (2013) 
 

India Bangalorie 

City 

Fresh fruits  7.05 53.9 10.9 40.9 53.9 30.0 Mahdavian and 

Somashekar (2008) 
China  Guitang21  0.99±0.29 - - - - - Wang et al. (2012) 
China  Guiyin5  0.84±0.41 - - - - - Wang et al. (2012) 
China  Xintaitang

92-2817 

 0.60±0.11 - - - - - Wang et al. (2012) 
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Table 4.31: contd.

Country Location 
Plant 

species 

 Concentration (mg/kg) 

References 
Cd Pb Cu Co Ni Zn 

China Dunhua Maize  0.01 - - - - - Liang  et al. (2011) 

Mexico Guadalupe Maize  - 19.1±3.2 99±23 - - 297±260 Osiel  et al. (2012) 

Nigeria  Kogi Pumpkin  0.41±0.42 

(0.05±0.01) 

0.15±0.05 

(0.08±0.05) 

1.76±0.19 

(4.50±0.67) 

0.47±0.82 

(0.02±0.01) 

1.1±1.2 

(14.2±2.4) 

12.8±6.1 

(15.0±5.4) 
This study 

Nigeria  Kogi Passion 

fruit. 

 

0.32±0.41 

(0.15±0.05) 

0.30±0.13 

(0.29±0.17) 

6.34±0.27 

(8.13±0.29) 

4.8±8.1 

(0.02±0.01) 

18±20 

(14.7±6.2) 

16.7±1.3 

(12.2±3.1) 

 

This study 

Nigeria  Kogi Maize 

 

0.53±0.50 

(0.19±0.03) 

0.22±0.08 

(0.42±0.22) 

7.2±2.4 

(2.43±0.29)   

7.4±5.6 

(0.12±0.13) 

26.0±5.2 

(25±10) 

36±15 

(33.1±2.4) 

 

This study 

Nigeria  Kogi Sugar 

cane 

 

0.47±0.35 

(0.14±0.04) 

0.16±0.04 

(0.20±0.12) 

2.95±0.77 

(2.88±0.23) 

2.1±2.5 

(0.02) 

21.6.1±4.2 

(14.2±2.3) 

21.8±9.5 

(16.5±0.8) 

 

This study 

Nigeria  Kogi Cassava  0.58±0.52 

(0.13±0.01) 

0.18±0.06 

(0.10±0.05) 

3.95±0.54 

(2.44±0.17) 

4.9±5.7 

(0.20±0.05) 

29±16 

(34±19) 

19.7±7.0 

(14.7±1.7) 
This study 
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This study‟s average cobalt concentrations were:  pumpkin - 0.47±0.82 mg/kg (leaves) and 

0.02±0.01 mg/kg (fruits), passion fruits - 4.8±8.1 mg/kg (leaves) and 0.02±0.01 mg/kg (fruits), 

and maize - 7.4±5.6 mg/kg (leaves) and 0.12±0.13 mg/kg (grains). Values for sugar cane were 

2.1±2.5 mg/kg (leaves) and 0.02±0.01 mg/kg (stem), and for cassava - 4.9±5.7 mg/kg (leaves) 

and 0.20±0.05 mg/kg (tubers). The sugar cane results are comparable to the result (1.91±0.51 

mg/kg) obtained by Evaristo (2013) for in sugar cane stem in Zambia. The average Co 

concentrations in this study are lower than 20.0 mg/kg (Evaristo, 2013) for pumpkin in Mufulira 

and Kafue in Zambia, and also lower than 40.9 mg/kg for fresh fruits, obtained by Mahdavian 

and Somashekar (2008) in Bangalotie, India.  

This study average nickel concentrations in pumpkin - 1.1±1.2 mg/kg (leaves) and 14.2±2.4 

mg/kg (fruits), passion fruit - 18±20 mg/kg (leaves) and 14.7±6.2 mg/kg (fruits), maize - 

26.0±5.2 mg/kg (leaves) and 25±10  mg/kg (grains), sugarcane - 21.6±4.2 mg/kg (leaves) and 

14.2±2.3 mg/kg (stem) and cassava - 29±16 mg/kg (leaves) and 34±19 mg/kg (tubers) were 

higher than 3.08±0.14mg/kg for cassava by Akininwor et al. (2005) in Okirika in River State, 

Nigeria. Similarly they are also higher than 6.19±1.4 mg/kg for cassava in Zambia (Evaristo, 

2013). However, this study results were lower than 37.3±2.7mg/kg for cassava obtained by 

Musah et al. (2013) in Ghana. Also the pumpkin leaves result (1.1±1.2 mg/kg) is lower than 31.6 

mg/kg obtained by Evaristo (2013) for pumpkin leaves in Zambia. Sugar cane stem values of 

1.91±0.51 mg/kg and 1.67±0.42 mg/kg obtained by Evaristo (2013) are lower than this study 

(14.2±2.3 mg/kg) and the difference was significant. 

Average zinc concentrations from this study are compared to those of other studies listed in 

Table 4.32. The results for this study are lower than values of 163.5mg/kg for cassava (Musah et 

al., 2013) from Ghana and 297±260 mg/kg for shoot of maize in Mexico by Osiel et al. (2012). 

 

4.10 COMPARISON OF CONCENTRATION OF HEAVY METALS IN CROP 

          PLANTS WITH REGULATORY STANDARDS 

 

Lead: The average Pb concentration was highest in passion fruit leaves (0.30±0.13 mg/kg) and 

lowest in pumpkin 0.15±0.05 mg/kg. In the edible part of food crops, concentration of Pb ranged 

from 0.08±0.05 mg/kg in pumpkin to 0.42±0.22 mg/kg in maize. Fig 4.13 shows that the levels 

of Pb in this study are mostly within permissible limit of 0.3µg/g set by the Commission of the 
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European Communities (EC) (EEC, 1977.) and the World Health Organization (FAO/WHO, 

2011), and the 9.0 mg/kg of the State Environmental Protection Administration of China (SEPA, 

2005). There are no Nigerian regulatory standard for comparison.  

Cadmium: The average concentration of Cd in leaves of crops was highest in cassava 

(0.58±0.52 mg/kg) and the lowest was in passion fruit (0.32±0.41 mg/kg). Average Cd 

concentration observed in this study were slightly higher when compared with the 0.2 mg/kg 

FAO/WHO standard for Cd in vegetable (Codex Alimentarius Commission, 2011) and also 

exceeded the limit of 0.1 to 0.2 mg/kg set by SEPA (2005) (Fig 4.14), however, the average 

concentration for edible parts of crops were all within the standard limit of 0.2 mg/kg (Fig 4.14) 

given by the EC and FAO/WHO (2011) and also within the limits of 0.1µg/g for stem and root 

vegetables (Jamali et al., 2007). The level of Cd found in this study compares well with 

background concentration of fruit type vegetable (0.11mg/kg) in rural Taiwan (Lin, 1991). In 

China, the tolerance limit of cadmium in food is 0.03mg/kg (MHPRC, 2005).  

Copper: The average concentration of copper in leaves of crops was highest in maize (7.2±2.4 

mg/kg) and lowest in pumpkin (1.76±0.19 mg/kg). In edible part of crops, passion fruit had the 

highest average copper concentration with a value of 8.13±0.29 mg/kg. The average 

concentrations of copper in all species of crops (leaves and edible) were within FAO/WHO 

(2002) and Chinese SEPA regulatory limit of 20 mg/kg (Fig 4.15). Therefore concentrations 

were below levels of concern to human health.  

Cobalt: The average cobalt concentration in species sampled for the study period is given in 

Table 4.29. Leaves of maize had the highest concentration of 7.4±5.6 mg/kg. The lowest 

concentration was observed in pumpkin (0.47±0.82 mg/kg). Values in edible parts had 0.20±0.01 

mg/kg in cassava tuber as the highest. The other species recorded similar value of 0.02±0.01 

mg/kg except maize (0.12±0.12 mg/kg. Concentrations of Co were slightly higher in the leaves 

of sampled crops than in the edible part. Cobalt concentrations in edible parts are within WHO 

(1996) permissible limit of 0.01 mg/kg (Fig 4.16). Although the values were higher in the leaves 

than WHO permissible limit, they are within safety limit for human consumption of 0.05 mg/kg 

to 1mg/kg in humans (ATSDR, 1994).  
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              Fig 4.13: Concentration of Pb in crops compared with regulatory standards 

 

 

Fig 4.14: Concentration of Cd in crops compared with regulatory standards 
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               Fig 4.15: Concentration of Cu in crops compared with regulatory standards 

 

 

Fig 4.16: Concentration of Co in crops compared with regulatory standards 
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              Fig 4.17: Concentration of Ni in crops compared with regulatory standards 

 

 

             Fig 4.18: Concentration of Zn in crops compared with regulatory standards  
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Nickel: The highest average value of 29±16mg/kg was observed in cassava leaves and the lowest 

concentration was observed in pumpkin (1.1±1.12mg/kg). Corresponding values in edible parts 

showed that cassava tuber has the highest concentration (34±19 mg/kg) and lowest in pumpkin 

(14.2±2.4 mg/kg). All values obtained were higher than the Chinese regulatory limit of 10 mg/kg 

(SEPA, 2005), with the exception of the value for pumpkin leaves.  

Zinc: The overall concentration of zinc in parts of food crops are given in Table 4.27 and 

average seasonal variation are shown in Table 4.26. Results showed that zinc concentration in 

leaves was slightly higher than in edible parts except for pumpkin. The highest zinc 

concentration was 36±15 mg/kg in maize and in pumpkin which had the lowest Zn concentration 

was 12.8±6.1 mg/kg. The corresponding value in edible parts was 33.1±2.4 mg/kg in maize and 

12.2±3.1 mg/kg in passion fruits as highest and lowest observed concentrations respectively. Zn 

is an essential element in human diet. Too little Zn can cause problems. However, too much Zn 

is also harmful to human health (Agency for Toxic Substances and Diseases Registry, 2004). 

Generally the average Zn concentration shows that values obtained were all within the 

permissible limit of 100mg/kg (FAO/WHO, 2011) and the Chinese SEPA guidelines. Among all 

metals examined Zn is least toxic and an essential element in the human diet as it is required to 

maintain the proper functions of the immune system. It is also important for normal brain activity 

and is fundamental in the growth and development of the foetus. Although the average daily 

intake of Zn is 7 – 10.3 mg/day, the recommended dietary allowance for it is 15 mg/day for men 

and 12 mg/day for women (ATSDR, 1994). On the contrary, high concentration of Zn in 

vegetables may cause vomiting, renal damage, cramps, etc. 

 

4.11 COMPARISON OF THE CONCENTRATION OF METALS IN SOIL, LEAVES 

        AND EDIBLE CROP PLANT PARTS 

Results generally showed that Zn and Ni contents were dominant in soil, leaves and edible parts. 

At Ofoke, the orders of Zn and Ni concenttations were:  leaves > edible > soil. At Ankpa the 

trend was: edible > leaves > soil. At Macks farm Zn and Cu showed similar trend of - edible > 

soil > leaves, while Ni showed leaves > soil > edible.  

Pb was present mostly only in soil, cobalt was higher in soil followed by leaves, while the level 

in edible parts were very low. Similar trend was observed at KSU farm. Pb and Co were 
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dominant in soil and very low in leaves and edible parts. At Idah the observed trend was for Zn 

in soil > leaves > edible and Ni in leaves > edible > soil. The other metals were similar but with 

very low concentrations. The trends in levels of metals in soil compared with levels in parts of 

crops are given in Figs 4.19 to 4.26.  

 

4.12 TRANSFER FACTORS 

Table 4.32 shows transfer factors for the various metals. The transfer factors (TF) of Cd, Pb, Cu, 

Ni, Co and Zn from soils to edible parts of crops were calculated. Soil-to-plant transfer is one of 

the key components of human exposure to metals through the food chain. According to 

Sutherland and Tack (2000), five contamination categories are generally recognized on the basis 

of the enrichment factor: TF<2, depletion to mineral enrichment; 2≤TF<5, moderate enrichment; 

5≤TF<20, significant enrichment; 20≤TF<40, very high enrichment; and TF>40, extremely high 

enrichment. The TF values for Cd, Pb, Cu, Co, Ni and Zn for the crops varied between crop 

species sampled (Table 4. 33). The TF values for Cd ranged from 0.21 in passion fruit to 2.63 in 

cassava. The correlation of Cd TF with pH and TOC gives a regression of -0.707 and -0.089 

respectively (Table 4. 34.). Organic carbon content and pH are soil parameters having influence 

on respectively (Table 4. 34.). Organic carbon content and pH are soil parameters having 

influence on TF. There is significant correlation between Cd TF and clay content. Transfer factor 

values for Pb ranged from 0.01in passion fruit to 0.03 in cassava. Values for Pb are lower than 

those for Cd. Significantly negative correlation was established between Pb TF and pH while 

with organic carbon was positive. The TF values for Zn were generally higher than Pb values but 

lower than those of Cd. For Zn, significant negative correlations were observed between TF and 

soil properties (pH, TOC and clay content). This indicates higher Zn TF on soils with low clay 

content and low organic carbon content. The TF values for Cu are of similar range of variation as 

was observed in Zn. As was observed in Zn, significant negative correlation was estimated 

between Cu TF and organic carbon. This indicates that more Cu is transferred at low organic 

carbon content. The TF values for Co ranged from 0.05 (sugar cane) to 1.70 (cassava). 

Regression analysis showed significant negative correlation between Co TF and pH and no 

correlation with organic carbon. However, correlation with clay content was significant as it 

gives a regression of 0.549. Transfer factor for Ni was the highest for all metals determined.  
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                   Fig 4.19: Levels of metals in soil compared with levels in crops parts at Ofoke 

 

 

                  Fig 4.20: Levels of metals in soil compared with levels in crops parts at Ankpa 
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                Fig 4.21: Levels of metals in soil compared with levels in crops parts at Ajaokuta 

 

 

 

             Fig 4.22: Levels of metals in soil compared with levels in crops parts at Macks 
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              Fig 4.23: Levels of metals in soil compared with levels in crops parts at KSU 
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              Fig 4.24: Levels of metals in soil compared with levels in crops parts at Id 

 

             Fig 4.25: Levels of metals in soil compared with levels in crops parts at Ejule 

 

 

 

              Fig 4.26: Levels of metals in soil compared with levels in crops parts at Ibaji 
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Table 4.32: Comparison of transfer factors of this study with other studies   

Sample 

point 

Crops Cu Zn Pb Cd Ni Co Reference 

OFK Maize 0.71 1.96 0.03 1.68 0.77 2.48 This study 

MAC Passion 

fruit 

0.77 0.51 0.01 0.21 1.44 0.69 This study 

KSU Pumpkin 0.38 0.57 0.01 0.88 0.11 0.07 This study 

ANK Cassava 0.71 0.21 0.03 0.87 1.33 1.01 This study 

AJA Cassava 1.62 0.92 0.03 1.63 3.8 1.70 This study 

IDA Cassava 1.35 0.79 0.03 0.97 2.75 0.78 This study 

EJU Cassava 0.37 0.22 0.01 0.94 0.98 0.75 This study 

IBA Sugar 

cane 

0.38 0.77 0.01 1.44 0.94 0.05 This study 

         

From other studies 0.4 1.5 0.05 0.55 0.06 - Baes et al. (1984) 

  0.123 0.358 0.038 0.514 0.034  - BJC (1998) 

  0.12 0.37 0.039 0.59 0.018  - Efroymson et al. 

(2001) 

  0.26 0.44 0.012 0.17 0.024  - Lopes et al. (2012) 
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Table 4.33: Correlation coefficient among metals and soil properties as it influence metal uptake 

 pH TOC Clay Cu Zn Pb Cd Ni Co 

pH 1         

TOC 0.0581 1        

Clay -0.581 0.542 1       

Cu 0.309 -0.814 -0.590 1      

Zn -0.102 -0.723 -0.465 0.839 1     

Pb -0.947 0.246 0.691 -0.493 -0.031 1    

Cd -0.707 -0.089 0.555 -0.428 -0.370 0.567 1   

Ni -0.850 -0.279 0.630 -0.044 0.121 0.705 0.795 1  

Co -0.952 0.028 0.549 -0.240 0.246 0.961** 0.462 0.734 1 
** Correlation is significant at the 0.01 level (2-tailed) 
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Values ranged from 0.11 (cassava) to 4.77 (maize). Correlation of Ni TF with pH and organic 

carbon estimated regression value of -0.850 and -0.229 respectively.    

 

 In this study the transfer factors for edible parts of sampled crops species shows that the crops 

were not contaminated. In this study, results showed that there was moderate enrichment of Ni in 

maize grain (4.77), and cassava at Ajaokuta and Idah with TF values of 3.8 and 2.75 

respectively. Cobalt showed moderate enrichment in maize grain at Ofoke, and cadmium in 

cassava tuber at Ajaokuta. Generally the transfer factors in edible parts of crops determined were 

class 1 which is the category of depletion to mineral enrichment. From the result, the conclusion 

can be drawn that the edible parts of the crops determined are relatively safe and do not pose any 

health risk. This is also evident as the various metals determined in parts of crops are within 

regulatory standards recommended by various regulating bodies.  

 

 

4.13  MODELING THE SOIL PLANT METAL INTERACTIONS 

The model can be applied to different plants or crops in order to understand how the different 

concentrations of metals that can be found in the soil can influence their growth. Also knowing 

the threshold values for toxic effects on plants and knowing the concentrations of metals that are 

in the soil will help to choose the most suitable crop for each field in order to remediate the soil 

contaminated by means of biouptake. The model makes possible to characterize the nonlinear 

behavior of the soil- plant interaction with metal pollution, in order to contribute towards 

establishing or predicting threshold toxicity limit (referential values) values for the toxic effects 

of metals on plants and eventual plant mortality. Experimental data obtained from soil and plant 

(leaves and edible parts) in the study were used. The model measured the dynamic interaction 

between metal levels in soil and plants parts. Experimental data used for the modeling and the 

corresponding coefficients of equation 3 in Section 2.11 are presented. Threshold limits were 

obtained and compared with current concentrations in food crops. The R
2
 values obtained were 

all very satisfactory. The results obtained are predictive metal concentration dose (referential 

values) on plants as a result of experimental fitting for the model. Figures obtained showed the 

threshold limit of metals concentration in parts of plants (leaves and edible parts). Above these 
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threshold limits the metals become toxic to the plants. These threshold limits are represented by 

the coefficient C2 of equation 2 (Section 2.11). Table 4.34 shows the experimental results for 

metals in soils, and corresponding levels in leaves and edible parts of crops. From these the 

threshold limits of the respective metals were derived (Tables 4.35). 

 

Experimental results obtained for Zn metal concentration in passion fruit was 19.4 mg/kg in 

leaves and 20.7 mg/kg in edible for the corresponding value of 10.7 mg/kg of Zn in soil. The 

model predicts threshold toxicity limit (referential values) for Zn to be 17.6 mg/kg to 72.1 mg/kg 

in fruits and 13.5 mg/kg to 31.7 mg/kg in leaves. Among the species of crops the threshold limits 

in leaves ranged from 31.726 mg/kg in passion fruit to 78.321 mg/kg in maize. Corresponding 

limits in edible ranged from 33.407 mg/kg in sugar cane stem to 78.643 mg/kg in maize grain. 

The threshold limit in passion fruit (72.101 mg/kg) is twice the limit in the leaves (31.726 

mg/kg) as given in Table 4.35.  The R
2 

values ranged from 0.8762 mg/kg in cassava to 0.9981 

mg/kg in passion fruit. This showed that threshold limits generated from the model are 

significant.  

Observed levels of Pb in maize leaves and grains were 0.16 mg/kg and 0.42 mg/kg respectively 

corresponding to a dose of 10.5 mg/kg of Pb in soil. For Pb the model predicts a threshold 

toxicity limit (referential values) of 11.0 mg/kg and 11.2 mg/kg in maize grain and leaves 

respectively. The threshold limits for Pb for all species are given in Table 4.35. Generated 

threshold limits for leaves ranged from 11.201 mg/kg in maize to 16.32 mg/kg 1 in sugar cane. 

Corresponding value in edibles ranged from 11.044 mg/kg in maize to 26.438 mg/kg in cassava 

with satisfactory R
2 

values.  

From the experimental result the concentration of Cd in leaves of crops ranged from 0.06 mg/kg 

in passion fruit to 1.64 mg/kg in pumpkin. In edibles concentrations ranged from 0.01 mg/kg to 

0.20 mg/kg in passion fruit (Table 4.33). For Cd the model predicted threshold limit values that 

ranged from 10.135 mg/kg in pumpkin to 19.437 mg/kg in sugar cane in leaves and in edibles 

10.159 mg/kg in pumpkin to 23.305 in cassava (Table 4.34). The highest threshold limit in edible 

was 23.305 in cassava tuber while in leaves was 19.437 in sugarcane. 

Experimental results obtained for Co concentration in leaves of crops species ranged from 0.01 

mg/kg in passion fruit to 7.98 mg/kg in cassava. Corresponding levels in edible parts ranged  
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Table 4.34: Experimental heavy metals concentrations in soil and crop parts (mg/kg) 

 Pb  Cd  Zn 

 Soil Leaves Edible  Soil Leaves Edible  Soil Leaves Edible 

Passion 

fruit 

17.6 0.22 0.06  0.09 0.09 0.01  
8.65 17.8 6.35 

 18.7 0.21 0.03  0.09 0.08 0.09  8.86 15.5 10.2 

 24.2 0.21 0.03  0.34 0.15 0.12  10.1 15.4 18.2 

 40.8 0.20 0.02  0.34 0.06 0.2  10.5 19.4 20.7 

            

Maize 5.62 0.08 0.24  0.28 0.13 0.16  8.68 21.9 31.4 

 7.21 0.18 0.16  0.32 0.24 0.15  8.79 21.5 31.8 

 10.4 0.42 0.62  0.47 0.54 0.17  17.2 20.2 30.7 

 10.5 0.16 0.42  0.49 0.62 0.18  17.3 22.7 31.3 

            

Cassava 14.3 0.15 0.04  0.26 0.12 0.12  42.2 `14.2 18.2 

 14.6 0.14 0.06  0.31 0.09 0.12  42.3 13.7 9.48 

 15.4 0.14 0.06  0.77 0.59 0.16  40.4 45.1 14.7 

 16.1 0.21 0.05  0.80 0.72 0.12  43.3 50.0 5.93 

            

Pumpkin 7.43 0.13 0.09  0.10 0.32 0.12  12.5 8.72 12.4 

 7.63 0.11 0.10  0.13 0.14 0.14  12.6 6.43 13.8 

 12.5 0.07 0.12  0.18 1.64 0.15  12.9 18.9 10.9 

 13.3 0.13 0.26  3.23 1.35 0.12  14.0 20.9 12.4 

            

Sugar 

cane 

15.7 0.14 0.21  0.10 0.14 0.11  20.3 15.0 18.2 

 15.9 0.12 0.18  0.12 0.20 0.11  20.9 13.4 16.1 

 15.8 0.16 0.32  0.17 0.70 0.11  26.4 34.8 19.0 

 15.8 0.13 042  0.23 0.90 0.11  26.9 32.2 11.9 

 

 

 

 

 

 

 

 

 



 149 

Table 4.34: contd: 

 Co  Cu  Ni 

 Soil Leaves Edible  Soil Leaves Edible  Soil Leaves Edible 

Passion 

fruit 

4.62 1.82 0.02  5.21 5.84 8.03  
8.65 8.73 8.46 

 5.26 0.01 0.01  5.62 5.42 8.21  8.86 8.43 8.67 

 5.67 1.96 0.02  6.60 7.14 7.75  10.3 8.89 8.13 

 5.88 0.09 0.03  6.94 7.21 7.62  10.5 8.21 8.04 

            

Maize 2.08 4.59 0.04  6.76 7.83 2.37  6.41 18.7 22.6 

 2.24 2.04 0.02  6.97 9.21 2.29  7.32 19.4 21.2 

 2.36 2.16 0.04  7.12 8.24 2.46  7.35 21.4 28.5 

 3.21 4.04 0.05  7.23 10.7 2.56  8.21 19.7 46.2 

            

Cassava 6.78 0.70 0.02  3.15 4.27 1.71  14.0 0.22 36.5 

 7.48 0.20 0.02  3.17 3.18 1.68  14.3 0.09 20.2 

 7.86 0.14 0.02  4.36 2.13 1.56  15.5 35.2 43.9 

 7.98 0.90 0.02  16.9 0.14 1.23  63.1 32.7 51.8 

            

Pumpkin 4.36 0.14 0.02  2.75 1.32 3.11  8.76 0.27 11.7 

 4.73 0.03 0.01  2.90 1.36 4.16  9.26 0.37 12.2 

 5.36 0.01 0.01  3.28 2.43 4.32  9.58 0.27 13.2 

 5.52 0.16 0.01  11.2 2.60 4.95  10.2 0.32 13.4 

            

Sugar 

cane 

6.78 1.19 0.02  7.78 5.84 2.63  16.2 24.6 20.4 

 7.48 0.01 0.02  7.78 5.42 2.78  16.8 30.5 30.5 

 7.86 0.03 0.02  7.80 7.14 3.03  17.3 26.3 21.3 

 7.98 8.71 0.02  7.82 7.21 3.65  18.3 25.3 29.7 
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Table 4.35: Aggregate coefficients corresponding to the threshold limits (mg/kg) of metals in     

                    crops parts 

 

 

 

 

 

 

 

 

 

Crops Coefficient 
Pb  Cd  Zn 

Leaves Edible  Leaves Edible  Leaves Edible 

Passion 

fruit 

C1 9.214 6.321  2.4740 2.748  13.54 17.595 

C2 12.431 11.431  18.346 19.327  31.726 72.101 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.9964 0.9736  0.8956 0.8763  0.9981 0.9961 

          

Maize  

C1 2.079 2.972  1.0924 2.7310  12.374 11.239 

C2 11.201 11.044  15.063 15.186  78.321 78.643 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.8268 0.9422  0.8477 0.9327  0.9248 0.8932 

          

Cassava 

C1 3.4062 5.0473  2.6431 6.587  4.217 3.2180 

C2 21.4731 26.438  19.436 23.305  56.742 54.363 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.9763 0.8965  0.7866 0.8943  0.8762 0.9418 

          

Pumpkin 

C1 2.1475 1.4830  0.0090 7.0880  10.432 9.5350 

C2 11.486 11.175  10.135 10.159  45.024 47.066 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.8762 0.9267  0.7128 0.9778  0.9364 0.9228 

          

Sugar 

cane 

C1 4.4371 3.8732  3.3047 0.9674  6.0430 10.271 

C2 16.321 14.885  19.437 19.786  31.731 33.407 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.8946 0.9372  0.9463 0.9674  0.8766 0.8942 
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Table 4.35: Contd: 

Crops Coefficient 
Co  Cu  Ni 

Leaves Edible  Leaves Edible  Leaves Edible 

Passion 

fruit 

C1 3.2104 3.9357  5.3520 2.748  10.217 9.2470 

C2 32.007 32.162  45.372 46.741  37.437 38.403 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.9705 0.9483  0.9326 0.8715  0.9476 0.8764 

          

Maize  

C1 10.214 10.037  6.3965 5.4731  2.0681 2.3571 

C2 20.374 20.782  26.312 25.467  18.056 18.173 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.9277 0.8753  0.9375 0.9781  0.8637 0.8946 

          

Cassava 

C1 17.516 2.0160  3.4386 3.9031  19.037 10.403 

C2 21.475 9.9480  26.437 28.326  69.430 71.353 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.6926 1.0000  0.9372 0.8768  0.7074 0.8944 

          

Pumpkin 

C1 5.0143 4.9641  1.1860 8.8930  5.0472 5.8901 

C2 16.135 16.763  5.5540 9.0830  17.321 16.846 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.9741 0.9213  0.9408 0.9289  0.8367 0.8725 

          

Sugar 

cane 

C1 13.794 12.649  9.2409 8.9776  4.730 4.8649 

C2 62.173 60.477  17.635 18.104  56.072 58.480 

C3 1.0000 1.0000  1.0000 1.0000  1.0000 1.0000 

R
2
 0.9776 0.9320  0.8993 0.9321  0.9641 0.8967 
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from 0.01 mg/kg in pumpkin to 0.04 mg/kg in maize. For Co, the model predicts crops threshold 

toxicity limit in leaves that ranged from 16.135 in pumpkin to 62.173 in sugar cane. 

Corresponding limits in edible ranged from 9.9480 in cassava tuber to 60.477 in sugar cane stem. 

  Experimental results obtained for Cu concentration in leaves of crops ranged from 0.14 mg/kg 

in cassava to 9.21 mg/kg in maize. The edibles levels ranged from 1.23 mg/kg in cassava tuber to 

8.21 mg/kg in passion fruit. Aggregate coefficient results correspond to the threshold limits 

(mg/kg) of Cu concentration ranged from 5.5540 in pumpkin to 45.372 in passion fruit (leaves) 

and 9.0830 in pumpkin fruit to 46.741 in passion fruit (edible). 

Experimental Ni levels in sols and corresponding levels in crops parts are given in Table 4.33. 

The model predicts threshold toxicity limit of 17.321 in leaves of pumpkin to 69.430 in cassava 

leaves. Corresponding limits in edible ranged from 16.846 in pumpkin fruit to38.403 in passion 

fruit. The results showed that metal concentrations in crops parts were generally lower than 

model-derived threshold limits for toxicity to the plants 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5. 1 SUMMARY AND CONCLUSIONS 

 5.1.1 Heavy Metals in Kogi State Farmland Soils 

Average levels of all the metals determined were generally low and fell within the regulatory 

standards requirements for metals in agricultural soils. Current levels therefore do not appear to 

constitute hazards to the food chain. The levels of metals in the soils were not influenced by 

seasons, and did not vary significantly among the farms. 

5.1.2 Heavy Metals in the Farm Crops 

The levels of metals in leaves were mostly higher than in edible parts of all crops species 

examined. However, these levels were generally within regulatory standards, except for nickel 

levels that were marginally higher than some regulatory standards. 

5.1.3 Soil–Plant Uptake Factors (Transfer Factor) 

Soil metal levels were generally higher than the levels in plant parts. Soil–plant uptake factors 

revealed that accumulation of heavy metals into the crops investigated was low, except for nickel 

in cassava. Among species of food crops examined, cassava tuber had the highest overall mean 

uptake. 

5.1.4 Overall Risk Assessment 

The observed metal concentrations in crops parts were generally lower than the soil-plant 

equilibrium model derived threshold limits for toxicity to the crops. This implies that levels of 

metals in the crops investigated do not pose threat to human. 

 

5.2 RECOMMENDATIONS 

The levels of heavy metals in this study were generally low in soils and food crops. That the 

current levels are low does not mean that it will continually be so. Therefore, there should be no 

complacency in the efforts at monitoring what happens in agricultural farmlands where food 

crops are produced.  Recent incidents of metals poisoning in some part of Nigeria, which arose 

from soil contamination clearly underscore the need for vigilance with respect to soil and crop 

contaminant levels. Therefore, I recommend:  
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(i) regular and more elaborate monitoring of agricultural soils and food crops and irrigation 

water of the Kogi State farmlands for various contaminants.  

(ii) in view of the relatively higher average levels of nickel in cassava crop in this study, 

further investigation should be carried out to examine the critical factors which 

contribute to the transfer of nickel from soil to  the cassava crop. 
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                                       Appendix 3: Monthly variation of total hardness with locations 
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                        Appendix 5: Monthly variation of magnesium hardness with locations 
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