$$
\begin{aligned}
& \text { EFECTS OF THE USE OF HECRONC CRECHATOR } \\
& \text { ON OUTCOMES OF MATHE MATCS WRUUCTON } \\
& \text { WHE BYCADE }
\end{aligned}
$$

UNIVERSITY OF IBADAN

THIS THESIS SUBMITTED BY
Dr: AIde ABTMBADP
WAS ACCEPTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF EDUCATION OF THIS UNIVERSITY THE EFFECTIVE DATE OF THE AWARD IS 8 october, 1987
 f SECRETARY POSTGRADUATE SCHO日R dIVERSITY OF IBADAN:

EFFECTS OF THE USE OF ELECTRONIC

 CALCULATOR ON OUTCOMES OF MATHEMATICS INSTRUCTION> By:

ALADE ABIMBADE B.A. Physics (Hons)(CUNY) P.G.D.E., M.Ed. (IBADAN)

A Thesis in the Department of Teacher Education

Submitted to the Faculty of Education in Partial Fulfilment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY of the

UNIVERSITY OF IBADAN

ABSTPACT

The teaching - learning of mathematics in the primary and secondary schools is often characterized by algorithmic computations to the detriment of concept learning and problen-solving. Invariably pupils often become disinterested in the tedious mathemetical computational chores. This study was therefore, set up to investigate the effects of the use of electronic calculators on the outcomes of mathematics instruction. The learning outcomes investigated were achievement in matnematics and attitudes toward mathematics and calculetors.

A paradigm $\partial f 3 \times 3$ factorial design of three ability levels: high, average and low by treatment groups : two experimental grcups - unrestricted caloulator and restricted calculator groups, and a control group - the non-calculator groups were used. There were two stages of the study: Pilot and Main. The filat study was carried out in only one school and lasted six weeks while the main study took place in three comparable schools and had a duration also of six weeks. The schools were mixed in all cases. These schools were selected by multi-stage random sampling from ninety-five secondary schools in Ibadan municipality at the time.

For the main study, 126 subjects selected from three schools completed the study. The following null
hypotheses wore toctori at $x=$. 75 . There will be no significant difference in the achievement scores of pupils who use (i) calculators in instruction and tests (the unrestricted groups) (ii) calculators in tests only (restricted groups) and (iii) no - calculators at all groups. The null hypothesis one was rejected because there was significant difference in the mean post-test scores of those groups tho used calculators in instruction and tests, calculators on tests only groups, and non-calculators groups $(F(2,123)=16.234, p<.001)(2)$ There will be no significant difference in the achievement scores of pupils of low, average and high mental abilities. The null hypothesis two was rejected because there was significant difference in the mean post scores of these groups of low, average and high mental ability levels (F (2.123) = 14.776, $p<.001$) (3) There will be no significant difference in the attitudes towards mathematics and calculators of $p u p$ i 1 s who use calculators in instruction and tests, (ii) calculators in tests only, and (iii) non-calculators at all. The null
hypothesis thros $\because 3$ not rejected in entirety because there was no significant difference in the post attitude scores of the groups wio use calculators in instruction and tests, calculators in tests only groups and non-calculator groups $\left(F(2,123)=1.217, F_{2}>.05\right)$.
(4) There will be no significant difference in attitude towards mathematics and calculators scores of those groups of high, average and low mental abilities. The null hypothesis four was not rejected entirely because there was no significant differsnce in the mean post-attitude scores of those groups of high, average and low mental ability lavels $(F(2,123)=2.147, p>.05)$.
(5) There will be no significant relationship between the attituoes of pupils towards mathematics and calculator-use in mathematics. The null hypothesis five was not rejected because there was no significant relationship between pupils' attitudes towards mathematics and calculator-use $(F(1,124)=1.57, p>.05)$.
(6) There will be no significant relationship in pupils' mathematics achievement scores and post-attitude scores. The null hypothesis six was rejected because there was significant relationship in the post-test scores of the groups and the post-attitude scores $(F(1,124)=4.84$, $p<.05)$. Generally, the results showed that there
ware attitulina? chang, ss between pre- and post-attitudes among all the eraeps, and that the calculator groups performed bettor than the non-calculator groups. The results have also show thot pupils within the same ability levels 'vito use ialculators will perform better than those who do not use calculators.

Most studius on the use of calculators including this one have not found calculators to have debilitating effects rather it has computational adventage and promotes high achievement gains in mathematics. Teachers and pupils in secondary schojls should te encouraged to utilize the advantage of iculators in algorithmic computations, so as to recuce those computational chores which often led to loss of interest in laarners. However, further research could be done into the effectiveness and efficiency of calculators in concept formation, and problem-solving in secondary schools. In addition, research could be done to find out its effects at primary school level in Nigeria.

```
DEDICA T I DN
```

This work is dedicated to my wifa, Ayoola, children: Omowumi, Olufami, Abiole and Oluwadara, my parents and to the greater glory of God.

Y CKP. OWLEDSEME iNTS

I am wost grateful t: my suparvisor and mentor, Profeesor T. A. Belozun, Headi, Denertment of Teacher Education who had guided me through this project. His advice, suggestions and correciions had been very much useful for the evacution of this project. I sinci-ely appreciate his commitment and fedication to the course of education in 才izeria.

My proforn appreciation alse goes to my motivator and inspirer Dr. (Postor) Ayo Orunranti, Institute of Educaiion, Univirsity of Ibaden for his advice, words of encouragement durins; \quad eficul tines in this project. He also took keen interest in this work through his suggestions and corrections of the work. I will like to expres. my devpest tharks to Or. A.B. Deunniyi, Department of Teacher Education for his brozierly advice, and lmr.ense help in sharpening my knowledge in research methodology and statistical analysis, He offered ms tremendous assistance and suggestions throughout the cuurse of this study.

Dr. R. A. Fakuade, formarly of the Teacher Education Department, Jniversity of Ibedan but now at Ondo State University, Ado-Ekiti has been instrumental ard inspiration
ta my further studies. I am most grateful to him for his personal assistance. My wormest thanks go to Professor ?. A. Akincoye, Jenartment of Guidance and Counseliinz, University of Ib odan and Dr. Titi Hassan, formerly of the Department of Guidance and Counsalling, Univarsity of Ibadan, but now at the Ogun State University, Ago-Iwoye for th:i: initial support. They beth helped to give this study a direction. My thanks also gor to Dr. Wole Folayajo, Ins ${ }^{+}$itute or Education, University of Ibadan for his useful supgesiions. I like to thank tremendously my cullua;zues zt the Polytechnic, Ibaden: Or. D.A. Akimkunle and Dr. Soji Sodamadz for their encouraging and very usuful sufgrstions throughout the duration of this study.

My appreciation and thanks $\approx 0^{\circ}$. . to the Principals, Vice-Principals and most inqcrtantly the punils of the schools involved in this project: (i) Ibajan City Academy, Eleta, Ibedan. (ii) Holy Trinity Grammar School, Old Ifa-Rcad Ibadan; (iii) Islamic Hiṣh ichool, Orita Gasorın, Ibadan; (iv) An-war Islam (formerly Ahrnadiyya) Grammar School, Eleyela, Ibadan.

I like to thank the zooperating mathematics teachers from these schools who devoted time and ener y to assist me
on execution of this project: (i) Mr. D. L. Raji, Ibedan City Academy, Eleta, Ibaden. (ii) Mir. S. A. Adeyemo, Holy Trinity Grammat School, Ciu Ife Road, Ibadan, (iii) Mr. . . A. Olowude, Islamic High School Orita Basorun, Ibadan. I like to thank some of my students at the Polytechnic, Ibadan who assisted me in ana way or another during the course of this sudy. The computer programming of this study's data analysis wolld have been very difficult, but for the personal and bretinerly assistance of Mr. S. A. Odewunmi of the Computing Carter, University of Ibacian. I really thank nim. My thanks o to M_{i}. C. S. Deda of the Polytechnic, Ibadan who helped to type the proposal of this project. ilost importanzly, I like to thank Mr. T. A. Oke of the University of IJedan -ibrary for his patience and endurance $i n$ typiny of this thesis. I like to t.lank my wife, children and relat:ons who, with the Grace of God, have endured the strain of this project with me. Their individual prayer and enzouragement have always given ma high spirit.

Finally I wish to thank those who had, by one way or another, contributid to the successful completion of this work. fiay lod bliss you all abundantly. Amen.
TITLE PABA
AUSTRAL i i
DEDICATION v
ACKHDULEDGEMENTS vi
CERTIFICATION ix
table of conteivis \times
LIST OF FIGIMES
LIST OF ? ABIEG
CHAPTER ONE: INTRJDJCTIN 1
1.1 Background to the study 1
1.1.1 The Electronic Calculator 3
1.2 Statement of the problem 10
1.3 The Hypotheses 12
1.7 Significance of the study 13
1.5 Limitations of the study 21
CHAPTER TWO: REVIEW OF ELATED LITERATURE AND RESEARCH 23
2.1 Electronic Calculator and the School System 25
2.1.1 Elementary level. 27
2.1.2 Secondary level 29
2.1.3 Higher Education level 30
2.1.4 Learning outcomes in mathematics instruction 31
2.1.5 Computational effects of Calculator 34
2.1.6. Conceprus: =iffois of Calculater 39
2.1.7 /九.tudinal effects of Calculator 46
2.1.8 Use c. Colonlators in Tests 48
2.7 Integnsting Colculator into Mathematics Curricular in Schools 51
2.3 Definition: Concepts and Concept Learning 55
2.3.1 Critaria for Conceptual Learning 58
2.3.2 Fnncect forma'tion and ミtcainment Concept Lec:i ing 60
2.3.3 Ascoriztive Versus Mediational theories af Concsnt Learning 62
2.3.4 Mathemettinal Concspt Formation 65
2.3.5 Researches in Cosoppt Learning 68
2.3.6 Facilitating Concept Learning 70
2.3.7 At+_cude:-Attitudes toward mathematics 73
2.3.8 Mathemztics learning and attitudes 76
2.3.9 Researches in àtitudes 78
2.3.10 Instructional desigr. and attitude 80
2.4 Calculator and other Tnstructional Devices 82
2.4.1 Computer-based instruction 84
2.4.2 Evolution of C.AI 85
2.4.3 Fedagogical effectiveness of CAI 87

Page
3.6 Results of the Pilot Study 134
3.7 Uiscussion of results of Pilot Study 146
3.8 Detaction of flaws to be corrected for the main stud; 147
CHAPTER FOUR: IHE MATN STUDY METHODOLOGY 149
4.1 The Design 149
4.2 Population of the main study 151
4.3 Comprability of Schools 154
4.t ficnerving the cosperating teachers 160
4.5 P.ciministretion of Instruments 165
4.5.1 Guideliuse on the use of caloulator 167
4.6 Data Collention 170
4.7 Deta Gnalysis of Main Study 171
CHAPTER FIVE. RESULTS OF THE MAIN STUDY 173
5.10 Hy:uthesis 1 173
5.20 Hypothesis 2 197
5.30 Hypothesis 3 212
5.40 Hypothesis 4 223
5.50 Hypothesis 5 237
5.60 Hypothesis E 241
CHAPTER SIX: DISCUSSIDN 248
6.1 Relationship of zesults to hypothesis and previous empirical stucies 248
6.2 Performance treatment and achievement 248

```
CERTIFI:C&TION
```

I certify that this work was carried out by Mr. Alade Abimbade in the Department of Teacher Education, University of Ibadan.

June, 1987.
3.3 Performance trestment and attitudes 261
Relatin indines to other mediq 272
S. 5 Educational irplicetinns of the study and
-acommendations 274
Z.e Sugrestions for further study 281
Summary and Conclusion 283
gGFERENCES 290
RPOENOICSS Description
1 Mathemat:cs pre-ivst 301
2 Miathemat:cs pre-test answars 303
3 Difficulty Inciex and disoriminatory power (p ? $2 f$ the mathematics pre-tests 304
4. Mathamei:es achieverient post-test 205
5 Mathematics achievament test answer 309
6 Cifficulty index, discriminntory power(pj and reliability coefficient, r ofthe mathametics310
F Instr.jcticrzl module in má rem.ioics 311
z Mental abiiity test ML verbal 343
$؟$ Mental abiiity test MQ numarical 349
? 0 Attitude questionnaire 354
"1 Internal consistency reliability coefficient of the attitude score 357
i2 ijzrelation between 27% upper score and 27% lower score on attituje scale (iMS and CAS) -•• 359

13 Siqnificant mesn differencs in mathematics atititude scrie (MAS) and calculator .ttitude scor ([AS) for 27% upeer score 360

14 Sianificant mean differenca in mathematics attitude score (MiS) and calculator 361 attitude score (CAS) for 27% lower score

Internal reliability coefficient of mathematics pre-test scores362
16 Questi-unnaire directed to teachers' If mathematics in the seconciary schcols 363
17 Data rrom the main study 306
T3 Datz from the piiot study 376
List of secondary schools in Ibaden Municipality 384
20 Annlyses of variances of the post- attitude sriras. 385

- xvi -

LIST OF FIGURES

Abacus: No. 23
2 Model of modern electronic calculator
3 Sequential bases for learning various outcomes

Mediational model 64
$5 \begin{array}{lc}\text { Solution Process in mathematical } \\ \text { Computation } & \text {.. } \\ & \end{array}$
6 Paradigm of 3×3 factorial design for Pilot study 100

7 Paradigm of 3×3 factorial design for the main study149
Detniled Wi:SC results in mathematics
for Niferia: June, $1970 \quad . \quad . \quad . \quad . \quad$Niultiple classificaticn of Post-test.scores of groups LCU, RCU and NCU ..140

Summary of the mean, standard devia'inn and variance of the groups UCU, RCU and NCU

Analysis of variance of oost-test scores ©. HMA, fimf and LMA erours141
\because fultiole ciassificarion analysis of posteest scores by groufs HMA, AMA and LMA.

Analysis of covariance of post-test scores
of groups HM A, MA and LMA. 143
ミ Multiole classification analysis of post- test scores by groups HMA, AMA and LMA 143
18 Analysis of varianse of the attitude scoresof the greups LCU, R.CU and NCU145
Nulziple classitication analysis of the att:tude scor6s fcr the groups UCJ, RCU 146
and NCu

* Ane-ysis of tariance of the attitude score of zroups HM., AMA and LPAA 147
TY ifultiple classification analysis of the attitude scires of groups HMA, AMA and LMA 148
20 Sumnary of the \cdots - 1 ysis of variance of the MAS and LAS scores of groups UCU, RCU, NCU 149
Summary of the analysis of variance of MAS and CAS scires of the HMA, AMA, LMA 150
2 Summary of mencal ability tests scores for schools 1, 2, 3 in the main study. 158
23 WAEC resuits in mathematics for sciools1, 2, 3 P. rcesntage Passes 1980-1984...160
24 Analysis วf variance of mean jercentage passes of the srinoois 1,2,3. 160
25 Analysis of variance of mean wantal ability tests s:ores of schools 1,2,3. 161
26 Teac:ıers variables and contont coverage 163
27 Calculctor usage effectiveness by Tearhers 164

Use of instructional mazerials by schools

A comparison of percentage of Teacher／ pupils classroom interactions behaviour

$$
167
$$

Percentage d：stribution of teachers＇ questions 159
31 Mean distribstion of questions／minute of Teachar／pupils interaction 169
32 Summary of the rrans，standard deviations，and variances of the three groups（UCU，RCU and isCl）173
33 Anciysis 0 ：colariance of Post－achievementtest Erares of UCU，RCU and NCU groups ．．175
34 Nultip？o－assification analysis of post－
test scores by groups UCU，RCU and NCU with mental abi：i＝y scores 176
35 Ansiysis 0 ：valinace u mental ability test scores of the three sroups（UCU，RCU and incii）． 177
33 Analysis if coveriance of Post－achievement test scons of JCU，RCU and NCU groups ．． 178
37 Multiple classification analysir or jost－ test sccres of groups UCU，RCU and NEU with Pre－tes：covariate．． 179
38 Analysis of varianceof the Pre－test of the groups JC．，RCU end NCU ．． 180
39 Multiple range test of Post－test scores by one－way Scheffe procedure（ANOVA）．． 18140 Summary 0：t－tests of the Fost－test scoreso．tie groups $\cup C U, R C U$ and $N C U$182
41 Multiple regression analysis of Post－＇－st$\begin{array}{lllll}\text { scores with mental ability tests ar．i．Pre－} & \\ \text { test of tie groups } & \text { ．．} & \text { ．．} & \text { ．．} & \text { ．．} \\ 184\end{array}$

42 Analysis of covariance of Post-test scores of A, B, C groups of UCJ. (MAT as covariate)185

13 F.nalysis of covariance of Post-test scores of A.B,C groups of UCJ (Pre-test as co:ariate)136

Multiple range test of Post-tes: scores of
groups A,B,C by DNE-WAY L.SD Pro. edure-ANOV A 187

t5 Summary of t-tests of the post-iest scores
of the groups A,B and C.. 188
4. Analysis of covariance of Post-test scores of groups D, E and F.189

47 Multiple clausification analysis cf fosttest scores of groups, J, L, F with Pre-test scores

43 Multiple range test 0^{2} post-test szores of groups ?, E and F by CNE-WAY ANCVA. SD Procedtre 191

43 Sunmary of t-tests $0=$ the Post-test scores of groups D, E and F131
5. Analysis of the covariance of the post-test 192

51 Multiple classification analysis of rusttest scores of grours G.H and I

52 Multiple range test of Post-test scores by one-way AiNOVA LSD procedure of groups G, H and 1
$\equiv 3$ Sumary of t-tests of Past-test scores of groups i, H and I.

54 Analysis of covariance of Pest-test scores of the groups HMA, AMA, LMA 198

55 Analysis of variance of mental ability ucores of the groups HMA, AMA and LMA
50 iralysis of covariance of Post-test scores
of the rroups HiA, AMA and LMA 200

57 Analysi of varianceof the pre-test scores If the groups hMA, AMA, LMA ..

201
38 Vultiple renge test of Post-test scores -one- way Scheffe Procedure (AN.VA) of groups HMA, iMA anc LMA 202

50
50 Summary of :-test of the post-tesi scores of giJups HiA, AMF, and LMA

81 Analysis of Jariance of Post-test scores of groups HíA - One-way scheffe Procedure 206
$\begin{array}{lcccccc}52 \text { Summery of t-tests of Post-test scores of } \\ & \text { groups HMA . A, D,G } & \text {. } & \ldots & \ldots & \ldots & \ldots\end{array}$
53 Analysis of variance of Post-test scores of groups A.MA - Dre-way Scheffo Frocedure .. 208
$54 \begin{array}{llcccc}\text { Summar: of } t-t \in s t s & \text { of Post-test scores of } \\ \text { AMA }(B, E \text { and } H) & \ldots & \ldots & . & \ldots & \ldots\end{array} 209$
55 Analysis 0 : yariancejf Post-tee; enres of groups (LMi) - One-way Scheffe procedure

66 Summaiy of t-iests of Post-test scores of groups LîA: C,F, and I

67 Analysis of ccvariance of the post-att: 'ude scores of groups UCU, FCU and NCU
= \& Multiple classification analysis of postattitude scorss of groups $U C U, R C U$ and NCU ..ith Pre-attit」de covariate.

$$
214
$$

Ey Analysis of veriance of Pre-attitude - sores of groups UCU, RCU and NiCU

PAGE
70 Multifle range test of Post-attitude scores of groups "CU, RCU and NCU by Student - Newman Keuls Fiocedure (Siii) oneway ArIOVA ..

71 Multipie regression anラiysis of t a postattituce scores with pre-atticude of groups UCU, ROJ, NCU

72 Suminar: of t-tests of Post-attitude scores of groips UCLi, RCU, NCU

73 Summary of t-te. cs of Pวst-attitude scores of tie groups UCU, A, B and C220
74 Summayy of t-teste of pinst-attitude scores of th. groups RCU: D. E ano F. 221
75
Summery of the t-tests of post-attitude maan scorescoris of the groups G, H and I 222
76 Anallsis of covariance of Post-attitude scores of groups HMA, MA and LMA 224
77 Multiple classification anslysis of the pos=-attitude scores of groups HMA, AMA and MA 225
Analysis of variance of Pra-attitude scores of fiMA, AMA and LMA 226
73 Multiplz range test of Post-attitude scoresby one-vay ANOVA LSD procedure in groupsHMA, AMA and LMA$2 \angle 7$
ठu Multifla regression analysis of Post- attitude scores with pre-attitude scori. for groups HMA and LMA 229
8: ilultiale regression analysis of Post- attituce scores with pre-attitude scores ior greups HMA and AMA 230
≤ 2 Multifie regression analysis of Post attituce scores with pre-attitude scares for groups iMA and Lilf.. 231

23 Sumary of t-tests of Post-attitude scores of groups 4 , Allk and LMA
 232

34 Summary of t-tests of Fost-attitude scores of groups HMA A, D, C. 233
35 Summary of t-teszs of Pest-attitucin scores of groups filh E, E and $\dot{\text { i. }}$ 235
35 Summary of t-tests of Post-attitude scores of groups LiMA C,F and I. 236
27 Summary or t-eests of MAS and CAS of the groups 'JCL, RJU, NCU, HMA, AtiA and LMA 238
33 Summary of Pearson correlation coefficients of the groups for MAS and CAS 239
\& 3 Muitiple ragression analysis of the MAS and CAS of the groufs. 240
SJ Correlation coefficients of Fost tests with POA, MAS and CAS 242
ミ1 Intercorrelatic, coeff:. cients of the seven variables 243
32 Multipia regress analysis of Post-attitude scorse with post-test scores of the groups 245
3 ilultipis regression analysis of Post-test
scores with Miss and CAS 246

INTRODUCTION

1.1 The background to the study

The need for man to facilitate mental calculations, and the problem of arithmetic computation with stones in the sand, strokes on the wall, in all probability, were attempts which later gave rise to more sophisticated items, such as the Abacus. Thus, Abacus became the first attempt of a calculating device used to perform arithmetic operations such as addition, subtraction, multiplication and division.

The Egyptians and Greeks had used Abacus many thousands of years ago. Different forms of Abacus can be found among the Indians and Chinese. According to Herodotus, a Greek scholar, the Abacus of the type in (Fig. 1) was used by the Egyptians and the Greeks. ${ }^{1}$

Fig. 1: Abacus No. 23

1. The Encylopedia Americana, International Edition, New York: Americana Corporation, Vol. 5, 1974, pp. 161 - 163.

Educationally Abacus is useful as a teaching device to give young pupils a better understanding of place-value in the decimal system of numeration. It is generally made up of several parallel wires running across the width of a frame, and the beads are strung on the wires and are used as counters (See Fig. 1). For example in a decimal system of numeration, the separate wires represent units of 10 's, 100's, 1000's and so on. There are usually 10 beads on each wire, so that each bead stands for a unit of place-value in the decimal system of numeration.

The simplesi kind of calculating machine is an adding machine which mainly performs addition and subtraction operations. Howevar, machines that can perform other mathematical operations such as multiplication, division etc. are called calculators. Both calculators and adding machines are classified as digital devices bscause the numerical quantities in the machine are represented by a sequence of digits. The first true mechanical calculator, however, wes more of an adding machine. It was designed by Blaise Pascal ${ }^{1}$. The adding machine had a series of wheels with the numbers of 0 to 9 engraved on their circumferences and could perform addition with 'carrying'.

Leibniz ${ }^{1}$ designed a real calculating machine that
could add, multiply, by repeating addition. In 1822 (Babbage, Charles) ${ }^{1}$ built a small six-decimal place calculating machine which could perform arithmetic operations like addition, subtraction, multiplication and division. Most of the mechanical calculating machines built in the nineteenth century had register-full-key board (printing or non printing). Most of the full-key board printing or non-printing machines are now electronically operated instead of manual operations. There is also the mechanical rotary calculator.

1.1.1 The Electronic Calculator:

The electronic calculators, the subject of this study performs functions midway between those of a mechanical desk calculator and an electronic computer. It adds, subtracts, multiplies, divides and it also automatically stores intermediate answers for further calculation (Fig. 2).

Fig. 2: Model of modern Electronic Calculator.

Most electronic calculators have a cathode ray tube as the out-put device, the computational results appear on the cathode ray screen, which can display as many decimal places as are provided in the calculator. However, the calculator used for this study, and like most hand-held electronic calculators, can display up to eight places of decimal. Many of these calculators have storage facilities with memory. Though some electronic calculators are programmable externally, most hand-held calculators are not, and the ones for this study were not programmable. Some other electronic calculators also have internally stored programmes. These programmes usually are shorter than programmes of the large automatic computers.

> Hand-held calculators are used in this country in higher institutions, industry, commercial and business houses. It was not too long ago that the uses of calculators were allowed in mathematics and science-based courses in higher institutions of the country. However, the primary and secondary schools' pupils are not allowed to use calculators at all in the school.

Several factors are likely to contribute to the opposition of the use of calculator in schools. First,few calculato s are available in schools and in the country in general. In consequence most pupils do not have access to the use of calculators.

Also pupils are not allowed to use calculators in classroom instruction and in tests of mathematics in primary and secondeary schools. There is a ban on the use of calculators in the West African School Certificate Examinations particularly the General Certificate of Examinations and the Joint Admission and Matriculation Board Examination into the Universities. Four-figure table and slide rule are available in schools and their uses are taught to pupils in the lower forms of secondary schools; and it would have been expected that electronic calculator could be used in the school system to do the same computations, even faster. Would this have been because of limited availatility of the device in the country? Or would it be because of a fear of modern technology and its application that is, by teachers and educators? The design of this research was not meant to pursue the probable reasons for teachers' and educators' attitudes toward calculator usage (left to future researches) rather it investigated the impact of calculator use on the instructional process. The study however, did try to find out it there were other empirical studies relating to the attitudes of teachers and educators vis-e-vis calculator usage in schools. In developed countries and to some extent in N i ger ia many vic, have been heard debating $t h e v i r t u e s$
and dangers of caloulator usaçe. A few have cried out in fear that the use of calculatur would result in pupils who cannot revember basic facts or do traditional paper-and-pencil computation. Teachers, in particular, are concerned about how calculators will affect students computational skills (Palmer) ${ }^{2}$. However, this fear of "rot-themind theory" has not been supported by research (Suydam) ${ }^{3}$. Although long-term effects of sustained calculator usage are not yet known, there is ample evidence that frequent use of calculators in elementary schools has no detrimental effect on achievement in mathematics (Suydam) ${ }^{3}$.

However, the rapid growth and sales of inexpensive calculators and their consequent widespread availability to pupils and teachers demand that the mathematics curriculum be re-examined and that teachers could use calculators as an instructional tool. Throughout the country, mathematics as a school subject has been made compulsory at both primary, secondary and teacher training levels. All school pupils have to take mathematics examination in their final year, and this has led to the general anxiety among most
2. Palmer, H.B.A. Mini calcelators in the classroom What do Teachers Think? Arithmetic Teacher 25(7) 1978, 27-28.
3. Suydam, N. M. "The use of calculators in Pre-college Education: A state of the Art Review". Columbus, Ohio: Calculator Information Center, May, 1979.
pupils particularly those who $\mathfrak{r} i n d$ mathematics difficult. The results of pupils in mathematics examinations at primary and particularly secondary school levels of education have not been encouraging (See tables 1 \& 2).

TABLE 1

Detailed WASC Result in Mathematics for Nigería - June, 1970

Grades	F9	P8	P7	C6	C5	C4	A3	A2	A1
Percentage Performances	52	13	10	11	4	3	6	1	1
Total Candidates	13338	3319	2480	2704	915	763	1359	319	189

Source of Information: WAEC Annual Report, 1970.

TABLE 2

Percentage Failures in WASC Mathematics
for Nigeria, 1965 - 1976

Year	1965	1966	1967	1968	1969.1970	1971	1973	1974		
Percentage	33	33	34	37	51	53	39	$*$	55	49
Year	$*$	1976								
Percentage Failure	$*$	51								
Source of Information:	WAEC Annual Reports,	$1965-1977$.								

The Federal government of Nigeria through ministries of Education and other educational agencies had made efforts to improve the teaching-learning of mathematics in our school systems and these have been seen in the different programmes launched by government to bring about favourable results in mathematics performance. For example, there was the "traditional to modern mathematics" episode and yet there had been not much improvement.

Learning of mathematics involves computational and problem-solving skills. Pupils with good memory are generally proficient in basic computational skills even though they may fail to grasp what should be done in a problem-solving situation (Etlinger) ${ }^{4}$. A successful educational programme must try to include effective instructional materials, which would for a subject like mathematics incorporate the use of calculator. Mathematics is taught at all levels of education so that it can be used in-real-like situations, hence much emphasis must be placed on comprehension, analysis and reasoning than on mere memorization or computational skill which'could be done with calculator. Researchers in developed countries like Japan, United State of America have shown that calculators have a greate advantage in computational use $(S u y d a m)^{3}$. It would therefore be logical to integrate calculator-use in problem-solving situation: and pupils would best be served of rigorous training is given in this area. It has also been
4. Etlinger, L. The Electronic Calculator: A new trend in School Mathematics. Educational Technology Journal,
found that nupils waste a lot of time on computation than the analyical part of problems and in many cases, the timeconsuming computations involved in mathematics may invariably block the pupils' minds from even attempting to find the solution of the problem (Palmer) ${ }^{2}$. This is where the calsulator has its greatest use because it would relieve pupils of the tedious computational factor in the problem and allow them to concentrate on how the problem would be attecked and solved, Problem-solving is in the higher hierarchy than the concept learning, (Gagne) ${ }^{5}$ and it would therefore, be expedient to study how to integrate calculatoruse into the school mathematics programme so as to find out most efficient and effective mede of learning mathematics concept which would bring about a positive attitude towards the subject.

The main focus of this study was on electronic calculator-use and instruction with the primary objective of comparing groups that were allowed to use electronic calculators and those that were not allowed to use them. It should be emphasised that the purpose of this investigation however, was not to show pupils how to operate electronic calculators just for computational benefits alone, but rather to try to show how they could be more
5. Gagne', R.M. The Conditions of Learning, New York: pp. 155 - 170.
effectively and/or effectively used to solve mathematical problems. One difficulty that has constantly surfaced in recent calculator research is the failure of most researchers to carefully build into their research design the experimental treatment in such a way that it would take advantage of the unique capabilities of electronic calculators (Suydam). ${ }^{3}$ Also, in developing attitudinal criteria care would have to be taken about pupils' immediate reactions concerning their feelings about themselves and the problems they would have completed. The present investigation endeavoured to integrate calculator-use into the instructional process, and to administer Likert-type attitudinal measure to assess pupils attitudes towards mathematics as a school subject and their attitudes towards the use of electronic calculator and mathematics in the secondary schools.

1.2 Statement of Problem

What effects would the use of calculators have on our school programmes? Should they be used in elementary and secondary schools mathematics programme? If so, with what level of pupils? How do pupils feel about using calculators in the mathematics programme? Should calculators be used in test such as General Certificate Examinations, Joint Admission and Matriculation Board Examinations? Should the use of calculators be integrated into mathematics curriculum and textbooks?

Would the pupils who use calculators in instruction and tests perform better than pupils who do not? Would the use of calculators aid the pupils in the development of basic concepts in mathematics? Accurate answers to these questions are essential in assessing the current status of calculator and more importantly, preparing for calculator usage in the mathematics curriculum and for examinations in our schools systems.

This study endeavoured to find the effects of the use of hand-held electronic calculators in pupils' attitude and performance in mathematics instruction. Specifically answers were sought to the following questions.

1. Would there be any difference in the mathematics achievement scores of those students who use calculator (the treatment groups) and those who do not use calculators (the control group)?
2. Would there be any difference in the attitude of those students who use calculators (treatment groups) and those who do not use calculators (the control group)?
3. Do students differ in their mathematics achievement on the basis of differences in mental abilities?
4. Do students differ in their attitudes towards mathematics and caloulator-usage on the basis of differences in mental abilities?
5. Is there any relationship between students mathematics achievement and attitudes?
6. Is there any relationship between students' attitudes towards calculator usage and mathematics?

In order to answer these questions the following null hypotheses were tested at . 05 alpha level:
1.3 The Hypotheses:

1. There will be :o significant differences in the achievement scores of pupils who use:
(i) Calculators in instruction and tests ($\left(E_{1}\right)$ groups, (ii) Calculators in tests only (E_{2}) groups, and (iii) no-calculators at all (E_{3}) groups, i.e.

Ho: $M E_{1}=M E_{2}=M E_{3}$ at $\alpha=.05$
2. There will be no significant difference in the achievement scores of pupils of high $\left(C_{1}\right)$, average $\left(C_{2}\right)$ and low (C_{3}) mental abilities, ie.

Ho: $M C_{1}==M C_{2}=M C_{3}$ at $\alpha=.05$
3. There will be no significant difference in the attitude towards mathematics and caloulator scores of pupils who use:
(i) Calculators in instruction and tests $\left(E_{1}\right)$ groups,
(ii) Calculators in tests only (E_{2}) groups and
(iii) no calcu? tors at all (E_{3}), groups, i.e.

$$
\text { Ho: } X E_{1}=X E_{2}=X E_{3} \text { at } \alpha=.05
$$

4. There will be no significant difference in attitude towards mathematics and calculator scores between pupils of high $\left(C_{1}\right)$, average $\left(C_{2}\right)$ and low $\left(C_{3}\right)$ mental abilities, i.e.

$$
\text { Ho: } X C_{1}=X C_{2}=X C_{3} \text { at. } \alpha=.05
$$

5. There will be no significant relationship between the attitudes of pupils to mathematics and calculator-use in mathematics as $\alpha=.05$.
6. There will be no significant relationship in pupils' mathematics achievement scores and post attitudes towards mathematics and calculators scores at $\alpha=.05$.

1.4. Significance of the study

From available records, no empirical studies have been undertaken in Nigeria as to the use of electronic hand-held calculator in our school system. However, comments, as to the use of calculator by elementary and secondary school pupils, by teachers, parents, educators, school administrators and concerned citizens have rather been mere speculations. Since there are no empirical studies in the country to back such speculations hence the need for this study.

According to Suydam ${ }^{3}$, several studies on the use of electronic calculator in mathematics at all levels of educntion anound in many of the developed countries like the United States of America, Britain, yet few studies had been undertaken in the are of differential effects of the electronic calculator and instruction on concept learning in and attitudes to mathematics. Etlinger ${ }^{4}$ reported studies carried out with respect to the use of calculators in the elementary school mathematics and some of the studies which bother on concept learning and attitudes had inconclusive results.

It is the growing awareness of the usefulness of electronic calculators on the part of Nigerians, and the availability of hand-held calculators in and outside school system in the country which have prompted this study. One would want to find out the impact the use of calculators would have on the school system. Some interesting and fundamental questions could be raised in respect of the use of electronic calculators in our school system. Does our sqhoo: system need a calculator-use policy? Should calculators be available to pupils at all levels of education, primary, secondary and teacher training colleges? Should calculators be encouragec for the topmost classes in the primary school? Would the teachers allow the use of calculators
in the classrom durine instructions and tests? Should special trai ing be needed to use calculators effectively? Would the isse of calculators by school pupils not make them mentally lazy? Should mathematics textbook have activities written for calculator usage?

Before attempts are made to answer these questions, possible role(s) of electronic calculator in school mathematics programme should be identified. Etlinger ${ }^{4}$ has characterized two differing views on the use of the calculators, a functional view and a pedagogical view. In the purely functional view, the calculator is considered as a device much like slide rule, log-table - a device that can do the chores involved in tedious arithmetic computation, thus saving time and frustration. The other view, a pedagogical one, looked at the calculator much like a textbook, flash cards, or manipulative device to facilitate learning. Both uses could be good or bad depending on the task to be performed and the age of the pupil.

It was on the basis of these views that issues were raised thus: (i) would calculator maintain a motivational value over several years of pupils' use or would it become a more common place household object?
(ii) Can the calculator te made to help with the learning of facts and algorithms or will its availability hinder mathematics learning?
(iii) Will experimentation with the calculator teach children about numbers and operations or merely about the ceisulator?
(iv) What types of directed activities would be most appropriate for pupils at various ages?
(v) Will pupils think less about different methods for solving a problem because it is now more expedient to find the easiest or shortest method? Or will children experiment with many methods of solving a problem because it is easy to try different methods on calculator, and interesting to compare solutions?
(vi) Will the idea behind the arithmetic operations be more widely understood because the pupils have immediate feedback from the calculators? Will the patterns be easier to grasp?

However, a somewhat philosophical question which has often been asked about any new teaching-learning devices be it programmed text, computers, calculators etc is this: Is modern technology providing a learning facility or a learri:ng crutch? Here, it seems educators must become sensitive to the effects of modern technology on their pupils and in particular to whether pupils are becoming
more dependent on motivational and educational devices for thinking and learning.

The issues raised above are pertinent to this study and one hoped that che results of this study would be able to offer some answers to these questions. Some studies which were carried out in developed countries like the United States of America and Japan that electronic calculators have some of those useful applications which are relevant to this study.

The hand-held calculator has been found to motivate and encourage students to be inquisitive and creative as they experiment with mathematics ideas e.g. solving relations-equations (Bell) ${ }^{6}$.

For naernle: $\square^{2}=1125(\square$ is the unknown)
Other useful application on the use of electronic calculator among the general public is that the calculator could assist individual consumer on how to become a wiser consumer in the ability to use calculator to compute percentage discount on article purchased in departmental stores. In the classroom instruction calculaturs can be used to reinforce the learning of the basic number facts and properties in addition, subtraction, multiplication and division. It can be used to serve as a flexible answer key to verify the results of computatio., and as a resource tool, it can promote student
6. Beil, M. Needed R and D on hand-held calculators, Educational Ressarcher, 977, 6(5), 7-13.
independence in problam-solving. It ean be used to solve probloms that previously have been too time-consuming or tedious to be done with paper and pencil e.g. to verify the value of exponential ' e ' by computing its value in series approximation.

$$
\begin{aligned}
& e=\lim \left(1+\frac{1}{n}\right)^{n} \\
& n \rightarrow \infty \quad \text { : } \\
& e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots
\end{aligned}
$$

Despite the useful application of calculators, yet teachers, school administrators and educators are rather skeptical about any innovations which either find their way into schools or catch pupils' eyes outside the school. Such skepticism may arise as a result of what these people perceived would be the consequence of such innovations within the school system.

Educators have, for instance, argued that innovations like teaching machines would merely reinforce rote learning or memory associations rather than encourage pupils to solve problems creatively. While many have even seen television, at one time or another, as a menace to school learning. Some argued that time spent by pupils watching television probably means time lost from an activity like home-work $\left(\right.$ Bell) ${ }^{6}$.

Most recently in the United States of America and Europe, the we of smail electronic calculator in schools has come under similar barrage of skepticism and sporadic rejection in schools (Bell) ${ }^{6}$.

Rather than planning careful investigations to seek answers to important questions relevant to use of calculators in our school systems, some educators, examining bodies, school administrators have dismissed this new technological innovation as a mere gadgetry or device that is not good enough for the traditional classroom settings. Some people argued that such devices may not yet belong in the mathematics curriculum of primary and secondary schools in this country. Such attitudes suggest that a careful study on the impact of the use of calculators in mathematics instruction was necessary.

One of the major spin-offs of the space programme has been the miniature of electronic components to a level which allowed the small hand-held electronic calculators industry to flourish. $\ddagger n$ fact, current availability has reached the near-saturation point in Japan, Europe, United States of America, and has become popular in Nigeria. One can find them being hawked along every major road in the country.

The number of types in the market varies from programmable ones to the non-programmable types but all equipped with
difforont numeriral rotations and mathematical functions. While the us: of calculetor is widespread, the debate continuer as to what performance and psychological benefits may accrue from calculator utilization. Hnwever, Bell ${ }^{6}$ had indicated a number of important areas where research and development efforts are needed for better undarstanding of the impacts of caloulators. The groups of people who may be concerned about the effects of calculator usage in schools are parents, teachers, school administrators, educators and examining bodies like !est Af;ican Examination Council (WAEC) and Joint Admission and Matriculation Board (JAMB) etc. Opponents to the usage of calculators, argued that calculators might have deterimental effects on the development of children's mathematical abilities. Conversely, proponents did assert that calculators may actually facilitate mathematical learning.

However, to throw more light on such a debate, the investigator became interested and carried'out'this'study. Already research efforts in this area are rather scanty in the country, hence the need, in this study, to carry out - carefully planned empirical investigation on the use of electronic calculators in our school system. The
6. Bell, M. Needed R and D on hand-held calculators. Educational Researcher, 1977, 6(5), 7-13.
genre of this study was to provide answers to probable advantages of the calculator to the learner in facilitating the teaching learning process of mathematics in the school system. The focus of this study was on pupils in the secondary schools, their learning of mathematical concepts, attitudes as regards calculator-usage and mathematics learning.

This study raised issues on what added advantages the probable calculator-usage ahad on the instructional strategies such as algorithmic computations and problem-solving. 1.5. Limitations of the study

The following constitutes the major limitations of the study:

1. The experiment was carried out only in Ibadan. The situation as to the implication of this study may be different in the rural areas of the country or in other highly industrilised cities of the world.
2. The duration of the study may have not produced the needed attitudinal changes of this kind of study. For attitudinal changes may take a longer time than six (6) weeks the study covered.
3. It was difficult to ascertain whether the subjects in the restricted calculator groups (RCU) and Non-Calculator groups (NCU) were using calculators
privately especially to practise. This may possibly affect the pupils' attitudes towards the use of calculator.
CHAPTER TYO

REVIEK O: तEATE II FF.AATIRF AND RESEARCH
The hand-held calculaton 15 : tool used in society tody for calculutions. Etucators bitherto who havs been resisting the usc of elecironic calculators at primary and sacondery schoal leveis my be willing to admit the use of calc.lators if only, winge the calculator adds a "new dimension" of learning to tha experiance of the pupils and it allows a child to do something or learn something that could not before.

The most common argumsnt onainst the use of calculators in tin sanocls is thet treir uss would lead to decey of the understanding of arithmetic and loss of computational skilis in student. Tha aversion of many people to the use of calculators is eimply the resistance to a change in "instruments' in cempulation treusht about by adva،ring technology.

Tecnnological c anges are hard to accept at first and one car easily muster up all sorts of specters of doom when fipst presented with them. The aversion and resistance to calculators-ase in primary and secondary schools have precedence in history.

In the Phaedrus, Plato had a short discussion on the value of reading, which was at that time just coming into vogue. The tradiiion before then was oral, that is, one memorized stories and recited them. One of the participants in Plato's dialogue expressed the fear that the coming of written materials would lead to the decay of the ability to memorize and recite works. He was quite right. The ability to do this had generally been lost. But look at what has been gained. The emount of literature that one can absorb has been increased 10,000 fold. One would think it w..l prove to be the same with calculators. Children would lose the ability to do sums and products on paper with pencil, however, at a very early age they would have gained the ability of doing problems with very large numbers quickly and very accurately, and this could be a very exhilarating experience.

One should think of the time that will be saved on drill and simple arithmetic computations. This time could be put to good use doing more complicated word problems. Accoraing to Immerzeel ${ }^{7}$ students would $n \circ t$ be
7. Immerzeal, G. et. al.: Teaching mathematics with the hand-held calculator. In M. Suydam Electronic Hand Calculators: The Implications for the PreCollege Education. Final Report for NSF Grant No. EPP 75-16157, 1976.
dependent on the cэlculator rather, students will undertake much more complex problems and students can solve verbal problems using the calculator at about three times the rate the problem could be solved with pencil and paper alone. ${ }^{8}$

2.1 Electronic calculator and the school system

Despite the availability of the mini-calculator and its ever increasing public usage, there still exists controversy among educators as to its proper usage in the school or whether it should be allowed in the school setting at all. It's advocate refers to it as an essential implement in the newest mathematics (Higgins) ${ }^{8}$, as a motivating device (Mastbaum) ${ }^{8}$, as a means toward immediate reinforcement of results and a significant learning strategy (Lewis) ${ }^{9}$. Opponents of calculator like James Mckinney, Professor of mathematics at California Polytechnic State University in Pomona, U.S.A. states his case in the "Great Calculator Debate", 1974 as follows:
8. Roberts, D. M. The impact of Electronic Calculators on Educational Performance. Review of Educational Research 1980, 50(i), 70(i), 71-98.
9. Lewis, P. "Minicalculators Have Maxi-Impact".

Nations Schools 93: 60, 1974

If what we are talkirg about is reducing tedious calculations then perhaps mini-calculators can be an aid, but teaching a student to push buttons won't help him if what he needs is more instruction i_{1} astual addition, substraction, multiplication and division - I con't think of any reason why a fourth or fifth grader* should even see one, after all that's when we are trying to teach basic arithmetic (p. 12) 9 .

This pungent argument holds against the use of electronic calculator in elementary school, whereas this does not go to say that calculator cannot be used in the secondary or higher education levels where the pupil v:cule have mastered the basic concepts of addition, subtraction, multiplication and division of numbers. Here, differences in opinion on the calculator usage bothers on grade-level at which it should be used.

However, studies carried out by Schur and Lang ${ }^{10}$ with a group of youngsters of elementary school age found that improvement on computational ability of the youngsters

* Equivalent of Nigeria Primary 4 or 5 pupil.

10. Schur, J. O. and Lang, J. W. Just pushing buttons of learning? A case for mini-calculators Arithmetic Teacher 23(7), 1976, 559-563.
was traceable to the mini-calculator regardless of the learner's sex, and they went on to suggest that minicalculator does have a place in the elementary school. Similarly in the U.S.A. the Board of Directors of the National Council of Teachers of Mathematics has adopted the following position:

With the decrease in cost of the mini-calculator its accessibility to students at all LEVELS OF EDUCATION is increasing rapidly. Mathematics teachers should recognise the potential contribution of this calculator as a valuable INSTRUCTIONAL AID* In the classroom, the mini-calculator should be used in imaginative ways to reinforce learning and to motivate the learner as he becomes proficient in mathematics (NCTM, Newsletter, December 1974).

Studies so far, reviewed are from U.S.A. and Britain and it would be shown that calculator-usage researchess have been carried out at all levels of education, elementary (primary), secondary and higher schools in these countries.

2.1.1 Elementary School

Most of the studies carried out at this level of education were of the general pre-test-post-test design.

[^0]Hohifei=1 ${ }^{11}$ examined the effect of a calculator programmed to revide immediate feedback on working simple multipiication problams. Jsing fifth grade pupils and -pre-test-post-test design with experimental and control groups it w a s found that the experimental group that used calculator on cho test and durinz instruction parformed significantly betieer than the control group that did not use $c=1 c u l a t o r$ at ell. Whitaker ${ }^{12}$ explorej calculator impacts with first grade children in the alementary school. Pupils were randcmily assigned to experimental and controi groups while the experi:entel groups used calculator and the control group dic not. The treatment lasted for thirty instructional days, and it was found that the experimental group had two gain scores to one gain score of the control group but nc -ttitudinal differences to mathematics were found detween the groups.

Thus, the mejority of the sti ies ..mpleted at the elementary school showed computational advantages for ages 6 - 11 years for the introduction of calculator usage into the mathematics instruction whils the attitudinal benefits

[^1]were limited. There w'a scarcely any conceptual benefits due to calculator-usage.
2.1.2 Selgridary Level

Most of the studies at the secondary school level
neviewed were of the pretest-post-test design. Quinn ${ }^{13}$ used eighth and ninth grade students to observe whether the use of programmable calculator would facilitate algebra achievement and attitude towards mathematics. There were experimentel and control groups, using some classes from two schocls - $2 n 3$ experimental and the other control. The experimental classes used programmable calculator while the control did not use calculator. However, no achievement differences were found between experimental and control groups, but the experimental group showed more favourable attitudes than the control group. Majority of the secondary level studies found computational benefits due to calculator use. However, as the case in the elementary school studies, very little support was found for the hypothesis that calculator benefits improved development as regards conceptual and attitudes areas. It, therefore, remains for future researchers to explore conceptual benefits of calculator at secondary school level of education.

[^2]
- 30 -
 2.1.3 Higher education level

The use of calculator: at this level of education seems to be an accepted norm today. In Nigeria and other parts of the world, the use of calculators is permitted during instruction and on tests. However, there has been no empirical studies on calculator-usage at this level of education in Nigeria. In developed countries such as United States of America and Britain, many studies have been carried on impacts of calculator in the college mathematics $(\text { Suydam })^{3}$. Sosebee and Walsh ${ }^{14}$ investigated whether students who had used calculators on in-class chemistry examinations would do better than those not using calculators. Using the mean scores from the examinations no differences were found in their scores. Roberts, Seaman and Lerner ${ }^{8}$ were interested in estimating the discrepancy in performance and attitudes of less calculation condition (hard work) against calculation condition (adivanced calculator). Using ANOVA, results showed large differences between calculation mocies in favour of the advanced calculator.

Most of the studies at this level provided support for the computational benefits of the calculator. In addition, affective (attitudinal) effects were found favouring groups
14. Sosebee, J. F. and Walsh, L. M. Pocket calculators and test scores in introductory chemistry. Journal of College Science Teaching, 1975, 4,324.
which had usod seiculators. This was especially true when the dependent measure tapped specific task, affective responses Reviewed in this study were some findings on the conceptual impact of calculator use in the studies carried out by Roberts and $G 1 y n n^{8}$. According to Stultz ${ }^{15}$ calculator can be used at any grade level not only to check answers but also to debug a problem. Calculator can serve the same purjose as flash cards with quick oral or written response end immediate reinforcement. One of the more practical uses of a calculator in high school mathematics is in the evaluction of formula. At higher education level calculators are needed in statistical problems.

2.1.4 Lsarning outcomes 210 mathematics instruction

In this study one sendeavoured to highlight the computation, conceptual and attitudinal effects of calculator use on learning outcomes of mathematics instruction at the secondary school level. Gagne' and Briggs ${ }^{16}$ have identified five categories of learning outcomes which are relevant to this study such as:
(i) intellectual skills,
(ii) cognitive strategies,

[^3]16. Gagne', R. M. and Eriggs, L. J. Principles of Instructional Design, 2nd Ed., New York: Holt, Rinehart
\[

$$
\begin{aligned}
& \text { (iij) vesbal information, } \\
& \text { (iv) mutor =kills and } \\
& \text { (v) attitulles. }
\end{aligned}
$$
\]

In trying to study tha intellectual skills one examined the individual competency of the learner by measuring the 3 Rs - reading, writing and arithmetic. These competencies were measured in the study usinf mental ability test of verbal and numerical neture. Writing on cognitive strategies Bruner, et al ${ }^{17}$ described it as mathemagenic behaviours while Skinner ${ }^{10}$ called it self-management behaviours. Precisciy, it is the capability of individual's learning, remembering and thinking behaviour. Gagne ${ }^{16}$ defined cognitive strategy as a contro) process, an internally organized skill which governs the lsarners' own intellectual processing. It selects and gुuides the internal processes involved in defining and soiving new priblems. It is this strategy that is needed in problem-solving. It can however, be measured using achievement tests. A mathematics achievement test was used to measure this area of learning outcomes.
17. Bruner, J. et al. A study of Thinking, New York: Wiley, 1955.
18. Skinner, 3. F. The Technology of Teaching, New York: Appleton, $\overline{1568}$.

On verbal information, the learner usually acquires needed information from formal instruction or on incidental learning and such information would be stored in learner's memory not by memorizatior, but by constant practice through repetition-practice. Since this study required the subjects to go through an instructional process designed for them it was pessible for the learner to acquire the necessary verbal information on the mathematical concepts. This was measured through the teacher-students classroom interaction incorporated into the stucy design.

Motor skils involve writing, and handling. In this study, some groups of subjects used calculators which they had to manipulate but such skill was not measured in this study.

Attitudes: It is an aspect that was measured in this study. One was interested in studying the attitudes of pupils only towards mathematics as a school subject and their attitudes toward the use of calculators in mathematics. One did not measure such socially approved attitudes as respect for other people, cooperativeness, personal responsibility, self-esteem, but rather attitudes toward knowledge and learning situations. Likert-scale type of attitude questionnaire vas developed and used. Other attitude questionnaire that was appropriate for this study was also used.

Fland ers ${ }^{10}$ recognised the most common learning outcomes as content achievement, skill performance attitudes. This study had therefore recognised these human capabilities, intellectual skills and attitudes. The other learning outcomes; verbal information and motor skills were demonstrated during the instructional process and they involved the computational effects of using calculator in mathematics instruction.

2.1.5 Computational effects of calculator

Computational benefits would occur when pupils who had used calculators during a treatment could perform routine computations (not solutions to word problems or equations that would be conceptual development or problem-solving) more accurately and/or rapidly than those not having access to calculators during the treatment. Such benefits might occur when either the pupils were allowed to use calculators on the actual task (on test or/and instruction). Sometimes the judgement as to what criterion tests were more computational than conceptual would appear to be instructive.

[^4]At elementary level, Spencer ${ }^{20}$ used fifth and sixth graders to observe the impact of calculators on computational skills and arithmetic reasoning abilities. The experimental group was ailowed to use calculator on tests and on ili in-class work but the control group was not. At the fifth grade level the experimental group had gain scores on the problem-solving test whereas in the sixth grade, the experimental group had gain scores on the arithmetic computations. In two studies, Jone a n d Allen ${ }^{8}$ investifated the effects of using hand-held calculators on mathematics ashievement, attitudes and selfconcept.

In Jone's wark pre-test gain scores with post-test attitude and self-concept were analysed, whereas in Allen's work metric measurement and decimal test gains were examined. In Jone's work experimentai group performed better on the post-test, however, there was no difference on attitudes and self-concept. With fourth through seventh-grade summer school pupils, Nelson ${ }^{8}$ investigated impacts of calculators on computational skills and attitudes. The experimental groups which used calculator were superior for both compu-
20. Spencer, N. N. Usir.g the iand-held calculator in intermediate grade arithmetic instruction (Doctoral Dissertation) Lehigh University, 1974.
tation and attitudes. Sutherin ${ }^{8}$ used fifth and sixth grade pupils to investigato the effect of calculators on decimal estiration okills. Fupils in experimental and continl grath 3 were pre-tested, post-tested and given retention tests. Employing the reethod of Analysis of Variance (ANOVA) for the data ar:3lysis significant gains in estimation skills were found in both experimental and control groups. Hosiever, there was no difference between experimental and control groups on both the post-test and retention test.

Shl:nway et a 1^{21} found no masurable detrimantal effects for calsulator use. Pupils learned basic facts, and achievemant vis gooi despite calculator use at grades 2 to 6. Eiknier ${ }^{8}$ investiyated the use of calculators with low achieving 4th Eicde pupils in mathematics achievement test and attitudes. He found no significant difference in attitude or achievement gains between calculator and noncalculator g. Mps at this levei. Kasnic and Kobrin ${ }^{8}$ found the same iosults - no significent difference in achievement between calculator and non-calcuiator groups. Most other findings at this level of education support this position.
21. Shumway, २. J. et ai. Initial of calculators in Eler intary school mathematics. Journal for Research in Mathematics Enucation, 12, 119, 141, 1981.

At the secondary school level, Gaslin ${ }^{8}$ compared the achievement and attitudes of nineth grade pupils using either conventional or calculator based algorithms for operations on jositive rational numbers. Significant treatment effects were found on both post-test achievement measures with experimental group gaining scores on retention tests and achievement measures; however, no difference on attitudes were found. Similar results were found by Wajeeh ${ }^{8}$ and Hut:on ${ }^{8}$. Whereas Wajeeh found differences betueen two lajels of experimental groups and control groups on both achievement and attitudes, little difference was found between the experimental groups. In Hu'ton's study no differences were found between any of the experimental and control groups on any of the achievement or attitudinal variables and these findings were corroborated by Jamski and Anderson ${ }^{8}$ in their studies on the impact of hand-held calculators on seventh grade learning of decimal/percent conversion algorithms and effects of restrictec versus non-restricted use of calculators on mathematics achievement and attitudes. Both studies, like the cthers tend to show that pupils perform significantly better on computational skills whien using calculator but no differences as regards attitudes toward the subject. However, in a study inv lving a non-mathematics area, Bolesky ${ }^{8}$
investigateu ie influence of calculators on achievement in chemistry. Lising 2×2 factoriul design: E experimental condition, 2slculators on the -nst-test; E_{1} condition, no calculators on the post-test control, C condition, calculators on the post-test, and C_{1} condition, no calculators on the post-test. Results showed no significant main effects or interaction.

At the higher education level, a series of investigaticns reportec by Roberts and colleagues ${ }^{8}$ found computational benofit $=$ of using calculators. For all five studies carried out by kin group, they found that introductory statistics stidents worked rumerous statistical problems (mear, stanciord cieviations, correlation co-efficiert, etc) under a variety of conditions. Three criteria that were common to à stucies inciuded the number of correct answers, the time to work froblems, and efficiency (number correct per unit of time). In four of the five studies, a post-test attitudinal measure was also administered. Results from these studies showed that the amount of prepractice had no effect on the number correct, time, or efficiency dependent measures. Roterts and Glynn ${ }^{8}$ found fcs t:-? calculator made: the advanced machine group was consistently uperior to the basic machine group. Roberts and Glynn ${ }^{6}$ fo nd that for the instructional work set, that is,
instructions to work fast or work accurately groups who produced more correct answers, longer working times, and less efficient problem solution than the work fast group. Roberts and Fabrey ${ }^{8}$ found that the advanced machine condition produced more, positive ratings on four of the five attitudinal clusters than noncalculator condition.

Thus it enpears that most of that data and studies reviewed wouid support the hypothesis that using calculators during instruc:ion benefits routine calculation and that the benefit is most pronounced when students continue to use the machine wile antually performing test computations. Most of the stucies wer: pretest - post test design and th's may conetitute son:e problems in integrating calculator usage in ths experimental and control groups, thereby making comparisons difficult. Majority of the studies reviewed still found the experimental groups performing better than control zroup which lends support to the computational benefits of the calculator. However, there is need to investigate effects of calculator on concept learning.

2.1.E Effects of calculator on concept learning

 According to Suydani ${ }^{3}$. calculators can be used to reinforce and e: pand many mathematics concepts that may be introduced. However, no research evidences exists tosupport the claim that concepts must be devaloped prior to calculator-uзe. Hence the notion of developing, understanding tirough sxamples foilowed by explanation and discussion is a common technique in mathematics teaching. Almost all of the studies in elementary school mathematics comparing achievement of groups using or not using calculators favoun the calculator $\underset{y}{ }$ roups or reflect no significant differences (Suydam) ${ }^{22}$. In certain types of mathematics problems, calcslator might facilitate concept formation abilities. For example, some mathematical principles which require $n u m$ erous, 1 a bourious calculetions in orciar to be well understood, then concepts would be acquired faster if calculators can aid the student to leap throug' the computations. In addition and perhaps more importantly, if calculators can reduce frustrating computational errors, then the quality of the concept attainment majy be improved. Roberts ${ }^{8}$ states that the proposition that calculator usage can have an impact on mathematical concept formation seemed reasonable.

[^5]Eut, it is not yet supported by the empirical data available. This is so since few studies made any real attempt to carefully intecrate calculator use into the curriculun that would illustrate how calculator can facilitate concopt learning. Some studies have been carried out on concept learning but positive results relating to conceptual bensfits of calculator usage would not be expected to occur as often as simple computational benefits because conceptual acquisition is a more complex task. Kasnic ${ }^{8}$ studied the effect of calculator usage on mathematical problem-solving in relation to three levels of ability of the six-grade students tested and using a 2-fact ANDVA analysis with Pretest and ability as a blocking variable he found there were no differences between experimental and control groups, nor were any differences found for the different ability levels between experimental and control groups. This design of using different ability levels has.. held to substantiate the need for the use of calculator in concept learning. Though the results were not conclusive a similar research design could help to clarify this important area of mathematics learning.

Fischman, Wajeei, add Hutton ${ }^{23}$ investigated effects of a newly developed programme of meaningful and relevant mathematics on achievement and attitudes at secondary school level. Using both ANOVA and AfNCOVA for analysis, results showed superiority for both the two experimental groups over the control groups on both achievement and attitudes but little difference was found between the two experimental groups. These results support other findings on achie ement and attitudes at this level. However, Hutton ${ }^{23}$ used t-tests analysis and no differences were found between any of the experimental and control groups on any of the achieve ment or attitudinal variables.

$$
\text { Lenhard }{ }^{23} \text { worked on pre-test and post-test design- }
$$ experimental and control groups at secondary school level mathematics, ...itina variety of enalysis using t-test and ANGVA procedures, it was shown that the higher ability students made fewer concept and computational errors than did the lower ability students; and they also had more positive atti udes.

In addi:ion, studies by Bolesky and Boling ${ }^{24}$
at secondary school level on whether the use of
23. Fischman, M.L. et. al. The Impact of Electronic Calcula-
tors, Review of Educational Research, $50(1)$
$71-98,1980$
24. Bolesky, E.M. and Boling, M.A. The impact of Electronic Calculators in Roberts, O.M. Review of Educational Research, 50(1), 1980, 79.
calculators would influence students' achievement and attitudes in chemistry and in consumer mathematics respectively. Bolesky used 2×2 factorial design and the results showed no significant main effects or interaction between, experimental and control groups while Ealing findings on achievement and attitudes also showed no significant differences between the experiment.i and control groups. It would appear, at this level, that most of the findings on studies in the use of calculator for concept learning in mathematics did not show any difference between the calculator-use and non-use- vis-a-vis achieveme and/or attitudes.

Most of the studies reviewed at higher education level seem to lay more emphasis on computation and attitudes rather than concepts. Ayers ${ }^{25}$ was interested in the effects of situational problem-solving and calculators on statistics performance. Using several analytical procedures (ANOVA, Mann Whitney U-test etc.), results showed better achievement. in the calculator groups and more positive attitudes in the situationals realistic teaching of heuristic groups. No attitudinal differences were found between the groups using or not using calculator.
25. Ayers, S.W. The effects of situational problem-solving and electronic calculating instruments in a College level introductory statistics course Dessertation Abstracts International, 1977, 37A.

D'Loughlin 23 investigated the effects of using a progremmablu eqectronic colculator on the achievement of students in a calculus course. Lsing a 2-factor ANOVA (blocking aver three ability :avels based on previous metnem:tics achievement), dif2erences were found in favour of the experimentel group, but no differences favoured the control group. It would appear that there was smme support for the conceptual impact of salculator use at higher educatiun leval.

Probler-soliving foime a substantzs1 portion of concept development in mathematics. Tee proplem-solvar must compre hend the facts, slearly understend whaz is needsd, and analyze the problem in oider to errive zt how tne problem is to be solvec. Pupils with sherp, anal,tical minds may do superior work when solving verbal prublems, although they may sometimes lack the basic comoutational skills needed for problum-sclving. It would therefore, biological to integrate calculator-use in problem-solving situations so that pupils would best be gerved if rigorou's training is giving in this area. Abdelsamod ${ }^{26}$ found th. 1 the calculator was considered $e^{2 f e c t i v e ~ i n ~ m a t h e m a t i c s ~ p r o b l e m-~}$ sol.ing at secondery school.
23. Calcul̈ator Information Contre, Researh on Hand-held Calculators. K-12 3ulleting No. 9 Columbus, Ohio, 1982.
A calculator can alse te usst very effectively in conceft divelopment since may examples can be explored quickly. Consider for examole, the concept of the prime numbers. A number can be testec for primuness quickly by dividirg on a calculatar. The concept of decimal can be introducad quite eariy and deleljped through calculator activities. Many motivaiional calculator games 1 be used to develop important conc pts such as place-value, ostimation, intoçers and furctionsl rules (Guthrie and Wiles) ${ }^{26}$. Accuaing to Cook ${ }^{27}$ stucisnizs roceiving both nositive onu neyutive instances (examples) in teaching matn-matical cancepts dic significently better on an algetraie cuncopt test tion thous given only positive instances only. It wuld therofore, be worthwhile to explors the use of calculators in the soncept formation tachniques - examples ent non-examples. It would appear from studies carried out on concepi learning and calculatoruse that the learning se:tings in which these studits were conducted did not genera.ly emphasize concept-formation skills, thareby providin; a partial explanation.
2% C ik, W.C.: Teaching of Concepts; Journal for Research $\frac{\text { in Mathamatics Education }}{\text { No. 7, 1982. Suydam, N.M. Vol. 13, }}$

From studies revicwed it would appear that
m o s t findings on calci lator-use when students used calculator on pre-test and were $n \circ \mathrm{t}$ a 1 lowed on post-test showed no difference. Thus, if the calculator-use were to be successful in facilitating learning, the concept attained should really be at the understanding level. Then utilization of calculator in application to principles and concepts have had relatively little bearing on obtaining the correct solution on a post-test. According to Roberts ${ }^{8}$, the concept formation benefits of calculators will only be resolved when investigators used calculators as a strategy for solving problems.

2.1.7 Effect of Calculator on Attitude

Finding attitudinel impact of calculator in instruction may be problem-ridden because of the difficulty in finding the attitudinal criteria to use. For the vast majoritycof the studies reviewed; three factors may have worked against finding attitudinal impacts. First, the mebsures used were too orientec toward general traits rather than characteristics which were more task specific and sensitive to calculator influences.

Secon.- , the time frame for must studies was too short to expect any real change in attitudes. Third, since many of the
investigations fit not allow the experimentol groups to use calculatows on the fost-tisi, many of the students might heve losi intorest wilin i: turn, might have influenced che reting on the attitude scales. Most of the studies did not irvestigate attitudss toward calculator per se but rather in amponent with achiavement and, in most cases, there was no correlation between the achievement and ettitudes. -Smith ${ }^{\text {E }}$ exemine: artitevement and attitudinal impacts of celculator usage in teaching mathodology to business and economics students. The instructional period lastud for 10 Jays with Pre test-post-test design-experimental and unetrol aroups. The eaparimental group was allowed te use calculator on pre-test and during instruction but they were not alliwer on the post-test. It was found that there were no achievement or attitudinal differences between enjerimental or conced groupe Roberts, Szamen and Lirners ${ }^{5}$ in their study on simple celvulation condition (hardwork) versus, best calculation condition (advances calsulator) and the attitudinal data showed large and significant diffarences batwan calculation modes with mare positive tael: and self-perceptions being expressed
by students using the advanced calculator. Standifer and Maples ${ }^{29}$ invescigated the achievement and attitude of third grade students asing two zypes of calculators and found that the hand-held calculator group scored significantly higher on achievenent and attitude than the programmed-feedback calculator group at grade level 3. (Elementary School). Connor ${ }^{29}$ investigated a calculator dependent on trigonometry programme and its effect on achievement and attitude towards mathematics of eleventh and tivelveth grade college-bound students, and found there were no significant differences on attitude between calculator and non-calculat-groups at secondary school level.

It would appear from most of these studies that there seens to be evidence that calculators influence immediate and specific perceptions, but there was no evidence to support any significant differences between experimental and contr groups or to support more general and lasting attitudinal changes.
2.1.8 Use of Calculators on Tests

One of the most peculiar aspects of calculator research is the extent to which investigators have allowed/ disallowed students to use calculators on tests. According
28. Standifer, C.E. and Maples, E.G. Achievement and attitude of 3rd Grade student ... in School Science and mathematics 81, 17-25, 1981.
29. Connor, P.J. A Calculator department Trigonometry Programme and its effect on achievement in and attitude toward mathematics of Eleventh and Twelveth Grade College Bound Students. Un-published Ph.D. Thesis, Temple University, 1981.
to Carpenter et al 1^{30} reported on the results and implications of 1977 － 1978 mathematics assessment of the United States of America National Assessment of Educational Progress（NAEP） On＂how does the availability of hand－held celculators influence performance in testing situation？＂In the report，several issues related to calculators were raised，for example： timing on exercise；it was found that students tonk longer time to do probleins with calculators than with paper and pencil．This would be surprising because calculators should prasumably make conputations easier and less time－consumi：．g． The reason for this m？y be that students lacked confidence in their results，sa they did the oroblam more than onc．．．C： perhaps students cic not know how to interpret the value shown on the calculator＇s display．Perhaps students with calculators sought to do the probjem in more than one way．The hehaviour of seeking aitarnativa solutions to problems when calculators are available h尹s been reportad in several calculator research studies（Cipenter，theatle＊and Shumway，Coburn，Fays and Schosn，Whatley and White）${ }^{31}$ ．

2．Problem－Solving：On exercises requiring problem－ solving techniques，the performance of 9 and 13 year

3C．「arparter，T．P．シt ：1 Calculator in testing situation， Arithmetic eazhar $2855-65,1981$.
31．Carpenter，T．P，at at．Claculators n testing situations：Results and Implications from National Assessment Arithmetic ieacher， 28 34－37 Jาก．1981．
students with calculator were generally poorer than that ot students without a calculavor. Hencu calculators de not solve Froblems, xuopl du. Stratesies such as trial and error that take sfecis] edrantare of the calculator nead to be intruduced, developeu end encourazst. Probsem-solving requires for more than comeutation i: demands understandin:t, correct choice of operations, and salection of $v=$ ".es to uparate in a porvicular seder Carpenter et al found that stueents parformed routine computation better with aid of g calculator, Lut proilem-solvine scores were poorer ith calcuiator et agces 9, 13, 17.

Sone of the studies did $22 \div$ allow students to use calculators on pru'vetuts. scociring to Roberts ${ }^{8}$ the assumption is that tinis reflects the philosophy that the real question is whether the usa o: calculators will harm students' performance witer they ars faced with deing calculations by oaper and pencil methods. While such an approach is cartainly 3 le: डtimate ay to test theory, it appears to be ahegative or:ontation rather than a positive ona. Instead of axamineng potential positive impacts, the focus is on demonstrating the: lack of negative effacts.

However, it would secin more realistic, as it is being done, to assume th calculators may have more positive benefits than neğctive. Tinis assumption could be supported, in cases where computational benefits were more when students were allowed to use calculators on tests. On the other hand, it would have been instructive to test for more conceptual benefits (as it is being carried out in this study) by allowing calculator-use on those types of criterion tests-pre-test and post-test. It would therefore be appropriate to use calculators on the post-tests, assuming, of course, thit the treabuent properly integrated calculators on instr tion, and s.ee if thare would still be any significant : difference betwsen tie experimental and control groups. 2.2 $\frac{\text { Integrating Calculator into Mathematics Curricula }}{\text { in Schools }}$

Eefore integrating any educational devices into school instruction, thore must be agreement on what role(s) such devices would pley in the school. But viable school roles of electronic calculator will noi te established without finding solutions to many problems: problems of philosophy, problems of curriculum and methodology, problems of design, and school management of the calculator themselves.

In the belief that solutions to many of these problems could be worked out in actual classrooms, the design and
methodilogy of this ressarch would try to explore classroom usus of calcuietors by integrating calculators in the instruction con tests. Accurding to Palmer ${ }^{32}$ attempts to intioduce cilullators in the classroom, particularly at the slementary gradzs had been greeted with cautious responses. Teachers and educators could be worried over such innovations and investigations by Palmer ${ }^{32}$ revealed the reasons for their caution as follows: (1) erosion of the teacher's roles mechines taking over teaching functions; (2) impersonalization of the teaching - learning process, reduction or elimination of the humane aspects of teaching and learning, (3) stifling of creativity - emphasis on precision, measurement, and mechanization inhibits creative s<pression.

> Desoite the enxiety Expressed by teachers and educators researchers in the area of Calculator-integration i.to curriculum had progressed. Using ninth-grade general mathemetics classes, Vaughn ${ }^{8}$ examined effects of calculator useage when tijey were specifically integrated into the curriculum. The design was pre-test-post-test experimental a $n d$ control groups with the $s u b j e c t s$ in the
32. Palmer, H.B.A.: Mini Calculators in the Classroom What do Teachers Think? Arithmetic Teacher 25(7) 1976, 27-28.
experimentul group using calculators. Using a stepwise regression analysis, results indicated that the experimental group performed better than the control group on achievement at the posi-test but there was no differe ce on attitudes of the two groups at the post-tests. .Casterlow ${ }^{8}$ who studied the effedts - of calculator instruction on the knowledge, sli:lls and attitudes of prospective elementary teachers found that the treatment in which students received teacher-guided instruction wisth the calculator was more effective than treatments without teacher guidance for preservice elementary teachers. The calculator was con idered effective with 13 to 60 problems strategies at secondary school leve: In studies carried out by Hopkins ${ }^{8}$ ' on the effect of a hand-held calculator curriculum in selectad fundamentals of mathematics classes he found that stujents using calculators for instruction gained equally as wall in computation and significantly higher in problemsolving as studants not using calcuiators at secondary schooi level. Similarly studies by Smith^{8} on a study of the effectiveness of the use of the electronic calculators in teaching simplex method to business and ©iconomics majors found, ragozdless of sex or mathematics _aptitude level:
little difference in mathematics achievement and attitude between students using or not using calculators in the classroom at college level.

Most of the studies so far, reviewed have not established any differential effects as regards calculator instruction vis-a-vis achievement and attitude. However, studies by Laursen ${ }^{33}$ on the use of calculators in High School General Mathematics which compared achievement, attitude and attendance of general mathematics students who used calculators with students who did not, found that students using calculator had greater achievement and no significant differences in attitude or attendance were found among the groups. Lawson ${ }^{34}$ in a study of the calculators and altered calculator's effect upon student precaution and utilization of an
estimation algorithm found that calculator-use did not affect performance in estimation. Students of lowest ability made the most errors when using calculators compared with other ability levels at secondary school level.

There could be no appropriate word(s) to describe the problems surrounding the integration of calculator in the
33. Laursen, K.D.: A study of Calculators in High School General Mathematics ... Unpublished Ph.D. Thesis Brigham Young University, 1978.
34. Lawson, T.J.A.:- A study of the calculators and altered calculators effect ... Unpublished Ph.D. Thesis State University of New York at Buffalo, 1977.
curriculum than the suggestion reflected in Recommenciation ($(\hat{)}$) of the fieport of the Conference on Needee Research and Development on Hanu-held Calculators in school matheniatics ${ }^{35}$

Materials should be developed to exploit the calculator as e teaching tool at every point in the curriculun to test a variety of ideas and possibilities pendinc emergence of calculator - integrated curriculum (P .7).

From available research reports there seem to be little doubt about the computational value associated with calculator use. Sufficient calculator-pretraining enables one to work problems mo.e accurately, rapidly and efficiently. Also calculators would allow one to complete more problems per unit of time thus in effect affording greater amount of practice Suydam ${ }^{22}$. However, for conceptual anc attitudinal impacts due to calculetor use, there is less concensus as to what facts can be cleanec from the research literature, and it would appear that this is the issue being raised in this study. Also, at a curriculum level, there is less agreenent as to what should be done regarding the question of whether to incorporate calculators into instruction. For those who believe that calculators should be used in the schools, the question may still remain as to when, class and level of education for calculator to be introduced into the school mathematics programme. 2.3 Definition: Concepts and Concept Learning:

Sultz ${ }^{34}$ defined a concept as a "bounded region in the coonitive space which is reacted to as an entity".

35: Calculator Information Center: Research on Hand-Held Calculators, K-12. Eulletin No. 9, Columbus, Ohio 1977.
34. Sultz, see copeland, R.N. Mathematics and its elementary teacher Philadelphia: k.B. Saunders Company, 1976, 15-65.

Saltz also went tur-her to define concept learning as, "the association and bounding of the set of attributes. The first step in learning is perceiving through the sensory modalities which teads to both concept formation and soncept utilizatinn, in any teaching and learning or problem solving situations.

Saltz could mean "bounded" here as referring to those common characteristics whish justify the inclusion or exclusion of anything within the frame of reference of the entity, idea, otjects, event etc. A concept is not fo.med in a vacuum. This is why the instructor should provide the learner with the real object or event to perceive. According to Boltan ${ }^{35}$ "concept learning is the process whereby one comes to distinguish between those elements which are an essential part of the concept and those which are not".

Concept learning as a process presupposes the learner is active, can justify the characteristics which bound them togather and the words to describe them, time is saved as the learner interacts directly with his environment, and avoids unnecessary intaractior, and can recognise and generalise. For example, a student who has a true concept of equation will be able to generalise to all forms of equations be it simple, simultaneous or quadratic.
35. Bolzor. N. Concept Formation: U.K.: Pergamon Press ttd., Pp. 84 - 139, 1977.

When u-iceft $\partial \hat{r}$ en entity has been formed it has to be tried out. At this stage, there should be minimum interaction between the lecrmer and th- instructor. Tha need for instructional material would be ssential so as to facilitate the definitive properties of the concept.

Expounting on problems of conceptual learning (Engleman) ${ }^{36}$ defined cuncept as "a set of characteristics shared by all instances (examplers) in a particular set and only by these instances" (p.87). Thus, wh the relationship between teaching and soricept analysis is made explicit, the teaching sequence can be evaluated more precisely. Markle 37 defined de"ines poncef: as a class or catogory where all the members shats a porricular cembination of critical properties not sharet ty any other class. Gagne' defined concepts as a capatility that makes it possible for an individual to icentify a stimulus as a merber of a class having some characzeristics in common, evan though such still may otherwase differ irom each other markediy. There are concrete anc abstract concepts. Concrete concepts identifies an otject properly or object attribute(s) (Colour, shape e.g. roand, square, blue, three etc.). A b s tract concept
37. Markle, S. M. Problems of conceptu?l learning. $\frac{\text { Journal of Education Technology }}{1970 \text {. Vol.1, No. 1., 11-19 }}$
needs to identify the referents of the languare used in concept concept definition, to discriminate and generalise. Thereby the subiect formulates rules as iri problem-solving.

For example, the concept of fruit can be concrete, and is shered by all classes of fruit and nothing more. Here, flost referents to concept are noun-like particularly for tangible objacts. However, concepts learned before, during and after school years vary widely in ways which make generalisations about them unsafe. Concepts which are abstract like "equation" in algebra cain be distinct from other mathematical concepts.

Hence "l.anguage" plays a key role in achieving concepts especially abst.aect nnes and in using attained concepts to learn related rinciples and to solving problems. How then do we learn concepts:
2.3.1 Criteria For Conceptual Learning

A learner who has fully grasped a concept can give two relevant kinds of responses. He can generalise to instances (examplars) and discriminete non-instances (Machner) ${ }^{35}$. Generalisation, by definition, involves a new situation, one that the learner has never encountered before. Conceptual learning is therefore easily discriminated from rote learning.

Concept learning should be taught with examples and nonexamples so that the learner can generalise and discriminaze either overtly or convertly. Taaching concepts would require a strong focusing strategy on those examples and non-examples and the mode of generalisation. For mathematical concepts the use of instructional materials like electronic calculator could be useful to illustrate examples and non-examples in wort-problems. This would allow the learner a greater exposure to the fuli range of referents. Lack of sufficient discrim:nation or undergeneralisation may lead to the concept not being learnt. Here adequacy or otherwise of the instructional strategy would determine whether the concepts have been learnt or not.

In designing an effective instructional situation in the school, the learning of concepts is of central concern since school learning is predominantly conceptual in nature. Modes or concept presentation and acquisition that could be found in research literature are comparing "inductive versus deductive mode", "rule-example versus example-rule", and "discovery versus guided discovery or deductive mode" (Clark) ${ }^{36}$, and the amount of time, a learner is exposed to an example in a critical information frocessing variable in concept acquisition (Horland and Weiss) ${ }^{35}$, Yudin and Kate . 35 In most studies time, has frequently being held
constant while axploring moce of presentation. Koran and Freeman ${ }^{25}$ found that for sc,nool instruction when biological concepts are being taught a deductive approach is more efficient. However, as concepts hecome more complex or abstract, and can contrihute to higher levels of learning or a wider range of objectives, inductive method should be useful strategies to explore (Gasne) ${ }^{37}$.
2.3.3 Concept Formation and Attainment: Concept Learning

Working on the theory of abstraction Locke 38 and Hume ${ }^{39}$ stated that concept was formed through a process in which the person recognizes similarities or identical elements in a set of objects, the person thus abstracts these resemblances away from the other properties of the set of objects that are not relevant to the concept e.q. connept of man - features of man. According to Turner ${ }^{4 G}$ once a concept has been formed or attaine the person will be able to do two distinct things: firstly he recopnise its relevant attributes and secondly he will know how they are related to one another. There can be three forms of relationship between attributes: a 'conjunctive relationship when the concept requires all the r e l e $v a n t$
37. Gagne, R.M. Categories of human learning, N.Y. AcademicPPress, 1966.
38. Locke, J.: Essay on the Human Understanding: Uxford: Clarendon Press, 1690. 39. Huris, D.A. Treaties of Human Nature, Oxford: The Clarendon Press, 1739.
40. Tumer, J.: Psychology for the Classroom: London Metheven, 1977, p.48.
attributes to be present. Secondly, there can be disjunctive relationship when either one or other attribute or both are present, the concept then exists. The third form of relationship is the relational one when it is the relationship between two attributes which defines the concept. Bruner, Goodnow and Austin ${ }^{41}$ made important distinction in learning concepts, that is, between concept formation and concept attainment: Concept formation is an initial creative action which results in the formatior of super-ordinate classes or abstract categories. However, concept attainment is more often of interest to teachers and this means the activity of finding examplars of a concept which is already in the mind; or attempting to reconstruct the concept that is already in someone else's mind. Concept formation is more of the fundamental process while concept attainment is the more familiar, which teachers examine on tests.

For attaining concepts, Bruner et. al. ${ }^{41}$ itemized the followings: (a) Identifying objects
(b) reducing the necessity of constant learning, (c) reducing the complexity of the environment
(d) F Foviding direction for useful activity, and
(e) rdering and relating different types of events.
41. Bruner, J. Et. al.: A Study of Thinking: New York; Wiley, 1 956.

Concepts ara thorefore, building blocks for understanding after corrsct perception has been made, end using principles which in tuin, are critical in solving problems.

Fig. 3: Sequential bases for learning various cutcomes (Adapted from Gruncr, J.S. Creative Thinking)
Lan/guag e
plays
a key role in
achieving corcepts and in using attained concepts to loarn related principles and to solving problams. From the sequential basis ore cen define concept as ordered information about the unaractaristics of one on more things - objects,

Events or paccouses that enables any particular thing or class of thin"s tu be dilfarenticted from also related to other thincs or cleuses. Concapts can therefore, be thought of as both merital constructs of individual and also identifiable public antities (Bruner) ${ }^{41}$.

Each individual attains mental construct or concepts according to his unique learning experiences and maturation pattern. Once attained concepts play a key role in his thinking abcut the word in a languare, and in the intellectual growth. Concents are the fundamental agents of intellectual wo:k.
2.3.3 Associative Versus Modiational Theories of Concept tearning

The simplest theory is the associative one which sees concept learn ig as a matter of associating positive and nesetive instanos of stimuli, to reward or punishment. For example, in developing the concept of a bird the subject can associate pictures of birds with a positive responses whereas mediational theory says the subject uses covert cues with which he organizes his behaviour.

Fig. 4: Mediaticnal ilodel (Adapteo from Turner, J. in Psychology for t's Classroom. London: Metheuen 1977, f.48)

Some theorists, esfecially those within the S-R. tradition, reford associetive learning or conditionins, as the major, if not the only form of learning. While some have brought in connectism ' 0 ' i.s. $S \longrightarrow 0 \longrightarrow R: S$ for stimulus, R for response, and 0 is believed as a set of concepts or mediators in learninc others have sugpested that there are types of learning, some more advancer than others, and that associative learning occurs at early stage in development but is superseded by structured or cognitive'learnin? (Bolton) ${ }^{35}$.

Kendler and Kendler ${ }^{35}$ maintained that two theories are necessary to explain concept learninc. A single unit $S \longrightarrow R$ theory to account for the behaviour of animals and children who cannot make use of symbolic mediation, a $n d$
mediational $S \rightarrow \vec{i}$ theory tor older children and adults. Higher-order coicept forration would depend on: ${ }^{35}$
(i) orcanisation of the material to be learned
(ii) the motivation for concept learnine and
(iii) creativity in formation and
(iv) individual differences.

2.3.5 Mathematical Concept Formaさion

Psychologists who have investigated mathamatical concept formation have identified the inadequacies of traditional stilulus-rosponse" learning theory, and the need for a theory of structured learning. Eiges 35 asserted the necessity of constructing theory which will account for the process by which the learner acquires meaning or structure, rather than a response or action Draws upon Piaretian theory for this purpose, Skemp ${ }^{35}$, distinquishes between primary and secondary concepts: A primary concept is derived from other concepts; for instance, some mathematical concepts, such as "three", are primary, since they are formed through inspection of collection of three objects while others are secondary for they consist of reneralizations about the properties of individual members. Thus, $8 \times 7=58$ is understandable on
the primary conceptual level, whilst $8(x+y)=8 x+8 y$ is a secondary concept. Skemp believed that many of the difficulties experienced in mathematics learning stem from the transition from primary to secondary modes of representation and understanding, ana he proposed a schematic theory of learning to account for the way in which successful instruction should progress from structured primary to structured secondary knowledge.

However, Dienes ${ }^{35}$ argued for the existence of a number of stages in mathematical concept formation. In the first state, the person's behaviour is playful and haphazard, at the second stage it becomes more regular and purposeful,

It is confined to practice in handling situations in which the rule-structure of the subject matter is relevant and results in a more or less unconscious stamping-in of the rule. At the third stage, analytic thinking about the rule becomes possible, and it exists now as an object of thought. Thereby forming the basis for the conceptual attainment. Dienes' apparatus consists of the Multibase Arithmetic Blocks which is structured in geometrical progression and these blocks are used to teach place-value in number system. How do we each concepts to pupils today?

At the present time, there are a number of different methods in use in the classroom for teaching mathematical concepts. There are the traditional methods with their emphasis upon repelition, the early use of symbolism, computational efficrency and extrinsic motivation. In contrast to these methods, is discovery learning in which the aim is to motivate the child to develop understanding on the basis of his own experience, and the emphasis is upon wide experienre, the gradual introduction of numeriral symbols only after concrete experience with numerical relationships, problem-solving rather than computation and intrinsic motivation. There are other specific methods, such as Dienes Blocks and Cuisenaire rods, for use in the development of certain basic concepts. In Britain, the Nuffield Mathematics Project, following closely the ideas of Piaget, developed techniques of instruction and methods of assessment for a wide range of concepts, for example, transitivity, conservation etc.

However, Biggs ${ }^{35}$ hypothesized that the traditional methods of teaching should be more successful wit', respect to tests of mechanical arithmetic, whereas structural and possibly motivational methods would surpass the traditional methods when conceptual understanding rather than rote learning, was demanded. In fact, he found very little
difference in the performance of children, whether mechanical or conceptua? who had been trained by traditional abむ uni-mouel, structural methods, although there was tenderay fon the more intellirent children to benefit from-uni-model (i.e. Tienses' rethod;, as against the less intelligent. 2.3.5 Researchas in Concept Learnins

On a project carried out by Harris and Harris ${ }^{43}$ on concent attainment abilities they found that achievement in lanヶuase arts and mathematics was related to three abilities numerical, wort fluency and memory. Piland and Lemka ${ }^{35}$ studied the effects of ability crouping or concept learning. They investipated the effect of conceptual training and transfer of ability grouning on intrllisence, sex and temporal tests. Fesults indicaied that (a) ability group1mg has no significent effect on concept learning under any effect of the variables of the experiment and (b) high ability subjects (students) are better able to obtain mathernatic concepts than medium ability or low ability subjects. The non-significant effect of atility grouping is seen as an important finding in the light of its present emphasis in our secondary schools.. Most of our secondary schools today aroup theil students into Science, Arts or Commercial

43 Harris and Harris. Concept Attainment Abilities Project. Journal for Research in Match Education (JMEE) 9(5). 1378, 334-336.
classes based on ths students performances in form three. This would raise issuas whether such grouping has any significant effect on the results of schools in the West African School Certificates Exaninations. The results cited in this study found the effect as non-significant in a controlled experimental setting, but one wonders whether an effect that is not significant in a controlled setting will work in the school setting.

Studies have also been carried out on the teaching of concepts in schocls. According to Cook ${ }^{27}$ students receiving both positive and negative instances (E. mplars) in teaching mathematics concepts did significantly stter on an algebra concepts tests than those given only positive instances. Studies in the organisation of content elements in instructional materials has lon been an important issue in educational planning (kusubel, Bruner, et. al) ${ }^{44}$. From research findings, an emperically based set of instructional desifn strategies has been developed to organized content elements in concept teaching (Klausmeier, et. al.) ${ }^{45}$.

These desien strategies include (a) the relationship
44. Ausubel, D.P. et. al. Educational Psychology: A Cognitive View, New York: Holt, Rinehort, and Winston, 1968.
45. Klausmeier, H.J. et. ヨl.: Analyses of Concept Learning. New Yrok: ícademic Press, 1966.
between examples (b) the relationship between examples and non-examples; (c) the ordering, of examples and instructional help, (d) UEveloping a procedure for selecting an appropriate number of examples, and (e) the relationship between co-ordinate concepts. Carroll and Methner ${ }^{45}$ regarded concept learning as the identification of concept attributes which can be generalized to newly encountered examples and discriminate examples from non-examples.

2.3.6 Facilitating Concept Learning

In the instructional process for concept learning, a definition of the concept should be presented in terms of its critical attributes between the examples and non-examples $\left(\right.$ Tennyson) ${ }^{46}$. Johnson and Stratton's ${ }^{45}$ study demonstrated the effectiveness of definition in concept learning. The results of this study indicated that students who were given e definition rarformed significantly better on classification of new examples, definition of the concept, sentence completion, and selection of synonyms. Klansmeier and Feldman ${ }^{45}$
found
that
a definition

46 Tennyson, R.D., et. al.: The Teaching of Concepts: A Review of Instructional Design Research Literature. Review of Education Research 50 (1) 55-67. 1980.
provided about the same amount of learning facilitation as one rational set of examples and non-examples. Markle and Tiemann's ${ }^{46}$ study showed that a concept definition best facilitates concept attainment when stated in terms of critical attributes of the concept.

For instructional process Tennyson and Park ${ }^{46}$ proposed a four-step process for concept teaching:
(1) The taxonomical structure of the content should be determined. The three levels of concept structure - super-ordinate, co-ordinate, and subordinate - should be analysed with identification of critical and variable attributes;
(2) A definition of the concept should be prepared in terms of the critical attributes and a pool of examples should be prepared on the basis of critical and variable attributes,
(3) The examples should be arranged in rational sets by appropriate manipulation of theattributes. Within a rational set, containing one example from each co-ordinate concept, the examplu, should have similar variable attributes,
(4) The presentation order of the rational sets should be arranged according to the divergency and difficulty level among examples of the concept, the presentation order of the examples within the ational sets should be decided according to jpdnte information about the learner's knowledge state (p.65).

Some of the following factors identified by Klansmeier, Ghatala and Frayer ${ }^{46}$ could affect concept planning: (1) characteristics of the learner, (2) characteristics of the instructional situation and (3) characteristics of the concept.

Obviously, the learner's age and to some extent, ability will affect concept learning, but Klansmeier and his associates gave reasons for ability being more important. They quoted Wiciott's ${ }^{46}$ results that children who scored highly on mathematics teste scored more highly on a test of concept mastery. Klansmeier and Meirke ${ }^{46}$ Iisted six functions of instruction in concept learning (1) to acquaint the subject with the structures mate:ial, (2) to acquaint the subject with the response desired; (3) to inform the subject of e strategy or method to apply for the solution of the task; (4) to provide substantive information, (5) to provide a set, of relevant inforretion examples) and (6) to change the level of motivation of the subject (pupils).

The extent which teachers use instruction which fulfil these purpoces will cietermine, t he success of their pupils in attaining the concepts, that is, the more
relevant dimensions there are, the more difficult it is to attain. Similarly, abstrizt concepts are more difficult to learn than concrete ones (raad and Dick) ${ }^{47}$. It is necessary to consider these factors as well as cbjectives, instructional materials and methods of assessment in concept learning.

2.3.7 Attitude Towards Mathematics

In the last few decades educators have become more and more concerned with the affective outcomes of educational programmes. Many teachers believe that a student's attitude towairds a school subject will affect that student's achievement in the subject (Michaels, Forsyth) ${ }^{8}$. Teachers generally are interested in pupil's attitudes towards the subject they are teaching, teachers of mathematics are particularly concerned atout pupils feelins about their subject because mathematics has a reputation for being unpopular. Zacharias (in Tima, 1975) contends that fear of mathematics is widespread among school children.

From the above comments, it would be difficult to overemphasize the importance of attitudes in school learning.
47. Reed, H.B. and Dick, F.D.: The learning and generalizetion of abstract and concrete concepts. $\frac{\text { Journal of Verbal Learning and Verbal Behaviour, }}{7,485-490,1968}$

In t afirs ${ }^{\text {p }}$ place, it is so evident to the classroom teacher, $t h$ a t the students attitudes toward his subject-matter, toward cooperating with him as the teacher and his classmates, towards attending school, toward giving ε tetention to the communication presented to him and toward the art of learning itself, are all of great importance in determining how roadily the pupil would learn.
focording to Gagne ${ }^{48}$ the school aims to inculcate in the pupil somp attitudes as a result of teaching-learning experiences. Attitures of tolerance, honesty, good citizenship are ofte: me:hioned as roals of idu...tion in the schools. What aver the particular content of an attitude, it functions to affect "approaching" or "avoiding". In su doing, an attitura influences a large set of specific behaviours of the individual. What therefore is attitude?

$$
\text { Car.pt:11 } 1^{48} \text { defined ettitude as "consistency in }
$$

response tc sccial objects". According to Allport:" "an attitude is a mental and noutral state of readiness, organized through experience, exertine a directive or dynamic influence upon the individual's resperise to all objects and situations with which it is related" (p.56). Since human beings do exhibit attitudos hence attitudes are complex states or predeposition ot human beings which effect their behaviour towards people,
 -
things and events (Gagne' and Ariggs) ${ }^{48}$. Many investigators have studiad and amphasinod in their writings, the conception of an attitude as a -ystsm of beliefs (Fishbein) ${ }^{49}$, or as a state erising from a conflict or disparity in beliefs (Festinger) ${ }^{50}$. These views serve to point out the cognitive aspects of attitudes. Other investigators deal with the affective components, the feelings given rise to or which acco:pany them as in liking and disliking.

Attitudas relating to learning outcomes in the 'affective domain' are described by Kruthwohl, Bloom and Masia ${ }^{51}$. Certain attitudes are related to action as a result of invigorated emotion. Hence, what action does the attitude support? $i=$ attitude influences a choice of action on the part of individual. According to Gagne' and Briggs 48 attitude is an internal state which affect an individual choice of action toward some object, person or event. Such action has led to attitude crisis. Attitude crisis may exist in mathematics learning among teachers, pupils and in society at large. Burton ${ }^{52}$ suggested that crisis of attitude among mathematics teachers is displayed in a number of ways the most common of which is confideace-failure.

[^6]Insecurities which can be traced back to their own experience of maihematiss ii school. The crisis of attitude amone children can elmost $f e$ identified by ;herformance - failure and dislike. The crisis of attitude in society is generally seen in the complaints of, for example, employers, that school leavers are not numerate or students perform tadly in external examination or children cannot "add"52
2.3 Mathematics Learning and Attitudes

Learning of mathematics cannot be divorced from the way the subject is :aught in schools. Many psychologists have consiciered how children learu mathematics. One school of thought is that 0% behaviourists. Their premise is, "Provide proper conditioning and you can aet human beings to behave in any way you want.". This view is represented by B.F. Skinner, Robert rapne, f . al. 34 However, another school of thought is that of the davelopnental psycholo\%ists as represented by Jean Piaqet. They both differ in their approaches on how mathematics should be taught. Those favouring learninc by discovery or invention: like Piaget and Bruner ${ }^{53}$ advocated maximum opportunity for physical exploration by the student. Hence, solutions for problems and generalizations should result from the stucent's own action on his environment, and fron his own mental operations.
53. Bruner, J. et. al.: The Process of Education, Cambridge, Massachusetts; Harvard University Press, 1962.

Those preferring ruided learning as Gagne' and Skinner, 46 emphasized the impurtance of curefully sequenced instructional experiences (information processinc) through maximum guidance by ths teacher and/or instructional material. Basic "associations" of facts are stressed. Here, association refers to the familiar stimulus-response of $S \longrightarrow R$ machanism. control the stimulus to obtain the desired response. Gagne' emphasized task analysis-what do you want the learner to be able to do? The capability must be stated specifically and behaviourilly. Piaget prefers "assimilation and accommodation" to controlled associations of stimuli to responses.

It should be noted that the logical processes involved in mathematise must be based on the psychological structures available to the pupil. These structures would change as the pupil matures physiologically and neuroloqically, and as the child has the necessary experiences in the physical world. These experiences must involve actions performed on objects and communication with other people such as the teacher and peer group.
2.3.9 Research in Attitudes
-ransell, Brooks and Petry 54 studied ability croupin! in mathematica achievement and pulils' attitudes toward mathematica and they found that self-concept appeared to decrease as nlacement within the ability groups decreased, with the high-ranked pupils in the high level class having the highest scores. In the same study by Erasseli, Brooks and Petry 54 the low-ranked students in the medium-level class appeared to have the lowest self-cuncepts of all. While anxiety and self-concept do not on․-y inversely correlate to each other, they may be related to the learning context. Finally, the group found thot mathematics salf-concept and mathematics anxiety
54. Brassell, Anne, et. al: Ability Grouping, Mathematics Achievement and Pupils Attitude toward mathematics. Journal for research in mathernatics education 11(4), 1980, 1111-119.
appeer to 'רe important correlates of mathematics
echievement. Quinn ${ }^{2}$ sfucied the casual
relationship between mathematics achievement and attitude in grades 3 to 6 and found some significe רt correlations between attitude and achie\%ement of elementary school pupils Schofiel. d^{55} on a study of teacher's effect on cognitive and affective of pupils' outcomes in elementary school mathematics found that high achievement and high attitudes of teachers were each significantly related to high achievament in pupils, bit pelated to least favourable pupil's attitudes toward mathematics in grade 6 (elementary school). It would appear that most research findings tend to correlete achlovenent to attitudes: That pupils with hizh achievement tend to have positive attitude toward the subject and vice-versa In addition, selfconcept and enxiety have significant effect on pupils' mathematice achievement and attitude. This only suggests that teachors must attend tc self-concep: enbancement and anxicty reduction in mathematics. The correlation between attitude and achievement varias not only with grade level
55. Scinfizld, H.L.: Teacher Effects on Cognitive and Affective Pupil Outcomes in \subseteq lementary School. Journal of Education Psychology. 73: 462-471, 1981.
but also with the sex of the student and is generally somewhat higher for girls. Thus, girls' mathematics marks are more predictable from theil attitude than boys' marks $(\text { Behr })^{56}$.

2.3.10 Instructional Design and Attitudes

How can one design instruction to facilitate or elicit attitude change or formation? Certainly the mechod of instruction to be employed in establishing desired attitudes differ considerable from those applicable to the learning of inteliectual skills and verbal information (Gagne') ${ }^{48}$. While McGuire ${ }^{57}$ identified the use of persuasive communication, Skinner ${ }^{18}$ s $u g g$ e s t ed the idea of arranging contingencies of reinforcements by some preferred or rewarding activity. Teachers of mathematics should use instructional strategies such as incorporating learning resources like calculators which could tend to reduce corputational problems and thus limit mathematics anxiety in pupils. The use of calculators has been found to be enjoyable and motivating to pupils in the classroom (Suydam)? ${ }^{22}$ Hence, this and other activities perceived to be enjoyable and motivating may be adopted to reduce pupils anxiety.
56. Behr, A.N., Achievement, aptitude and attitude in Mathematics, Two-Year College Mathematics Journal 4, 72-74, 1978.
57. McGuire, M.J. $\frac{\text { Handbook of Social Psychology. }}{\text { Vol. }}$ 2nd Ed.

In adcistion pupils' attitude toward the teacher may be important in the furmation of mathematics attitudes. Teachers should therefore, be aware of the fact that at this critical period of attitude formation in high school the teachers' attitudes toward mathemetics and their pupils are important and may be the determinants of pupils, attitudes teward mathematics. It may not be a new phenomenon that a large segment of the papulation fears mathematics (Gaugh, Kogelman and Warren) ${ }^{53}$. What can be d o n e? The followil. constwetive techniques and strategies can be helpful: (1) creating a positive, supportive classroom atmosphere - for example, a teacher who takes time to listen intently while a pupii asks a question, and responds with a willingness to explain, will create an atmosphere in which students feel at ease asking questions. The math - anxious are espscially sensitive to criticism and pupils with a low self-concept are reluctant to take risks (Morris) ${ }^{58}$. Hence they do not ask questions, (2) There is need to stress understanding of the thought process. The process and product aspect of mathematics problem-solving are important. Too much emphasis should not be placed on one to the detriment of the other. Pupils should therefore be encouraged to think; (3) The teacher should dispel the
58. Morris, J.: Math Anxiety: Teaching to avoid it. Mathematics Teacher, NCTM, 74(6) 413-417, 1981.
'riathphobie' in his pupils. If the teacher is not afreid to suy he 'does nut know' when it is the honest answer the rupils would have ocnfiden e in the ability of the teacher. The impression that the まeacher knows all the answers should be dispelled because it creates defeatism on the part of the pupils especially the weaker ones. (4) Provide new positive mathematics experiences. (5) Use appropriate instructional materiais to teach content. (8) Make sure each concept is understood before continuing to new one. (7) Reduce tension and pressure in mathematics classes. (8) Give positive feedback on written tests, (9) Teachers should not only be sensitive but determined.

Apart from above sugrestions, anxiety which is a learneci response to a nerative experience accordinf to Morris 55 should be prejentec. Thus, the above technicues and strateries can be tried by teachers' of mathematics aso as to reduce mathematics failure in our schools. It would be appropriate to subject each of the above surfested strateqies or techniques 'to empirical studies so as to c'etermine the their efficacy or otherwise on concept learning and attitudes in mathematics.
2.4 Calculator and Other Instructional Devices

Researches on instructional techniques and materials
59. íorris, J.: Math. Anxiety: Teaching to avoid it. Nathenatics Teacher, NCTM, 74 (6) 413-417, 1981.
such as programmed text/instruction, individualised instruction, computer-based instruction etc. have been carried out and their effects on the teaching-learning process do produce interesting results. The results of researches on programmed instruction on teaching and learning of mathematics, (for example, Abimbade ${ }^{60}$ in a study on relative effectiveners of programmed instruction to traditional method of teaching secondary school mathematics) showed that the p:ogrammed instruction group did achieve significantly better results than the traditional group. Kalejaiye ${ }^{61}$ carried out a study on the individual difference to programmed material in the new mathematics and found that programmed text was effective in changing the attitudes of pupils towards the new mathematics. Balogun et. al. ${ }^{60}$ Adewakun ${ }^{60}$ and Okunrotifa ${ }^{60}$ have all reported positive results in favour of programmed instruction, Jurgemeyer ${ }^{62}$ also got positive results with programmed instruction vis-a-vis the advent of new directions in media ter:hnology such as Videc discs, interactive Video and micro-computers.
60. Abimbade, A.: The relative effectiveness of Programmed Instruction to the traditional teaching of secondary school mathematics. Unpublished M.Ed. Dissertation, University of Ibadan, 1983.
51. Kalejaiye, A.O.: Individual differences to programmed instruction in t.e new mathematics, West African Journal of Education, 15 (3) Oct. 1971.
62. Jurgr neyer, F.H.: Programmed Instruction: Lessons it can teach us. Educational Technology, 14-49, May, 1982.

Craifnad ${ }^{63}$ reporiid nore favourable attitudes towards mathenatics as a rosult of computer-assisted instruction with seventh graders. Eut working with the same group, Johnson ${ }^{54}$ found no differential increases to positive attitudes toward mathematics. It would appear that little studies are available comparing the use of calculators and other instructional cevices. However, interesting results relating to the use of computer's in mathematics instruction would be discuss'ed so as to identify those areas applicable to calculator-use. 2.4.i Computer Based Instruction

Computar-based instruction is used here purposely to encompass a broader spectrum of computer applications: computer-assisted inviruction (CAI), and computer-managed instruction (CII). Computer-assisted instruction implies the concept of tutorial instruction, drill and practice, presents instructional material to the learner, assepts and judges responses from the learner, provides feedback and alters the flow of subsequent instructional material on the basis of the Leannei's responses whereas the computermanaged instruction relies principally on the record-keeping and summarisinc power of the computer. However, one's

63	तrawford, A.N. and Johnson, F.E. see Aikan, L.R., In "Updése on Attitudes and other Affective variables in learning mathematics" Review of Educational Research 46(2), 293-311, 1976
04	Johnson, R.E.: The effect of activity oriented leason on the achievement and attitudes of 7 th grade students in mathematics. Dissertation Abstracts International

emphosis in thas revzon shall be the cornuter-assieter instruction whach is vore relevent to the otective of the present stuly.

2.4.2 Evolution of CCrputer-nssisted-Instruction (CA,I)

Followin" wivinelin? interest in iroorammed learning
and with the einarent of new tschnoloy, ediucators have askec: liow far has ecucation/instruction been individualisec with the new technolory like computer? Burns and Bozeman ${ }^{65}$ proponents of . CAI asserted that computer's support for the instructionel process offored the promise of preater student achievenent, more afficient use of humen and naterial resources, impreved ettitudes toyeres the learnin- process, and entrancer ent of quality education in general.
Pong th. first users of C.A.I. were embers of the Comater inciusty win, in the late 50 's user cormuter-basect instructor to treir their cun persannel (Suppes and facken) ${ }^{60}$. Educator's interest focussed on programed instruction as a n:eans toward incivilualised instruction. Educationally, C.A.I. was an almost netural conbination of energing conputer technolory anci the propramed inetruction movement (Scheen and Hunt) ${ }^{\text {th }}$. Among the early C.A.I.
©5. Eurns, P.K. anc: Eezelien, H.C.: Computer-Assisted Instruction anc athenetics Achievement: Is there a Relationship? Euucaticnel Teshnolocy, 1801
©8. Suppes, \bar{P}. et. \bar{i}. Institution for lathematical Studies in the Social Sciences, California, Standforci University, USA, 15.7.
17. Schoen and Hunt: In. Eurns and Enzemen. Eilucational Technology, 1s?.1.
models to emerge was the Standford Project*. It began in 1963 and its original aim o, ntred on the achievement of a small tutorial system intended to previde instruction in elementary mathematics and language arts. It went through different phases such as Stan !ford Crill-and Practice System. There were other projects like The Individual Communication System (INDICOM) launched in 1967 in the Waterford, Michigan School District; then PLATO (Programmed Logic for Automatic Teaching Operaiions) System which originated in the coordinated Science Labnratory at the University of Illinois, U.S.A.

The PiATO Project has also gone through many phases. For example ${ }^{\text {LATO IV system (1981) which continues to be }}$ operational, supports several hundred terminals at dispersed locations. Each terminal site is provided access to a central lesson library. The powerful and relatively facile author Language of PLATO salled TUTOR accommodates simultaneous system time sharing by students and teacher as lesson materials. The projects hive, at the elementary and secondazy school levels been concentrated in the areas of mathematics and language arts. There are many other systems all over the world but it appears that the Nigerian educational systems has not been able to catch up with these new technological approaches to education. This may probably be due to
the cost of computer hariware which is generally very expensive.

2.4.3 Pedagogical effecouveness of CAI

Published studies comparing the effectiveness of CAI to traditional instruction report conflicting and inconclusive resulits. Most studies, however, generally conclude that an instructional programme supplemented with CAI is at least as effective or more than a programme utilizing only traditienal instructional methods (Magidson) ${ }^{68}$. Research in the area of CAI effectiveness has typically investigated one or more of five criterion variables; student achievement, student attitudes toward CAI and towards subject-matter, time-savings relative to unit completion and/or masiery learning, learning retention and cost factors. Results of a review of research literature on CAI effectiveness on the above criteria as compiled by Edwards et al ${ }^{63}$ are as follows:
(i) All studies reviewed have shown normal instruction supplemented by CAI to be more effective than the normal instruction alone:
(ii) bien CAI was substituted, in whole or in part, for rraditional instruction, 45 percent of the studies
68. Magidson, E.M. Issue overview: Trends in CAI Educational Technology 18(4), 1978, 5-8.
69. Edwards, J. et al. How effective is CAI? Review
demonstreted zreater achievement by CAI students, while 40 percent found little or nc difference, 15 percent showea mixed results.
(iii) Basad on available results, it cannot be concludea that any given CAI mode is more effective relative to student achievement, than other modes.
(iv) CAI has teen shown to be equally effective relative ثo student achievement, when compared with other non-traditional instructional methods.
(v) All studies showed that it took less time for students to learn through CAI than through other methods.
(vi) There is more evidence that learning retention levels of CAI students may not be as high as those of traditionally taught students.

Most of the researches reviewed in this study came from United States of America which appear to be the only country that has the largest published work in computer-instruction. There are no available records on computer inst yotion research in this country except the work of Ohuoha on comput r's utilization in Nigerian Universities with guidelines for improved utilization (Columbia University, Teacher College, 1981). With the advent of t, chnological approaches to education and instruction in Europe, U.S.S.R.
and America, there was rerawed interest in student reactions to iristruciionai fechniqi... Several studies have reported students' aititudas ioward computer-assisted Instruction (CAI) (Brown, Filip and Murphy) 70

2.4.4 Atititucies and CiI

Atiitudes are probably dependent on the kind of experience individuals have with instructional device. Resenberg, Rezuikoff, Stroebei and Ericson ${ }^{71}$ reported that nurses attitudos tewari somputers became favourable after they had actuelly worled with computer. \quad Wodtke 72 found that those students who performed well wh.en instructed by a computer had core favourable attitudes toward it than those students who performed poorly. He concluded that favourable or unfavourable attituces of students toward a teaching method could be tho result of their experience with the particular method of instruction.

Mathis ${ }^{73}$ found that College students génerally have positive attitudes towards compters when exposet to raI. It yen alsn found that the CAI has a major etrantage over other teaching machines or
70. Brown (1967, Filip and Murphy (1967). Communications, Mass without meaning. Educational Technology, April 15, $2967,4-5$.
71. Rosenberg. M.J. et al. Developing effective Instructicnal manuals and computers. Educational Technology, Jan. 1967.
72. Wout: e, R.C. Computers and Learning strategies. Educational Technology, Dec. 1965, 1-5.
73. Mathis, A. College students attitudes toward CAI, Journai of Educational Psychology, 61(1), 1970.
programmed texts in that students can branch immediately to easier materials if they begin to make many errors (Suppeș) ${ }^{66}$. Most of the studias showed favourable attitude toward CAI, but, would the use of calculator generate such favourable attitudes? It wuuld taje buan possible to infer the result of such investigation but this may not be so until empirical study integrating the use of calculator into instruction is carried out. However, from studies so far cerried out there are e.idences on the positive note for CAI. For Hansen et'el ${ }^{75}$ in "What Teachers think - Every high suhool graduate should know about Computers" found that teechers supported the idea that students should have some minimal understanding about computers, but the extent of coverage of computer topics was minimal Kleiman, G. and other ${ }^{76}$ ivorking on microcomputers and hyperactive children found that children did almost twice as many exercises with the computer as they did with paper and pencil, although no diffeeences were found in proportion to correctness or time at ajes 6-14 years. De-Elessizo studied attitudas towarc computers in High School mathematics courses and found

75 Hansen, T.P. et al. What Teachers Think Every High Sohool Eraduate shculd know about Computars. School Science and Mathematics 81: 467-472: October, 1981.
78 Kleimas, G. et al. Micro-computers and hyperactive children in Creative Computing 7: 93-94; March 1981. 77 De-Blassio, J.K. and Bell, F.H.: Attitudes Toward Computers in High School Mathematics Courses. International Journal of Mathematics Education in Science and Technology. 12, 17-56, Feb. 1981.
positive correlations between students' attitudes toward using a computer and attitudes teward mathematics and instructional setting, plus achievement variables for grades 11 and 12 . These results are quite significant because it relates effects of compute on mathematics achievement and attitudes which has a good bearing with the present study. However Casner ${ }^{78}$ in a study of attitudes toward mathematica of eighth grade students receiving computer-assisted Instruction and students receiving conventional classroom instruction found no significant differences in attitudes toward mathematics between girls using or not using CAI, but boys using CAI showed less negative attitudes towards mathematics at secondary school Ray ${ }^{79}$ studies the effects of computer assisted test construction on achievement in first year algebra and found that students using the computer assisted test with repeatable testing achieved high score than students taking a traditional course at secondary school level. Not only is the computer used for testing but Sears ${ }^{80}$ c omprared
78. Casner, J.L.: S Study of Attitudes Toward Mathematics of 8th Grade Students receiving CAI and Students receiving conventional classroum instruction Unpublished Ph.D. Thesis, Univeriity of Kansas 1977.
79 Ray, K.L. The effects of Computer-Assisted Test Construction on achievement in first jear algebra. Unoublished Ph.D. Thesis, University of Southern Calfornia, 1977.
80. Sears, L.O. A problem of the Effects of Teaching a Course in algebra II and Trigonometry via Traditional Method and Other Methods. Unpublished Ph.D. Inesis, University of Houston, Texas, 1977.
scme teact.ing methods in solving algebraic and trigomomebrical problems and found t, at there were no significant differences in achievement between the methods including computerassisted instruction at the Secondary Sc^{\prime} эol. However, Vincent ${ }^{81}$ studied the computer's c a p a bilities a $n d$ effects of supplementary computer assisted instruction on the mathematics achievement and attitude towards mathematics of high school students. . He found that students using CAI drill and practice programme had better achievement and attitudes than those not using CAI at grades 9 - 12 . Essentially, most of the studies reviewed have demonstrated some relationship between. imputer and mathematics. It would appear fr-m research literature that mathematics instruction can be facilitated with the uie of computer. Before any conclusion can be made it would be necessary to establish the basis for computing in mathematics instruction. The process for mathematical comutation shall be discussed so as tu elucidate on the place of calculators and computer in mathematical computations.

81i Vincent, A.T.: The effects of supplementary CAI on the mathematics achievement and Attitude in CMR High School. Unpublished Ph.D. Thesis. University of Cincinnati, 1977.
2.4.5 Computers and mathematics

Electronic caiculators like computers have speed, internal memory but requi.res hu:nan direction at each step in a computational routine. The electronic calculators have limited facilities in terms of stored program. The stored progran: characteristically marks the difference betwosn computers and electronic calculators. Computer's stored program usually includes logical tests to determine which of many possible program steps should be taken at important junctures in the program.

Thus, th: stored program is nist just a sequence of steps to fo2?. in computatirn of computer programming but tifically jiceludes all possible paths that computation might take within the scope of the problem, being programmed. Computers and other cajculating machines owed their developments to the works of nineteenth century English mathematician George Boole ${ }^{82}$ anci his "Algebra of logic" popularly called Boolean Algebra which represents logic in mathematical symbols and provides rules for calculating the truth or faisity of statements. Other works were those of Herman Hollerith on machine purchased-card while Howard Aiker in 1937 designed a machine that could automatically perform a sequence of arithmetic operations. ${ }^{1}$ However, the
82. Boole, Georys: The Laws of thuught, 1854.
reinarkable work by Charles Babtage in 1812^{1} who devised a machine railed a "differet rial machine" which could automatically perform simple computations needed for trigonometric and logarithr.ic tables. It was his invention of anslytic engine which led to todays switching networks and internal storage for data processing.

Electronic calculator like computer is an important technological advance because it extends and expands the capabilities of man. Unaided, man is rather "puny". Variety of - somputers/calculators have reduced or eliminated druggery conriected with extended computations. Calcilator or computer sannot perform any operations which cannot also be performed by human being but the calculator or computer can operate at very high spcea, store and retrieve data at High spaed Howevar, man can reason heuristically and he is best ruiter to think, resson and discover: whereas a computer is hast adapted to calc'llate, manipulate and compare at yery supersonic sozed.

To every mathematical problem there is, a solutionprocess (See Fig. 5). Onee a problem has been identified in the reel-.arld, the objectives of a solution-proeess are definet. Fizeolution, some abstraction based on human interpretations would produce information/data that are processabie by numerical methods to provide solution. The information may be generated in varioas ways such as mathematical :jrmula or numerical data which would be defined, processed and solved.

The numerical method are applied in the computational phase, which is a decisive portion of the total problem solution. This processing of information with the feedback mechanism is the basis for systems approach to mathematical computation.

Fig. 5: Solution process in mathematical computation Source: Modified from Paul, G. A. Introduction to Scientific Computing, New York; Meredith Corp., 1971, pg. 9.

2.4.6 Research in computer-nathemetics

Many researches have been roported in computer and mathemetics but those onss dealing with concept learning have to he identified. Most of the studies reviwed recorded significant differences between groups using computer for computatation and those not using. However, for concept learning there are conflicting reports as to any advantage in the use of computers. Wright ${ }^{83}$ investigated selected decision making processes for aspects of a computerassisted and mastery learning model in basic mathematics and found no significant differences between four treatments varying the type of drill and practice. Similarly Cheshire ${ }^{84}$ sturied thr effect of learning computer programming skills on deve-oping cognitive abilities and found no significant difference in problem-rolviig scores between computer programming and algebra classes classes at grade nine. However, Cranford 85 in a study of the effects of computer- \bar{c} isted instruction on achievement in mathematics
83. Wrizht, E.E. Investigation of Selected Decision-Making Processes for aspects of a computer-assisted and Mastery Learning mudel in Basic Mathematics. Ph.D. Thesis, The Pennsylvania State University, 1977.
84. Cheshire, F.O. The effect of learning Computer Programming Skills on developing cognitive abilities. Unpublished Ph.D. Thesis, Arizona State University, 1981.
85. Cranford, H.R. A study of the effects of CAI in Mathematics on the achievemant and attitude of pupils Grades 5 and 6 in a rural setting. Unpublished Ph.D. Thesis, University of Southern Mississippi, 197E.
and attitude of pupils in grades five and six in a rural setting found that the groups which used a computer drill-and-practice program achieved at a faster rate on computation and applications tests. Littlu difference was, however, found in understanding. Some of these studies have ehown ' no significant differences in learning of concept by computer but some studies where computers have been integrated into the instructions gave positive results. Deloatch ${ }^{86}$ did a comparative study on the use of computer programming activities in an introductory college mathematics course for disadvantaged students and found the computer-augrented instruction to have significant positive sifect on the mathematical attitudes of disadvant, ged students, but not upon their achievement at College level. Lamb ${ }^{87}$ in a study on the co-ordination of graph theory and computer science at the secondary school reported that students with access to computer terminals scored significantly higher in achievement of graph theory content than students without such access.

86 Deloatch, S.J.: A comparative study of use of Programming abilities in an introductory college mathematics for disadvantage students. Unpublished Ph.D Thesis, Indiana University, 1977.
8\% Lamb, R.L.: A study on the coordination of Graph Theory and Computer Science at the Secondary School. Unpublis':ed Ph. D Thesis, Georgia State University, School of Education, 1976.

From studins carriet 林 so far one can gather that the compusar could be frogrammed to serve as a test generator anc administrator. Computers have been used in educaticnal settings and for instructional processes, individualising instruction, testing or drilling for competency in basic facts. Computers can be used as teachingaids that help to achieve the objectives for mathematics learning. When access to computer is available students will be able to use the computer for programing the solutions to pre5lems; for simulating si.tuations in order to test hypotheces, for gaming, as a study of probability and statisticss as well as for testing, practising, drilling ind tutoriag.

2.4.5 Conclasjon

Most of these researches reviowed have been carried out abroad by different renearchers functioning in different environments. Their findings may be affected by environments, to apply their conclusions to the Nigerian situations directly may be inaf, ropriate because the Nigerian environment differs from those of pupils in Europe and United States of America who are more exposed to stimulating and sophisticated environments. It would be appreciated that the input of the environment on the individual could play a significant role on the psychological thinking, perception, reasoning and
learning of the individual. For pupils in an enriching and stimulating environment, they would be motivated and are likely going to learn better and achieve better in schools than pupils not exposed to such environment. It only means that pupils in under-developed countries of the world will of necessity be at a disadvantage. The advanced and industralised countries have always provided a wider range of experiences. This limitation portends itself in the area of technological based-instruction for example the use of caiculators or computers in instruction. Besides, only very few studies on concept learning in mathematics have been carried out here in Nigeria. Falokun ${ }^{88}$, Oni ${ }^{89}$ and Ogunyemi and Eeltie ${ }^{90}$ have all investigated concept formation in mathematics using different experimental variables. However, none of them has tried to integrate the use of electronic calculator into the instructional process to find out the effect of such a device on the concept learning and attitudes to mathematics in the secondary school.
88. Falokun, C.O.: Concept formation in algebraic equations and problem-solving among form V studunts in Oyo State of Nigeria. Unpublished M.Ph. Thesis, University of Ibadan, 1983.
89. Oni, E.ク.: Conceptual difficulties with ionic equations as function of intellectual development among secondary school students. Unpublished M.A. Thesis, University of Ife, Nigesia, 1982.
90. Ogunyemi,F. and Beltie,J.: An investigation of cognitive preferences in mathematics among high and low achievers in the Nigerian Secondary Schools. $\frac{1 \text { frican Journal of Educational Research, Vol. } 11}{\text { pp. 97-105, 1974. }}$

CHPDTER TIIREE

RESEARCH DESIGN AND PILOT STUDY

3.1 Intraduction

The research is basically experimental using a 3×3 fastorial design. The independent variables or main effects are mental ability levels and different modes of instructional presentations, while the dependent variables are achievement and attitude measures.

			MENTAL ABILITY LEVELS		
			$\begin{gathered} \text { HIGH MENTAL } \\ \text { ABI LITY } \\ \text { C1 } \end{gathered}$	AVERAGE MENTAL ABILITY C2	LOW MENTAL ABILITY C3
$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$		USE OF CALCULATOR IN INSTRUCTION AND TESTS (UNRESTRICTED GROUSS)	$\begin{gathered} A \\ (12) \end{gathered}$	$\begin{gathered} B \\ (12) \end{gathered}$	$\begin{gathered} C \\ (12) \end{gathered}$
$\underset{\sim}{\underset{\sim}{2}}$		USE OF CALLCULATOR IN TESTS ONLY (RESTRICTED GROUPS)	(12)	$\begin{gathered} E \\ (12) \end{gathered}$	$\begin{gathered} F \\ (12) \end{gathered}$
¢		NON-USE OF CALCULATOR IN INSTRUCTION AND TESTS	(12)	$\begin{gathered} H \\ (12) \end{gathered}$	$\begin{gathered} I \\ (12) \end{gathered}$

Fig. 6: Paradigm of 3×3 factorial design of pilot study.
Number of cells, $K=9$.
Number of subjects in each cell, $n=12$.
Total Number of subjects, $N=108$.

The design is comparable to three-group, before-after design proposed by Solomon ${ }^{91}$. I+ provided a way to aveid possible interactive effects due to the pretest or pre-attitude and also allowed for both to be used as covariates in the data analysis. The main hypotheses were tested on the effects of calculator use and instruction on concept learning and attitudes towards mathematics and calculator. The experimental and control groups were selected for treatments at random from population of form five pupils in the secondary schnol.

The structure of this type of research design, according to Kerlinger ${ }^{92}$ is where two or more independent variables are juxtaposed in order to study their independent and interactive effects on depenuent variable. In this study there were two inderse ant variailes - mental ability levels and modes of presentation and two dependent variables - achievement and attitude reasures. The assignment of the subject of the study to treatment groups was randomly based on their mental ability levels. The rental ability levels of the subject were obtained from the results of their Mental Language/Verbal (ML) and Mental numerical (Mo) tests. 91. Solomon, R. in Kerlinger, F.i. Foundation'oi Behavioural Research, 2nd Ed., New York: Holt Rinehart and Winston Inc., 1975, 339-375.
92. Kerlinger, F.N. Foundation of Behavioural Research. and Ed., New York: Holt, Rinehart and Winston inc., 197..

The tests were developed and validated by Australian Council for Educational Research (A.C.E.R.) and they had been used by differen ${ }^{2}$ researchers in the Faculty of Education, Univarsity of Ibadan, Jigeria.

However, Campbell and Stanley ${ }^{53}$ have noted the possibility that some errors might result from employing the usual statistics appropriate for the random assignment of individual pupils to treatment groups, such as the ANOVA (Analysis of Variance) for intact classes assigned to treatment ginups. In this study therefore, the use of the pre-test and pre-attitude mean scores were used as covariates to serve for adjusting the initial differences thin and between groups.

If T_{1}, T_{3} and T_{5} rerresent the pretests, X_{1} and X_{2} the treatments and T_{2}, T_{4} and T_{6} the post-test, the design paradigni can be represented in this format:

Pre-treatment	Treatment	Post-treatment
T_{1}	X_{1}	T_{2}
T_{3}	X_{2}	T_{4}
T_{5}		T_{6}

93. Camptell, 0 . and Stanley, J. Experimental and Quasi Experimental Designs for Research, Stukie; Mllinois: Rand Mcivally, 1963.

Both the pre: -and-post treatments incorporated the attitude e..d achievement measures. Levels of treatments variec derseding on the greups. One of the groups received the full treatment: salc:lator-use in instruction and tests, other experimental group received treatment of calculatoruse in tests only and the control group did not receive any treatment on calculator, that is, non-calculator-use.

The aim of this research was to find out how instructional product could facilitate teaching-learning processes, hence the design is an empirical study on the improvement of instruction. The exparimental -control group design using equatec experimental group subjects and control group subjerts th ush randomization, equal number of subjects in each cell pruvided an effective comparison in this factorial design. According to Kerlinger ${ }^{92}$ research design has two basic purposes:
(1) to provide answers to research questions and
(2) to control variance.

What the research design Joes is therefore to help the invectigaivi ubtain answers to questions of research and also to cinvrol the expeifimental, extraneous, and error variunces of the paricicuar resaarch problem under study.

The focus of this study arose as a result of educators' concern on:
(a) possible change in pupil's attitude toward calculator and schoul mathematics;
(t:) possible interference with pupils growth in inowiadge of ias c mathefiatical facts and paper-pencil cumputations,
(c) possibie chanyes in children's scores on standardized achievement tests in mathematics.
(d) Ac phtial development of additional mathematics coi jupts related to calculator:
(e) possible change in computational power of pupils when using calculetors and
(f) facilitation of mathematics conceptual learning and protlem-solving skills of pupils through the use of calculato:.

3.2 Population and sampling procedure

The form five pupils. in the secondary school in Oyo State, Nige ia at the time of this study constituted the population, and subjects used ware from the sampled population. The subjects wsise all enrolled in the sampled schools at the time of study. The choice of this categor of stiudents was considered appropriate because they alrea had the requisite knowledge of basic mathematical operations of addition, subtraction, multi, 1 ication and division. Their overaze agy was ithin the piagetian operational rang: wheru syntolic austraction it possible. They were aircady fami:icr with mathematics as a school subject, anc hence, they were sufficiantly predisposed to the learning of suitably preparad structural materials in equations.

The sampling technique adopted for this investigation was the rancom sampling approach. Kerlinger ${ }^{92}$ defined this as the method of drawing a proportion (sample) of a population or universe so that all pussible samples of fixed size have same probability of being selected. This approach is regarded by statisticians to be the most practical and free of bias. Fo: instance, Kerlinger also observed that a sample drawn at random is unbiased in the sense that no memter of trie pofillation has any more chance
of being selested than any other member" ${ }^{96}$. However, because of the nature of this research design it was not practicable to randomly select schools throughout the state. Therefore, n multi-stage random sampling selection of the secondary schools in I badan city for this study was carried out. The selection of subjects into treatment groups were also carried out through random sampling technique.

[^7]
3.2.1 Selection of Schonls for the Study

As at the time of this study there were 750 secondary schools in Oyo State and 95 secondary schools in the Ibadan Municipality. Different schools were selected for:
(i) validation of research instpuments.
(ii) pilot study.
(iii) main study.

The choien of schools in Ibadan city for this study was bocouse of the accossibility of the researcher to the subjects used in this experimental study.
(i) For the validation of research instruments, United Secondary School, Ijokodo was chosen. The school was established in 1980, and it is made up of boys and girls. Tha school first presented pupils for West African Examination (WAEC) May/June 1955 Goneral Certificate of Education, Urdinary Level (G.C.E., O/L) Examineitions. The school has both Junior Secondary School and Senior Secondary School (JSS/SSS) in line with the New Nati inal Policy
on Educstion 6-3-3-4 system. As at the time of this study, the echeol had a population of about i500 pupils. The school had five arms of form five and the arns were divided into Arts and Science classes. The sesearch instruments for validution were mathematics achievement test and attitudes towards mathematics and calculator use in mathematics questionnaire. The mathematics pre-test had earlier jean validated in provious study ${ }^{60}$.
(ii) The mu!.ti-stage random technique was used for the saluction of the school for the pilot study. Uut of the 95 secondary schools in the I badan Municipality only 33 of the schools we.s or xed (boys and girls). Only sixteen of the $: 1001 \mathrm{~s}$ were established more than ten years ago. Most of the 33 schools were established in 1980, and they first presented pupils for West African Examination Council/General Certificate of Education ordinary level exami:nation in 1965 . ficust of these schools have relatively large number f pupils averaging about 1000 or more pupils in each school.

Those schools established more than ten years ago have larger number of pupils average atrout 2000 nupils per school and more equipped than 1900 schools. A11 the schools have JSS/ SSS. Five of the schools were randomly selected out of the 16 schools. in the basis of their West African Examination Council (WAEC) results in 湤eral Certificate of Education, ordinary level (G.C.E., O/L) mathematics for the last five years (1980-1984) five of the schools were somparable, (see Table 3). Une of the schools Ahmadiyya Eramar Schonl, clayele, ibadan was selautsd ty tallot for the pilot study.
(iii) The procedure for the selection of schools for the main study would te discussed in chaptei four of this report. However, the pilot and main study schools were relatively apart. This was to reduce any possible experimental contamination between the sutiocts in tha study.

tadle 3

W!AEC/GCE results of ampled schools in mathematics

SCHOOLS	PERCENTAGE PASSES FOR THE YEAR					AVE. PASSES
	1980	1981	1992	1583	1984	
```ADEKILE GOODWILL GRAM. SCFi., APERIN, IBADFN.```	37.8	46.3	65.6	53	47.3	50
HOLY TRINI TY GRAM. SCH. : OLD IFE ROAD, IB ADAN	43	24.6	45.3	45.5	85	48
IBADAN CITY ACAUEMy: ELETA, IEADARI.	62	55.6	42.4	41	50	50.2
AHMADI YYA GRAM. SCH., ELEYELE, IBADAN.	45	20	36	42	32	45
I SLAMI C HI GH SCH., EASORUN, IBADAN.	59	52	63	37	31	48

### 3.2.2 Selaction of Subjects

The subjects usod for the study were mainly secondary school pupils. The pupils were considered as representative of the country's secondary school population because they came from different ethnic, cultural, religious and socio-economic background. The assumption was that the pupils in this group were not different in any way from pupils in other comparable schools in Nigeria. The study was conducted with the form five pupils who were in their first term of their final year in the school. There were 216 pupils (boys and girls) in form five of the pilot study schooi. The whole of the form five pupils of the scizol took the d.C.E. R. niental ability tests (ML and (1).

Out of the 210 pupils who took the tests those pupils who scored between 32 and 51 were within the high mental ability leval and 36 of them were rendomly selected into the high mental ability (fiMA) groups. Those who scored between 27 and 31 were within average mental ability level and 36 of them were randomly selected into the average mental ability (AMA) groups. Similarly, those who scored
betwese: 20 and $2 €$ were within the low mental ability level and 30 of them were raidotily selected into the low mental ability (Lins) groups.

Twsive pupils (subjocts) per group from the HMA were randomly selected into calculator in instruction and tests group $\left(E_{1}\right)$, calculator in tesis only group $\left(E_{2}\right)$, and noncalculator group $\left(E_{3}\right)$. The same random selection was done for $A M A$ into $E_{1}, E_{2}$ and $E_{3}$ groups. The same procedure was carried out for LMA groups. A total of 108 pupils took part in the pilot study. The same procedure of subjects selection was carried out in the main study except that the 3 treatment groups idere in 3 schools. The nature of the research design allcifd for the use of boys and girls schools for tha pilot and main siudies. However, to control for sex variable one would have used girls only and boys only schools. Sut this design controlled for sex variable by having near? y equal number of boys and girls in each cell/group. Kerlinger ${ }^{92}$ observed that both girls and boys are used in an experiment, randomization oan be usea in ordar to balance the individual differences that are concomitant to sex. Then the number of girls and boys in each exporimental group will be
approximately equal". The girls and boys were assigned randomly in nearly equal numbers to the groups in the pilot and main studies.
3.3 Research Instruments:

These are ACER Higher test ML and MD published by Ausi:ralian Council for Educational Research (ACER) (See Appendixes 8 \& 9) which are standardized tests in verbal and numerical abilities. Howevar, the tests were modified for ti:e :Agerian situation. There were also authorprepared instruments such as:
(1) Attitude measl.os towards mathematics and calculator.
(2) Mathematics pretest.
(3) Mathematics achievement/post-test.
(4) Instructional Module in Mathematics.

In this etudy, mathematics achievemant test and mathematics post-test meant the same test.

### 3.3.1 Preparation of Instruments

(1) Attitude Scale

Working from the basis of 20 -item scals developed by Aiken and Dreger ${ }^{97}$ and using the Likert scaling procedures, the attitude scales were two Likert-type A \& B with five response-options. One scale was used to measure attitudes toward mathamatics ( $A$ ) and the other to measure attitudes toward the use of calculator in mathematics by the pupils ( $B$ ). For scale $A$, there were 12 - $i$ tems and for Scale $B$ there were 14-items, Pupils responded to each item by choosing one of five Likert alternutives: strongly agree (5), agree (4), undecifed (3), disagree (2) and strongly diaagree (1). There were equal number of positive and negative items in each scale. The positive items were scores, 5, 4, 3, 2,1 as shown on scale. The negative items were reversed for purposes of scoring. The same response alternatives were used with all items. The instrument was fieldtested, and pupils were interviewed to determine how valid the scales were for reflecting the pupils' attitudes. The pupils' responses were registered in the epace adjacent to an item. (See Appendix 10).
97. Aiken, L. R. Jr. Personality correlates of attitude toward mathematics. Journal of Educational Research, 1963, 56, 576-580.
(2) Mathematics -re-test:

From the learning expecienoes of the pupils a sample of question-items on linear equations was prepared. The construction of the test items was based on the andlysis of the objectives in the cognitive domain, knowledge, comprehension and application. For the task analysis, we have algebraic operations, expressions, identifying euqations, forming equations and solving equations to comply with the following behavioural objectives:
(i) to identify expressions such as:

$$
a x+b
$$

from linear equations of the form:

$$
a x+b=
$$

where a and b are constants.
(ii) to form linsar equations with one variable:

$$
\frac{7 x+4}{4}-6=0
$$

(iii) tu solve lineer equations of one variable:

$$
3 x+x+2=10
$$

The numbers - 'for sech of the behavioural objectives and corresponding topics wers worked out. On the whole, 15 question test-item was constructed. The test-items were multiple choice objective questions format, and the pupils were expected to complete the test in 30 minutes. It was field-tested for validity and reliability.

Miathematics pre-test items construction
format for content validity

TOPICS		BEHAVI OURAL OBJECTIVES			TOTAL
		KNOWLEDGE	COMPEHENSION	APPLICATIEN	
1	Algebraic operations	1	1	-	2
2	Algebraic Expressiona	1	1	1	3
3	I dentifying Equations	1	$1 \sim$	-	2
4	Forming Equations	1		1	3
5	Solving Equations	2	2	1	5
	TOTAL	6	6	3	15

(3) Mathematics post-tesi:

The test-itam content was based on equations: simple, simulatenous, and quadratic. The test was applicable to forms four and five pupils of secondsry school who had covered these aspects of the seonciary school mathematics curriculum. The test-item selection was based on the following objectives:
(i) to provicie pupils with basic facts on algebraic concepts.
(ii) to develop pupils' computational skills in mathematiss.
(iii) to identify relations in mathematical concepts.
(iv) to solve simple forms of different equations.
(v) to trunslate word problems to equation and solve them. The objectivas were translated into the test glan relating each objective to the cognitive domain and the appropriate task.

## TABLE 5

Mathemé. ics post-test plan for content validity

TOPICS	CO GNI TI VE DOMAIN				TOTAL
	COMPUTATI ONAL   ALGORI THMS	CONOEPTS	APPLI CA-   TIONS	PROQLEM   SOLVING	
Simple   Equation	4	4	3	3	15
Simultaneous   Equations	3	3	2	2	10
Quadratic   Equations	3	1	1	-	5
TOTAL	10	8	6	6	30

The test items were made up of 30 multiple choice objective questions. Each test-item had five options lettered $A, B, C, D$ and $E$. One of the options was the correct answer. The pupils :are required to answer all the questions in 40 minutes. Fur validity and reliability of the test, a pilot study for the test validation was carried out. The school used to carry out both validity and reliability tests was United Secondary School, Ijokodo, I badan.
(4) Instructional :Wr iule

The module had baen prepared in response to the need for appropriate and adequate mode of instructional presentation. From the analysis of some Nigerian textbooks on secondary school mathematics carried out it was observed that they did not mee' the need of calculator-use in instruction. It becane necessary to prepare both the module and calculator in instruction guide (See Appendix 7).

According to $\mathrm{Be} 11^{98}$, the main difficulty, of course, is that few existing school mathematics textbooks have really interesting problems that exploit the power given by calculators.

Presentation sequence in the teaching of mathematical concepts plays an important rols in the leaming of the subject. Suppes, like Gagne, 5 , subscribes to the idea of the importance of accounting for content structure in the study of learning and sequencing. Suppes. Hyman and Jeman ${ }^{5}$ statid that in the cognitive domain mathematics provides one of the clearest examples of complex leaming and performance, for the structure of the subject-itself provides $n$ ne ous constraints on any adequate theory. A substantial amount of Suppes' work reflects the attitude contained i:i the following statement:

For anyone interested in the psychological foundations of mathematical concept formation

[^8]i.: is natural to ask what is the sort of connection that molds between the logical structure of mathematical concepts and the psychological prccesses of acquisition of the concept. 8 (p.73).

Here the need to determine the hierarchies of learning mathematical concepts which would conform with psychological principles becomes necessary as well as the mediational procedures. To this end, the ideas of Ausube $1^{99}$ on Advance Organizers and Gagne's ${ }^{100}$ learning hierarchy theory were utilized in the construction of the instructional module used in this study. Since calculators were used as part of treatment in the stuły the instructional module was developed to tap the int insic capahilities of the calculator. Herce, the instructional module was prepared with
99. Ausubel, 0. P. The Psychology of Meaningful Verbal
100. Gagne: R. M. Learning Hierarchies. Educational Psychologists 6(1), 1968, 3-6.
tie following oljuctives i., vi:w:
(i) To introduce tive pupils to the concept of equations, simple, simultaneous and quadratic.
(ii) To identify different forms of equations: simpia, simultansous and quadratic.
(iii) To solve simple forms of different equations: simple, simultaneous and quadratic.
(iv) To translate word-problems into equational format: simple and simultaneous.
(v) iu \%olve the word-problem-equations: simple and $\dot{\text { antill tenaous } \text {, }}$

The above ubjectives wre rulated to the cognitive domain in the learning content. Hence, appropriate instructional module on simple, simultasoous and quadratic equations was developed. (See Appendix 7).
3.3.2 Validation of instrunents
(1) Attituda Zuestionnaire:

The attitucie meesures-scale for mathematics and calculator, prepared by the author was validated for use at United Secondary School, I jokodo. The 12 -item and 14 -item of attitude toward maihematics and attitudes toward calculator

We: develope $;$ in :ine with Aiken and Dreger ${ }^{57}$ using the : ixert S.alt procudure. The subjects were form five pupi:- of the school in which two classes were selected wandomly (by ballot) as sample for the vaidation process. Fupils responded to each item by choosing one of five Likart alternatiッes: strongly agree, agree, undecided, disagree and strungiy disagree. The sessions were conducted during the free periods of the sampled classes with their mathinatics teachoy. in attendance. The purpose of the qJestionnaire was explained, and that it would be followed with an achievement test. The questionnaire was first adminisiered before achievement test so that the test might not interfaie with the response set. On the whole 80 fupils ras uonded to the questi maire. Out of the 80 pupils, 40 pupils were randomly seloctad for tasting the validity and reliatility of the scale.

For tha internai consistency relizbility coefficient of the attitude measure. Fearson product moment used to compute the correlation coefficient between odd and even ( $\mathrm{r}=0.98$ ), usirg Spearman-3nown coefficient the reliability coefficient was found to be 0.99 (for the calculation see App indix 11 ). The colculated correlation coefficient of $r=0.98$ is significant for $N=20$ at $\alpha=.05 r=0.423$.

While another widely used irdex of item discriminability was the critical ratio based upon the means and variances of the upper and lower $27 \%$ of the sempled distribution. The rorrelation co-efficients of mathematics-attitude and calculator-attitude were computed (See Appendix 12). The mean significant difference of the mathemacical attitude scale and calculator attitude scale was computed (See Appendix 13). Shaw a n d Wright 101 stated that Aiken and Mreger, in 1964, reported a test-re-test reliability coefficient af C. 94 . It would ou found that those two results are quite close ₹orrelation coefficient between $27 \%$ upper score and $27 \%$ Lower Score on Attitude Scale (MAS and CAS) obtained using Speerman-Rank Order Correlation coefficient. The correlation betwesn $27 \%$ upper scove and $27 \%$ lower score on attitude scale for mathematics attitude score (MAS) and calculator attitude score (CAS) (See Appendix 12) was found to be $r=0.98$. It means that there is posit significant relationship between MAS and CAS because calculated correlatiun coefficient is higher ( $r$ for $n=10$ at $\alpha-.05$ is 0.5337) from table of $r$.

101 Shaw and Wright, Scale of the Measurement of Attitudes, N.Y. Mcüraw-Hill, 1967.

The in ificant mean difference in mathematics attitude
 upper scory was computud usin: t-test (See Appendix 13). Mean Age $=16,2$ years.

## TABLE 6

Significant mean difference in mathematics attitude Score (MAS) and Calculator attitude Score (CAS) for

27\% Upper Score


The significar: neal difference in Mathematica Attitude Score (MAS) and Calculator Attitude Score (CAS) for $27 \%$ Lower Score was computed usinf, t-test (See Appendix 14).

Mean Age $=16.6$ years.

## TAELE ;

```
Sigifice \(\tau\) gan diffacsnce in mathematics attitude
score MAS) and Caicu ar netitude Score (CAS) for
27 tey? Score
```


ns : Not signiricant at $3 \leq .05$
(2) Mathenatics Prgtest
ficcording to Flanagan 102 in the empirical selection of test iterns, he suggested that the first consideration is the validity or discrimiratcry power of the test and the second one is item difficulty. The rest index of validity is one which provides the sxitan: to which an stem will predict the criterion such as the difficulty index anc discmininatory power. Using Kelley's approach 103 in computinc. $27 \%$ uppsr score and. $27 \%$ lower score the difficulty index was found to be 0.40 . Following similar

102 Flanagan, J.C. General usideration in the selection of test items. Jou nal of Educational Psychology, 30, 1939.
103. Kolley, T,L. The selectior of upper and lower groups for the velidation of test items. Journal of Educational Psycholüy, Voi. 30, 1339, 17-24.
approach the discriminatory power of the test was found to be $53.3 \%$ for the lellozi ity coefficient of the test, Kuder-Ricnardson formula. kR? was used.

$$
R=1-\frac{\bar{x}(N-\bar{X})}{\dot{N} \sigma^{2}}
$$

R : Reliability coefficient.
$\overline{\mathrm{X}}$ : Mean of the test scores
$\sigma^{2}$ : Variance of the test scores.

N : Number of test items.
for this study, rie reliabilitv co-efficient obtained would te consinefud deounta cureidering the levels of difficulty anc discrianation of the test-item. Blood and Budd ${ }^{105}$ furthered opined that a reliability co-efficient for classroom test should be at least 0.60 (Appendix 6).

### 3.3.2 Madification of mental ability tests - ACER higher

Both A.C.E.R. Higher Test: ML and M for verbal and numerical abilities were deveioped by Ausiralian Council for Educational Research in Australia, which is socially, and culturally different from Nigeria. Though the tests have been found to b3 applicable to Nigerian setting (Egbugara) ${ }^{106}$, it would be necessary to make some modifications if they would te used effectively and appropriately in Nigeria.

> The P.C.E.R. ML test deals with questions on
language and vocabulary of English Language. Soth Australia and Nigeria have English Language as thair Lingua Franca the test may therefore, not suffer much reliability and validity in terms of structure and lexis. However, sore of the test-items contained culturally
105. Blood, D. I. and Budd, W. C. Educational Measurement and Evaluation, New York: Harper and Row, 1972.
106. Egbugara, U. O. Effects of Three Levels of Advance Organizers on Achievement of Some Nigerian Secondary School Physics Students, I badan: Unpublished Ph.D. Thesis, University of I badan, Nigeria, 1984.
biased words and expressions e.g. the use of Alastian dog which had to tee replaced with a more familiar Nigerian name. Thoss test-itenis which shoved propensity for Cultural bias wer- andifind by changing them to socially and culturally accbptab words in Nigeria.

Mhereas in the A.C.E.R. MD test of numerical ability most of the test itsms were appropriate except in cases where urits: of monev had to be changed. The Australian pound and penn: had to be changed to Naira and Kobo respectively. These changes did not have structural effect on the test-item or their meaning. The durations of the tests ML and MQ had to be changed. Instead of the 20 minutes allocated for each test it was crançe to 30 minutes so as to give the pupils enough time to read and answer the questions. Secondly it gave room to or rect typographical mistakes or non-clarity. Nonatheless, the tests can be considered to be valid and reliable for the leval of punils after those modifications had been made. It would be understood that those changes could not possibly have affected the validity or reliability of the tests because nothing structurally in the tests were changed. The vaiidity index and rellability coefficient of the tests were not supplied tut from available records the tesis had been istandardized.

### 3.4 The Pilot Study

### 3.4.1 Objectives of the Pi久ot Study

(i) To validate and modify instruments.
(ii) Tc simulate experimental conditions.
(iii) Trial run for the entire experimental plan.
(iv) To detect flaws so as to increase the probability of a good research.

### 3.4.2 Procedure for the Pilot Study

The pilot study began in early Octaber 1985. The form $V$ mathematics teacher provided adequate support. There were 216 pupils in form $V$ of the Ahmadiyya Grammar School, Eleyele, where the pilot study was conducted. Because of the timetable arra zeterit of the school, some of the tests were concucted after school hours. The school was organising evening remedial classes for Form $V$ pupils from 2 p.m. to 3.30 p.m. Thare was 30 minutes session everyday for each group. The sampled pupils were divided into $S$ treatment groups besed initially on their mental ability scores on A.C.E.R. Higher Tests ML and M, and randomly selected into those groups. The groups were randomly selected into treatment groups by taken cognizance of their relative performances on the tests. The calculator groups were instructed by the author while the mathematics teacher helped to instruct the non-calculator groups. The instructional module
was used by all the groups. The pilot study lasted for six weeks. There :are breaks in between the days of administration either due to pupils being engaged for a schoul proyramms or the author/school mathematics teacher not able to attend. Howver, records of attendance wers kept and dates for the administration of the instruments. By the end of the pilot study only an average of ten pupils per group totalling ninety (90) pupils completed the study.

### 3.4.3 Acministration of research instruments:

The first instrument administered during the pilot study was the A.C.E.R. Higher tests ML and M. The mental ability tests were ujaf to divide the pupils into different treatment groups. Most of the pupils in Form $V$ of the school took the tesie ( 185 out of 216 ). The tests took place after the pupils preparatory classes. The school mathematics teacher and the author administered the tests from $4 \mathrm{p} . \mathrm{m}$. to 5.30 p.rn. on 21-10-85. The pupils had been informed of the test by their mathemetics teachar. Hence the pupils showed enthusiasm towards the test. They were told the purpose of the test that it was not supposed to grade them but to assist in diagnosirg their problems in mathematics. The ML test was fizst taken and followed by $M$ test by all the classes. The
time of the day the tests were administered had effects on pupils. Some pupils complained of tiredness. In fairness the pupils had bean receiving lessons before the test began. It would appear that the tests could only be taken at that time so as to avoid any contamination, and leakage of test-materials. Hence all the pupils had to take the tests at the same time. Each of the tests had a duration of thirty minutes. The pupils were provided with individual question and answer sheets (Appendices 8 and 9). There were thirty-six questionitems on each of the tests. There were anough examples on each of the tests and the pupils were required to respond to all the thirty six test-items.

After the tests had been completed by the pupils
he results of the tests of ML and MO were used to divide the pupils into treatment groups. The test scores (X) of each pupil, were added together to determine histher reletive position. Since the test was meant to divide the pupils into three different ability levels those pupils who scored $32 \leq x \leq 51$ were grouped into High Mental ability level, pupils who scored $27 \leq \times \leq 31$ were grouped Average Mental ability level, and those pupils who scored 28 < $\times$ were grouper Low Ability level.

The c.fferent mental ability levels were then randomly selected (by aallot) into the three different treatment groups).

Calculator unrestricted group, calculator restricted groups and Non-Calculat $r$-use in instruction/test group. The mathematics pre-test and pre-attitude questionnaire were not administered to all the nine groups before instructinn began. There were four instructional sessions of thirtyfive minutes per session for each of the group. On the whole, twenty-four instructional sessions were conducted during the pilot study for the six groups by the author. The mathematics teacher had only one group of thirty-six pupils of four sessions because three groups were put into one. He had to do this because there was no need for the use of calculator and the pupils were going to receive the same learning experionces.

Immediately the instructional process was coming to an end, the pupils had to take the mathematics post test and respond to the attitude measures. The unrestricted and restricted calculator-use groups used the calculator on the post test while the remaining three groups of non-calculatoruse did not use calculator on the test but they responded to the attitude measures. The post test of thirty-items had a duration of forty minutes. When the mathematics post test had been sompleted the pupils were supplied with the attitude measures which they freely responded to.
3.4.4 The Scoring of different instruments: ML and MD m*i enerics pre-test, post-test, attitudes measures. Bct.. in and jests wre scored on a scale of 1-35. There ware 36 test-items on eaci of the tests. For the mathomatace rre-test it was scored on scale of (l-15). There were its test-items on the test. Similarly, the mathematics achievement test was coorad on the basis of number of question on the test ( $1-30$ ). The raw scores on the tests were not converied but were directly used in the various anclyses. The tests scores ( $X$ ) in ML and MQ were added together fo: eaci pupil so the possible range of score $1 \leq \lambda \leq 72$ was usad to divido the pupils into different ability groupings.

Niethoc of summai, J'atings was used for attitude scores. Items were worded positively and negatively. For positively wozded iter Fey were scored 5, 4, 3, 2, 1 and negatively wil. Ủ it itcms the scoving was reversed as $1,2,3,4,5$. Items scores were added (i) for both Mathematics Attitude Scale (MAS) and Calculator Attituds Scale '(CAS) (ii) for each attitude scales MAS and CAS. The item score was assumed to be the weignted sum of the common factor and a factor specific to the item, The common factor was the general attitude variable that we were trying to measure. For MAS + CAS Scores $(X)$ could range be tween $26 \leq x \leq 130$, for MAS alone scores $(X)$ range $12 \leq X \leq 60$ and CAS: $14 \leq X \leq 70$.

### 3.5 Ana. $\quad$ data of pilot study

Ansiyo of wat. comrinsed mainly the comparison of achievement test mean scoros and attitude measures. The computcr libsaz"y progranme LIB $\varphi 2 \phi$ P was particularly usefull for the one ant two way factorial analysis of variance and covariance. This programme enabled the use of the attitude towards mathematics and calculator scores (ATS) to adjust the achievement scores of the groups.

Pupils' scores (X) in the mental ability tests were f: : uper inte aifferent asility range: Low ability (Lh: $20 \leq X \leq 26$ ), Avereze ability (A.A.: $27 \leq X \leq 31$ ), and High sbility (H.A.: $32 \leq X \leq 51)$ respectively. These score categories were used $s=$ the selection basis for examining the affects of cogn: tive, numerical and verbal aptitude levels on is ifictest and attitude scores. Also multiple -orrelation coefficients $R, R^{2}$ derived from analysis of covariance were computed to deternine the relationships between scores of the attitude meesures and'post-test. All tests of significance were carried out at the $5 \%$ alpha level, and all computations were aided by the University computer. However, the computer results of analyses were given to the nearest significant levals e.z. 0.001 or 0.01 etc.

### 3.6 Results of Pilot Study

The results were analysed and discussed in relation to the hypotheses earlier stated. That is:

Hypothesis One:
There will be no significant difference in the mean achievement scores of those groups of pupils who use (i) Calculator in tests and instruction - the unrestricted groups (UCU) (ii) Calculators in tests only - the restricted groups (RCU) and (iii) No calculators - use at ali (NCU). That is:

Ho: $M_{E_{1}}=M_{E_{2}} \quad M_{E_{3}}$ at $\alpha=.05$

## TABLE 9

$$
\frac{\text { Analysis of variance of Post-test Scores of }}{\text { Groups UCU, RCU, and NCU }}
$$

SOURCE	df	SUM OF   SQUARES   SS	MEAN   SQUARES   MS	F-   RATIO	P
Covariates   VARO2 - ATS	1	50.349	50.349	4.627	$0.032 *$
Main Effects   GRP	2	7.014	3.507	0.322	0.999 ns
Explained	3	57.363	19.121	1.757	0.160 ns
Residual	86	935.785	10.881		
TOTAL	89	993.148	11.159		

* Significant at $p$ < . 05
ns: Not significant at $p=.05$.


## TABLE 10

## Multiple Classification of Post-Test Scores By Croups UCU, FCU and NCU

Grand Mean   Variable   Groups	8.18   Category	$N$	Unadiusted   Dev'n	BETA Adjusted   for inde-   pendents   Cev'n	Beta
	1	30	-0.28	-0.13	0.39

## table 11

Summary of the Mean, Standard Deviation and Variance of the Groups UCU, RCU, NCU

Variabli	$N$	Mean	Std. Dev.	Variance
VAR 01:- MAT	90	26.6555	7.6190	56.06
VAR 32:- ATS	90	77.4556	12.9114	166.70
VAR 03:- ACT	90	8.1778	3.3405	11.16
VAR 04:- M19	90	42.6555	8.5554	73.195
VAR 05:- CAS	30	34.8333	11.0933	123.06

From table . it showed that there was significant difference when attitude scores were used as covariates to post-test scores. Howfever, it would be inconclusive to say that the post-test scores had significant difference at $\alpha=.05$. It was not sufficient to reject the null hypothesis based on this result. However, it would be necessary to run significant level test for the groups in the main study.

Hypothesis two:
There will he no significant difference in the mean achievement score of those groups of pupils of high (H.M.A.), average (A.M.A.), and Low (L.M.A.) mental abilities. That is:

Ho: $M C_{1}=M C_{2}=M C_{3}$ at $=.05$.
TAELE 12
Analysis of variance of Post-test Scores of HMA, AMA, and LMA Groups

SCJRCE	of	SUM OF SQUARES SS	MEAN SIUARES ins	F RATIO	P
Main Effects GRP	2	273.489	136.744	16.531	$0.001 * *$
Explained	2	273.489	136.744	16.531	0.001
Residual	87	719.659	8.272		
TOTAL	89	397. 147	11.159		

Highly significant at $p<.001$.
Scores by Groups: HMA, AMA and LNiA

Grand Mean   Variable + Category   Groups	N Unadjusted   Dev'n BETA	ALjusted for   Indeperdents   Dev'n	
1	30	1.96	1.96
2	30	0.32	0.32

There appeared to be significant difference in the mea'l scores of the grouss of different mental ability levels. This significance difference could only be ascertained when a multiple - range test ; post - hoc analysis is ferformod in the main study.

## TABLE 14

Analysis of covariance of Pust-Test Scores
of groups HMA, AMA and LMA

| SOURCE | df | SUM OF <br> SQUARES <br> SS | MEAN <br> SQUKRES <br> MS | F <br> RATIO | $P$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Covariates <br> VARO2 - ATS | 1 | 50.348 | 50.348 | 6.372 | $0.015^{*}$ |
| Main Effects <br> GRP | 2 | 263.301 | 131.65016 .662 | $0.001 * * *$ |  |
| Explained | 3 | 313.649 | 104.550 | 13.232 | $0.001 * * *$ |
| Residual | 86 | 679.498 | 7.961 |  |  |
| TOTAL | 89 | 993.147 | 11.159 |  |  |

 Significant at $p<. U 5$.
table 15
Multiple Classification Analysis of Post-Test
Scores by Groups, HMA, AMA and LMA. A.CT - GROUPS - ATS

Grand Mean $=8.18$
Variable + Category


Multiple R Squared $=0.316$
Multiple R $\quad=0.562$

On the basis of the sampled data and the analysis carried nut the null hypothesis two was rejected.

That is: There will be no significant difference in the achievement scores of those groups of pupils in HMA, AMA and LMA at $\alpha=.05$ could be rejected. There would be need to carry out the post-hoc analysis for the treatment effects particularly in the main study.

Hypotheses three:

Ho: There will be no significant difference in the mean attitude towards mathematics and calculator scores of those groups of pupils who use (i) calculators in tests and instruction - unrestricted groups (UCU), (ii) Calculators in tests only - the restricted groups (RCU), and (iii) No Calculators use at ail (NCU), i.E.

$$
\text { Ho: } X E_{1}=X E_{2}=X E_{3} \text { at } \alpha=.05
$$

## tible 16

## Analysis of variance of the Attitude Scores

( $\triangle T S$ ) of the rrouns UCU, QCij and NCU

SOURCE	$d f$	SUM GF SOUARES S3	$\begin{aligned} & \text { MEAN } \\ & \text { SQUARES } \\ & \text { MS } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { RATIO } \end{gathered}$	$\cdots$
Hain Effycts Group	2	385.086	192.543	1	. 319 nis
Explained	2	385.090	192.545	1.159	. 319.0 -
Residual	87	14451.105	166.105		
TOTAL	02	14336.1才5	165.699		

ns̃"- 7ot significant at $\overline{\mathrm{p}}=0$.

## TABLE 17

## Multiple classificntion Analysis of the

Attitude Scores for the Croups UCU, RCU and NCU


The analysis showed that the result of the attitude scores was not significant. None of F-ratio was significant and the null hypothesis was therefore not rejected. Hence, there was no significant difference in the mean attitude scores of the groups. However, this would also be tested in the main study.

Hypothesis four
There ill bo no significant difference in attitude towards mat iematics and calculator scores of those groups of pupils of HMA, AMA and LMA. That is:

$$
\text { Ho: } X_{C_{1}}=X_{C_{2}}={ }_{X_{C_{3}}} \text { at } \alpha=.05
$$

## TABLE 18

## Analysis of Variance of the Attitude Scores



## TASLE 19

## Multiple Classification Analysis of the Attitude Scores for groups HMA, AMA and LMA



The analysis of the result of the attitude scores of the groups HIMA, AMA, and LMA seemed to suggest that there was no significant difference in the mean scores, and hence, the null typothesis was accepted.

Hypothesis five:
There will be no significant relationship in pupils' attitudes toward mathematics and their attitudes toward the use of calculators in secondary school mathematics as $\alpha=.05$

TABLE 20
Summary of the Analysis of Variance of the MAS and CAS Scores of Groups UCU, RCU and NCU


It would appaar from the anaiysis of this result that there wis no signzficent difference in the attitude scores of the three groups. There was no difforence in the group mans of these three groups, for the MAS and 'CAS, the groups could have the same attitudes to mothematics and calculator. However, this could have been due to some factors or treatment winch this pilot study did not envisage there was no præ-attitude treatmant for the groups to ascertain zonufs atitude before treatment.
ihis weld have to te taken care of in the main study.

TAELi 21
Summary of the Anslysis of Variance of MAS and Ef.S Scores of the diMA, AMA and LMA groips

	SRCUPS	dt	F-Ritiof	$\begin{aligned} & \text { SIGRIF } \\ & \text { OF } \mathrm{F} \end{aligned}$	SISNIF LEVEL   at $\alpha=.05$
Mas	HMA	29	0.850	. 939	ns
	AMA	2.3	0.372	. 999	ns
	LMA	2s	0. 339	. 999	ns
CAS	HMA	29	2.051	. 146	ns
	AIMA	29	3.014	. 084	ns
	LMA	$\because j$	U. 5.38	. 999	ns

$$
\text { ns - Not significani st } x=.05
$$

The grous mions ware no significant at $\alpha=.05$, there was no difforence at all in the mean scores. It would appear as if there was no difference in th= attitudes of pupils of differert mental atilities. Thsy seamed to have the same attitudes towarc mathemstics and calculators.

Finally Poarson correlation was :sed to test relationship ot tige groups achievement scores to attitude scores. $r=0.225, n=90$ at $\alpha=.05$. This showed that thers was no high ralationship in the achievement scores
and the attitude scores. For the MAS and CAS

$$
r=0.156, \quad N=30 \alpha=\alpha 07
$$

The relationship of the mathematics attitude scores and calculator attitude scores was not significant at $\alpha=.05$. This was already evident in the analysis of variance of the variance of the groups.

Noncthelass, this might have arisen out of uncantrolled variance of pre-attitudes and other extraneous factors. Since the ANOVA was not significant in all the groups, tests of significance for the treatment groups were not carried out.

### 3.7 Discussion on the result of Pilot Study

The number of subjects in the groups could have affected the statistical analysis as related to significance level. For larger number of subjects the result could have possibly been different. The pilot study was able to establish that there was significant, difference in post-test scores of the groups UCU, RCU, INCU which led to the rejection of the null hypothesis. Though, no tests of significance for the treatment groups were further carried out, there was not enough evidence of equalisation of the groups through pre-test and pre-attitudes. Hence it would be difficult to ascertain what had contributed to the
difference in woit scores either it was the treatment $u^{\prime}$ other factors. As regards the groups'attitudes, most of the tests sl:owed no significant difference in the mean attitude scores. This would likely be that the groups had similar attitudes towards mathematics and electronic calculator. Further tests in the main study might reveal more information about these findings.

### 3.8 Detection of flaws corrected for the main study

The pilnt study revealed certain aspacts of research procedures which needed to he corrected before the main study: (i) the numtur of schools (ii) number of subjects in each group (iji) no pre-test and pre-attitude questionnaire vere admiaistered. The pilot study began with 12 subjects per groups but ended with 10 subjects per group. Like in mist experimental studies that would go on for weeks, arran nent should be made to take care of subject mortality. The number of schosis increased to three in the main study which could reciuca subject contamination of treatment. In the pilot stucy instructions and tests were carried out after the school hour; - because of the problem of school's time-tabia. Most of the pupils complained of physical tiredness. The problem of time-table was tackled during the main sildy when the study took place during the school hours and in the momings. For the main study,
three comparable schools wre used, it became necessary to have cowperating teachs from the different schools to assist in the instruction ind tosting. Efforts were made to briei all the pupils in the study and the cooperating teachers about the purpose of the study and its implications to mathematios education in Nigeria.

Some of the limitations experienced during the pilot study related mostly to incorporating the instructional tiris into the normal school hours. Pupils' trepidation as regards the nending of the calculators and pupils' anxiety in the face of calculator during pilot study was somehow remedied for the main study. The pupils could not take the instructional module and calculators home to practise. For this kind of study, the experimental groups could have been much more motivated by allowing them to take the modules and calculators home for practice.

However, the non-calcutator groups was discouraged from the use of calculators. In fact, they would not be exposed or advised to use calculator either in class or at home throughout the study. The main study took cognizance of the pilot study results on the use or non-use of calculator and some plausible answers to the introduction or otherwise of technological devices such as calculators, computers etc. into instructional systems.

## CHAPTER FOUR

## THE MAIN STUTy, 短 THODOLOGY

### 4.1 Design

The experimental design for the main study was slightiy modified from the pilot study design so as to take care of the flaws identified in the pilot study. One of the corrections carried out was to make use of three comparable secondary schools (mixed) in I badan instead of one school used for the pilot study. Three groups were used in each of the three randomly selected schools.

scolost	MENTAL ABILITY LEVELS			
	$1$	HIGH MENTAL AEILITY Si.M. A. $\left(\mathrm{C}_{1}\right)$	AVERACE MEVTAL ABILITY A. M. A. $\left(C_{2}\right)$	LOW MENTAL ABILI TY L.M.A. $\left(C_{3}\right)$
$\underset{E_{1}}{\text { SCHIOL }}$	Unrestricted Groups (UCU) Calculator in Instruction and tests	$\begin{gathered} A \\ 1 \\ (n=14) \end{gathered}$	$\begin{gathered} B \\ 2 \\ (n=14 \end{gathered}$	$\begin{gathered} c \\ 3 \\ (n=14 \end{gathered}$
$\underset{\mathrm{E}_{2}}{\mathrm{SCHOOL}}$	Restricted Groups (RCU) Calculator in tests only	$\begin{gathered} 0 \\ 4 \\ 4 \\ (n=14) \end{gathered}$	$\begin{gathered} E \\ 5 \\ (n=14) \end{gathered}$	$\begin{gathered} F \\ 6 \\ (n=14) \end{gathered}$
$\underset{\mathrm{E}_{3}}{\mathrm{SCH},{ }^{-} \mathrm{OL}}$	No Calculator Use at All Groups (NC.U)	$\begin{gathered} G \\ 7 \\ (n=14) \end{gathered}$	$\begin{gathered} H \\ 8 \\ (n=14) \end{gathered}$	$\begin{gathered} I \\ 9 \\ (n=14) \end{gathered}$

Fig. 7: A paradigm of $3 \times 3$ factoriel design for the main study.
Variables used in the main siudy
VAR 01 MAT - Mental ability test scores
VAL 01 PEA - Pre-attitude questionnaire scores
VAR 03 PET - Pre-test scores
VAR 04 POA - Post attitude questionnaire scores
VAR 05 POT - Post test scores
VAR 05 MAS - Mathematics atiitude questionnaire scores
VAR 07 CAS - Calculator attitude questionnaire scores

In the main study, no intact classes were used and therefore, the use of covariates allowed the pre-test mean scores and pre-attitude mean scores to serve in adjusting the initial differences or equalizing factors within and between groups. In addition the pre-test served as a measure of the level of pupils' prior familiarity with the selected learning material content on which the test was based. The preattitude questionnaire administration was to help to establish prior attitude of subjects towards mathematics and calculators, and if, there would be any attitudinal change as a result of the treatment or otherwise. If $T$, represents the Pre-test or Pre-attitude, $X_{1}$ the treatment one - the use of calculator in tests and instrucion, $x_{2}$ restricted caiculator use in tests only
and $T_{2}$ the fost treatment tests or attitude measure; and R means randowizetion cf treatments to groups. Then, the design can generally be represented as foliows:

$R$	$T_{1}$	$X_{1}$	$T_{2}$
$T_{1}$	$X_{2}$	$T_{2}$	
$T_{1}$		$T_{2}$	

### 4.2 Fopulation of the main study

Secondary schools in I bajan Municipality constituted the populatiun of the study and the three mixed secondary schools used for the study were selected by the following method. There were ninety-five (95) Junior and Senior Seconcary Schouls in Ibaden Municipality at the time of the st.dy. A multi-~uage Stratified random sampling technique 107 was used in selecting the schools.

First stage, schools in I badan were stratified on the basis of th se that offered students for the West African School Certaficate Examinations of WAEC in for the last ten years and those which did not. There were thirty-three schools in this category.

Second stage, all those schools selected in first stage were stratified on the basis of whether they were mixed

[^9]schools or not (See Appendix 19). There were sixtenn (16) schools in this category.

The third stage, using a random sample (by balłot) five schools from the mixed schools were selected. Out of the five schools only three of the schools satisfied the condition of comparability and were selected. The three (3) schools were:

1. Holy Trinity Grammar School, Old Ife Road, Ibadan.
2. Is?emic High School, Basorun, Ibadan.
3. Itadan City Academy, Eleta, Ibadan.

The three schools were then randomly selected (by ballot) into treatmesti: groups with school 1 as the experimental school $E_{1}$ - the unrestricted calculator groups (UCU) (to use calculator in instruction and tests); experimental
school $E_{2}$ - the restricted calculator groups (RCU) (to use calculator in the tests only) and school 3 the control the non-calculator groups (NCU) ( $E_{3}$ ).

Subjects were then randomly selected into these treatments and control groups. 4.2.1 Subjects of the main study

Form five fupils in their first term of their last year in the secondary school were used as the subjects for the study. In each of
the mantal ability tests (verbal and numerical) so as to be able to divide them into different ability levels. In school (1) eighty four (i4) pupils took the tests and forty eight pupils were selected into the different abilitv 1 veis (sece Table 22 ). In school (2) seventy six (76) p.pils took the tests and only forty eight were selected int the diffevent ability levels. In school (3) one f.undred and fifty nine (159) pupils took the tests and frivy-eight (48) pupils were selected. All selections were done r: adom:y for the different ability levels.

TABI.E 22

## Summary of Ment:1 Ability Tests Scores

for Schools 1, 2, 3 in the Main Study

SCHOOLS	N	MEAN	SD	RANGE   HFA	ABILITY   AMA	LEVELS   LMA
1	84	28.64	7.9	$37-52$	$30-36$	$25-29$
2	75	32.78	10.59	$41-50$	$33-40$	$25-32$
3	159	33.025	8.97	$41-52$	$34-40$	$25-33$

An average of sixteen pupils per group started the programe. There were nine ( $\subseteq$ ) groups in all with the total number of subjects that started as one hundred and
and forty four (144). However, by the end of the programme some of the pupils had dropped out which left an average of fourteen subjects per group. Where there were more than 14 subjects per group the extra(s) were randomly dropped on the basis of sex. Like in the pilot study the groups were equalized on sex at all times.

### 4.3 Comparability of Schools

The study had taken care of sex variable by having equal number of girls and boys in each group. For the comparability of the schools the following conditions were considered:
i. Results of the schools in the West Afriean Examinations Council (WAEC) examinations and mental ability tests.
ii. Age of the schools - this had been taken care of during the selection.
iii. Qualifications of teachers.
if. Sequencing of topics in the scheme of work.
v. Opinions of teachers and pupils.
vi. Training of teachers for the programme.

The WAEC results of the three schools in mathematics

TABLE 23

$$
\frac{\text { UAEC Resuits in Mathamatics for Schools 1, 2, } 3}{\text { Percentage Punses: } 1980-1984}
$$

SCHOOLS	1980	1981	1982	1983	1984	AVERAGE   PASSES
HOLY IKJNITY   GRAM SCHOOL	43	24.6	45.5	45.5	85	48
ISLAMIC HIGH   SCHOOL	59	52	33	37	31	48
IBADAN CITY   ACADEMY	62	55.6	42.4	41	50	50.2

tABLE 24

SOURCE	df	SUM SQUARES SS	MEAN SQUARE	$\begin{aligned} & \text { RATIO } \\ & \text { RAT } \end{aligned}$	SIGNIF. LEVEL
BETWEEN GROUFS	2	1233.222	116.611	0.185	NS
WITHIN GROUPS	12	7556.488	629.715		
total	14	7789.81			

NS: Not Significant at $\hat{p}=.05$

This table on the mean percentage passes on the schools showed that there was no significant difference in thair meun passes. It cculd then be inferred that the three schools might have performed relatively equally in the last five years 1980 - 1984. Hence, the three schools were possibly comparable on this basis.

When the results of all the pupils who took the mental ability tests in the three schools were obtained and analysed it helped to determine if the schools were comparable on the mental ability tests scores.

## TABLE 25

Analysis of Variance of Niean Mental Ability Test Scores of Schools 1, 2, 3

SOURCE	DF	SUM OF   SQLUFRES   SS	MEAN   SQUARES   NS	F-RATIO	SIGNIF.   LEVEL
BETWEEN GROUPS	2	1359.41	679.705	0.873	NS
UITHIM GRCUPS	316	246034.30	778.59		
TOTAI.	318	2473.3 .71			

NS: Not significant at $p=.05$.

The table showed that there was no significant difference in the mental ability test scores of the three schools. Thouçh the number of pupils who iook the tests in the schools were not equal: $N_{1}=84, N_{2}=76$ and $N_{3}=$ 159 it would appear that the groups could be compared on the test scores and being relatively equal statistically.

To obtain information on the other conditions of comparability, a questionnaire was constructed by the researctier (See Appendix 16). The face and content validity of the questionnaire were carried out by this investigatur and some lecturers in the Teacher Education Department, University sf Ibadan. Teachers of mathematics in the three schoois responded to the items on the questionnaire.

## Teacher's Variables and Content Coverage

	School   School	School   2	Average	
No. of Mathematics   Teachers in Sampled   Schools	5	6	5.3	
Total Years of   Experience of the   Teachers				
Syllabus (Covered   (Partially )   (in the year)	0.4	0.33	0.4	0.38
Syllabus (Covered   (Fuliy in   (the Year	0.0			

The teachers in the three schools indicated that they had taught equations to their pupils at different terms of the year for different clesses before the pupils reached first term of Fcrm $V$.

- 155 -

TAJLE 27
Calculator "sage Effectiveness by Thachers

	*Very   Effective	Effective	Not   Eifective	Total No. of   Responses
SCHCOL 1	-	2	3	5
SCHOOL 2	-	3	3	3
SCHOOL 3	-	3	2	4

None judgad Calculator to be very effective at the secondary school level - this cannot be a conclusive evidence on Calculator effactiveness at secondary school.

## TAELE ?

Use of Instructional Materials by Schools

Materials	School 1	School 2	School 3
Four figure Table	+	+	+
Calcularor	+	+	-
Mathematics Set	+	+	+
Slide Rule	-		-
Geoboard	-	+	-
Other boards (Graphboard etc.)		-	+
Objects (Sticks, Shapes etc.)		-	+

+ Used in the school
- Not used in the school.

From the available data, it would appear that the three schools were comparable.

### 4.4 Monitoring the Cooperating Teachers

The design of the study involved conducting tests and having classroom instructions during the school hours. Because of the problems of schools' distances and time-table it became mperative co solicit the assistance a $n d$
cooperation of mathematics teachers in the sampled schools. Through the Principals, the orm $V$ mathematics teachers in the schools were briefed on the purpose of tre study.

Fortunately all the $t h r e e ~ s c h o o l ~ t e a c h e r s ~ a g r e e d ~$
to assist in the programme. The teachers were shown the format of the "Teacher - pupil - material Interaction model" developed from Ogunniyi ${ }^{108}$ Laboratory Interaction Categories (LIC) - a modifisd version of Flanders' Interaction Categories. This method was used to bear credence to Flanders' findings that, teaching behaviour is the most potent, single cortrollable factur that can alter learning opportunities in thee classroom ${ }^{11}$.

In order to deternine the teachers' classroom effectiveness and behavioural characteristics of the pupils the investigator decided to observe Teacher - pupil - material interaction in the three schools. Each of the teachers was observed for thirty minutes three times in a week and the records of observations were then analysed.

108 Dgunniyi, M.B.: An eralysis of laboratory activities in seiected Nigerian secondary Schools. European Jurnal of Science Education. 1983 Vol.5, No. 2,

Permission was sought and granted from the Principals of sampled schools to observe *he sooperating teachers and pupils during their lessons. Thus, arrangement was made to observe the teachers and pupils whenever they had mathematics on their school time-table, and was held with only those pupils in the study.

TABLE 29

## A Comparison of Percentage of Teacher/ <br> Classroom Interactions Behaviour

TEACHER'S CATFGCRIES	PERCENTAGE RATING $\begin{array}{ccc}\text { SCHOOL } & \text { SCHOOL SCHOLL } \\ 1 & 2 & 3\end{array}$			$\underset{\overline{\mathrm{x}}}{\mathrm{ME} A N}$	SD
A - Accepts Feeling	0.3	0.19	0.42	0.30	0.13
G - Gives Verbal rewerd	C. 3	0.19	0.22	0.24	0.029
$R$ - Reinforces restonse	2.02	1.57	2.20	1.93	0.32
Q - Questions	19.35	18.89	13.96	17.066	7.89
L - Lectures	12.55	15.42	14.59	14.19	1.43
D - Direc	15.34	8.33	8.61	10.93	4.25
C - Criticises	4.744	1.55	11.62	5.97	5.10
M - Manipulates Materials	2.61	5.09	0.42	2,7066	4.68*
S - Supervises	2.64	4.3	9.07	5.353	3.32

* The staf dord deviation calculated for the materials do appear to be high compered with others. Table 29 continues next page with the pupils' categories.

PUPILS' CATEGOF IES	PERCEN SCHOOL   1	AGE RATINGS $\begin{gathered} \text { SCHOOL } \\ 2 \end{gathered}$	MEAN	SD
RQ - Responds to questions	13.35	$18.49 \quad 12.41$	14.95	3.16
IQ - Initiates questions	1.26	$1.56 \quad 1.04$	1.287	0.26
2T - Initiates talk	2.60	$3.75 \quad 0.82$	2.39	1.48
$\begin{gathered} \text { CA - Calculates Using } \\ \text { materials } \end{gathered}$	9.83	$6.48 \quad 6.17$	7.49	2.05
RD - Reads, Writes/and/or Draws	11.29	$7.21 \quad 13.78$	10.76	3.32
N - Non-productive activities	1.74	6.917 .84	5.50	3.28

$n=3$ recordings in each school.
$N=14-i 6$ (No. of students per eroup).

Variability in the use of materials as shown by the standard deviation seemed to ba hiçh, and this would appear to suggest the difference in the teacher - students interaction. The interaction fatts, from Totl= 29 showed that the three teachers were direct teachers, thay did not use materials much. Hence the teachers of schools 1 and 2 were advised to use more of the meterials - particularly teacher of school (1) who had to use calculator throuphout the study.

Percentage Distribution of Teachers' Questions


## TASLE 31

Mean Distribution of Questions/Minute
of Taecher, Pupils Interaction

GROUP	TIME IN MI		MINUTES
	1-10	$11-20$	21-30
TEACHER'S OF SCHOCIS $1,2,3$ - $\bar{x}$	1.2	1.016	1.18
```PUPILS OF SCHOOLS 1, 2, 3```	1.17	0.7	0.85

Tables 29-3, showed tiat the teachers had relatively the same pectern of 'eachur Student and material interaction. Thus, it cusld be inferred that the three teachers were direct teachers, The only variation is in the use of materials where they have been designed to be structurally different as indicated in the research design.
4.5 Administration of Instruments

When tha cooperating teachers had been found to be comparable ty the Teachar-pupil material interaction model they were advised about how to administer the instruments. The pupils haci been separated into different ability levels through the rental ability tests scores, they all had to take the pre-test and respond to the pre-attitude questionnaire. The sessions were held for thirty minutes (7.308.00 a.m.) on Mondays, Tuesdays and Wednesdays in the three schools. Thursdays and Fridays were used to hold dialogue with the teachers.

The pre-test and pre-attitude responses were collected from the teachers before the treatments started. The teachers were advised to keep record of attendance of pupils. Each of the teacher was supplied with the instructional module. They
were advised to follow the instructional format in the module anc they were instructed not to use any other text for the study. The calculator groups were supplied with hand-held cclculators. Each pupil in the two treatment groups (E_{1} and E_{2}) used calculator on the pre-test. The next treatment was instruction which was carried out by the cooperating teachers. The unrestricted calculator group used casculatur throl:ghout ti:e treatment period.
4.5.1 Guidelines on the Use of Calculators

Calculators were used by the experimental groups: E_{1} and $E_{2} . E_{1}$: Calculator user in instruction and tests. E_{2} : Calculator use in tests only.

The subjects in these groups and the cooperating teachers were instructed by the investigator on how to use the calculator. The instruction on how to use the calculator took place two days prior to the commencement of the sixweek duration of the study. E_{1} groups who were in the sane school received the instruction first day and they were followed by C_{2} groups the second day. There were three sessions per day, and each of the instructional sessions was held with high, average and low mental ability groups respectively. Each sension had a duration of thirty minutes and they were held immediatciy aftier the school hours (2 - $3.30 \mathrm{j} . \mathrm{m}$.) in each of the schools.

Fourteen calculators were mads available to each group (one per pupil). This allowed the pupils to get familisr with the calculators. PROCEDURE:

The pperational keys of the calculator were shown: addition $(+)$, subtraction (-), multiplication (x), division $(\%)$, quare root $(\sqrt{-})$ percentage $(\%)$, memory storage M^{+}, M^{-} R.C M), 'See Fig. 2). When the pupils could identify and
operate them, the following example wes done with the groups using the calculator:

Simplify the expression:

$$
55 \times 10-7.22(7.22 \div 10.96)
$$

SOLU:TON:

OPERATIONEL KEYS
Punch ON/C
Punch 5 twice
Punch \times
Punch 10
Punch =
Punch -
Puncl. 7 points(.) and 2 twice
Punri. $=$
Punch !
Punch 7,point (.) and 2 twice
Punch :
Punch 1 and 0, point(.) $9 \& 6$
Punch $=$
Punch M ${ }^{-}$
Punch R.CM

DISPLAY ON SCREEN

$$
0 .
$$

55.
56.
57.
58.

7.22
542.78
542.78
$7.22^{\text {M }}$
$7.22^{\text {M }}$
10.96^{M}
$0.6587591^{\text {M }}$
$0.6587591^{\text {M }}$
542.12125^{M}

$$
\text { Ans. }=542.12125
$$

This answer was checked with the paper-and pencil calculation and comparison was made between the answer from calculator and the paper-and-pencil procedure. The pupils were then asked to practise with mure exercises on calculator. The teachers checked the pupils' work and made corrections where necessary.
2. Calculators were used with the instructional module copies of which were supplied to the E_{1} (Calculator in instruction and tests) groups only. The teacher of E_{1} groups was specifically instructed that the pupils in his group should use only the module and no other textbooks should be used by them. After the operational uses of the calculator had been done on the first day, the investigator advised the groups to continue the next day on the use of calculators with their copies of the instructional module.

The general instruction on the use of calculator with the instructional module can be found at the end of the module (see Appendix 7). The other two cooperating teachers were given the instructional modules to be used as the teaching and learning material. The pupils in their groups were not supplied with the module. These other groups did all the cuiculations with paper - and - pencil as they were used to in their normal mathematics class lesson.

During the four weeks of instruction the cooperating teachers were closely monitored. Each of the teachers was observed three times a week and records were kept. This was to make sure that they were carrying out the objectives of the programme. Attempts by the teachers to deviate from the
expressed objertives were corrected. Throughout the durat:on of instruction the teacher candidly cooperated.

By the sixth week the post-test and post-attitude questionnaire were administered.

4.6 Data Collection

All data used in this study were collected from the sampledschools. The mental ability test scores of the nine groups were extracted from total scores ci_{i} those form five pupils who took the ML and MQ tests in the three schools (See Table 22.) The pre and post tests scores, and pre and post attitude questionnaire scores were collated by the investigator. The pre-test scores were 15 points and could have been doubied to equal the post-test scores of 30 points. However, this could have statistically made no difference in results because analyses were done with the means of the scores.
4.7 Data Analysis of the Main Study

Analysis of diata comprised the comparison of posttreatment and post-attitude mean scores (POT, POA) with the pre-t:st and pre-attitude mean sceres (PET,PEA)
respectively. The computer library programme LIBØ2Øf, was used for:
(i) all the analyses of covariance
(ii) Analyse- of variance
(iii) the significant mean effects

Comparison of significance the means the multiple range tests using:
(a) Student - Newman Keuls (SNK at $\alpha=$.05)
(b) Scheffe elpha is . 05)
(c) LSD alpha is . 05)
(d) Tukey alpha is . 05)
all ONE WAY
ANOVA
(iv) Pearson correlation coefficients.
(v) Multiple regression analyses
(vi) Frequency distributions.

All tests of siģificance were carried out at $P=.05$, and all computat.ons/programming were with the aid of the University Computing Center, except for the t - tests comparision of means which were done with the hand-held calculator.

CHAPTER トIVE

RESULTS OF THE MAIN STUDY

The results of the study were discussed in relation to the null hypothesis earlier stated.
5.10 Hypothesis 1

There will be no significant difference in the achievement mean scores of those groups of pupils who used (i) calculators in tests and instruction - the unrestricted group (UCU) (ii) calculators only in tests - the restricted group (RCU) and (iii) No-calculators at all (NCU). That is:
$H_{0}: M E_{1}=M E_{2}=M E_{3}$ at $\alpha=.05$

TABLE 32
Summary of the means, standard deviations and variances of the three Groups (UCU, RCU and NCU)

*Variables	N	Mean	SD	Variances
MAT	126	36.903	7.6779	58.950
PEA	126	81.2937	11.4200	130.4164
PET	126	9.1349	3.3331	11.1095
POA	126	84.0397	13.1954	144.1186
POT	126	14.2381	4.9565	24.5668
MAS	126	47.4683	7.3065	53.3703
CAS	126	36.5873	11.8701	140.8993

Fach of the groups unristricted calculator (UCU) as E_{1}, restricted n.f.?nulator (RCL) as E_{2} amd non-calculator (NCU) as E_{3} was inade up of three groups of three mental ability levels: high mental ability (HMA) as C_{1}, average mental ability (AMA) as C_{2} and low mental ability (LMA) as C_{3}, and this gave the total - umber of groups to be nine (See fig. 6). For the computer programming and analysis of the data each of the three groups merged into one to give three groups in all for treatments and also three groups for mental ability levels.

That is

$$
\begin{array}{ll}
\left.E_{1}:(1,5) 3=1\right) & : \text { UCU } \\
E_{2}:(4,5,6=2) & : \operatorname{RCU} \\
E_{3}:(7,8,9=3) & : \operatorname{VCU} \\
\left.C_{1}:(1,4,7)=1\right) & : \operatorname{AMA} \\
\left.C_{2}:(2,5,8)=2\right) & : \operatorname{LMA}
\end{array}
$$

All tests of significance were carried out at $p=.05$ but the use of compcter for the analysis gave the results of thr statistical computations to the nearest significant levels. For example there were . 001 , .01, etc p-levels, and for this study, they are highly significant. Other significant levels different from p<. 05 or $p>.05$ were used as they were received from the computer-print-out. They did not affect the interpretations of the results.

TABLE 33

Analysis of Covariance of Post Achievement Test Scores of UCU, RCU, and NCU Groups

Sourro	df	Sum of squares SS	Mean squares MS	F Ratio	P
COVARIATE MAT	1	155.819	195.819	12.341	$.001 * * *$
MAIN EFFECTS	2	939.265	469.633	29.598	$.001 * *$
EXPLAINED	3	1135.084	378.361	23.846	$.001 * *$
RESIDUAL	122	9935.758	15.687		
TOTAL.	125	3070.842	24.567		

Highly Significant at $F<.001$

When the mental ability test scores (MAT) were used as a covariate on the post-test scores there was significant difference at $x=.001$ of the group - means.

TASLE 34

Multiple Clas -jfication Analysis of Post-Test
Scores dy Groups UCU, RuJ and NCU with Mental
Ability Scores

TABLE 35

Analysis of Variance of Mental Ability Test Scores the three Groups (ULU, RCU and NCU)

SOURCE	df	$\begin{aligned} & \text { SUM OF } \\ & \text { SQUARES } \\ & \text { SS } \end{aligned}$	MEAIN SQUARES MS	FRATIO	$\begin{aligned} & \text { SIGNIF. } \\ & \text { OF } F \end{aligned}$
$\underset{\text { GRP }}{\substack{\text { MAIN } \\ \text { EFFECTS }}}$	2	748.619	374.305	5.935	0.004**
EXPLAINED	2	748.621	374.311	5.335	0.004**
RESIDUAL	123	1,56.938	63.065		
TOTAL	125	8505.559	68.044		

The mente? ability scores were used to divide the puFils into ritferent ability levels. Hence, one wotlr expect a signifjeant difference in the means of the mental scores of the groups. When the mental ability scores of the groups were used as the covariate to post-test scores there. were significant differences in the covariate, main effects, and explained variance of the groups. Hence, there was significant difference in the post-test scores of the groups.

Since all the groups took the pre-test which was to serve ss an equalizing factor, an analysis of covariance of the post-test was carried out using pre-tast as the covariate.

$$
\begin{gathered}
-\begin{array}{rr}
178 & - \\
\text { TABLE } 36
\end{array} \\
\text { Analysis of Covariance of Post-Achievement } \\
\hline \text { Test Scores of UCU, RCU and NCU groups }
\end{gathered}
$$

SOURCE	df	SUM OF SQUARES SS	MEAN SQUARES MS	KATIO	$\begin{aligned} & \text { SIGNIF. } \\ & \text { OF F } \end{aligned}$
COVARIATE (PET)	1	33.992	33.992	1.713	0.190^{ns}
MAIN EFFECTS (GRP)	2	615.325	307.912	15.516	0. 21 ***
EXPLAINED	3	649.817	216.606	10.915	0.001 ***
RESIDU,LL	122	2421.025	19.844		
TOTAL	125	3070.842	27.567		
COVARIATE PET	$\begin{aligned} & \text { BETf } \\ & 0.007 \end{aligned}$				

TABLE 37

Multiple Classification Analysis of Post-test
Scores of Groups UCU, RCU and NCU with Pre-test covariate

From $R^{2}=0.21$, indicated that only 21% of the variance in the criterion measure of post-test scores was associated with the pre-tfet scores wheres the remaining 79% of the var ance might have been due to treatment or some th error.

TABLE 38

> Analysis of variance of the Pre-test of the groups UCU, RCU end NCU.

| SOURCi | df | SUM CF
 SQUGRES | MEAN
 SQUARE | F-
 RATIO | SIGNIF.
 LEVEL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| MAIN EFFECTS
 GRP | 2 | 8515.531 | 4257.766 | 0.852 | .999 ns |
| EXPLAINED | 2 | 3515.553 | 4257.781 | 0.852 | .999 ns |
| RESIDUAL | 123 | 614953.430 | 4999.621 | | |
| TOTAL | 125 | 523469.000 | 4987.750 | | |

$$
\text { ns - Not significant at } p=.05
$$

The mean Pre-test scores of the groups did not show any significant difference at $\boldsymbol{\sim}=.05$. This would suggest that the three groups were equalized by the pre-test. He ice any difference on the post-test scores would likely be du to the tregtment. To further test for the contribution of each treatment groups (UCU, RCU) to the significant difference from the control group (NCU) a post-hoc analysis was carried out to determine any significant differ nce among the groups. If a significant difference did exist, which of the groups wis better than tne other was determined by mult_ple range test of one way Scieffe and t-'ists. It
would be noted that LSD or Scheffe could only be applied if only and if there was signifinant difference at $\alpha=.05$.

table 39

Multiple Renge Test of Post-test scores by One-Way Scheffe Procedure - ANGJA+

SCURCE	df	SUM OF SQUARES iS	$\begin{aligned} & \text { MEAN F } \\ & \text { SOUARES RATIO } \\ & \text { HS } \end{aligned}$	$\begin{gathered} F \\ \text { PROB } \end{gathered}$	$\begin{aligned} & \text { SIGNIF } \\ & \text { LEVEL } \end{aligned}$
BETWEEN GROUFS	2	641.332	320.66016 .23	0.001	**
WITHIN GROUPS	123	2429.5273	19.7522		
TOTAL	125	3070.8594			

The groups were rearranged into groups of 2 for t-tests as shown in the table of t-test. (Table 40).

[^10]
TABLE 40

Summary of t-tests of the Post-test Scores
Groups UCU, RLU and NCU

GROUPS		N	$\bar{\chi}$	SD	$s D^{2}$		$\begin{aligned} & \text { SIGNIF } \\ & \text { LEVEL } \end{aligned}$
1.	UCU	42	17.38	4.483	20.10	5.354	. 001
	NCU	42	12.191	4.40	19.384		
2.	UCU	42	:7 38	4.483	20.10		
	RCU	42	13.143	4.44	19.784	4.35	. 001
3.	RCU	42	13.43	4.44	19.784		
	NCU	42	12.191	4.40	19.384	0.98	ns

** High! s signifisant at $p<. .001$ ns Not Significant at $p=.05$

Based on these two analyses one might suggest that there would be significant difference in the mean post-test scores of the groups. Hence hypothesis one was rejected.

Further statistical test. (see Table:41) of multiple regression analysis where the dependent . variable - posttest scores and independent variables were mental ability
scores and pre-test scores.of the thwee froups showed significant difference $(F(2,123)=7.29$ at $p<.01)$.

The results of the multipla regression analysis showed that there w a s a lineer correlation between the dependent variable post-test scoros, and the independent variables the mental ability and pre-test scorest. This correlation meant a significant relationship between the post-test scores anu the mantal ability and the pre-vest scores.

Though, $t h e ~ h y p o t h \in s i s ~ w a s ~ r e j e c t e d ~ o n ~ t h e ~ b a s i s ~$ of the statistical tests one would want to determine what main effects if any, the treatments had on each group of the treatments and control. Considered for analysis was the unrestricted calculator groups (UCU) - those who used calculator on tests and in insuruction that is, (A, B, C).

TABLF 41

Multiple Ragression Analysis of Post-test scorss with mental ability and Pre-test scores (ABC, DEF, GHI Groups)

ANALYSIS OF VARI ANCE	DF	SL'M חF SQUARES	MEAN SOUARE	FATI	SIGNIF LEVEL
FEGRESSI ON! RESIDUAL	2	325.33122	162.66561	7.28745	$.01 * *$

VARI ABLES I'N THE EQUATICN

VARI ABLE	B	BETA	STD ERRRP	F-RATIO	SIGNF. LEVEL
VAR 01 - MAT	0.19728	C, 32833	0.05461	13.052	. $01 * *$
VIR O3 - l'ET	0.01536	C. 21891	0.00638	5.802	. 05*
(CONSTANT)	6.75831				
Vfri ABLE	MULTI	LE P	p^{2}		
VAF 01 - MA	0.252		0.06377		
VAR $03-$ PET	0.325		0.10594		

** Significant at $p<.01$

* Significant at $\rho<.05$

TABLE 42

$$
\begin{aligned}
& \text { Analysis of Covariance of Fost-test Scores } \\
& \frac{\text { of } \hat{A}, \mathrm{~B}, \mathrm{C}, \text { Groups of UCU }}{\text { (MAT as covariate) }}
\end{aligned}
$$

Source	df	Sum of Squares SS	Mean Squares MS	F- ratio	Signif. Level	
Covariate MAT	1	180.965	181.965	13.277	$0.001 * * *$	
MAIN EFFEC:S GRP	2	124.979	62.489	4.585	$0.016^{* *}$	
EXPLAINED	3	305.944	101.961	7.485	$0.001^{* * * *}$	
RESIDUAL	38	517.957	13.630			
TOTAL	11	823.90	20.095			

*** liiziy significant at $p<.101$
3ignifficani at $p<.05$

TABLE 43

of A, B, C Groups of UCU					
(Pre-test as covariate)					
Source	df	Sum of Squares SS	Mean Squares MS	ratio	Signif. Level
COV ARIATE PRE-TEST	1	3.470	3.470	0.255	0.999
MAIN EFFECTS GRP	2	302.392	151.196	1:.091	0.001
EXPLAINED	3	305.862	101.954	7,479	0.001
RESIDUAL	38	518.038	13.633		
TOTAL	41	823.900	20.095		

*** Highly Significant at $p<. .001$
rs: not significant at $p=.05$

From the above table it appeared $t h$ a t there was no significant difference in the mean scores of the groups.

Since the mean post-test scores were significantly different for the three groups, a One-way Multiple range test using LSD procsdure was used to determine the level of significance due to treatment.

TABLE 44

$$
\begin{aligned}
& \text { Multiple rar.ge test of Post-test Scores of } \\
& \text { Groups A, B, C. One-Way LSD Procedure - ANOVA }
\end{aligned}
$$

Source	df	Sum of Squares SS	Mean Squares MS	F Ratio	Signif Level
BETWEEN GROUPS	2	302.4727	151.2353	11.312	**
WITHIN GROUPS	39	521.4336	13.3701		*
TOTAL	41	823.9063			

The thrae groups were re-arranged into group of twas for t-test.

TABLE 45

> Summary of t-test of the Post-test Scores of the Groups A, B, C.

GROUPS	N	\bar{x}	$S D$	$S D^{2}$	t-ratioSignif. Level	
A	14	20.7143	4.9835	23.840	4.22	$.001 * * *$
1. C	14	14.1429	3.0091	9.055		
A	14	20.7143	4.9635	24.840		
2. B	14	17.2857	2.4940	6.220	3.01	$.01 * *$
B	14	17.2857	2.4940	6.220		
3. C	14	14.1429	3.0091	9.055	3.19	$.01 * *$

** HighlySignificant at $0<.001$
** Significant at $p \ll .01$
From ststistical tests, the post-test mean scores were significantiy different for the three grours and henca, hypothesis one was again rejected.

The post-test scores of the restricted calculator groups were considered for analysis. The groups D, E, F who used calculator in tests only.

TABLE 46

$$
\begin{aligned}
& \text { Analysis of Covariance af Post-test Scores } \\
& \text { of Groups E, E, F. }
\end{aligned}
$$

Source	df	Sum of Squares	Meэา Squares	F. Ratio	$\begin{aligned} & \text { Signif. } \\ & \text { of } F \end{aligned}$
COVARIATE PRE-TEST	1	317.210	317.210	26.035	. $00:$ -
MAIN EFFECIS GRP	2	30.940	15.470	1.270	.292 ns
EXPLAINED	3	348.150	116.050	4.525	. 001 ***
RESIDUAL	38	462.990	12. 184		
TOTAL	41	311.140	19.784		

ns: Not significant at $P=.05$ ***HE゙g! Iy Significant at $p<.001$

Whatever was responsible for the main effect not being significant at $\alpha=.05$ cculd be explained by the multiple classification analysis. So as to determine the level of significance: the multiple range test - LSD procedure was carried out. In addition to furtıar determine the treatment effects the three groups were rearranged into groups of two and t-tests were done.

Multiple Classification Analysis of Post-test

Scores of Groups D, E, F with Pre-tejt scores

$R^{2}=0.429$, indicated that only 42.9% of the variance the critterion measure of Post-test scores was associated with the pre-test scores whereas the remaining 57.1% of the variance might have been due to treatment or some to error.

In order to determine the treatment effect, One-way ANOVA using LSD procedure of the multiple range test was carried out, art the t-tests of the groups.

TAELE 48

Multiple Range Test of Post-Test Scores of Groups D.E,F, by Onc Way ANOVA LSD Procedure

SOJRCE	df	SUM OF SQUARES SS	MEAIN SQUARES MS	F RATIC	F [ROP	SIGNIF LEVEL
BETWEEN GRDUPS	2	$? 75.5703$	137.7852	10.033	. 001	***
WITHIN GRDUPS	39	. 35.5742	13.7327			
TOTAL	41	811.1445				

TABLE 49

$\frac{\text { Summary }}{\frac{\text { of } 1,- \text { tests of the Post-test }}{\text { of Groups } D, E, F}}$

GROUPS		N		SD	$S D^{2}$	t-ratio	$\begin{array}{r} \text { SIGNIF } \\ \text { LEVEL } \end{array}$
1	L	14	16.000	3.4194	11.5922		\cdots
	F	14	9.7857	3.1908	13.1812	4.973	. 001 ***
2	D	14	16.000	3.4194	11.6922	,	
	E	14	13,643	:4.3959	19.3233	1.58	ns
		14	13.E43	4.3959	17.3239		
3	F	14	9.7857	3.1908	10.1812	2.33	. 05 *

ns: Not Significant at P. . 05
*** Hichiy Significant atp < . 001

* Significant at $p \leqslant .05$

For the roups ח. F. F the meane of the post-test scores could ba considered to be significantly different. Hence $t h e$ hypothesis was again rejected.

The post-tesi scores of the non-caiculator groups were also considered for analysis. The grcups $6, H$ and I did not use calculator in teats and instruction and were treated as the control group.

TABLE 50

Anclysis of the Covarience of the Post-test Scores of Gruups G, H, I

SOURCE	df	SUM OF SQUARES SS	MEMN SQUARES MS	F-RATIO	$\begin{aligned} & \text { SIGNIF } \\ & \text { OF F } \end{aligned}$
COVARIATE PRE-TEST	1	385.968	385.968	38.819	0.001 ***
MAIN EFFECTS GRP		30.67	15.339	1.543	0.226 ns
EXPLAINED		416.646	13.882	13.968	0.001 ***
RESIDUAL		377.827	9.94		
TOTAL	41	794.473	13.377		

ns : Not Significant at $p=.05$
***Higily Significant at P < ,001

Whatever was responsible for the main effects

not to be significant at $\boldsymbol{\alpha}=.05$ could be explained by the multiple classification analysis.
table 5.
Multiple Classification Analysis of Post-test Scours of Groups G, H, I.

GRAND MEANS $=12.19$

0.39
0.20

MULTIPLE R SQUARED $=0.524$
MULTIPLE $R=0.724$
$R^{2}=0.524$, indicated that 52.4% of the variance in the criterion measure of Post-test scores was associated with the pretest scores (quite large). Whereas the rest 47.6\% of the variance might have been due to treatment or some to error.

In order to determine the level of significant difference, and if this was due to treatment the multiple range tesi one-way LSC procedure and t-t.ests of the post-test mean scores of the groups were carried out.

TABLE 52

Multiple Range test of Pos'--test Scores by One-way ANOVA Procedure of Groups G, H, I

SOURCE	df	SUM OF SQUARES SS	MEAN SQUARES MS	$\begin{aligned} & F_{1} \\ & R A_{i} I O \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { PROP } \end{aligned}$	$\begin{aligned} & \text { SIGNF } \\ & \text { LEVEL } \end{aligned}$
BETWEEN GROUPS	2	120.3320	60.1660	3.481	. 04	*
WITHIN GROUFS	39	674.1445	17.2858			
TOTAL		794.4766				

- 195 -

TABLE 53
Summary of t-iest of Post-test Scores of Groups G, H, I

ns: Not significant at $P=.05$

* Significant at P.

The effects of the covariate as represented by thr pre-esst seemed to, have affected the level of significarice of post-test scores as evident in the high cuvariates F-ratio value. Though the multiple range test of LSD producedure on the post-test scores showed significance of F, it was n o t high enough to have obliterated the effects of pretest scores. In addition, the t-test was significant for H and I alone of the three groups tested.

Since F-ratio was significant as shown in the multiple range test, hypothesis one was again rejected. The results of the analyses carried out using multiple regression analysis, one-way ANDVA, multiple range test and t-tests of post-test scores (Tables $33-41$) showed that there were significant differences in the mean scores of the groups, hypothesis one was conclusively rejected. It also demonstrated that (i) the unrestricted calculator group (UCU), those pupils who used calculator in tests and instruction were better in performance than restricted group (RCU), those who used calculator only in the tests as indicated by the comparison of the means of post-test scores analysis and t-test, and (ii), the unrestricted calculator groups (UCU) were also significantly better in performance than the non-calculator group (NCU) as indicated in the post-test scores analysis - t-test, and (iii) there was no significant difference in the performance of the restricted calculator groups (RCU) as indicated in the posttest scores analysis (See Tables 46 - 49).

This was further collaborated by the results of each of the groups in UCU, RCU and NCU as indicated on Tables 42-53. For UCU, Table 45 indicated that the high mental ability
group of this unrestricted calculator group performed significantly better than the low mental ability, as could be expected, and also the same group did better than the average mental utility group, while the average mental ability group cid also better than the low mental asility group.

For RCU, the high mental ability group of tl 3 restricted calculator group did significantly better than the low mental ability group, There was no significant difference i ween the performance of high and average groups but there was a difference in the performance of the average and low mental ability groups in favors of average mental ability (Table 49).

For NCU, tie control group, that is, non-calculator group there was no difference in the performances of high and low; high and average except average and low mental ability groups $\cdots \cdots$ (Table 53)

5.20 Hypothesis 2.

There will be no significant difference in the achievement scores of those groups of pupils of high, average and low mental abilities. That is:

$$
\text { Ho: } M C_{1}=M C_{2}=M C_{3} \text { at } a=.05 .
$$

Analysis o: Covariance of Post-test

Scores of the groups HMA, AMA and LMA

SOURCE	df	SUM OF SDUARES SS	MEAN SQUARES MS	F RATIO	$\begin{aligned} & \text { SIGNIF } \\ & \text { OF } \mathrm{F} \end{aligned}$	
COVARIATE MAT	1	195,821	195.821	9.915	0.002	*
MAIN EFFECTS GRP	2	465.53y	232.800	11.788	0.001	***
EXPLAINED	3	661.420	220.473	1i.164	0.001	***
RESIDUAL	122	2409.422	19.749			
TOTAL	125	3070.842	24.567			

** Significunt at $<.01$
*** Higbly Significant at p $\alpha .001$

The mantal ajility scores couid not have had confounding affects on the post-test score since the groups had bean randomly selected on the basis of their scores in the mantal ability tests. This signific.ant differsncarin the mertal देさ?ity mean scores.of the groups was expected. This had bean corroborated on the ANOVA table of MAT, (Teble 55).

Analysis of Variance of riental Ability Scores
 of the Grisjos HMA, AMA, LMA

SOURCE	df	SUM DF SQUARES SS	MEAN SQUARES MS!	F RATIO	$\begin{aligned} & \text { JIGNIF } \\ & \text { OF } \mathrm{F} \end{aligned}$
MAIN EFFECTS GRP	\angle	5610.996	2805.458	119.215	$0.0 \cup 1 * * *$
EXPLAINED	2	5610.996	2805.498	119.215	$0.001 * * *$
RESIDUAL	123	2894.574	23.533		
TOTAL	125	8505.570	53.045		

$$
\text { Highly Siguificant at } p<.001
$$

There was high significant difference on the mental ability scores since the groups were not equalized o, th s basis, Howsver, the effects of the pre-test on the treat.nent w a s able to demonstrate if actually the significance difference in the post-test scores was due to experimental treatment or other factors.

TAGLE 55

$$
\begin{aligned}
& \text { Analysis of Covariancs of Post-test Scores } \\
& \text { of the Groups HMA. AMA, LMA }
\end{aligned}
$$

SOURCE	$d f$	SUM OF SQUARES SS	MEAN SQUARES SS	RATIO	$\begin{gathered} \text { SIGNIF } \\ F \end{gathered}$
COVARIATE (PRE-TEST)	1	33.992	33.992	1.639	0.193 ns
MAIN EFFEC ${ }^{+}$S GRP	2	581.739	290.853	14.454	0.001 ***
EXPLAI FED	3	S15.731	203.244	10.199	0.001 ***
RESIDUAL	122	2455.111	20.124		
TOTAL	125	3070.842	24.567	.	

*** Hi, hiySigrificant at $p<.001$ ns Net Significant at $P=.05$

Whatever could have accounted for the covariates not to b e significent at $\alpha=.05$ might have been due to the equalizing faczor of the pre-test on the groups, as it could be detsesed on the ANOV A table of Pre-test.

$$
\begin{aligned}
& \text { Analysis of Variance of the Pre-test Scores } \\
& \text { of the Groups HMA, AMA and IMA }
\end{aligned}
$$

SOURCE	df	SUM OF SQualkes 53	MEAN SQUARES MS	F RATI	SIGNIF OF
MAIN EFFECTS GROP	2	11415.445	5707.72	1.14	0.321
EXPLAINET	2	11415.500	5757.750	1.147	0.321 n
RESIDUS 4.	123	612054.375	4976.051		
TOTAL	125	623469.875	4987.758		

The mean pre-test scores of the groups did not show any signific:at difference at $\alpha=.05$. This would sug,est that tha threa groups were equalized on the basis of the pre-test scores. Hence any differer.ce on the post-test scores would likely te due to the treatment given to the groups. To further test for the level of significance so as to ascertain which was due tu treatment or other factors, a pust hoc analysis was carried out.

If a significant difference did exist which of the groups was better than the other. To do this, multiple range test oneway Scheffe procedure and t-tests were carried out.

Tf.BLE FA

Multiple Range Test of Post-test scores One-Way
Scheffe Procedure (ANOVA) of Groups HMA, AMA, ar. LMA

SOURCE	IfCUM OF SQUARES SS	MEAN SQUARES MS	RATIO	PROB	
SOURCE GROUPS	2	594.3945	297.4973	14.776	$0.001 * *$
WITHIN GROUPS	123	2475.9645	20.1298		

TOTAL
$125 \quad 3970.8594$

$$
\text { *HizhiySignificent at } p<. O L \text {. }
$$

Similarly a multiple regression analysis of Post-test scores, table 59, showed significant difference:

$$
(F(2,123)=28.398 \text { at } \leqslant .001)
$$

TABLE 59

Multiple Regression Analysis of Post-test scores with Mental akility and Pre-test scores (ADG, EEH, CFI Groups)

ANALYSIS OF VARIANCE	DF	SUM UF SQUARES	MEAN SDUARE	F RATI O	SIGNIF. LEVEL
REGRESSI UIV	2	720.12596	360.06298	28.398	$.001 * * *$
RESIDUAL	123	1559.53277	12.67913		

VARI ABLES IN "T: EQUATI ON

VARI ABLE	a	BETA		ERROP	F-RATIO	SIGNIF LEVEL
VAR Dí - MAT	0.12145	0.21836		0.0467	6.746	.01**
VAR $03-$ PET	0.54684	ก.42681		0.17772	25.773	.001**
(conctani)	3.41246					
VARI ABLE	MLLTIPLE	R^{2}				
VAR 01 - MAT	0.41538	0.172				
VAR $03-$ PET	0.56204	0.315	889			

| $* *$ | Highly significent ai p | $<.001$ |
| ---: | :--- | ---: | :--- |
| $* *$ | Significant at | $p<.01$ |

table

$$
\begin{aligned}
& \text { Summary of } t \text {-iest of the Post-test Scores } \\
& \text { Scores of Groups HMA, AMA, LMF: }
\end{aligned}
$$

GROUPS	N	$\bar{\chi}$	SD	$S D^{2}$	$\dot{\text { RATIO }}$	SIGNIF LEVEL
HITA	42	16.4524	5.5709	31.0349	4.	0.001***
1 LMA	42	11.2657	3.9589	15.6729		
HMA	42	16.4524	5.5709	31.0343		
2 AMA	42	14.9762	3.6990	13.6926	1.43	ns
AMA	42	14.9762	3.6990	13.6826		
3 LMA	42	11.2857	3.9569	15.6729	4.4	0.001 ***
NS : Not Significant at $p=.05$ *** Highly Significant at $\dot{p}<$. . 00 i						

Tables 54-60 showed thet the ability groups differed significantly from each other. The analysis of covariance of fost-test mean scores showed'significant differanceat $p<.001$. The treatment effect too was significant as shown by the multiple range test using One-we. Scheffa Procedure. Based on the significance difference of the mean scores of the high, average and low
mental ability groups t he hypothesis that there would be no significant tifference in their mean post-test scoras was rejected. Sincs the groups were significantly different in their post-test mean scores, the three groups were ccmpared using t-tast, (Table 60). It was found that high mental aoility groups pupilsperformed better than the low mental ability group. The average mental ability grouf pupils also did sienificantly better than the low inentai abilit; groups. However, there seemed to be no difference in the performances of high and average mente? ability groups.

Trough hypothesis two was rejected on the basis of the above statistical tests, one would want to determine what main effects, if any, the treatments had on each group of different mental abilities.

The post-test scores of high mental ability groups (FIMA) from aach of the treatment groups UCL, RCU, and control groups NCU were tested for signifitant difference.
table 61

SOURCE	df	SUM DF SQUARES SS	MEFN SQUARE MS	RATIU
BETWEEN GROUPS	?	460.3359	230.168	11.05
WITHIN GROUPS	39	812.0742	20.822	
TOTAL	41	1272.4102		
***Highig' Significant at $\rho<.001$ Table 51 of Multiple range test showed that there was significant difference in the mean post-test scores of the groups. Futher test would show the relative performance of each group.				

Surnmary of c tests of Post-test scores of groups (HMA) (A, D, G)

SROUPS		N	$\bar{\chi}$	SD	$s 0^{2}$	t-RATIO	SIGNIF LEVEL
	\wedge	14	20.7143	4.9835	24.3353		
1	G	14	12.64<9	4.0931	25.9387	4.24	ᄀ 001**
	A	14	20.7143	4.9835	24.8353		
2	D	14	16.000	3.4194	11.6923	2.92	0.01 **
	D	14	16.000	3.4194	11.6923		
3	G	14	12.0429	5.0931	25.9387	2.05	0.05

$$
\begin{aligned}
& * * * \text { Highly } \text { significant at } p:<~ .001 \\
& * * \text { Significant a+ } p .< \\
& \text { Significant at: } p<.01
\end{aligned}
$$

The above t-test table shows that high mental ability group of unrestrictad calculator groups (A); performed significantly better than the hi弓h mental ability zroups of restricted calculator groups :(D) ' and non-c:lculator groups (G)... Similarly the high mental ability group of restri ted groups performed better than the control groups the non-calculator sroups in the Post-test. This would
suggest thai the treatmunt was effactive on the groups and confirmed the rejeiction of hypothesis two.

The post tast scores of Average mental ability groups (AMiA) from each of the treatment groups $U C^{\circ}, R C U$ and control groun NCU wers tested for significant difference.

TABLE E3
Analysis 0: variance of Post-test Scores of
Groups AMA - One-way Scheffa Procedure

SOURCE	$d f$	SUM OF SQUARES SS	MEAiv SQUARES MS	F RATIO	F PROP
EETWEEN GRGUPS	2	112.9063	36.7531	4.914	$0.011 *$
WITHIN GROUPS $39 \quad 448.0742 \quad 11.4891$					
TOTAL 41560.9805					
		* Signifi	ant at	$<.05$	
Table 6		of Multi differe	e range e in th	est sh mean	dhat -test
scorzs, at $\vec{P}<.01$. Further test would show the					
relative perfirmance of each group.					

TABLE 64

Sumrnerv of t-tests of Fost of Post-test
 Scures of groups AMA (B, E, H)

GROUFS		N	$\bar{\chi}$	SD	$S D^{2}$	r	SIGNIF LEVEL
1	B	14	17.2857	2.494	6.220		
	H	14	14.000	2.9872	8.9234	3.16	-.01**
2	B	14	17.2857	2.494	6.220		
	z	14	13.642	4.3959	19.3240	2.7	$0.05 *$
3	E	14	13.6429	4.3959	13.3240		
	H	14	14.0000	2.9872	8.9234	-0.25	ns

** Significant at $P \leqslant .01$

* Significent at P^{2} < . 05
ns Not Significant at $n=.05$

The abovs t-tests table showed that average mental ability group of unrescricted calculator groups ' (B) - ה performed significantly better than the average mental ability groups of restricted calculated group (E) and the Non-calculator group (H). Howaver, there seemed to be no significant difference in ting mean post-test scores of average mental ability groufs (\because) and (H). ${ }^{2}$

- In ather words, the restricted calculator - average mental ability group did not perform better than the non-calculator - average mental ability group. The result showed that the treatment was effective on the experimental groups and confirmed the rejection hypothesis two.

The post-test scores of lo'N mantal ability groups (LMA) from each of the treatment groups UCU, RCU ard control group $N C U$ ware tested fo: significant difference.

TABLE u5
Analysis of Variance of Post-test Scores of Groups (LMA) - One-way Scheffe Procedure

Table 65 of multinle range tast showed that there was sigrifingant diffaronce in the mean post-test scores at $p<.01$. Furthar t-tasts would show the relative parformance of each group.

TABLE 66
Summary of t-tests of Post-test Scores of Grouns (LMA) C, F. I.

	PS	N	$\bar{\chi}$	SD	$S D^{2}$	t- ratio	SIGNIF LEVEL
	C	14	14.1429	3.0091	9.0547	-	
	I	14	99.9286	4.122	16.9942	3.1	0.01**
	C	14	14.1429	3.0091	9.0547		
2	F	14	9.7857	3.1908	10.1312	3.72	$0.001 * *$
	F	14	9.7857	3.1308	10.1812		
3	I	14	. 9266	4.1224	16.9942	. 10	ns

Highly Significant at $p<.00^{\prime} 1$
** Significant at p _< . 01
ns Not Significani at $p=.05$

The abcue t-tests table showed that Low mental ability group of unrestricied calcu-ator groups - C performed significantly retter then (i) Low mental ability group from Non-C=icjlator - Control group I and (ii) Restricted calculator group F. However, there wis no significant difference in the mean scores of the low mental ability groups from RCU ai.J NCU. It would therefore, appee that there was no difference i, the ferformance of these two groups. liough trie result showed that the treatment was relatively effective.

Again hypothesis two was rejected.
5.3: Hypothesis 3.

Thera will significent difference in the mean attitude scorcs of those groups of Dupils who use (i) Calculators in tests end instruction (unrestricted Groups) (UCU), (ii) Celculators in tests only (reswicted groups) (RCU), and (iii) Non-calculators at all-control groups (NCU). That is :

$$
H_{2}: \dot{X}_{E_{1}}=X_{E_{2}}=X_{E_{3}} \text { at } \alpha=.05
$$

SOURCE	df	SUM OF SQUARES SS	MEAN SQUARE MS	F-RATIO	$\begin{aligned} & \text { SIGNIF } \end{aligned}$
COVARIATE PRE-GTTITUDE	1	2502.72e	2502.728	17.064	0.011 ***
MAIN EFFECTS GRP	?	1357.972	-83.986	4.663	0.011**
EXPLITINED	3	3870.703	1290.234	8.797	0.001***
RESIDUAL	122	17893.831	14, 671		
total	125	21764.5.34	174.11		

***Highi.. Significant at p <. . 001

* Significant at p.<.c5

TABLE 68

Multiple Classificatio: Analysis of Post-Attitude Scores of Groups UCU, RCU and NCU with Pre-Attitude

Covariate

$R^{2}=0.178-$ indicated that 17.8% of the variance in the criterion measure of Post-attitude scores' was associated with the Pre-attitude scores whereas the rest 82.2% of the variance might have been due to treatment or to some error.

Analysis of Variance of Pre-attitude Scores

 of Groups UCU, RCU and UCU| SOURCE | df | SUM OF
 SQUARES
 SS | MEAN
 SQUARES
 MS | F F F | SIGNIF
 RATIO |
| :--- | ---: | ---: | ---: | ---: | ---: |
| MAIN EFFECTS
 GRP | 2 | 831.048 | 415.524 | 0.424 | 0.999 ns |
| EXPLAINED | 2 | 831.063 | 514.531 | 0.424 | 0.999 ns |
| RESIDUAL | 123 | 120682.043 | 981.155 | | |
| TOTAL | 125 | 121513.125 | 972.105 | | |

ns : Not Significant at α. $=.05$

Table 69 showed that there was no significant difference in pre-attitude scores of the three groups. This would mean that the groups were equalized on their attitudes before the treatment. Any other variance that would have accounted for the difference, if any, in the post-attitude score:sof the groups might have been due to the treatment.

Since the covariate, main effects, and explained were significant (See Table 67) it would be necessary to determine (i) the level of significance of the means of the
post-attitudes scores and (ii) the level of significance of the attitudinal charge betwecn Pry-attitudes and Postattitudes mean scores.

The one-way inultiple range test using student - Newman Keuls (SNK) procedure was used to determine the level of significance due to treatment or otherwise whale multiple regression analysis was used to determine the level of significance of ti, attitudinal change.

TAB'E 70
Multiple range Test of Post-attitude Scores of Groups UCU, RCU, NCU by Student - Newman -

Keuls Procedire (SNK) ONE-WAY ANOVA

SOURCE	df	SUM JF SQUARES SU	MEAN SQUARES MS	F-RATIO	F-PROB
BETWEEN GROUPS	2	47.3750	235.6875	1.217	0.299 ns
WITHIN GROUFS	123	$2381: .000$	193.5335		

TOTAL
125 2428ミ. 2750

NS $=$ Not Significant at $\dot{p}=, 05$

The tabis showes that the means of the groups were not significantly different at $\dot{p}=.05$. This would mean that there was no difference in the mean attitude scores of the

TABIEE 71

Multiple Regression Analysis of Post-attitude scores Ith Pre-attitude scores (ABC, DEF, GH I Groups)

ANALYS_S OF VARI ANCE	DF	SUM OF SQUARES	MEAN SQUARE	F RATIO	SIGNIF. LEVEL
REGRESSI ON	1	2502.77415	2502.77415	16.11170	$.001 * * *$
RFSIDUAL	124	19262.02744	155.33893		

VARIABLES IN THE EQUATION

VARI ABLE	B	BETA	STO ERRQR	F-RATIO	SIGNIE.
LEVEL					

Highly significant at $p<.001$
groups. Whatever could have accounted for the significant differences on Tabie 67 might have due to other variance(s) or error. To desermine if a difference did exist between the Pre and post attitude scores a multiple regression analysis of the post-attitude scores as dependent variable and pre-attitude scores as independent variable was carriad out ('See Table 71)):
$\left(F(1,124)=\right.$: $0.1117, p<$.001). While the adjusted R^{2} value was 0.11 , that is, 11% of the variance was due to the Pre-attitude wherea - 89% would have been due to the treatment on the groups giving rise to the significant difference in post-attitude scores, or any other error. The F-value of this regression enalysis showed that there was significant difference in the means of the pre and post attitude scores. This attituainal change could be attributed to the treatments.

Though there had been change in attitudes as a result of the treatments this was not sifficient enough to have brought a difference in the post-attitudes of the groups. Hence, hypothesés three was accepted.

There was no significant difference in the mean postattit।' 'e score of the groups despite the change in attitudes of the groups.

The change in ettitudes of the groups could have been attributed to some treatments on the groups. To determine which of the groups showed a significant difference in their attituler toward methematics and calculator, t-tests were carried out.

TABLE 72

Summary of t-iests of Post-attitude Scores of Groups UCU, RCis and NCU

GROUPS	N	$\bar{\chi}$	SD	$S D^{2}$	t-ratio	$\begin{aligned} & \text { SIGNIF } \\ & \text { LEVEL } \end{aligned}$
UCL	42	87.571	15.5964	243.250		
1 NCU	42	83.4524	1-. 8707	160.5466	1.33	ns
UCU	42	87.57	15.5964	243.250		
2 RCU	42	80.0952	10.6790	114.041	2.22	0.05*
RCU	42	80.0952	10.6790	114.041		
3 NCU	4	83.4524	12.6707	160.5466	-0.972	ns
		* Significant at $\mathrm{p}^{*}<.05$ ns $=$ Not Sagt,ificant at $p=.05$				

Table 72 showed that there was no difference in the post-attitude scores of those who use calculators and those that did not use calculators. Howaver, there was some significent difference in the post-attitude scores of unrestricted calculstor group and restricted calculator group.

The overall picture showed that there was no significant difference in the post-attitude scores of the groups, and. so hypothesis three was not rejected. The groups had the same attitudes toward mathematics and calculators.

TAGLE 73

Summary of t-tests of Post $=$ attituda Scores

of the groups UCU : A, B and C

GROUP	N	\bar{X}	SD	S^{2}	T-RATIO	SIGNIF LEVEL	
A	14	89.857	16.9971	288.90			
1	C	14	82.071	11.6452	135.610	1.4	ns
	A	14	89.857	16.9971	288.90		
2	B	14	90.786	16.2773	254.950	-0.15	ns
	B	14	90.7816	16.2773	264.950		
3	C	14	82.071	11.6452	135.610	1.63	ns

ns : Not Significant at $P=.05$

The table of t-tests showed that there was no significant difforance in the post-attitude mean scores of the high, average and luw mental ability groups of the unrestricted calculator groups. The groups received the same treatment.

TABLE $7<$

Summar; of t-tests of Post-attitude Scorss. of the groups $2 . C U: D, E$, and F.

GROUP	N	$\bar{\chi}$	SD	$S D^{2}$	T-RATIO	$\begin{aligned} & \text { SIGNI } \\ & \text { LEVEL } \end{aligned}$
D	14	81.214	5.670	44.489		
F	14	81.000	13.576	184.308	0.053	ns
D	14	31.214	6.670	44.489		
E	14	80.857	11.367	129.209	0.10	ns
E	14	80.857	11.3 c 7	129.20.		
F	14	81.000	13.576	184.308,	-0.03	ns

ns : Not significant at $P=.05$
The results of the t-tasts showed that there was no significant difference in the post-attitude scores of the high, average and low mental ability groups of the
restricted calculator groups.

TASLE 75

Summary of the t-tests of Post-attitude mean Scores of the groups G, H and I

GROUP	N	$\bar{\chi}$	SD	$s 0^{2}$	RATIO	SIGNIF LEVEL
G	14	88.071	10.658	.13.61		
I	14	78.780	14.5453	211.566	1.93	ns
G	14	88.071	10.658	113.61		
H	14	83.857	11.60	134.593	1.001	ns
H	14	83.857	11. 60	134.593		
I	14	78.786	14.5453	211.566	1.02	ns

$$
\text { ns : Not significant at } \dot{\dot{g}}=.05
$$

The results of the t-tests showed that there was no significant difference in the Post-attitude mean scores of the high, average and low mental ability groups of the Non-calculator groups. Groups G and I had significant difference at $p=.05$ for one-tailed test.

Though the analysis of covariance of Table 67 had shown that there was significant difference in the mean
scores. The m:lltiple range test showed that:

$$
(F(2,123)=1.217) \text { was not significant at } p=.05 \text {. }
$$

This result was further confirmed by the t-tests which showed that there were no significant differsnces in the post-attitude scores of the groups. However, there were significant differences in t!g Pre-attitude and Post-attitude scores of the groups. This would mean that there was some relationship between pre and post attitude scores of the groups.
5.4 Hypothesis 4

There :/ill be no significant difference in the mean of post-attitude towards mathematics and calculator scores of those groups of pupils of hish, average and low mental abilities.

That is:
Ho: $\quad X_{C_{1}}={ }^{X_{C_{2}}}=X_{C_{3}}$, at $\alpha=.05$

TABLE 76
Analysis of Covariance of Post-Attitude
Scores of groups HMA, AMA, LMA

SOURLE	df	SUM OF SQUARES SS	MEAN SQUARES MS	$\stackrel{\text { F }}{\text { RATIO }}$	SIGNIF LEVEL
COV ARIATES PRE-ATTITUDE	1	2502.748	2502.748	6.810	0.001***
MAIN EFFECTS (GRP)	2	1098.208	549.104	3.688	0.027*
EXPLAINED	3	3600.-57	1200.319	8.062	0.001***
RESIDUAL	122	18163.621	148.682		
TOTAL	125	21764.578	174.117		
$\text { *** }{ }^{\circ}{ }_{g}$	Si Sig	nificant at nificant at	$\begin{aligned} & p<.001 \\ & p<.05 \end{aligned}$		

Multiple Classicication Analysis of the Post-Attitude Scores of Groufs HMIA, AMA and LMA

Otherwise, what was the significance of the main effects?

TABLE 78
Analysis of Variance of Pre-Attitude Scores of HMIA, AMA and LMA

SOURCE	DF	SUM UF SQUARES SS	MEAN SQUARES MS	F RATIO	SIGNIF LEVEL
MAIN EFFECTS	2	2323.857	1161.928	1.199	0.305 ns
EXPLAINED	2	2323.875	1161.938	1.199	0.305 ns
RESIDJAL	123	119190.313	969.027		
TOTAL	125	121514.188	972.113		

ns : Not Significant at ${ }^{\prime} p=.05$

The table showed that there was no significant difference in the Fre-attitude scores of the groups. The mean significant difference of tie pcet-attitudes scores must have occurred as a result of some treatment. In order to determine which group(s) contributad to the treatment and the significant difference, a multiple rance test using one-way ANOVA LSD procedure was carried out.

Multiple range Test of Fost-attitude Scores ONE-WAY FINOVE LSD Procedure on Groups
 HMA, AMA, and LMA

SOURCE	df	SUM OF SQUARES SS	$\begin{array}{cc}\text { MEAN } & \text { F } \\ \text { SQUPRES RATIO }\end{array}$ MS	PROB
BETWEEN GROUPS	2	822.9375	$411.4688 \quad 2.417$	0.091 ns
WITHIN GROUPS	123	20942.000?	170.26C2	
TOTAL	125	21764.9375		

The table showad that the maan of the post-test scores of the groups was not significantly different at $P=.05$.

This would suggest that otnar variance(s) or error could have contributed to the siznificant difference on Table 76 However, to determine, if this was caused by, other variances, multiple regrassion analyses of the post attitude as dependent variable with pre-attitude as the : ndependent variable were carried ou:. (see Tables 80-82).

For groups HMA and LMA the table showed that (F(1.82) $=7.2626, p<.01$, there was significant difference in the mean post attitude scores of high mental ability and low mental ability groups. For groups HMA and AMA the table showed that $(F(1,82)=11.6847, p(.001)$, Hence it was found that there was significant difference in the mean post attitude scores of high mental ability and average mental ability groups. Also for groups AMA and LMA the table showed that $(F(1,82)=15.4464, p<. .1)$, there was significant difference in the mean post attitude scores of avarage mental ability and low mental ability groups. From table 79 the mean post attitude scores of the groups had been found not th be significantly different for the groups. Hypothesis four was not rejected. That is, there was no significant difference in the post-attitude ssores of the groups. Pupils of different mental ability levels would have the sare attitudes toward mathematics and calculators. However, the multiple regression analysis showed that there wer attitudinal change within the groups because there was significant difference in the pre-attitude and post-attitude scores of the groups. Table 79 only showed that the means of

Multiple Regression Analysis of Post-attitude scores vith Pre-attitude scores of groups ADG and CFI (High and low mental abilities)

ANALYSI OF VARI ANCE	DF	SUM OF SDUARES	MFAN STUARE	F	SIINNIF.
LEVEL					

VARI ABLES IN TH: EQUATION

VARI ABLE	B	EETA	STD ERROR	FF-RATIO	LIGVIF.
VAR O2 - PEA	0.32118	0.28524	0.11918	7.263	$.01^{* *}$
CONSTANT	57.32169				

VARIABLE MULTIPLE $R \quad R^{2}$

VAR 02 - PEA
0.28524
0.08136

Significant at F <. 01
table E_{1}

Multiple Regression Mnalysis for Post-attitude scores with Pre-attitude scores of groups A!G and BEH (High and average mental abilities)

ANALYSI: OF VARI ANCE	DF	SUM OF STUARES	MEAN SQUARE	F- RATIO	SIGNI F. LEVEL
REGRESSI ON	1	1752.57912	1752.57912	11.685	. CO1***
RESIDUAL	82	12299.08755	149.98887		

VARI ABLES IN THE EQUATION

VARIABLE	B	BETA	STD ERROR	F-RATIO	SIGNIF. LEVEL
VAR 02 - PEA (CONSTANT)	0.39669	0.35316	0.11605	11.685	$.001 * * *$
VARIABLE					
VAR $02-$ PULTIPLE	R		R^{2}		

Highly significant at $\mathrm{F}<$: 001

TAELE 82
iiultiple Regression Analysis of Post-attitude scores of groups EEH and CFI
(i.u. Average and low mental abilities)

ANAL 3I S OF VARI ANCE	DF	SUM OF SQUARES	MEAN SQUARE	FI RATIO	SI GNIF LEVEL
RESRESSI ON	1	2380.00963	2380.00963	15.44635	$.001 * *$
RESI DUAL	82	12638.99590	154.13415		

VARIABLES IN THE EQUATION

VARI ABLE	B	BETA	STD. ERROR	F-RATIO	SI GNIF LEVEL
VAR 02-PEA (CONSTANT)	0.48110 43.41655	0.39813	0.12241	15.446	$.001^{* * *}$

VARI ABLE

VAR 02-PEA

MULTIPLE R
$0 . j 9813$
R^{2}
3.15851
*** Highly Significant at $p<.001$
the groups were equal while Tables 80 - 82 showed that there had been attitudinal change. To determine the level of significance of this attitudinal change t-tests were carried out.

TÁble 83

Summary of t-tests of Fost-ettitudes

 Scores of Groups HMA, AMA and LMA| GRJUPS | N | \bar{x} | SD | S^{2} | T-
 RATIO | SIGNIF
 LEVEL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | HMA | 42 | 86.214 | 12.540 | 157.245 | |
| LMA | 42 | 80.452 | 12.975 | 168.351 | 2.07 | 0.05^{*} |
| | HMA | 42 | 86.214 | 12.540 | 157.245 | |
| 2 | AMA | 42 | 85.452 | 13.608 | 185.180 | 0.26 |
| | AMA | 42 | 85.452 | 13.608 | 185.180 | |
| 3 | LMA | 42 | 80.452 | 12.975 | 168.351 | 1.72 |

Siznificant at $p<.05$ ns Not Significant at $P=.05$

The table showed that thi high mentai ability groups had hetter attitudes toward mathematics and calculator than low-mentel ability groups while there were no
differencas in tha attitudos of high mantal ability and average mental cib_ity sroups, and the average mental ability and the low muntal ability groups. U s i $n \mathrm{~g}$ one-tailed test at $F=.05$ there was significant differerize between the mean attitudes scores of average mental ability and low mental ability.groups. From here, the results showed that pupils of high mental ability would have batter attitudes ioward inthematics and calculators than those pupils of low mental ability. T o determine what the differences would be within groups, t-tests of groups A, D and G were carried out.

TABLE 84

GROUP	N	$\overline{\mathrm{x}}$	30	53^{2}	TRATIO	SIrNIF LEVEL
A	14	89.857	亿¢. 397	258.201		
1 G	14	88.671	10.6590	! 13.51	0.33	ns
A	14	89.857	$16.3 \ni 7$	288.901		
2 ©	14	81.214	0.670	44.464	1.7:	ns
\square	14	31.214	$\oint .670$	44.439		
3 G	14	-0. 079	10.6588	113.51	1.99	ns

The above table showed that no significant difference was found among the high mental ability groups of the unrestrictad calculator, rectricted for two tailed test. Though the groups A and D, D and G were not significant st $P=j 5$ two-tailed test, b o $t h$ groups were found to be significantly different at $P=.05$ for one tailed test. In the high mental ability lavel the unrestricted calculator group had better attitudes than restricted calculator, and the restricted calculator group also had poorer attitude than the no-valculator group. In the analysis of the attitude scores of calculator and non-calculator groups it was found that there was significant difference in the pre - and post-attitude scores when F-test was used. While such a difference was not significant by t-tests. Though some researchers have observed such difference in the use of t-tests and F-test (Spence) ${ }^{1,09}$.

Summary of the t-tests of Post-attitude Scores of groups AMA: B, E, and H

GRCUPE	,	$\bar{\chi}$	SD	$s D^{2}$	$\stackrel{t}{\text { RATIO }}$	SIGNIF LEVEL
B	14	90.786	16.2773	264.950		
H	14	83.857	11.60	134.593	1.3	ns
B	14	80.786	16.2773	264.90		
E	14	80.857	11.367	129.209	2.33	. 05 *
E	14	60.857	11.367	129.209		
H	14	83.857	11.60	134.593	0.69	ns

* Significant ut p:. 05
ns Not significant at ' $\mathrm{p}=.05$

The table of t-test of post-attitude scores of (AMA), A, D and G groups showed that there was significant difference between average mental ability of unfestricted group and restricted groups while other groups were not significant.

TABLE 86
Summary of T-Tests of Post-Attiutude Scores
of Groups LMA: C, F and I

GROUF,	N	\bar{X}	SD	S^{2}	T-RATIO	SIGNIF LEVEL
C	14	82.071	11.6452	135.61		
I	14	78.786	14.5453	211.566	0.66	ns
C	14	82.071	11.6452	135.61		
F	14	81.000	13.576	184.308	0.22	ns
F	14	81.000	19.576	184.308		
I	14	78.786	14.5453	211.566	0.42	ns

ns : Not Significani at $p=.05$

The results of the t-tests showed that there were no significant differences in the post-attitude mean scores of unrestricted, restricted and no calcu? at: groups in the low mental ability level.

The analysis of covariance of Table 79 showed that there was significant difference in the mean scores. But the multiple range test showed that $(F(2,123)=2.417$ which was nut significant et $p=.05$). This result was further
comfirmed b y the t-tests which showed that there were no differences in the post-attitude scores of the groups except the unrestricted and restricted calculator groups of average mental ability groups. However, there were signi,icant differences in the pre-attitude and postattitude scores of the groups, which astually showed that some relationship between the pre- and post-attitudes scores of the groups.
5.5 Hypothesis 5 .

There will Ee ${ }^{\prime}, 0$. significant relationship $1 / 1$ mupil's attitudes toward mathematics and their attitudes tuwand the use of calculators in secondery school mathematics at α $=.05$.
t-tests were used to determine the significance differences in the mean mathematics attitude scores (MAS) and mean calculator attitude scores '(CAS)' which were derivable frc\%, post-attitude scores of pach of the groups.

TABLE 87

Surmary of E-tast of MAS and CAS

of the Groups

GROUPS	M A S				C A S					
		$\bar{\chi}$	SD	$s 0^{2}$	N	$\overline{\mathrm{X}}$	SD	SO	$\begin{aligned} & \top \\ & \text { RATIO } \end{aligned}$	$\begin{aligned} & \text { SIGN:C } \\ & \text { LEVE } \end{aligned}$
U®		47.167	7.948	03.167	42	40.452	13.835	193.083	2.72	.01**
RO	42	49.262	6.161	37.945	42	31.833	8.881	73.874	10.45	.001**
NCU		45.976	7.478	-5.926	42	37.476	10.879	118.353	4.17	.0¢1***
HMA		49.238	5.686	32.332	42	37.024	12.719	161.780	5.68	.001***
AMA		48.452	5.790	33.522	42	37.000	11.288	127.415	5.84	.001***
LMA	42	44.714	y. 214	84.892	42	35.738	11.801	139.271	3.89	.01**

$$
\begin{array}{r}
* * \text { Significant at } p<.01 \\
* * * H i g h l y \text { Significant at } p<.001
\end{array}
$$

The table of t-tests showed that there were significant differences in the means scores of MAS and CAS for all the groups which indicated that there was relationship between the MAS and CAS scores of each group. This relations might be negative or positive depending on the correlation coefficients.

Tho zh, all the mean scores were all significantly different at $p<.01$ or $p<.001$, it was necessary to
determine the significant lavel of the relationship by Pearson correlation coefficients approach.

TAble 88

$$
\begin{aligned}
& \text { Summary of Pearson correlat.ion coefficients } \\
& \text { of the Groups. (MAS \& CAS) }
\end{aligned}
$$

GROUPS	N	r	SIGNIF
UCU	42	-0.091	ns
RCL	42	-0.426	ns
NCU	42	-0.084	ns
HMA	42	-0.24	ns
AMA	42	0.19	ns
LMA	42	-0.26	ns

The tyble 88 showed that none of the correlation coefficients was significant at $p=.05$. The groups showed overall significant differences in their mean attitude scores, and yet, from available data in this study it would appear that most of the groups had nearly zeru correlation and specifically low negative correlation.

TABLE 89

Miltiple Regression Analysis
of Mathemicics attitude scores with Calculator attitude scores (MAS WIITH CAS) for all the groups

ANALYSIS OF VARI ANCE	DF	SUM OF SQUARES	MEAN SQUARE	F-RATIO	SI GNI F LEVEL
RE GRE SSI ON RESI DUAL	124	$\begin{array}{r} 83.35525 \\ 6588.01777 \end{array}$	$\begin{aligned} & 83.35525 \\ & 83.12918 \end{aligned}$	1.569	ns

VARI ABLES IN THE EQUATION

VARI ABLE	B	BETA	STD. ERROR	F-RATIO	SI GINIF LEVEL
VAR O7-CAS (CONSTANT) -0.06879 49.98527	-0.11178	0.05492	1.569	ns	

VARI ABLE
VAR 07-CAS
MULTIPLE R
0.11178
0.01249

It showed $t h$ a t. pupils with high attitudes toward mathematics have low attitudes toward calculators.

To determine the l e vel of relationship, a multiple regression analysis of the MAS and CAS scores on the groups were carried out (see Tatle 89) The multiple regression analysis table showed that there was no significant difference in tha mathematics attitude scores and calculator attitude scores. Hypothesis 5 was accepted:
$(F(1,124)=1.57, \Gamma>25)$. Since F-value was not significant, it impIied thai the means of MAS and CAS were not different significantly. Hence, there would not be any relationship between the MAS and CAS. From t-tests table,it w a s. possible to ascertain the effects of the treatment on the groups. The t-tests of the groups were all significantly different which would imply that individual groups would have different attitudes to mathematics and to calculators. That is, for the groups there w a some relationship between the MAS and CAS.

Hypothesis 6

There will be noz significant relationship in pupils' achievement and attitudes toward mathematics ano calculators at $\propto=.05$.

TABLE 90

Correlation Coefficients of Post-tests
with POA, MAS and CAS

** Significant at $p<.01$

* Significant at $p<.05$
ns Not Significant at $p=.05$
The table 91 showed the intercorrelation coefficients of the seven variables: $f n=126, r=0.308, f$ \& 0.001 for POT/MAS), ($N=126, r=-0.05$ not significant at $p=.05$. for POT/CAS), ($N=126, r^{\prime}=0.194$ significant at $P<.05$ for POT/POA).

TABLE 91

Correlation Confifoinnts of the variables for all the groups (iv $=126$)

	MAT VAR 01	PEA VAR 02	FET VAR 03	PAR 04 VAR 04	PAR VAR 05	MAS VAR 06	CAS VAR 07
VAR 01	-	-0.16684	0.46162	0.12407	0.41538	0.26162	-0.02098
VAR 02	-	-	-0.05212	0.33910	-0.06909	0.22119	0.24045
VAR 03	-	-	-	0.14685	0.52761	0.37356	-0.06875
VAR 04	-	-	-	-	0.12756	0.45267	0.83539
VAR 05	-	-	-	-	-	0.30747	-0.04551
VAR 06	-	-	-	-	-	-	-0.11178
VAR 07	-	-	-	-	-	-	-

The two tables showed that most of the groups did not have any significant relationship between achievement scores and attitude scores at \dot{p} <. .05. Though correlations did exist in some group (MAS) especially UCU and NCU, $t h i s$ would not be adequate to generalize the relationship. However, the general pattern was that low negative correlation or very nearly zero correlation occurredin calc:lator attitude and schievement.

The table of correlation coefficients showed that there were significant relaiionships between the groups' (i) Pre-test and Post:test
(ii) Pre-attitudes and Post-attitudes
(i) $N=126$ POT: $r=0.528, p \leq, 0.001$
(ii) $N=126$ POA: $r=0.339, p<0.001$

Any differences that would have occured in the Postattitude and Post-test scores could have been due to treatment. The main effects of Post-attitude and Posttest scores have been found to be signミficantly different (see Tables $29,54,67$ and 76). Since both were significantly different, they would appear to have some relationship.

To determine the level of significance of the relationship between post-test scores and post-attitude

TABLE S2

Multiple Pegrsssion Anal, sis of Post-attitude scores with Post-test scores for all the groups (PDA with POT

FNALYSIS OF VARI Ai:'CE	DF	SUM OF SQUARES	$\begin{aligned} & \text { ME Aiv } \\ & \text { S.J L.TRE } \end{aligned}$	$\begin{gathered} F \\ \text { RATIO } \\ \hline \end{gathered}$	SI GNI F. LE VEI
REGRESSI O:N	1	911.65634	911.65634	4.03 r86	. 5^{*}
RESI DUAL	124	233-1.04525	188.48101		

VARI ABLES IN THE EJUATIUN

VARI ABLES	B	BETA	STD ERROR	F-RATIO	LE GNIF.
VAR O5 - POT	0.54486	0.49376	0.24774	$4 . \cup 37$.$\cup 5^{*}$
(CONSTANT)	75.70253				
VARI ABLE	MULTIPLE R	R^{2}			

VAR U5 - POT
$0.1537{ }^{\circ}$
0.03754

Significant at $p<, 05$

TABLE 93

> [iu]tiple Regression Analysis of Post-test scores
> ith calculator attitude ssores and athematics
> ittitude scores for all the groLips

nivalysis OF VARI ANCE	DF	SUM OF S.J JARES	MEAN S.JUARE	$\begin{gathered} \text { F } \\ \text { RATIO } \end{gathered}$	SI Givi F. LEVEL
REGRESSI Div	2	275.10200	137.5510 C	6.05159	.61**
RESJ. DUAL	¢3	2795.75514	22.12572		

VARI ABLES IN THE EQUATION

Highly significant at $p<.001$
** Significant at $p<.01$
scores of the groups, a multiple regression analysis of Post-attitudes as dependent variable and post-test as independent variable was done. The table showed that there was significant difference in the post-atiitude and post test scores of the groups (See Table 92) $(\mathrm{F}(1,124=$ 4.84, P (.05).

In order to ascertain that this significant difference was not due to chance or error, a multiple regression analysis of Post-test scores as dependent variable, anc calculator attitude scores and mathematics attitude scores as independent veriables were carried out. (Table 93) showed that there was a significant difference in the Posttest scores, and CAS and MAS: $F(2.123$) $=6.052, P$ \& .001).

The wo regression analyses showed that there was significani relationship between Post-test scores and post attitude scores of all the groups. On the basis of the analysis, the hypothesis w sejected. That is, there was a significant relationship between the post-test scores and the post-attitude scores. In addition, it was: found that there was a linear correlation between post-test scores and mathematics attitude scores and calculator attitude scores.

DISCUSSION

6.1 Relationship of Results to hypotheses and Previous

Empirical Studies
The results of this study would be discussed in relation to the hypotheses tested. The purpose of this study was to investigate the effects of the use of hand held electronic calculators on outcomes in mathematics instruction. The learning outcomes investigated were primarily achievement and attitudes. The criterion measures of achievement were pre- post-tests scores, and for attitudes were pre- post-attitude scores.
6.2 Performance Treatments and achievement:

The hypotheses which dealt with "achievement were one and two:
I. Hypothesis one: There will be no: significant difference in the mean achievement scores of pupils who use (i) calculators in instruction and tests (UCU)
(ii) calcuators in test only (restricted groups - (RCU) and (iii) no calculators at all - control groups,(NCU.

This hypothesis was rejected because significant difference was found in the mean post-test scores of the groups $(F(2,123)=16.234, \quad<\quad .001)$. Also the groups
that used calculators throughout (UCU) were significantly better than no calculator group (NCU) ($\mathrm{t}(82)=5.35$, P < . O01) and also UCU groups were significantly better than the cal-ulator on the test only groups (RCU), $(t(82)=1.35, P<.001)$.
lowever, no significant difference was found between the groups RCU and NCU, $(t(82)=0.98, \mathrm{P}, .05)$ which showad that ineither of these two groups was better. Hence, $E_{1}>E_{2}=E_{3}$.

Similar finuings had been obtained by Gaslin ${ }^{8}$ who compared the achievement and attitudes of high school pupils. Pupils in treatment groups E_{1} and E_{2} were allowed to use calculators on post-tests and retention tests and no calculator or C coritrol group. Significant treatment effects were found on both post-test achievement measures with $E_{2}>E_{1}>C$ and the retention test with $E_{2}, E_{1}=C$; hovever, no significant differences on attitudes were found. These finaings were also collaborated by Fineman ${ }^{8}$.. However, Quinn ${ }^{13}$ and Hutton ${ }^{8}$ did not find any significant differences between calculator and non calculator groups on the achiovement variable. Other studies which support the findirigs of this study are those of Andersen ${ }^{8}$ who was interested in the effects of restricted versus unrestricted use of calculators in mathematics
achievement and attitudes E_{1} - the sunrestricted groups, E_{2} - the restrirted groups and E no calculators groups. The pupils were pre-post-tested, using ANCOVA as the principal analysis procedure it was found that $E_{1}=E_{2}>C$ on achievement and attitudes. Recent studies by Hedren ${ }^{110}$ found classes (in Sweden) using calculators, whenever they could be of use, were as competent as control classes on mental arthemetic and calculations with simple algorithms, and had better 'נnclerstadding of numbers and problem-solving (ages 10-12). This was further supported by Mellon ${ }^{111}$ and Kelly ${ }^{112}$ whose studies founc calculators to be effective. Kelly ${ }^{112}$ found that calculator enhanced the use of deductive reasoning, ability to explain strategies in retropect, in retropect and implementation of strategies to increase understanding of problems. He also found that the specific processes to promote effective solution and ability to evaluate were aided by the use of calculators.

110 Hedren, Rolf: The Hand-held Calculator, at the Intermediate Level. Educdional Studies in Mathematics Vol. 16, 11. 163-179, May 1985
111 Mellon, ..Joam: Calculator Based Units in Demands and percents for 7th Grade Students. Unpublished Ph.D. Thesis: Columbia University Teachers College: DAI 46A, Sept. 1985.
112 Kelly, M.G. The effect of the use of the Hand-held calculator on the development of problemsolving strategies: Utah State University, 1984: DAI, 45A 3571, June. 1985.

Padberg ${ }^{113}$, using calculators to disc $⿲$ ver simple theorem in an example from number thecry, concluded that "calculator enables one to generate a sufficient number of examples that one can easily get through to conjectures or theorams". All these pointer out that calculators are not eniy used as computational device but can also be used in concept formation a problem-solving techniques.

In his work, Cheung ${ }^{114}$ described how a scientific calculator can be used to introduce the method of successive substitutions in generating approximate solutions to a number of equations shat can be expressed in the form $y=f(x)$ including trigonometric equations such as $y=\sin (\cos (\tan x))$.

So far, he empirical studies reviewed and the results of this study on achievement shc wed that most calculator groups performed better than or equalised other groups, and in no case was the use of calculator had debilitating effect at secondary school level.
113. Padberg, F.F.: Using calculators to Discover simple Theorems - An examples from number Theory Arithemetic Tzacher, NCTM, Vol. 28, No. 8, 1981, PP

114 Cheung, Y.L.: Using scientific calculators to demonstrate the method of successive substitution. Mathematics Teacher. Vol. 79 No. 1, Jan. 1986. pg. 15-17.

The results of the groups (UCU) unrestricted calculator groups showed that there was significant difference in the mean post-test scores of A, B and C groups:
$(F(2,39)=11.312, p \approx .001)$. The t-tests showed that high mental cbility group performed significantly better than average and low mental ability groups (Table 45) This showed that high mental ability pupils that used calculator performed better than other calculator groups of the average or low mental ability groups. Here, the use of calculator is an added advantage in the instructional process and tests.

The results of groups RCU - the restricted calculator groups showed that titere was significant difference in the mean post-test scores of D, E, and F groups. $(\mathfrak{F}(2,39)=$ 10.033, $p<. .001$). The t-tests also showed that the high mental ability group of the RCU group that used caiculators on the tests only performed significantly better than others in the group. Though there was no significant. difference in mean scores of high and average mental ability groups, yet the average mental ability group performad better than low mental ability group (Table 40). :. Since the main effects was not significant (Table 46 and 50), it would appear that the effect of using the
calculator on the tests alone would not be as effective as incorporeting the use of calculators in the instructional process and tests. The non-significant difference of the main effects could be attributed to either the treatment or errow and the $R^{2}=0.429 \cdots$ indicated that 42.9% of the variance in the post-test scores was assocjated with the pre-test scores. This might have been quite high to have provided some effects on the post-test scores. The comparison of the mean post-test scores showed significant difference, t h means were significantly differnt as a result of the treatment. This was confirmed by the t-tesis (see table 49).

The results of non-calculator NCU groups showed significant difference in the mean post-test scores (see table 50). Also the main effect. was not significant. The multipie classification table showed that $R^{2}=0.524$, indicating that 52.4% of the variance in the criterion measure of post-test scores was associated with pre-test scores. This is quite large, whereas the rest 47.6% of the variance might have been due to treatment or some to error. The treatment might have not nullified the effects of the pre-test as to make the main effects to be non-significant.

The means of the post-test scores we e then compared by multiple range test so as to delermine their significance: $(F(2,39)=3.48, P$ \& .05). The means were found to be significantiy different. For the control group, inere was no difference in means of the high and Iow menta' abilıty groupu, high and average mental ability groups except for the average and low mental ability groups (See Table 53). This finding is supported by those of Hembree and Dessart 115 that the use of calculators in testing produces muck higher achievement scores than paper and pencil efforts, both in working exsrcises and in problem-solving. They went further to show that this applied to all grade and ability levels. In particular, it applies to low and high ability pupils in problem solving. The bettar problem-solving performance is a result of improved computation and process selection. However, some 0 her results were contrary especially the findings of the United States National Assessment of Educational progress (NAEP) which have discovered some area of mathematics where pupils who did not use calculators
115. Hembree, Ray and Dessart, D.J. Effects of Hand-Held Calculators in Pre-College Mathematics Education: A mental-analysis. "Journal for Research in Mathematics Education,
fared better that pupils equipped with calculators (Driscoll) ${ }^{110}$. Indeed, when pupils lacked the understanding of a concept, the use of calculators offered no advantage (Driscoll) 117 . The t-tests (Table 40) showed that no significant difference was found between restricted calcu'دtor groups and non-calculator groups which implied that the use of calculators only on tests would not result in higher achievement in mathematics. Many researchers in the calculator field have advanced reasons that such pupils might not have confidence in the results displayed on the calculator screen due to non-continuous practice with calculator (Carpenter et. al.) ${ }^{30,31}$. Other related studies that supported the findings on achievement are those of Murphy ${ }^{118}$ who Found that students with unrestricted use of calculator achieved higher froblem-solving scores than students not using calculators for 1 n struction
116. Driscoll, M.J. Research w, thin Reach: Elementary School Mathematics, Raston, Va: National Council of Teachers of Matt. 氵natics, 1981. pp
117.

Researuh within Reach: Secondary School Mathematics. Reston Va: National Council of Teachers of Mathematics, 1982, ppp

118 Murphy, N.K., The effects of a Calculator Treatment on Achievement and attitude Towards Problemsolving in 7th Grade Mathematics. (Doctoral Jissertation, University of Denver, 1981) DAI 42A, 2008-2009, 1981.
or tests. However, Rule ${ }^{119}$ found $n n$ significant difference between groups which used or did not use calculators for a unit on functions. While his findings on computational benefit of calculators was in comformity with the findings of this study since all the groups had equal time to complete instructions and tests.

The time was not incorporated as a criterion measure in this study, but other studies have found that using calculators during instruction and tests produced a significant improvement in iess time than without calculators (Stewart) ${ }^{119}$ Hence, further studies in Nigeria night incorporate time variable as a criterion measure.
II. Hypothesis Two:

There wi 11 be no significant difference in the mean post-test scores of high, average and low mental ability groups. This iypothesis was rejected because there was significant difference in the mean post-test scores of the groups: $(f(2,123)=14.776, p$ \& .001). The ability groups differed significantly on their post-test scores as the high mentel ability groups (HMA) performed

119 Stewart, J.T. See Suydam, M.N. In Research in Mathematics Reported in 1981, JRME, 1981.
significantly better lower ienta: ability groups:
(t (82) $=4.9, P$ \& . ©01), and the aver-ge mental ability groups also did bettwe than the low ability groups: $(t(82)=4.4, P<.001)$. Huwever, it appeared there was no significant difference in the performance of high and average mental ability groups $(t(82)=0.98, P, .05)$. The findings are consistent with other similar studjes. Zepp ${ }^{8}$ examined whether there was an interaction between the use of calculator and different ability levels high, medium and low in secondary school pupils' solutions to proportion problems and found no differences. This was collaborated by Bolesky ${ }^{8}$, whereas, Fischman ${ }^{8}$ and Laursen ${ }^{8}$ found significant differences in achievement scores of students in different abilicy groups. Brassell, et. al. ${ }^{120}$ found positive correlation between mathematics achievement and ability groups.

The resuit of the high mental ability groups showed that there was significant difference in the mean post-test scores of groups A, D and $G . ; F(2.35)=11.054, p<.001)$.
120. Brassell, et. al. Ability Grouping , Mathematics Achievement and Pupils Attitudes toward Mathematios. JRME, Vol.11, No.1. Jan. 1980.

Table 62-66 showed that the high mental ability group that used calculators on instruction and test performed significantly better than high nental ability group that used calculators in test: only and that restricted calculator groups high mental ability performed significantly better than the high mental ability group of non-calculator group. The pattern also showed that the unrestricted calculator groups in A, B and C performed better than groups in D, E and F and i, H, and I. This pattern of performances was irrespective of whether the groups were high, average or low mental ability levels (HMA > AMA > LMA), However, there were few deviations in the pattern. For example, with the AMA groups (B, E, H) there was no significant difference between E (the restricted group) and H (Non-calculator group) performance on their post-test scores: $(t)(26)=-0.25$, P , .05). Nichols ${ }^{22}$ found among students using calculators in College basic mathematics that those having higher aptitudes in mathematics showed significantly higher attitude scores than students having lower aptitudes. This supports the finding of this study.

Similarly in the low mental ability groups (C,F.I.)
there was n. significant difference in theperformance of
the restricted calculator gro:p (r) and the non-calculator group (I) $(t(26)=-0.10, P) .05)$. Based on these results, one is inclined to say that the urrestricted calculator groups whether in the high mental ability levels (HMA), the average mental ability level (AMA) or the low mental ability level (LMA) seemed to have performed better than other treatment groups irrespective of mental atility levels. That is:

A performed better than D or G
B performed better than E or H
C performed better than C or I
The finding of this study is supported by Lenhard . In a variety of analyses using t-tests and ANOVA he found that the higher ability pupils made fewer concept and computation errors than the lower ability pupils. In addition the higher ability pupils performed significantly better than the low mental ability pupils in mathematics achievement tests.
121. Lenhard, R.W. Hand-held Calculators in the Mathematics Classroom as Stuart Public School, Stuart Nebraska (Doctoral Dissertation, Montana State University, 1976). Dissertation Abstract International, 1977, 37A: 5661.

On the contrary Kasnic ${ }^{122}$ using a 2-factor ANOVA with pre-test ability as a blocking variable found that there were no differences between calculator groups andcontrol groups, nor were any differences found for the different ability levels between calculator groups and the control groups. However, Miller ${ }^{123}$ who examined whether calculators would be effective instructional aids in developing the concept and skill of leng-division obtained similar results. When separate ANOVA analyses for low and high ability groups were done, the results showed that the performances of calculator groups of low mental ability groups were significantly better than the Non-calculator groups of low mental ability. The high mental ability of restricted and unrestricted calculator groups performed.equally as the high mental ability of the control groups on achievement and attitudes. The finding in this study was also supported by that of Lawson ${ }^{124}$ who found
122. Kasnic, M.J.: The effect of using hand-held calculators on Maicheratical Problemi-solving ability anong six grade students. (Doctoral Dissertation, Oklahoma State University, 1977) DAI, 1978, j8A, 5311.
123. Miller, D.F. Effectiveness of Using Minicalculators as an Instructional Aid in Developing thu Concept and Skill of Long Division... (Doctoral Dissertation, Florida State University 1977), DAI, 1977, 37A, 6327.
124. Lawst 1, K.W. Use of Calculators in High School General Mathematics... (Doctoral Dissertation, Brigham Young University, 1978) DAI, 39A.
that the use of calculators dic not affect performance in estimation but students of lowest ability made the most errors with the calculators compared with other -hility levels: higner or average. This finding in collaboration with the ones in this study implied that ability levels of the students is an important factor as far as mathematics achievement ty calculator is concerned.

6.3 Performance Ireatmants and Attitudes

Hypothes is Th. ee
There will te no significant difference in the mean attitude towerds mathematics and calculator scores of those groups of puF ls who use
(i) cảcui siors in tests and instruction - the Unrestricted groups (icil),
(ii) Calculators in tests only - restricted groups - RCU, and (iii) $\because \pm$ Non-calculator - con'rol groups NCU.

The table of analysis of c:varia.ace of the post - attitude scores with pre-attitude scores as covariate showed that the groups' covariates were significant: $(F(1,24)=$ 17.001, P < . OC1).

Similarly the main effect was also significant: $(F(2,123)=$ $4.663, p<.01$) and the expleinsd variance was also significant: $(F(3,122)=8.797, P<.001)$. But the comparison of the means of the post-attitudes scores using multiple range test, (SNK) student that is, student Newman

Keul test showed the means were not significantly different:

$$
F(2,123)=1.217 \quad p=0.299, \text { i.e. } P>. .5)
$$

This was also corfirmed by the statistical test of straight analysis of variance of the post-attitude scores (See Appendix 20). But the pre- and post-attjtude scores of the groups were found to be significantly different as was shown by multiple regression analysis. (Table 71). The t-tcsts revealed that $t h e$ hypothesis was not rajected for groups UCU and NCU-, RCU and NCU; but significant difference did exist between UCU and RCU. Hence $t h$ e hypothesis was rojooted for the two groups. This would imply that there was a significant differerre in the means of the post attitude scores of the unrestricted calculator groups and the restricted calculator groups. Over-all, there was attitudinal change among the groups as revealed by the regression table. Conclusively, hypothesis throe cannot be rejected in its entirety.

This hypothesis was not rejected though significant difference was found in the mean pre- and post-attitudes scores of the groups by regrassion analysis:

$$
(F(1,124)=16.1117, \quad P \ll .001)
$$

The significant difference obtained in the pre- and post-attitude scores implied that there was attitudinal
change among the eroups. Generally the groups had a change of attitude towards mathematics and calculator. Hovever, there was no significant difference in the mean post-attitude scores of the groups as shown by the multiple range test of the treatment groups and control group: $(F(2,123)=$ 1.217, $P>.05)$.

The non-significance of the attitude scores at this level might have been caused by treatment effects or var. iances due to other extraneous variables or error. However, to determine the level of treatment effects, the results of t-tests were discussed. It was found that there was no significant difference in the post-attitude scores of the unrestricted calculator groups and non-calculator group $\left(E_{1}=E_{3}\right):(t(82)=1.33, P>.05)$ and $(t(82)=0.97, P>.05):$ $\left(E_{2}=E_{3}\right)$ (restricted calculator group and control group). However, significant difference did exist between the postattitude scores of unrestricted calculator and restricted calculator groups: $(t(82)=2.22, P<.05)\left(E_{1}>E_{2}\right)$.

The findings on attitudes is in conformity with. other related studies Hutton ${ }^{8}$, Boling. ${ }^{8}$, Whitaker ${ }^{12}$ and Bolesky ${ }^{8}$ where no differences were found between calculator groups and non-calculator groups. Similarly (Gaslin and Vaughn) ${ }^{8}$ found $E=C$ (experimental $=$ control), and this was contrary to findings by Fischman, Zepp and Andersen ${ }^{\theta}$.

Koop 125 and Mellon $11 \overline{1}^{-\quad 264}$ found significant differences between calculator and non-calculator groups. In Bulletin No. g of the Calculator Information Center 26 , of the seven findings reported on attitudes toward mathematics in calculator studies, six of the findings produced nonsignificant diffarences, (which agreed with the results of this study) whereas one group did produce a significant difference in favour of calculator based instruction. In this study, the results indicated that calculator instructed pupils did at least as well es, if not better than the non-calculator instructed pupils on attitudes. In addition, both the cooperating teacher and the investigator found that teaching with calculators was much less onerous than teaching withaut caliulators.

Tine results on Table 72 showed that there was no significant diffarence in the mean attitude scores of those pupils who used calculator throughout - the urirestricted groups despite differences in mental ability levels. Similarly there was no significant difference in the mean attitude scores of the restricted calculator groups despite differences in their mental ability levels. For the groups G, H and I of the non-calculator groups, there were no significant differences between G and I, G and I was found to be significantly different at $p=.05$ by one-tailed test.

125 Koop, J.B. Calculator use in the Cormunity College arithmetic course, JRME, 13(1) 1982, 50-60.
$t(26)=1.93$ for one-tailed test, t-ratio is
significant. This finding is supported by Gaslin ${ }^{8}$, Hutton ${ }^{8}$ who found no differences on attitudes of the groups. Contrary to this finding is that of Lenhard ${ }^{8}$, Zepp ${ }^{8}$, Fisch an ${ }^{8}$ who found differences on the attitudes of the different groups. Recent studies by Hembree and Dessart ${ }^{115}$ found that pupils using calculators had better attitude towards mathematics than pupils not using calculator and their findings applied across all grades and ability levels.

Some other studies involving younger populations according to Koop ${ }^{125}$ have reported a more positive attitude towards mathematics when students were allowed to use calculator. However, Dyce and Gooden ${ }^{8}$ found no significant changes in student attitudes. Most of the studies reviewed did not discuss the relationship between the pre- and postattitudes they only reported differences or none in the post-attitude scores of groups. However, what is most important is to recognize from the findings of various studies whether there are differences in attitudes scores or not when calculator was used. The studies of Anderson ${ }^{8}$ and Ayers ${ }^{25}$ actually pin-pointed these difference where calculator groups were described as having higher attitude scores then non-calculator groups.

Hypothesis Four
There will be no significant difference in the mean post attitude towards mathematics and calculatur scores of these groups of pupils of low, average and high mental atılities.

The tatle of analysis of covariance of the posta+titude scores ith pre-attitude scores as covariate showed that the groups' covariates were significant: $(F(1,124)=16.810, p<i \cdot 301)$. Similarly the main effects was also significant: $(F(2,123)=3.688, p<.05)$ and the explaırieu variance was also significant $(F(3,122)=$ 8.062, p =.001). But the comparison of the means of the posit attitudes scores using multiple-range test-SNK (student Ne:man Keul test) showed that the groups means were not significantly different: $(F(2,123)=2,417, p=.091, n s)$. Thic was also confirmed by the statistical test of straight analysis of variance of the post-attitude scores (see Appendix 20).

The pre- and post-attitude scores of the groups were found to te sigrificantly different as was shown by multiple regression analysis. (Tatle 71). This would imply that there had been attitudinal change among the groups as revealed by the regression table. The t-tests also revealed that the null hypothesis was rejected among HMA and LMA tecause significant difference did exist between the means of the post-attitude scores of the gro. .fs. iowever, the null hypothesis was not rejected retween HMA and AMA; AMíA and LMA because no significant differences were found in tho means of the post-attitude scores of the groupa. Conseareritly hypothesis four cannot be rejected in its entirety.

This hypothesis was not rejected though significant difference was found in the means of the post-attitude scores of the groups (Tatles 76). It was also found that the high mental ability groups had better attitudes than low mental ability groups: $(t(82)=2.07, P<.05)$. No significant differences ware found between
(i) HMA and AMA: $(t(82)=0.29, P>.05)$ and (ii) AMA and LMA: $(t,(82)=1.72, P>.05)$.

Since the groups HMA and LMA showed some significant differences in their post-attitude scores, the high mental ability groups seamed to have better attitude towards
mathematics and calculators. Attitude toward mathematics has been found directly related to aspired school grades and ability levels (Spickerman) ${ }^{126}$.

Considei ing the t-tests for the within groups of high mental ability, A, D and G, none of the post-attitude scores was significant except for D and G which was $+(26)=-1.99$ significant at $P=.05$ (one tailed test). The high mental ability group of the non-calculator group had better attitude than the high mentel ability group of the restricted calculator group.

In the average mental ability groups of the unrestricted calculator group had better attitudes than the restricted calculator group. Tiere were no significant differences in the mean sttituds scores of the other groups. For the low ability groups there were no significant differences in the mean attitude scores of the treatment groups and control group. However, the results did indicate that those graups of unrestricted calculator had better attitudes in respect of ability levels.
This finding is supported by those of Ayers ${ }^{25}$ and Andersen ${ }^{8}$ who found that

126 Spickerman, W.R.A.: A study of the relationships between attitudes toward mathematics and some selected pupil characteristics in a Kentucky High School (Doctoral dissertation, University of Kentucky, (1965) DAI, 1970, 30, 2733A.
attitudes improved when calculators were used vithout restrictions. Sut other findings like those of Elliot ${ }^{8}$, found $n n$ significant difference between groups using calculators or paper and pencil on problem-solving. Connor ${ }^{29}$ found that there was attitudinal difference between calculator and non-calculator groups. Futherman ${ }^{127}$ findings on attitudes support those of this study which found ability to have played an important causal role in the attitudinal process . Other studies not necessarily in the use of calculator but media studies have found similar results. The results of these research works would be discussed later in this report.

Hypothesis five
There will be no significant relationship in the groups attitudes toward mathematics (MAS) and attitudes toward calculator (CAS).

The t-tests (Tatle 87) showed that there were significant differences between mathematics attitude scores and calculator attitudes scores in all the groups. This would imply that some relationship did exist between the MAS

127 Futherman, Robert: A causal analysis of expectancies and values concerning mathematics (the University of Michigan, 1980), DAI, 3418, 3628, 1981.
and CAS. When this relationship was determined using Pearson correlaticns approach, it was found that r, correlation coeffinients were not significant at $p=.05$ for all the groups and the F-value: $(F(1,124)=1.57$ also was not significant at $p=.05$). This hypothesis was not rejected, that is, there was no significant re?ationship between the MAS and CAS. If any relationship did exist it could be said $t h$ a t it was not significant at $\mathrm{P}=.05$. Hence any change in attitude possibly towards mathematics might not necessarily mean change of attitude towards calculator. Calculator was used for six weeks by the treatment groups and some of the pupils had not been exposed to instructiun where calculators were used. Robert ${ }^{3}$. found evidence, of calculators influencing immediate and spec:fic attitudinal perceptions, but evidence supporting more general and lasting cha.ıges of attitudes was not evailatle.

VI Hypothesis 6. .

There will be no significant relationship in pupils' achievement and attitudes towards mathematics and calculator.

The results showed that: $(N=126, r=0.303$, p < .001) for post-test scores azainst mathematics attitude scores,
$N=12$ is, $r=0.05$. Not significant at $P=.05$ for posttest sccires against mathematics scores and $N=126$, $r=0.194, \mathrm{P}<.05$ for posi-test scores against postattitudes.

There was a significant relationship between port tests scores and post-attitude scores. When multiple regression analysis of post-test as dependent variable and post-attitudes as independent variable was done, the fc'lowing result '3s obtained: $(F(1,124)=4,84, P<.05,$.

Similarly with post-test scores as dependent variable, and MAS and CAS as independent variatles the result of the multiple regressıu. analysis also showed: $(F(2,123)=$

Both results showed some significant differences hence some correlatione existed a n d hypothesis 6 was rejected. That is, theie ws significant relationship between post-test scores and post-attitudes scores. This finding is supported by Quinn's ${ }^{13}$ study who investigated the causal relationship between mathematics achievement and attitudes, and found some significant correlations between mathematics attitudes and achievement at grades 3 and 5 . Similarly Gordoñ ${ }^{128}$

128 Gordon, B.W. A profile of High and Low Achievors in Mathematics (Doctoral dissertation, Duke University 1971) DAI, 4639-4640, Fet. 1978.
on a profile of high and low achievers in mathematics found that ettituces to mathematics to be related to students' level. of achievement. This was not corroborated by Shumay et al ${ }^{21}$ who found that children's attitudes towards calculators were more positive than their attitudes toward mathematics. Othor contrary findings were those of Corey ${ }^{12 S}$ and Wolf and Blixt ${ }^{\frac{1}{130}}$ who suggested that attitudes toward mathematics are causally predominant over mathematics achisvement for their comfon variance. The findings in this study are comparable with those of other media when used in mathematics instruction.
6. Relating findings to other media

Calculators as $3 n$ electronic medium could be compared, in capability for mathematics instruction with any other media. LNESCO, acco ding to Balogun ${ }^{131}$ in "New methods and Techniques in Education" listed the following media:
(1) Radio and Television
(2) Electronic Computers and
(3) Programmed learning and application.

129 Corey, J.F.O. The relationship between attitude ... and academic achievement, (Doctoral dissertation, The University of Rochester, 1978), DAI, 3SA, 282; - 2825, Nov. 1978. lagged panel analysis of mathematics achievement and attitudes. Educational and Psychological Measurement, 41: 1981, 829-834.
131 Balogun, T.A. Programmed Learning and the teaching of Science, West African Journal of Education (WAJE) 15 (2), 1971, 109-116.

Relatively, most of the listed media had been studied with limited results in Nigeria especially radio, television, programnad learning (print), but the investigator had not found any reported studies on electronic computers or calculators in classroom instruction in Nigeria.

Deblassio ${ }^{77}$ found positive correlations between students' attitudes toward using a computer and attitudes toward mathematics and instructional settings plus achievement variables. However, Earle ${ }^{131}$ on student attitude. toward geometry using computer assisted instruction found that there were no significant differences between treatment groups ir attitudes towards mathematics. Some findin£s of the study by Backens ${ }^{132}$ in mathematics by Television and Wilson s 133 study ty atidio tutorial course in mathematics compared with the ones in this study where favouratle attitudes were found towards mathematics. But Wilkinson ${ }^{134}$ who studied the effect of supplementary materials upon

132 Earle, H.F. Student attitudes toward geometry. (Doctoral dissertation, University of Maryland, 1972) DAI, 1972, 34, 1059 A.

Backens, V.W. The effects of teaching beginning mathematics by Television (Doctoral dissertation, North Texas State University, 1970), DAI, 1970, 31, 5143A.
134 Wilson, P.M. Do students learn from and like an audio-tutorial courze in Freshman mathematics? $\frac{T 10}{32-41}$.
135 Wilkinson, G.G. The effect of Supplementary materials upon academic achievement and attitudes toward mathematics... (Doctoral dissertation, North Texas State University, 1971 DAI, 1971, 32, 1994A.
academic achievement in and attitudרs towards mathematics showsd that there were no significant differences in improvement in attitudes towards mathematics. Similarly Kolmos ${ }^{135}$ studied the effects of instructional media in teaching and leaming teginning statistics, and found that 'Carrel' groups did not significantly differ in their attitudes toward mathematics.

Despite some favouratle ana few conflicting findings on the use of media in mathematics instruction it would remain how much of those favourable findings have been disseminated to the users in the schools and other learning environments.
6.5 Educational Implications of the Study and Recommendations

The resilts of this study have shown that the use of calculators by teachers would be an advantage in the teaching and learni g of mathematics in the secondary schools. However, what prospects and problems await the use of calculators in mathematics education? There would produtly te protlems in the calculators entering mathematics classrooms in Nigeria if the experience of the United States of America's school systems is anything to go by.

135 Kolmos, i.S. Effects of Instructional Media in Teaching Beginning statistics (Doctoral dissertation, University of Illunous, 1970) DAI, 1970, 31, 4600A.

Hembree ${ }^{115}$ observed that in December 1974, the National Council of Teachers of Mathematics (NCTH) issued a far-reaching, statement that urgor the use of hand-held calculators in schools (NCTM, 1974). The council found that the core of mathematics instruction in the elementary school grades was computation, pleasantly coinciding with the calculator's first purpose, and a host of other intentions of its use were envisioned $(\text { Suydam })^{3}$ such as: to aic algorithmic instruction, facilitate concept attainment, reduce the need for memorization, enlarge the scope of problem-solving, motivate students and encourage discovery, exploration and creativity. With the reduced cost of calculators it appeared accessible to the school systems.

However, more than a decade later, not only has the calculator failed to reoirect the curriculum, it haseven failed to enter most U.S. mathemetios classroom. (Hembres, 115

Fewer than 20 percent of elimentary school teachers
and fewer than 36 percent of secondary school teachers have employed the calculator during instruction ((Suydam) ${ }^{136}$

136 Suydam, N. M. The use of calculators in Pre-College Education. Fifth Annual State of the Art Review, Columbus, Ohio: Calculator Infurmation Center, 1982 (EERIC Document Reproduction Service No. ED220IB).

Some have suggested that the use o. calculators in school might not produce entirely positive effects, even computers, so far, have not changta the system of teaching of mathematics in any fundamental way (Bell) ${ }^{137}$.

What must have teen the cause(s) of such deve?opment in an advanced technological society such as U.S.A? Perhaps several causes have inhibited the services of calculators in schools. First, not all teachers and educators applauded the i'CTM's poisition: indeed its statement on calculators provoked a barrage of skeptical comments, warning that such devices would replace skills with paper and pencil. It was this kind of reaction that led to "one of the largist buuses of ressarch on any topic or material in mathematics education" (Suydam) ${ }^{136}$.

The qu-stions that have often teen raised are
(i) [o caloulators threaten basic skills?
(ii) What tenefits would be derived from calculator usage not already offered in the use of pencil and paper?. The answer to the first question had consistently seemed to be no particularly at the sezondary school level where

137 Bell, F.H. Can Computers Really Improve School Math mmatics? Mathematics Teacher Vol. 71, No. 5, 1978.
tasic skills would have teen developed with manipulative materials, paper and pencil (cuydam) ${ }^{139}$. To the second question, the tenefits of calculators have remained somewhat in doutt, since many studies presented amtiguous fin ings (Hemtree) ${ }^{115}$. While some studies recorded no harmful effects of calculators' use in upper grades of elementary schools and in high schools some failed to sfiow significant differences in either students' achievement or their aititudes towards mathematics. Teachers and educators liay then ask, why bother $w i t h$ calculators? In addition most of the studies available are in published dissertations where most of the findings have not yet been popularized in the education system. Hence, teachers and researchers need to reassess the calculator in what Begle 140 called its "urucial implications for mathematics education". Nonetheless, the findings of this study and others like that of Hembree and Dessart ${ }^{115}$ have shown that
(a) Calculatcrs greatly tenefit student achievement especially for low, average and high ability pupils.
(t) Positive attitudes atout $c=l$ culators might help to reduce students dread to tejious calculations and word problems.

139 Suydam, N.M. The use of calculators in Pre-College Education: A state of the art review. Columbus, Ohio: Calculator Information Centre, 1979.
140 Begle, G.G. Critical Variables in Mathematics Educetion, Washington D.C: Mathematical Association of America and NCTM, 1979.

Driscoll ${ }^{116}$ has affirmed teachers enthusiasm towards the calculator-use and positive attempts at the incorporation Jf calculators into the California State Board of Etucaition mathematics programmes have been reported Yet, the question of how the device could best be used for effective instruction in the classroom demanded research attention (Suydam) ${ }^{136}$, (Hembree and Dessart) ${ }^{115}$ and by the U.S. National Science Foundation report ${ }^{142}$ It is apparent that with the availability cf calculators, it will te impossible for schools to ignore then. Taachers now uss them, and some pupils do have wrist-watches equipned with digital calculators. In higher education little restrictions (if any) are being placed on the use of calculators. In the secondary school, at least calculators may ε jner or later replace slide-rules and tooks of tables in the service of existing curricula. The following opinions may te advanced while others may be mere speculations as to the use of calculators in and out of school, for it could be said:

141 California State Board of Education Mathematics Framework for California Public Schools, Kindergaten through, Grade Twelve. Prel. Ed. Sacraments: "California State Department of Putlic Instruction, 1985.

- 42 National Science Foundation: Programme Solicitation: Materials fof elementary School Mathematics Instruction (NSF 55 60), Washington D.C.: National Science Foundation 1986.
(a) that calculators represent the kind of phenomenal change in technology that can substantially change the society,
(b) one aspect of the change in society is that people outside of school are already using calculators to accomplish what we now make the principal component of years of schooling, and
(c) for schools to ignore this challenge poses great risks to the proper mathematics education of the youngsters, and
(d) in fact, that calculators have already had a considerable impact on education in and out of school.

Recommendation:
This study has revealed that the use of calculators has no harmful effects on the secondary school mathematics, it i s therefore, recommended that: 1. School authorities should allow the use of calculators to supplement teachers and pupils instructional aids in the teaching and learning of methematics. The versatility of hand-held calculators cannot be in doubt. Carr ${ }^{143}$ observed how calculators could be useful in the teaching
143. Carr. Jane, M. Get away from the Table: Make Interest more Interesting. Mathomatics Teacher. Vol. 79, No. 9, Dec., 1986.
and learning of a mathematics zow se for business majors. He opinad thet several instructors who had to teach the course agreed that hand-held caicuiators could be used to solve most problems by choosing the appropr'late formula and the solving for many variabies. This has been found to be useful particularly in this study for the solution of quadratic equations by general formula (say: $x=\frac{-b \pm \sqrt{b^{2-4 a c}}}{2 a}$ whe:e a, b and c are constants). Similarly calculators can easily be used to create ε series of iterations to approximate value to some desired degree of accuracy (e.g. $\frac{1}{2 m}$ where $m=0,1,2,3, \ldots$) and in other areas of concept learning in mathematics.
2. That examining bodies for secondary education should allow the use of calculators in tests. From this results calculators can easily replace the use of Tables or Slide-rules in schools because one gitins not only greater speed and accuracy but also the advantage of computirg values that are very large. By using the method of successive substitution, Cheung observed that secondary school pupils would have little difficulty in understanding equations and their solutions. 3. Where possible,books should be written to incorporate exercises that would involve drills in mathematics,
and thereby ensouraga pupils' effective participation in algorithmic computations and problem-solving.
4. Calculators may be purchased at graat expense, it would be advisable for schools to operate a pool of calculators so that each class can contribute and benefit from such an arrangement. One advantage about calculators is that:it is not as fragile as mòst other madia. Most, if not all can operate on battery. Operations of calculators are easily learnt, even by elementary school pupils and its durability and versatility are some advantages. 6.6 Suggestions on further Reseerch

As mentioned in the previous sections, this study has raised a number of pertinent and philosophical questions which were frobatly outside the scone of this investigation. Hence, they coule not be answered by the present study in any great deptio. Indeed some of the questions raised would constituta an extension of this undertaking and answers to them would serve to uncover unresolved issueds associated with this investigation. The following suggestions for further research studies on the Nigerian educational scene are predicated on thes: unrasolved issuas. Specifically there is need to inquire into the following areas of possible calculator-use:

1. Primary Sohool level: In primary school at what class can the casculator te integrated into mathematics primary ahoul curriculum in Nigeria so as not to have harmful effects on the pupils' tasic computational skills:
2. Secondary School level: The findings of this study like mos+ otners have shown that calculators can effectively te used to enhance higher achievement and positi. . ヨttitudes in mathematics. It would te appropriate if this study can be replicated with a larger population, longer duration, more criterion measures in attitudes and achievemert, ard possible sex differential in relation to calculater usage It wojld also be appropriate to have further research studies to look at:
(a) the eftictiveness and efficiency of calculator-use compared with other media in instruction e.g. programmed text on print or disc, computers etc.
(b) the development of matinematical concepts, problemsolving capabilities with caloulators,
(c) teachers, parents, aducators and school administrators attitude towards calculator-use in mathematics instruction and
(d) the calculator cost-effactivaness in relation to other media.
3. On higher education: Since the use of calculators. in higher education is allowed, it will be appropriate to have research studias that would investigate what effects calculator use may have on: (i) concept development, problemsolving and attitudes toward remedial mathematios in higher education in Nigeria, (ii) the teaching and learning of the physical sciences.
4. The possible 2 mpact of the use of hand-held calculator on other school suujects particularly the physical sciences and stetistics.

6.7 Summary and Conclusion

The purpose of tha study was to determine the effects of the use of electronic calculator on the learning outcomes of mathematics instryction. The criterion measures of the learning outcomes of the study were achievement in mathematics and ettitudes towerd mathamatics and calculator. The stury was limited to secondary school mathamatics and the achievement raesure was in terms of computational, conceptual and problem-solving espects of linear squations while the attitude was limited to attitudes toward mathematics and calculator use in mathemstics instruction. The study did not investigate other parsonality variables of attitudes such es self-concept, anxiety etc.

Most of the literature and empirical researches consulted dealt with the studies that ware carried out in the United States of America or reportid there. The pilot and main study used $3 \times 3 \times 3$ fectorial design with three levels of ability, high, average and low and with two treatment groups and control group. It was a pre-tes: - post-tast control group design. The treatments were calculator in instruction and tests, end calculator in tests only. For the pilot study, all the nine groups were in the same schocl. However, for the main study, three cumperable schools were used. Each school was randomly assigned to treatment groups and control groups. There were three groups of uifferent mental abilities in each school.

For the pilot study, 50 subjects completed the study and for the main study 126 subjects completed the study with an average of 14 subjects per group. There were equel number of beys and airls per groun. The three suhocls ware selected by multi-stege sempling from the population of mixed sacondary schools astablished more than 10 years ago in the Ibadan Miunicipality. The instruments used for the study were:
(i) Fre-test itams in mathematics
(ii) Post-test items in methematics
(iii) Modified ACER ML and MQ (verbal and "iumerical) tests.
(iv) Atcitude questionnaire
(v) Ilathematics teachers attitude and school inventory.
(vi) Instructional module
(vii) Modified Flanders classroom interaction model.

The duration of the study was for six weeks.
Six hypothejes were stated and the results of the study wera presented and discussed based on' these hypotheses tested in the study. The major findings were on the hypotheses teaiec while the sutsidiary findings were derived fiom them.

Major firdings:

1. Tha mes. pcst-test scores of those groups who used calculators on instruction and tssts (the unrestricted groups), was highser than calculators in tests only (the restrictad groups) and the non-calculator groups precisely, the calculator groups have higher achievement than non-calculz'or groups in mathematics.
2. The mean post-test scores of those groups of high, mental atility was higher than those of average and lov: mental atility groups.

This would mean that pupils of high mental ability
would have higher achievement in mathematics than pupils of other ability levels.
3. There was no significant difference in the mean post-attitude scores of pupils i n the unrestricted calculator, restricted calculator and nor-calculator groups. Since their means were not significantly different, their attitudes was not different towards mathematics and calculator-use But significant difference did exist between the mea of the post-attitude scores of unrestricted calculator and restricted eficulator groups. Hence this had an inconclus ve results.
4. There was no significant difference in the mean postattitude scores of pupils of high, average, and low mental ability levels. Since their means were not significantly different their attitudes was not different towards mathematios and calculator use. For the high mental ability and low mental ability groups, there was significant difference in the means of their post-attitude scores. For the other groups there was no significant difference. This implied that high mental ability group pupils had better: att tudes towards mathemetics and calculator than low mentai ability pupils.
5. There was no significant rtlationship between the pupils attitudes towards mathematics and attitudes towards calculator. Hence, atıitudes towards mathematics was not related to attitudes towards calculator-usage in mathematics.
6. There was significant relationship in the post-attitude scores of pupils and their post-test scores. Achievement was found to be significantly related to positive attituces towards mathematics and calculator usage.

Subsidiary findings:
(i) The restricted groups showed no significant advantage over the non-calculator groups in the mathematics achievement scores.
(ii) The high mental ability pupils have better aititude towards mathematics than other ability groups.
(iii) The post-test scores of the pupils were more positively correlated to mathematics attitudes thar calculator attitudes.
(iv) Although, there were no significant differences in the means of tro post-attitude scores of the rroups yet, thore were attitudinal changes among the groups.

The findinge on achievemen measure ssemed to be conclusive i:l this study wille those findings relating to attitude measure seemed inconclusive. Despite th- positive corm mation between achievement and attitudes of the groups further research studies should be carried out on attitude variablos as regards to calculator usage. This study of electronic calculator in mathematics instruction presents opportunities for further research on the influence(s) of different electronic media: computers, videotapes, television etc. in mathematics instruction on such outcomes as conceptial development, problem-solving, creativity and attitudinal variables.

On the whole, others in Nigeria or elsewhere may replicate this study with larger population and longer duration. Tc utilize the findings on the use of calculators like :any other media in instruction would demand apprupriate techniques in disseminating related research results to learners, teachers, ed:ccators and school administrators.

Many issues raised in this study may not be resolved effectively ty experimental research alone but rather in conjunction with survey, philosuphical and clinical researches.

So far, experimental research study in the use of calculators in instructicn in Nigeria like most media studi ss, would entail a lot of expenses in term of procurements of calculators. Handling and operations of sucı. calculators demand care by pupils and teachers. Unlike some other tools and instructional aids the calculator. is rather easily controllable by the learner and may obviously become the successor to slide-rule, brok ef tables for pupils in the school systems. It would appear that there is the social asceptability of electronic calculator in the business world as a tool but the reluntance of the school systems (primary and seoondary) to accept tha dovice as a teaching and learning aid remain an issue to de resolved.

However, the uesign and possitle implementetion of the findings of this study can help to provide insight into the integration of calculators into the classroom instruction and mathematics curricuium. The result of the investigation would obviously be of interest not only to classroom teachers, tut also to parents, educators, school administraturs and examining bodies.

Abimbeds, A. The relative effectiveness of Programmed Instruction to the teaching of Secondary School Mathematics, Unpublished M.Ed. Dissertation, I badan: University of Ibadan, 1983.

Abo-Elkhair, M. E. An investigation of the Effectiveness of using minicalculators to teach basic concepts of average in the Upper Elementary Grades (Doctoral Dissertation, The Florida State University, 1980) Dissertation Abstracts International (DAI) Jan., 1980, 41A, 2980.

Adewakun, S. O. Programmed Learning Project in Mathematics, University of Ibadan, Nigeria, 1960.

Aiken, Howe d. The automatic sequence controlled calculator Mark I. Mass: Harvard University Press, U.S.A. 1937.

Aiken, Lewis R. Update on Attitudes and other effective variables in learning mathematics, Review of Educational Research $46(2), 1976,293-305$.

Allinger, G. . Fsrcent, Calculators and General Mathematics, School Science and Mathematics 85, 1985, 567-573.

Andersen, L. E. The affects of using restricted and unrestricted modes of presentation with electronic calculators on the achievement and attitudes of Seventh grade pupils (Doctoral Dissertation, University of Denver, 1976). Dissertation Abstracts International 1976, 37A, 6321 - 6322.

Armsirong, J. R. The relative effects of two forms of Spiral Curriculum Organization... Unpublished Doctoral Thesis, Madson: University of Wisconsin, 1968.

Ausubel, D. P. et al. Educational Psychology: A cognitive view, New York: Holt, Rinehart and Winston, 1963.

Ausubel, D. P. The Psychology of Meaningful Verbal Learning, New York: Grune and Stralton, 1963.

Ayers, S. W. The effects of situational problem-solving and electronic calculating ins: ruments in a collegs level introductory statistıcs course (Doctoral Dissertation, Georgie State University, 1977) Dissertation Abstracts Internatinnal, 1977, 37A, 6322-6323.

Babbage, Charles. The Analytic Engine, Cambridge: University of Cambridge Press, 1812.

Balouin, T. A. Programmed Learning and the teaching of Science, West African Journal of Education 15(2), 1971, 109-116.

Behr, A. N. Achievement, Aptitude and Attitude in Mathematics, Two-year College Mathematics Journal 74(6), 1981, $72-74$.

Behr, M. J. and wheeler, M. M. The calculator for concept formation: A clinical status study. Journal for Research in Mathematics Education 12(5), Nov. 1981, 323-338.

Bell, Fred H. Sul, computers really improve school mathematics? The Matinematics Teacher (NCTM) 17(5), 1978.

Bell, Max S. Caloulators in Elementary School? Some tentative guidelines and questions base on classroom experience. The Arithmet:c Teacher 23(7), Nov. 1976, 502-507.

Blood, B. F, and Budd, W. C. Educational Measurement and Evaluation, New York: Harper and Row, 1972.

Bolesky, E. M. The influence of Electronic Hand held Calculators on Cognitive achievement in chemistry (Doutoral dissertation, Boston College, 1977) Dissertation Abstracts International 1977, 38A, 1319-1320.

Boling, M. A. Some cognitive and effective aspects of the use of hand-held calculators in high school consumer mathematics classes (Doctoral dissertation, Louisiana State University, 1976). Dissertation Abstracts International, 1977, 38A, $\overline{2623-2624 .}$

Bolton, N. Concept Formation. U. K. Pergamon Press Ltd., 1st Ed, $\because 1977,84-139$.

Boole, Ceorge. The Laws of Thought. Cambridge: Cambridge University Press, 1854.

Brassell, Anne et al. Ability Grouping, mathematics achievement and pupils attitude toward mathematics. Journal for Research in Mathematics Education. 11(4) Jan. 1980, 111 - 119.

Bruner, J. The Process of Education. Cambridge. Mass; Harvard University Press, 1962.
-_- A Study of Thinking, New York: Wiley, 1950.
Burns, P. K, and Bozeman, W, C. Computer-Assisted Instruction and Mathematics Achievement: Is there a relationship? Educational Technology Journal, 12(5), 1981.

Campbell, O. and Stanley, J. Experimental and QuasiExperimental Designs for Research, Stokie, Illinoic Rand MoNally 1963.

Carpenter, T. P. st al. Calculator in Testing situation: Results and Implications fron National Assessment, Arithmetic Teacher 28, Jan., 1981, 34-37.

Carey, J. F. O. The relationship between attitude toward school sex, intelligence and Academic Achievement (Dociorpl uissertation, The University of Rochester, 1978) [.ssertation Abstracts International, Nov. 1978 ?9A 2824-2825.

Carroll, J. Words, Meanings and Concepts. Harvard Educational Review 34, 1964, 178-202.

Casner, J. L. A study of attitudes toward mathematics of 8th Grade Students receiving CAI and students receiving conventional classroom instruction. Unpublished Ph.D. Thesis, University of Kansas, 1977.

Cheshire, F. D. The effect of learning computer programming skills on developing cognitive abilities. Unpublished Ph. D. Thesis, Arizona State University, 1981.

Cheung, Y. L. Using Scientific calculators to Demonstrate the Method of Successive Substitutions. The Mathematics Teacher, (NCTM) 79(1), Jan. 1986.

Clark, D. C. Teaching concepts in the classroom: A set of prescriptions derived from experimental research. Journal of Educational Psychology Monograph 62, 1971, 253-278.

Connor, P.J.: A calculator dependent Trigonometry Programme and its effect on achievement in and attitude toward mathematics of Eleventh and 12th Grade College Bound students. L'npublished Ph.D. Thesis, Temple University 1981.

Crawford, A.N. A pilot study of computer assisted drill and practice in 7 th grade remedial mathematics. California Journal of Educational Research 21, 1970.

Gambrot, Faye, et. al. Correlates of sex differences in attitudes towards involvement and improvement with computers. Journal of Vocational Behaviour 27, August 1986, 71-85.

Day, Roger, R. A problem-solving components for Junior High School Mathematics. Arithmetic Teacher, 34(2) Oct. 1986, 14-17.

Deblassio, J.K. and Bell, F.H. Attitudes toward Computer in High School Mathematics Courses. International Journal of Maihematics Education in Science and Technology, 12, Feb. 1981. 47-56.

DeLoatch, S. A Comparative study of use of programming abilities in an introductory college mathematics for disadvantage students. Unpublished Ph.D. Thesis, Indiana University, 1977.

Driscoll, M. Research within Reach: Elementary Mathematics, Va: National Council of Teachers of Mathematics Report, U.S. $\bar{A} ., 1981$.

Dyce, B.A. The effect of incorporating the mini-calculator into a community Junior College basic mathematics course. (Doctoral dissertation, The University of Florida, 1977) Dissertation Abstracts International, 38A, 1978, 43.

Eckmier, J.L. An investigation of the use of calculator with low achieving 4th Grade Students in Mathematics Achievement and Attitude. Doctoral Dissertation, Univers ty of Southern California, 1978). Dissertation Abstrasts International, 38A, June 1978, 7109.

Egbugala, W. D. Effects of Three Levels of Advance Organizers on achievement of scie Nigerian Secondary School Physics Students. Linpublished Ph.D. Thesis, I badan, University of I badan, 1984.

Ericksen, G. L., Ryan, J. J. A study of the effects of Experimental programs on pupil achievement J.S.A.: State Department of Education Report No. MNL-TR, 66-4 St. Pauls: State Department, 1966.

Etlinger, L. The electronic calculator; A new trend in school mathematics. Educational Technology Journals 14, Dec. 1-74, 43-45.

Falokun, C. 0. Concept formation in a algebraic equations and problem-solving among form five students in Oyo State of Nigeria. Unpublished M.Ph. Thesis, Tbadan, University of I badan, 1983.

Flanagan, J. C. General consideration in the selection of test items. Journal of Educational Psychology 30, 1939, 674 - 680.

Flanders, N. Analyzirig Teaching Behaviour. Reading, ass. Ad न-Wesley Publishing Company, 1970.

Fisher, Ronald. The Design of Experiment 6th Ed. New York: Hafuer, 1951.

Gadzella, B. 11. et à.. Mathematics Course Grades and Attitudes in Matiematics for students enrolled in Three Úniversity Colleges. Psychological Reports 57 Part I, Dec. 1875, 767-772.

Gagne, R. M. Learning hiararchies. Educational Psychologists. 6(1) 1968, 3-6.

The Conditione of Learning, New York: Holt, Rinehart and Winston 1979, 155-170.

Gagne, R. M. and Briggs, L. Principles of Instructional Design 2nd Ed., New York: Holt, Rinehart and Winston, 1976, 55 - 79.

Gawronski, J. D. and Coblentz, D.: Calculators and the Mathematics Curriculum. The Arithmetic Teacher (NCTM) 23(7). Nov. 1976, 510-512.

Gooden, C.L. Some effects of using minicalculators in mathematics. (Doctoral dissertation, Kent State University 1978). Dissertation Abstracts International 39A, Nov. 1978, 2800-2801.

Gordon, B.W. A profile of High and Low Achievers in Mathematic (Doctoral Dissertation, Duke University, 1978..
Dissertation Abstracts International, 38A, Feb. 1978. $\overline{463} 9=4 \overline{6} 4 \overline{0}$.

Hansen, T.P. et. al. What Teachers Think every High School Graduate Should Know about Computers. School Science and Mathematics, 81, October 1981, 467 - 472.

Hector, J.H. and Frandsen, H. Calculator Algorithms for Fractions with Community College Students. Journal for Research in Mathematics Education $12(5)$ November

Hedren, Rolf. The hand-held calculator at the intermediate level. Education Studies in Mathematics 16: May 1985 163-179.

Hembree, Ray and Dessert, D.J. Effects of Hand held Calculators in Pre-College Mathematics Education; A Meta-analysis. Journal for Research in Mathematics Education (NCTin) 17(4), March 1986, 83-99.

Hembree, Ray. Research Gives Calculator a Green Light. Arithematic Teacher, (NCTM) 34(1), September 1986.

Hohlfield, J.R. The impact of electronic calculators on educational performance. Review of Educational Research 50(1), 1980, 71 - 78.

Immerzeel, G. et. al. Teaching Mathematics with the Hand-held Calculator in N.M. Suydam. Electronic Hand Calculators: The implications for the Pre-College Education Final Report, 1976.

Jurgemeyer, F.H. Programmed Instruction: Lessons it can teach us. Educationai Technology, May 1982, 14 - 48.

Kalejaiye, .. O. Individual Differences to Programmed Instructio in the New Mathematics. West African Journal of Edi ation 15(3) October 1971, 201-205.

Kasnic, M.J. The Effect of Using hand held calculators on mathematical problem-solving among 6 th grade students (Doctoral Dissertation, Oklahoma State University, 1977) DAI, 1978, 38A, 5311

Kelley, T.L. The selection of Upper and Lower groups for the Validation of Test Items. Journal of Educational Psychology 30, 1939, 17-24.

Kelley, M.G. The Effect of the use of the Hand held calculator on the Deveiopment of Problem solving strategies (Doctoral Dissertatior, Utah State University, 1984). Dissertation Abstracts International 45A: Dec. 1985. 3571.

Kerlinger, F.N. Foundations of Behavioural Research, 2nd Ed., New Yörk Holt, Rinehart and Winston Inc., 1983.

Klausmeier, H.J. et. al. Analyses of Concept Learning, New York: Academic Press, 1966.

Kleiman, G. et. al. Micro-computers and hyperactive children in Creative Thinking 7, March 1981; 93 - 94.

Koop, J.B. Calculator use in the Communicy College Arithematic Course. Journal for Research in Mathematics Education. 13 (1), 1952! 50-60.

Lamb, R.L. A Study on the Coordination of Graph Theory and Computer Science at the Secondary School. Unpublished Ph.D. Thesis: Ceorgia State University, 1976.

Lawson, T.J., A Study of the Calculators and Altered Calculators effect. Unpublished Ph.D. Thesis. Stata University of New York at Buffalo, 1977.

Leibniz, G.W. Eine Biographie Ed. Guhrauer, G.E., 2 Vols. 1842. In Encyclopedia Americana, International Editica, N.Y. Americana Corporation, Vol. 5, 1974, pp 161-163.
Magidson, E.M. Issue Overview: Trends in CAI, Educational Technology, 18 (4) 1978, 5-8.

Markle, S.M. Problems of Conceptual Learning. Journal of Educational Technology, 1(1), 1970.

Mathis, A. College Students' Attitudes Towards CAI. Journel of Educational Psychalogy _61(1), 1970

Mellon, J . Calculator based units in decimals and percents fo Seventh Grade Students (Doctoral Dissertation, Columbia University, Teachers College, 1985), Dissertation Abstracts International 46A, Sept. 1985.

> Meyer, R.A. Concept Attainment Ahilities Project. Journal for Research in Mathematics Education $9(5) 1975,334-336$.

Moar, Eli, The Pocket Calculator as a Teachirg Aid. The Mathematic Teacher (NCTM). 1966, Oct. 1976.

Morris, J. Math Anxiety: Teaching to Avoia it. Mathematics Teacher $74(6), 1981,413-417$.

Murphy, N.K. The Effects 0% a Calculator Treatment on Achien ement and Attitude problem solving in 7 th Grade Mathematics (Doctoral Dissertation, University of Denver, 1981). Dissertation Abstracts International 42A. Nov, 1981, 2008 - 2009.

Nichols, W.E. The Use of Electronic Calculators in a Basic Mathematics for College Students. (North Tex as State University, 1975) DAI 36A: 7919, June 1976.

Ogunniyi, M.B. Educational Measurement and Evaluation. Lagos Longman (Nig.) Ltd., 1984.

An Analysis of Laboratory Activities in Selected Nigerian Secondary Schools, European Journal of Science Education 5(2), 1983, $195-201$.

Ogunyemi, F. and Bettis, J. An Investigation of Cognitive Preferences in Mathematics Among High and Low Achievers in the Nigerian Secondary Schools. African Journal of Educational Research. 1. 1974, 97-105.

Okunrotifa, P.O. Programmed Learning and the Teaching of Geography. West African Journal of Education 14 (3), October 1970, 203-207.

Oni, E.O. Conceptual Difficulties With Ionic Equations as Function of Intellectual Development Amorg Secondary School Students. Unpublished M.A. Thesis, Ife: University of Ife, Nigeria 1982.

Padberg, F.F. Using Calculators to Discover Simple Theorems An Example from Number Theory. Arithemetic Teacher. 28(8), Apri1, 1981.

Palmer, H. F. H., Minicalculators in the Classroom. What do Tea ners Think? Arithmetic Teacher 25(7), 1978.
27-28.

Pascal Blaise. L'oeuvre Scientifique de Blaise Pascal ed. Maire Albert, Pari": 19.2 In Encyclopedia Americana, Int. Ed. N.Y. Americana Corporation, Vol. 5, 1974, pp 161-163.

Pollok, Heanry. 0. Hand Held Calculators and Potential Redesign of the School Mathematics Curriculum. The Mathematics Teacher. 7J(4), 1977, 293-297.

Powers, S. et. al. Generalization of the Mathematics Attribution Scale Norms to Academically Talented High School Students. Psychological Reports. 57, Oct. 1985, 475-478.

Ray, K.L. The Effects of Computer-Assisted Test Construction on Achievement in First Year Algebra. Unpublished Ph. D. Thesis, University of Southern California, 1977.

Reed, H.D. and Dick, R.D. The learning and Generalization of Abstract and Concrete Concepts. Journal of Verbal Learning and Verbal Behaviour, 7, 1968, 485-490.

Reys, R.E. et. al. Hand Calculators: What is happening in Schools Today. Arittmetic Teacher 27(6), Feb. 1980 $38-43$.

Roberts, D.M. The impact of Electronic Calculators on Educational Performance, Review of Educational Research 50 (1), 1980, 71-98.

Saltz and Copeland, R.W. Mathematics and the Elementary Teacher. Philadelphia: W.B. Saunders Company, 1976, 35-65.

Sears, L.D. A problem of the effects of teaching a course in Algebra II and Trigonometry via Traditional method and other methods. Unpublished Ph.D. Thesis, University of Houston, Texas, 1977.

Shaw, M. and Wright, J. Scales of the Measurement of Attitudes. Naw York: McGraw-Hill, 1967.

Shumway, R. . et. al. Initial Effects of Calculators in Eler antary School Mathematics. Journal ofor Research in sthematics Education 12, 1981, 119-141.

Simonson, Michael R. Media and Methods. Educational Communication and Technology Journal (ECTJ) $28(1)$, Spring 1980, 47. - 61.
smith, 3. L. A study of the effectiveness of the use of the electronic calculator (Doct ral Dissertation, North Texas State University, 1977). Dissertation Abstracts International. 38A, Jan. 1978, 3986.

Spickerman, W. R. A. A study of the relationshipa between attitudes toward mathematics and some selected pupil characteristics in a Kentucky High School. (Doctoral Dissertation, University of Kentucky, 1965). Disser.ation Abstracts International, 1970, 2733A.

Standifer, C. E. and Mapies, E. G. Achievement and attitude of 3rd Graca students in School Science and Mathematics 81, 1981, 17 - 24.

Suppes, Patrick CAI at Stanford. In Man and Computer (Proceedings f International Conference, Borctaux, 1970) Besei Kerger, 1972.

Suydam, N. M. Electronic Hand Calculators. The implications for Pre-College Education Final Report. Washington D.C., National Science Foundation 1976.

The use of Calculators in Pre-College T Jucery 1, , state of the Art Review Columbus, Ohio: Calculate : Information Center, May 1979.

Suydam, N. M. and Weaver, J. F. Research on Mathematics Education reported in 1977. Journal of Research in Mathematios Eduuation $S(4)$, JUly 1978.

- Research on Mathematios Education reported in Mathematics Education reported in 1978, Journal for Research in Mathematics Education 10(4), July 1979.

Suydam, N. M. Research on Mathematics Education reported in 1981. Journal for Research in Mathematics Education 13(4), July 1982.
: Research on Methematics Education reported in 1985. journal for Research in Mathematics Education i7(4), Juप्y 1986.

- The uss of electronic Hand Calculator in Pre-College Education: Fourth Annual State of the Art Review. Columbus, Ohio: Calculator Information Center, 1981.

Suydam, N. M. The use of electronic Calculator in PreCollege Education: Fifth Annua . State of the Art Review, Columbus, Ohio: Calculator Information Center, 1982.

Szetella, Walter. Hand-Held Calculators and the I.earning of Trigonometric Ratios. Journal for Research in Mathematics Education. (NCTM) 10(2), March 1979, 111-118.

Tennyson, R. D. et al. The teaching of concepts: A review of instructional Design Research Literature. Review of Educational Research. $50(1), 1980,55-67$.

Vincent, A. T. The effects of Supplementary CAI on the Mathematics Achievement and Attitude in EMA High School. Unpuslished Ph.D. Thesis, University of Cincinnati, 1977.

Wilson, R. L. Computers and Mathematics. West African Journal of Education 12(2), June 1968, 131-133.
Wright, E. B. Investigation of Selected decision-making process for aspects of a computer-assisted and mastery \#zarling inu. 1 in basic mathematics. Unpublished Ph.D. Thesis, $\mathcal{\text { i }}$ e Pennsylvania State University, 1977.

Zepp, R. A. Fatterns and Compu:ation on proportions, problems and the ir interactions with the use of Pocket Caiculaturs in 9th Grade and College (Doctoral Dissertaiion, Ohio State University, 1975). Dissertation Abstracts International 36A, 1975, 5181.

- 301 -

APPENDIX 1
Mathematics Rre-test

INSTRUCTIONS: TIME: 30 Minutes

1) Answer all the questions
2) All questions carry equal marks
3. Each question is followed by five options lettered $\mathbb{A}-\mathrm{E}$ find out the correct option to each question and write the correct answer on your answer sheet.

Example: If $\frac{2}{5}-3 x-2(1-x)$, which of the following is true for x ?
$A=\frac{4}{3}, B=\frac{3}{4}, C=-\frac{4}{3}, \quad D=-\frac{3}{4}, \quad E=\frac{2}{3}$ Answer: $C=-\frac{4}{3}$
ANSWER THE FOLLOWING QUESTIONS:

1. Simplify: $\frac{1}{2}\left(2 \frac{1}{4}+6 \frac{1}{2}\right) \div 3 \frac{3}{n} \cdot$ (Simplify: $\frac{1}{2}\left(2 \frac{1}{4}+6 \frac{1}{2}\right) \div 3 \frac{3}{4}$),

$$
A=\frac{2}{5}, B=\frac{4}{7}, C=\frac{1}{6}, \quad D=3 \frac{1}{2}, E=2
$$

2. Ademola is z years old. Write an expression to represent his age two years ago.

$$
\begin{aligned}
& A=x \text { years, } B=(x-2) y r s_{0}, C=(x+2) y r s, D=2 y_{r s}, \\
& E=\frac{x}{2} \text { yrs }
\end{aligned}
$$

3. * Given rod below:

From the rod $(3 t+2 b)$ centimetres 1 one, a part $2 t$ tom is cut off. What is the length of the reminder ?

$$
\begin{aligned}
& \frac{A}{D}=(5 t+2 \mathrm{~b}) \mathrm{cm}, \quad \begin{array}{l}
B=(3 t+2 \mathrm{~b}) \mathrm{cm}, \quad C=(t+2 \mathrm{~b}) \mathrm{cm} \\
\mathrm{D}=2 \mathrm{r} \mathrm{~m},
\end{array} \quad=(5 \mathrm{t}-2 \mathrm{~b}) \mathrm{cm},
\end{aligned}
$$

4. If $2 p \quad m-4 n^{2}$. Find P when $m=20, n=2$. $A=1, B=6, C=3, D=2, E=1$.
5. Express P Nairas q Kobos in Kobos

$$
A=10 \mathrm{pq}, \quad B=100 \mathrm{P}+\mathrm{Q}, \quad C=100 \mathrm{pq}
$$

6. Find the value of p if $2(\mathrm{P}=4)=2: A=3, B=4, C=5$, $D=6, E=8$
7. Given that $x=-2$ and $y=\frac{1}{2}$, find $x y^{2}-x^{2} y$. $A=-2 \frac{1}{2}, \quad B=-10, C=2 \frac{1}{2}, D=6 ; E=8$ 。
8. Given the figure below:

If $3 x+2=122^{\circ}$, find $x:$
$A=40^{\circ}, B=-40^{\circ}, C=122^{\circ}, D=-122^{\circ}, E=41^{\circ}$.
9. Simplify: $2 x(3 x-4)-2 x(3 x-4)$.
$A=6 x^{2}, B+2 x^{2}-16 x, \quad C=2 x^{2}+16 x, D=2 x^{2}, E=16 x$
10. If $\square-8-2(\square-3)$, What the value of \square $A=5, \quad B=-5, \quad C=2, \quad D=-2, \quad E=6$. If $\frac{1}{7}+\frac{3}{7}=\frac{1+\Delta \Delta}{7}$, What is the value of Δ ? $A=1, B=7, C=3, D=4, E-$ None of the above.

The above is a balance, what is the value of x ?

The at is a balance, what is the value of P ?
$A=-13, B=21, C=9, D=7, E=\infty 21$.
14. If $3 \mathrm{~b}+\mathrm{b}-2 \mathrm{~b}-\mathrm{b}=-6+6$, What is b ? $A=12, B=C, C=-12, D=1, E=-1$.
15. If 15 subtracted from to times x, the result is 55 , find the value of $x_{0} A=10 x, B=55, C=10 x-15$;
$D=7, E=4$.

APPENDIX 2

Mathematics Pre-test Answers

NOS	ANSWERS	VALUES
1	C	$7 / 6$
2	B	x-zy
3	C	t +2 b
4	D	2
5	B	$100 \mathrm{p}+\mathrm{q}$
6	C	5
7	A	-2.5
8	D	40°
9	D	$2 x^{2}$
10.	C	-2
11	E	3
12	B	4.5
13	B	21
14	D	0

Difficulty Index and Discriminatory Power (p)

 of the Mathematics Pre-test| TEST-ITEM | DIFFICULTY INDICES | DISCRIMINATORY
 POWER $\%$ |
| :---: | :---: | :---: |
| 1 | 0.45 | 55 |
| 2 | 0.25 | 75 |
| 3 | 0.25 | 75 |
| 4 | 0.25 | 75 |
| 5 | 0.50 | 50 |
| 6 | 0.60 | 40 |
| 7 | 0.75 | 25 |
| 8 | 0.25 | 25 |
| 9 | 0.40 | 50 |
| 10 | 0.40 | 60 |
| 11 | 0.20 | 80 |
| 12 | 0.15 | 25 |
| 13 | 0.45 | 55 |
| 14 | 0.50 | 50 |
| 15 | 0.25 | 75 |

AVERAGE DIFFICULTY INDEX OF PRETEST $=\cdot 0.40$
From R/T $\times 100=$ DIFFICULTY INDEX R.... No. Right,
T Total Test Items.
AVERAGE DISCRIMINATORY POWER OF PRETEST $=63.3 \%$
From D. SCRININATURY POWER $P=\frac{R U-R L}{\frac{1}{2} T}$
RU ... No. of Pupils in the Upper 27% of the group who got the item right.
R_{L}... No. of Pupils in the Lower 27% of the group who got the item right.

NAME:
AGE:
SEX:
SCHOOL:.. DATE OF TEST

This booklet contains an example and 30 multiple-choice objective questions.

INSTRUCTIONS: Please answer all the 30 multiple-choice objective questions. You should write out only the correct letter. IMPORTANT: You have 45 minutes to complete the test. Some questions are easier than others. If you find any question is too hard, leave it out and come back to it later if you have time. Do not spend too much time on any question.

Example: Find x in the equation

$$
\begin{aligned}
& x=\frac{-a b}{b}-a y \\
& \text { if } a=4 \\
& b=1 \text { and } \\
& y=-2
\end{aligned}
$$

$A=-4, B=4, C=8, D=12, E=12$. The correct answer is B. You should write only B.

Now Answer the following questions:
I. Find the value of x if $f=5 b-x$ when $y=-2.2$ and $b=1.5$
$A=-9.70, B=5.50, C=9.70, D=-5.50, E=-5.30$
2. If $\frac{2}{3}-8 x=2(1-x)$, which of the following is true for x
$A=1.33, \quad B=0.75 \quad C=-0.75, \quad D=-1.33, \quad E=0.67$

2I. A lorry garrying concrete blociss weighs $364, \mathrm{~kg}$ when loaded.
Whe blooks weigh three time as much as the empty lorry. Find the weight of the lorry. Hint, Woight of lorry $=$ Lorry + Conorete - Weight of concrete. $\Lambda=2880 \mathrm{~kg}, \mathrm{~B} 25920 \mathrm{~kg}, \quad \mathrm{C}=34560 \mathrm{~kg}, \quad D=2160 \mathrm{~kg}, \mathrm{E}=960 \mathrm{~kg}$.
22. Dairo is buying books for her frionds ono of the books thoy wont costs \#2.00 moxe than the other. She buys 5 of the more expensive book and 3 of the cheaper book. Hint, Liet $x=$ expunsive book, $y=$ cheaper booky Form Simul taneous uquations and find the cost of the cheaper book. $A=\$ 2.75, B=\$ 3.50, C=\$ 2.00, D=H I .50, E=\# 3.00$.
23. If John earned $r 48$ for I6 hours work, what was his average wagg per hour?
$\Delta=\$ 3.00, \quad B=\Psi 4.00, C=\Psi 2.00, D=\$ 5.00, E=\# 6.00$
24. Akin and Ayo were given gok to share. Akin is younger than lyo, so ho has ,tc Fet 20 k loss than Ayo. Fiow much did Ayo get?
Lat Akin's share bc x and Ayo's sharc be y form simultaneous equation. $\Lambda=45 \mathrm{kobo}, B=55 \mathrm{kobo}, \quad \mathrm{C}=35 \mathrm{kobo}, \mathrm{D}=70 \mathrm{kojo}, \mathrm{E}=20 \mathrm{kobo}$.
25. From question 24 , how much did Akin get?
$\Delta=45 \mathrm{kobo}, B=55 \mathrm{kobo} \mathrm{C}=35 \mathrm{kobo}, D=70 \mathrm{kobo}, \mathrm{E}=20 \mathrm{kobo}$.
26. The sum of"throe conscoutive numbers is I23. Find ono of the numbers(Hint e.g. conseoutivè numbers are $85,86,87$)
$A=2 I, B=30, C=4 I, D=52, E=66$.
27. A bookshelf iolas x.books each I200nm thick. The same booksh olf oan hold
$=(x+3)$ books each goomm thick. What is the length of the shelfe?
$=I \neq 80: 0 \mathrm{~mm}, B=I 4600 \mathrm{~mm}, C=I 5000 \mathrm{~mm} D=I 6800 \mathrm{~mm}, \quad E=I 9200 \mathrm{~mm}$.
28. $S+0.5 s+S+3000=I 8,000$, Find S.
$A=I 5,000, B=6000, C=9000, D=7500, E=5000$.
29. If $\mathrm{X}=\frac{2 \pm \sqrt{4+I 6}}{2}$ Find $\mathrm{X}_{\text {。 }}$
$A=I .23 .6, \quad B=-3.236, \quad C=-I .632, \quad D=3.236, \quad B=I .632$.
30. If $b^{2}-4 a c=0$ when $a=-0.675 c=-75.00$ Pind b . ..
$\therefore=+I 42.3, \quad B=-I 42.3, \quad C=-I 4.23, \quad D=202.5,13=I 4.23$.
© oven that $x-2.0$ and $y-0.5$ s find the value of $x y^{2}-x^{2} y$. $A-2 . E C, E-I O, C-2.50, D=6, E=8 ., A=-2.50$
4 Given the simultaneous equations $2 x-3 y+2=0$ and $3 x+2 y=23$,
calculate the value of $(x-y)$.
$A=21, B=5, C=4.2, D=2 \frac{I}{3}, E=I .0$
5 Tho quantities, y and x are connected by a linear relation of the so sm
$y=k x+c$ where k and c are congtajts. If $x=60$ when $y=I 0$ and $x=240$ - When $J=I 00$, find the equation connecting \bar{y} and x.
$A: y=\frac{1}{2} x+20, B: y=\frac{1}{2} x-20, C: y=k+C D: y=2 k-I I O, D: y=2 k-I 30$ 。
6. If $x=-I$, $y=2$ and $z=3$, evaluate $x^{2}+y^{2}+z^{2}-3 x y z$
$\therefore=-32, B=-4, C=4, D-I 4, E=32$.
7. EValuate $y=3 x^{2}-4 x-5$, if $x=2$.It.

$$
\therefore=0.0032, B=-0.4832, C=-0.0032, I=I 3.4832 E=-I 3.4832
$$

Hind x_{1} from the figure.
$\Delta=-40^{\circ}, B=40^{\circ}, C=I 22^{\circ}, \quad D-I 22^{\circ} \quad \mathrm{I}=4 I^{\circ}$
9. If $x=2$, evaluator $x-(3-(x-(2-x))+4)$
$A=-5, B=-3, C=2, D-5, E=6$
is $\frac{-3 x \mid}{\text { above figure is ta balance, what }}$
The above figure is balance, what is the value of x ?
$A=-5, B=I .25, C=5, D=-I .25, E=I I$
II. Find M.

I2. Find the value of $4 x-y$ if $x+y=8$ and $2 x-y=7$.
$A=3, B=7, C=8, D=I 3, E=I 7$.
I3 If $m=4 a$ - qq find q When $m=5, p=2$ and $a=-4.5$
$A=I I .5, B=-6.5, C=6.5, D=-I I .5, I=I I .0$
I.4. Given that $x+2 y=4$ and $3 x+4 y=6$, find the value of $(x+3)$
$\Lambda=5, B=3.5, C=I .0 D=2.5, E=-I .0$
I5. If $E=\frac{1}{2} m\left(v^{2}-u^{2}\right)$ find m, when $E=270, V=I O$ nd $u=8$
$A=I 64, B=36, C=I 5, D=7.5, E=0 . I 3$
I6. Given triangle $A B C$ where $A B=4 x-I B C=3 x+2$ and $C A=2 x+3$. If the perimeter of this triangle is 148 cm , find x. $A B+B C+C A=I 48$
$\Lambda \cdot=\frac{4}{9} \quad B=I 6, C=I \sigma 9, \quad D=I 6 \frac{5}{9}, \quad D=\frac{5}{9}$.
I7 If $-8=2(,-3)$, what is the value of
$A=-2, B=2, C=5, D=-5, \quad E=6$
I8. The formula $\mathrm{F}=9 \mathrm{c}+32$ is a temperature relationship of Famreheit (F) and Centigrete (C). Find the temperature when $T:=C$.
$A=40, B=I I \cdot 4, C=8, D \Rightarrow-I I 4, E=-40$.
I9. Given that $3 x+2 y=I 8$, and $5 x-2 y=I 4$, Find the value of x.
$\Lambda=0.5, B=I, C=3, D=3, E=4$
20 If $80(Z-I)=60 z$, Find z
$A=\frac{4}{7}, \quad B=-4.0, \quad C=\frac{4}{7}, \quad D=7.0, \quad E=4.0$
-309-

APPENDIX 5

Mathematics echievements test answers

Difficulty Index and Discriminatory Power (P) of the Mathematics Achievement Test

TEST ITEMS	DIFFICULTY INDICES	DISCRIMINATORY POWER $(P) \%$	TEST ITEMS	DIFFICULTY INDICES	DISCRIMINATORY POWER
1	0.69	50	16	0.53	17
2	0.40	42	17	0.31	17
3	0.51	42	18	0.22	17
4	0.40	50	19	0.78	42
5	0.51	40	20	0.56	58
6	0.51	58	21	0.04	08
7	0.40	58	22	0.42	42
8	0.73	25	23	0.73	42
9	0.16	33	24	0.49	33
10	0.56	58	25	0.49	33
11	0.58	17	26	0.60	33
12	0.62	50	27	0.47	08
13	0.33	42	28	0.40	42
14	0.20	17	29	0.22	33
15	0.17	58	30	0.20	00

AVERAGE DIFFICULTY INDEX $=0.46$
AVERAGE DISCRIMINATORY POWER $P=42 \%$
USING $r=c=\frac{N \sigma^{2}-\bar{X}(N-\bar{\chi})}{\sigma^{2}(N-1)}$

$$
\begin{aligned}
& r=\text { reliability coefficient of the whole test }=0.54 \\
& \sigma=\text { standard deviation of the test scores }=3.95 \\
& \sigma^{2}=15.61 \\
& \bar{x}=\text { the mean of the test scores }=13.87
\end{aligned}
$$

APPENDIX 7

Instructional Module on Equations
TOPI CS:
(i) Simple equation.
(ii) Simultaneous equations.
(iii) $\downarrow u a d r a t i c ~ e q u a t i o n . ~$

DIRECTED TO FORM FIVE PUPILS SECONDARY SCHOOL, NIGERIA
This module takes cognizance of the fact that pupils are already familiar with some aspects of equations. It has been prepared to be used with calculator. The general instruction on the use of calculator with this module is at the end. Computational algorithms have been incorporated in all aspects of the exercises in the module.

OBJECTI VES OF T E LEARNING CONTENT:

(i) To introduce the pupils to the concept of equations simple. simul' aneous and quadratic.
(ii) To identify different forms of equations: simple, simultaneous and quadratic.
(iii) To solve different equations - simple, simultaneous and quadratic.
(iv) To translate word-problems into equational, format simple and simultaneous equations.
(v) To solve the word-problem equations simple and simultaneous.

PREAMBLE:

The module is divided into FOUR parts. Each part constitutesan instructional content relating to each objective. The instructional content shall cover a period of 40 minutes. It is made up of examples on the concept to be developed and graded.
exeroises. The pupils shall be allowed to work at their own paco. Each instructional content shall be followed with exercises which the pupils shall respond to. The pupils shall be made to use only this module for the project.

PART I

INTRODUCTION

Two types of linear equations shall be considered in detail, while quadratics id discussed with examples.

1. Linear simple equation in one variable:

This is an equation having one as the power of its variable. It has a single solution.

Consider this linoter equation:

Please note that x is the unknom variable and the solution of $x=9$ will satisfy that equation. Give othor examples.
2. Simultaneous Linear equations in two variables called the unknowns. These equations consist of two lineaf equations in two unknown variables. The equations are solvod by eliminating one of the two unkown variables and thereby reduce the equations to one lincor equation in one unknown variable; which is then solved as simple linear equation. The solution to the other variable is obtained by substituting the solution already obtained into one of the two given equations and then solve the resulting linear equation. Consider the equations:

$$
\begin{aligned}
& x+y=20 \\
& x-y=6
\end{aligned}
$$

Please note thet x and y are the two unknown variables in these oquations:

Solving these equations:

$$
\left.\begin{array}{l}
X=13 \\
X=7
\end{array}\right\} \quad \text { tho two unknowns }
$$

Those values of x and y shall satisfy the two equations

$$
13+7=\underset{=}{20} 13-7=\underset{=}{\text { of }} \text { Other exemples shall }
$$

3. The third form of equation, madratios is an equation in one variable, hsving 2 as the highest power of its variable. It has at most 2 solutions. A Eeneral quadretic equation is of the form

$$
a x^{2}+b x+c=0 \text { where } a, b \text {, and } c \text { are constants }
$$ To solve the quedratic equation $a x^{2}+b k+c=0$, the factor π thod is used when the expression $a x^{2}+b x+c$ an $b e$ factorisel. However, if it camot be factorised, the frmula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { is used to }
$$

solve for x which is the unknown varisble and will have two values. To give examples e. $x^{2}-3 x+2=0$

PART II

STMPLS EQUATIONS

An equation is an open sentemoe with an equality signo For example, $4+x=x+2 x$ is $=$ statenent which expresses a tirue stato ment if 2 is substituted for x. That is when $x=2$ what is on the left hand sido $\left(L_{.} H-S:-(4+x)\right.$) must be ecqual to the righthend side (R.H. S :- $(x+2 x)$. The expression $4+x$ is equal to 6 when $x=2$ and $x+2 x$ also is equal to 6 .

Any of the four basic operations of elementary mathematics (addition, suivtraotion, multiplication and division) can be performed. on both sides of an equation; though the expression will be altered yet the equation will still be true. Examples: $-3 x=0 ; 4 x-2=5$; $3 x+4=7$ etc.

Worked Examples

i) Consider the equation $22=7 x-6$

Solution: Add 6 to both sides $22+6=7 x-50^{\circ}+{ }^{\circ}$

$$
28=7 x
$$

Divide both sides by 7: $\frac{28}{7}=\frac{7 x}{7}=x$
The solution is $x=4$
It may also be necossary for us to check if our solution is correct or not:

$$
\text { Thus if } x=4 \text { then } \begin{aligned}
22 & =7(4)-6 \\
& =28-3
\end{aligned}
$$

$$
D_{0} H_{0} S_{0}=R_{0} F_{0} S_{0}: \quad 22=2
$$

The solution is correct.
ii) Consider tie e equation $x+\frac{x}{22.5}=3.5$ SOLOMON

Multiply throweh by 22.5 (the L.C.M.)

$$
\text { Thus } \begin{aligned}
22.5 x+x & =3.5 \times 22.5 \\
23.5^{x} & =78.75
\end{aligned}
$$

Divide both sides by 23.5

$$
\begin{aligned}
\frac{23.5 x}{23.5} & =\frac{78.75}{23.5} \\
x & =3.35
\end{aligned}
$$

Check

$$
\begin{aligned}
& 3.35+\frac{3.35}{22.5}=3.50 \\
& 3.35+0.15=3.50
\end{aligned}
$$

The solution is correct.
iii) Consider the equation $\frac{x}{2.2}+\frac{x}{3.3}+\frac{x}{4.4}=1$

Multiply through by 31.944 (the LCM)

$$
\begin{aligned}
& 14.52 x+9.68 x+7.26 \mathrm{bx}=31.94 \\
& 14.52 \mathrm{x}+9.68 \mathrm{x}+7.26 \mathrm{x}=31.944 \\
& 31.46 \mathrm{x}=31.944 \\
& \frac{31.46 x}{31.46}=\frac{31.944}{31.46}
\end{aligned}
$$

Divide both sides ky $\quad \mathrm{x}=1.015$
Check

$$
\begin{aligned}
& \frac{1.015}{2.2}+\frac{1.015}{3.3}+\frac{1.015}{4.4}=1.0 \\
& 0.46+0.31+0.23=1.1
\end{aligned}
$$

The solution is $x=1.015$.
iv) Solve the equation $\frac{x}{2.5}-3.5=\frac{x}{3.5}+1.5$

SOLUTION:
Multiply both sides of the equation by 8.75 , the LGK

$$
\therefore 3.5 x-30.625=2.5 x+13.125
$$

Add: 30.625 to both sides

$$
3.5 x=2.5 x+43.75
$$

Subtract 2.5x from both sides

$$
\begin{aligned}
3.5 x-2.5 x & =2.5 x+43.75-2.5 x \\
x & =43.75
\end{aligned}
$$

Check:

$$
\begin{gathered}
\frac{43.75}{2.5}-3.5=\frac{43.75}{3.5}+1.5 \\
17.5-3.5=12.5+1.5 \\
14.0=14.0
\end{gathered}
$$

The correct solution is $x=43.75$.
v) Solve the equation:

$$
\frac{x-20}{3}-\frac{3 x-40}{4}=100
$$

Multiply both sides of the equation by 12 (the LCM)

$$
4(x-20)-3(3 x-40)=1200
$$

Renove brackets:

$$
4 x-80-9 x+120=1200
$$

Collect like terms:

$$
\begin{aligned}
4 x-9 x & =1200+80-120 \\
& -5 x=1160 \\
\text { ides by } & =5
\end{aligned}
$$

Divide both sides by

$$
\begin{aligned}
\frac{-5 x}{-5} & =\frac{1160}{-5} \\
x & =-232
\end{aligned}
$$

Check

$$
\begin{aligned}
& \frac{-232-20}{3}-3(-232)-10 \\
& -\frac{252}{4}-\frac{-696-40}{4}=100 \\
& \begin{aligned}
-\frac{252}{3}+\frac{736}{4} & =100 \\
-84+184 & =100
\end{aligned}
\end{aligned}
$$

Tho correct solution is $x=-232$
PUPILS IN CLASS
Practise Exercise: Solve the following equations:

$$
\begin{aligned}
& \text { i) } \frac{p+1.2}{5}-3\left(\frac{p-1.5)}{10}=22.5\right. \\
& \text { ii) } \frac{t+1}{t-1}=0.75 \\
& \text { iii) } 3 x-2(x+3)=7-x \\
& \text { iv) } x+\frac{1}{3} x=12 \\
& \text { v) } \frac{1}{7}(y-4)=\frac{3}{7}
\end{aligned}
$$

i) $\frac{P+1.2}{5}-\frac{3(P-1.5)}{10}=22.5$

Multiply both sides of tho equation by 10 (the L. C. H_{0})

$$
2(P+1.2)-3(P-1.5)=225
$$

Remove brackets:

$$
2 P+2.4-3 P+4.5=225
$$

Collect the like toms:

Check

$$
\begin{aligned}
& 2 P-3 P=225-2.4-4.5 \\
&-P=225-0.9 \\
&-P=218.1 \\
&-P=-218.1 \\
& \frac{-218.1+1.2}{5}-3\left(\frac{-218.1-1.5)}{10}=22.5\right. \\
&-43.38+65.88=22.5 \\
& 22.5=22.5
\end{aligned}
$$

The correct solution is $F=-218.1$
ii) $\frac{t+1}{t-1}=0.75$

Bur tiply both sides by $(t-1)$

$$
t+1=0.75 t-0.75 \text {. Remove bracket }
$$

Collect the like terms:

$$
\begin{aligned}
t-0.75 t & =-0.75-1 \\
0.25 t & =-0.25
\end{aligned}
$$

Divide both sides by 0.25

$$
\begin{aligned}
\frac{0.25 t}{0.25} & =\frac{1.75}{0.25}=\frac{-1.75}{0.25} \\
t & =-7 \\
\text { Check } \quad \frac{-7+1}{-7-1} & =0.75
\end{aligned}
$$

$$
\begin{aligned}
\frac{-6}{-8} & =0.75 \\
\frac{3}{4} & =0.75 \\
0.75 & =0.75
\end{aligned}
$$

The odrrect solution is $t=7$
iii) $3 x-2(x+3)=7-x$
$3 \mathrm{x}-2 \mathrm{x}-\mathrm{b}=7-\mathrm{x} \quad$ Remove bracket
$3 x-2 x-x=7+5 \quad$ Collect the like terms
$\mathrm{x}+\mathrm{x}=13 \quad$ Divide both sides by 2.
$2 x=13$
$\frac{2 x}{2} \quad=\quad \frac{13}{2}$
$x=6.5$
Check: $3 x 6.5-2(6.5+3)=7-6.5$

$$
\begin{array}{ll}
19.5-2(9.5) & =0.5 \\
19.5-19 & =0.5 \\
0.5 & =0.5
\end{array}
$$

The correct solution is 0.5 .

$$
x+\frac{1}{3} x=12
$$

Multiply both sides of the equation by 3 :

$$
\begin{aligned}
3 x+x & =36 \\
4 X & =36
\end{aligned}
$$

Divide both sides by 4 :

$$
\begin{aligned}
\frac{4 x}{4} & =\frac{36}{4} \\
x & =9
\end{aligned}
$$

Chook:

$$
\begin{aligned}
9+\frac{1}{3}(9) & =12 \\
9+3 & =12 \\
12 & =12
\end{aligned}
$$

The comet solution is $\mathrm{r}=0$.
v) $\frac{1}{7}(y-4)=\frac{3}{7} y$

Multiply both sides of the equation by 7
$y-4=3 y$
Colleot the like terms

$$
\begin{aligned}
y-3 y & =4 \\
-2 y & =4
\end{aligned}
$$

Divide both sides of the equation b

$$
\begin{gathered}
-2 \quad \frac{-3 y}{-2}=\frac{4}{2} \\
y=-2
\end{gathered}
$$

Check $\frac{1}{7}(-2-4)=\frac{3}{7}(-2)$

$$
\begin{aligned}
& \frac{1}{7}(-\dot{0})=\frac{-6}{7} \\
& \frac{-6}{7}=\frac{-6}{7}
\end{aligned}
$$

The correct solution is $\mathrm{y}=-2$.

HOLD PROBLEMS LTADINO TO SITE E EUUATIOITS

Statements which bear relationships with one another axe often considered equations. For example: If I double a member and add 2 ot it, the result is 8 . What is the number ? By trial and error with different number cenbenations one may get the answer as 3, but this waste time.

However, the question could easily be solved if put in an algebraic form. Suppose the number is $x_{0} 2 x^{x}$ is the same as 'twice x^{\prime}.

So : $2 x+2=8$ which is an equation
SOLOMON: $2 x=8-2$

$$
2 x=6
$$

Check : $2 \times 3+2=8$

$$
6+2=8
$$

$$
8=8
$$

The correct solution is $\mathrm{x}=3$ which is the number. WORKED EXAMPLES: Consider the following:
i) The sum of three consecutive odd numbers is 93. What are the numbers ?

SOLUTION:
Let $\mathrm{x}=$ the first odd number
Then $x+2=$ the next consecutive odd number
And $x+4=$ the third consecutive odd number

$$
3 z \quad \approx \quad 87
$$

$$
\frac{3 x}{3}=\frac{87}{3}
$$

$$
x \quad=29 \text { first number }
$$

$$
x+2=31 \text { second number }
$$

$$
x+4=33 \text { third number. }
$$

ii) A father is now six times as old as his son. In twenty-twe and half years from now, the father will be three times as old as his son will then be. How old is each of them now?

$$
\begin{aligned}
& \text { First number + second number + third number }=93 \\
& x+(x+2)+(x+4)=93 \\
& x+x+2+x+4=93 \\
& 3 x+6=93 \\
& 3 \mathrm{x}+6+(-6)=93+0-6)
\end{aligned}
$$

SOLUTION:

Let x years be the Son's present age.
Then 6 x yours is the father's present age.
Also, $(x+22.5)$ years is the son's age 22.5 years from now n And $(6 x+22.5)$ years is the father's age 22.5 y cars from now. The father's age be three times the son's age $(x+22.5)$ years.

$$
\begin{aligned}
6 x+22.5 & =3(x+22.5) \\
6 x+22.5 & =3 x+67.5 \\
6 x-3 x & =67.5-22.5 \\
3 x & =45 \\
x & =15, \text { the son's age now } \\
x & =90, \text { the father's age now. }
\end{aligned}
$$

iii) A man drives from Ibadan to Ono, a distance of 55 kmo , in 45 minutes. Where the surface is good, he drives at $90 \mathrm{~km} / \mathrm{hr} .9$ where it is bad, at $S 0 \mathrm{~km} / \mathrm{hr}$. Find the number of km of good surface.

SOLUTION:

Suppose there are $x \mathrm{~km}$ of good surface. Then there are $(55-x) \mathrm{km}$ of bad surface. Over the good surface, he drives at $90 \mathrm{~km} / \mathrm{hr}$.

Therefore, he drives xhm at $90 \mathrm{~km} / \mathrm{hr}$.
The time taken is $x / 90$ hours.
Over the bad surface, he drives at $60 \mathrm{~km} / \mathrm{hr}$. Therefore he drives $(55-\mathrm{x}) \mathrm{km}$ at $60 \mathrm{~km} / \mathrm{hr}$. The time taken is $\left(\frac{55-\mathrm{x}}{60}\right) \mathrm{hrs}$. The total time taken is 45 minutes or $\frac{3}{4}$ hour.
$\therefore \frac{x}{90}+\frac{55-x}{60}=\frac{3}{4}$
Multiply both sides of the equation by 360 .
(the L. CoM.)

$$
\begin{array}{cl}
4 x+6(55-x)=20 \\
4 x+330-6 x=270 & \text { Remove brackets } \\
4 x-6 x=270-330 & \text { Collect the like terms } \\
-2 x=-60 & \\
\frac{-2 x}{-2}=\frac{-60}{-2} & \text { Divide both sides by }-2 \\
x=30 &
\end{array}
$$

There are 30 km of good surface and 25 km of bad surface Chock: He drives 30 km at $90 \mathrm{kn} / \mathrm{hr}$, Time taken $=\frac{25}{60} \mathrm{hr}$. $=25$ mi mates.

$$
\text { Total Time taken }=(20+25)
$$

$$
=45 \text { minutes. }
$$

PUPILS: IN-CLASS PRACTISE EXERCISES

i) A rectangle has its length four times as long as its width. Its perimeter is 720 om , find the dimension of the width and length.
ii) A boy is paid 50 kobo for each day he works and is fined 25 kobo for each day he fails to work. After 20 days, he is paid स7.00. For how many days has he worked ?
iii) A girl is 10 years older than her brother. In 5 year's time, she will be twice as ola as the boy. How old is the boy ? How old is the sister ?

SOLUTE ON:

Let the width of the rectangle be w
Length of the rectangle $=4 \mathrm{w}$
Perimeter $=2(I+b) I=$ length,$b=$ width
$720=2(4 w+w)$
$720=2(5 \mathrm{w})$
$720=10 \mathrm{w}$
Divide both sides of the equation by 10 :

$$
\frac{720}{10}=\frac{10 w}{10}, w=72
$$

The width is 72 cm and
length is 288 on.
Check: $\quad 720=2(7+b)$

$$
\begin{aligned}
& 720=2 \quad(72+283) \\
& 720=2 \quad(360) \\
& 720=720
\end{aligned}
$$

Dimensions 72 an 72 cm and 288 om .
ii) Let y represent the number of days he worked.

Number of days he did not work (20-y)
An count paid for days he worked $=50 \mathrm{y}$ kobo
Amount fined for days he did not work $=(20-y)(25)$ Kobo
Total amount paid for workine $=700$ kobo

$$
\begin{aligned}
& 50 y-(20-y)(25)=700 \\
& 50 y-500+25 y=700 \\
& 75 y=700+500 \\
& 75 y=1200
\end{aligned}
$$

Divide both sides by 75

$$
\begin{aligned}
\frac{75 y}{75} & =\frac{1200}{75} \\
y & =16
\end{aligned}
$$

He has worked for 16 days he did not works for 4 days?

iii) Let the age of the boy now be x years.

The age of the girl now is $(x+10)$ years.
In five years times the age of the boy will be $(x+5)$ years. Age of the girl in five yoars time is

$$
\begin{aligned}
& 2(x+5) \text { years } \\
&(x+10)+5=2(x+5) \\
& x+15=2 x+10 \\
& 15-10=2 x-x \\
& 5=x
\end{aligned}
$$

Age of the bcy is 5 years
Age of the sistor is 15 years.

PART IIT

STMUL TANEOUS ERUATIONS

So far, the equations that have been solved involved only one unknown each, but if we need to find two unknowns, we require two equations to involve the unknowns. Consider these equations:

$$
\begin{aligned}
& 3 x-y=-13 \\
& 2 x+y=17
\end{aligned}\{\text { called simultaneous equations. }
$$

The equations are solved by calculation either by substitution method or elimination method. It can also be solved graphically. However, for this module, one shall concentrate on the two methods:

Method of Substitution:

This is by solving one of the equations for one of the variables in terms of the other. One has to select the
one variable to be solved more easily by inspection. For equations: $\quad 3 x-y=-13$
$2 x+y=17$
From equation (i) $y=3 x+13$
One will now substitute value of y in the second equation and get the resulting equation in toms of x alone.

$$
\begin{aligned}
2 x+(3 x+13) & =17 \\
2 x+3 x & =17-13 \\
5 x & =4 \\
x & =\frac{4}{5}
\end{aligned}
$$

One now substitutes $x=\frac{4}{5}$ in the first or second equation as it may be appropriate from equation (i)

$$
\begin{aligned}
& y=3 x+13 \\
& y=3 x \frac{4}{5}+13 \\
& y=\frac{12}{5}+13 \\
& y=2 \frac{2}{5}+13 \\
& y=15 \frac{2}{5}
\end{aligned}
$$

Check: From equation (i)

$$
\begin{aligned}
3\left(\frac{4}{5}\right)-15 \frac{2}{5} & =-13 \\
\frac{12}{5}-15 \frac{2}{5} & =-13 \\
3 \frac{2}{5}-15 \frac{2}{5} & =-13 \\
-13 & =-13
\end{aligned}
$$

This method is used for cases in which one of the coefficients of x and y in one of the two equations is 1. Method of mimination:

The method of elimination by addition or subtraction is very effective where the coefficients of x and y are
than 1.
Consider the equations:

$$
\begin{array}{lll}
3 x-y=-13 & \ldots-- & \text { (i) } \\
2 x+3 y=17 & \ldots-- & \text { (ii) }
\end{array}
$$

Multiply equation (i) by 3 and then add to (ii): That is:

$$
\begin{aligned}
9 x-3 y & =-39 \\
\frac{2 x+3 y}{} & =-17 \\
\text { Adding: } \quad 11 x & =-22 \\
x & =-2
\end{aligned}
$$

Substitute $x=-2$ in either equation (i) or (ii)
Now in equation (i) $3(-2)-y=-\uparrow 3$

$$
\begin{aligned}
-6+13 & =y \\
7 & =y
\end{aligned}
$$

The values $x=2$ and $y=7$ give the solution of the two equations:

Chook In equation (ii) $2 x+3 y=17$

$$
\begin{aligned}
2(-2)+3(7) & =17 \\
-4+21 & =17 \\
17 & =17
\end{aligned}
$$

PUPILS' IN CLASS PRACTISE EXERCISES:

Solve the equations (i) $\frac{1}{2} x+\frac{1}{3}=4$

$$
\frac{1}{2} y-\frac{1}{3} x=\frac{1}{6}
$$

$$
\text { (ii) } 16++3 v=14
$$

$$
V-10=-4 t
$$

$$
\text { - } 327 \text { - }
$$

SOLUTION:
(i)

$$
\begin{array}{llll}
\frac{1}{2} x+\frac{3}{3} y=4 & - & - \\
\frac{1}{4} y-\frac{1}{3} x=\frac{1}{6} & - & - \tag{ii}
\end{array}
$$

(i) $\times 6$ gives $3 x+2 y=24-$ (iii)
(ii) $\times 12$ gives $3 y-4 x=2--\quad$ (iv)

Multiply (iii) by 3 and (iv) by 2

$$
\begin{aligned}
& 9 x+6 y=72-(v) \\
& -8 x+6 y=4-(v i)
\end{aligned}
$$

Subtract (vi) from (v) $17 x=68$

$$
x=4
$$

Substitute for $x=4$ in equation (i)

$$
\begin{aligned}
\frac{1}{2}(4)+\frac{3}{3 y} & =4 \\
2+\frac{1}{3 y} & =4 \\
y & =2 \\
y & =6
\end{aligned}
$$

$$
x=4, y=6 \text { are the solutions to the equations. }
$$

Check In equation (ii)

$$
\begin{align*}
\frac{1}{4}(6)-\frac{2}{3}(4) & =\frac{1}{6} \\
\frac{6}{4}-\frac{4}{3} & =\frac{1}{6} \\
\frac{18-16}{12} & =\frac{1}{3} \\
\frac{2}{12} & =\frac{1}{6} \\
\frac{1}{6} & =\frac{1}{6} \tag{i}
\end{align*}
$$

(ii) $16 t+3 v=14$

$$
¥-10=-4 t: v+4 t=10
$$

$$
\begin{equation*}
3 v+16 t=14 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
v+4 t=10 \quad-\ldots \tag{ii}
\end{equation*}
$$

(ii) $\times 3$ gives $3 v+12 t=30$

Subtract
(ii) from (iii)

$$
\begin{aligned}
16 t-12 t & =14-30 \\
4 t & =-16 \\
t & =-4
\end{aligned}
$$

Substitute $\mathbf{t}=\mathbf{- 4}$ in equation (i)

$$
\begin{aligned}
& V=-4 t+10 \\
& V=-4 X-4+10 \\
& V=16+10=26 \\
& V=26
\end{aligned}
$$

Check In equation (i) $16 t+3 v=14$

$$
\begin{aligned}
16 \times(-4)+3(26) & =14 \\
-64+78 & =14 \\
14 & =14
\end{aligned}
$$

$t=\mathbf{- 4}, V=26$ are the solutions of the equations.

WORD PROBLTHIS LEADING TO SIMULTAnEOUS EQUATIONS

Consider the following statements:
The sum of two numbers is 25 and their difference is 15.
What are the two numbers ?
SOLUTION:
Let the numbers be x and y

$$
\begin{array}{ll}
x+y=25 & \text { Sum } \\
x-y=15 & \text { difference }
\end{array}
$$

The statements lead to two equations with the unknown numbers
as x and y solving the equations:

$$
\begin{align*}
& x+y=25 \tag{i}\\
& x-y=15 \tag{ii}
\end{align*}
$$

Adding (i) and (ii) $2 x=40$

$$
x=20
$$

Substitute $x=20$ in either equations (i) ar (ii)
In equation (i) $20+\mathrm{y}=25$

$$
\begin{aligned}
& y=25-20 \\
& y=5
\end{aligned}
$$

Check: In equation (iii) $x-y=15$

$$
2-5=15
$$

$$
15=15
$$

The numbers are 20 and 5.

PUPILŚ: INKCLASS PRACTISE EXERCISES:

i) 20 spoons and 200 forks cost 210 ; 6 spoons and 100 forks cost 24 . Find the cost of spoon and fork.
ii) A number of two digits is increased by 54 when the digits are reversed. The sum of the digit is 12. Find the number.

SOLUTION:
i) Let the cost of spoon and fork be x and y Kobo
respectively.

20 spoons and 100 forks would cost $20 x+200 y=1000--$ (i)
6 spoons and 200 forks would cost $20 x+200 y=400-m$ (ii)
The equations (i) and (ii) can be solved, they are simultaneous equations:

$$
\begin{align*}
20 x+200 y & =1000 \ldots \tag{i}\\
6 x+100 y & =400 \times 2 \\
12 x+200 y & =800
\end{align*}
$$

Add equations (i) and (ii)

$$
2 x=18
$$

Divide through by 2: $x=9$
Substitute for $\mathrm{x}=9$ in equation (ii)

$$
\begin{aligned}
9+y & =12 \\
y & =12-9 \\
y & =3
\end{aligned}
$$

The digits are 9 and 3 and number is 93
Check: From equation (ii) $x+y=12$

$$
9+3=12
$$

$$
12=12
$$

The solution $\mathrm{x}=9, \mathrm{y}=3$ is correct.

PART IV

QUADRATIC EQUATIONS

When the product of two expressions is equal to Zero, then one or other of those expressions must be Zero. Such quadratic expressions lead to an equation in one varıable, having 2 as the highest power of its variable. It has at most 2 solutions. A general quadratic equation is of the form $a x^{2}+b x+c=0$ where a, b, c are constants. Quadratic equation can be solved either by factorising the expression or using a general formul ?:

$$
x=b \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

Consider the following quadratic equationss
i) Solve the equation: $x^{2}-3 x+2=0$ SOLUTION: $x^{2}-3 x+2^{x}=0$, the expression
$x^{2}-3 x+2$ can be factorised. Hence factorising:

Subtract (iii) from (i)

$$
\begin{aligned}
8 x+ & =200 \\
\frac{8 x}{8} & -\frac{200}{8} \quad \text { Divide by both sides by } 8 \\
x & =25 \text { Kobo }
\end{aligned}
$$

Substitute $\mathbf{x}=25$ in equation (ii)

$$
\begin{aligned}
5 \times 25+100 y & =400 \\
150+100 y & =400 \\
100 y & =250
\end{aligned}
$$

$\begin{gathered}\text { Divide both sides } \\ \text { by } 100\end{gathered} \frac{100 y}{100}=\frac{250}{100}$

$$
\mathrm{y}=2.5 \text { Kobo }
$$

Check: In equation (i) Substitute

$$
\begin{aligned}
x=25 \text { any } y=2.5 & \\
6 \times 25+100 \times 2.5 & =400 \\
150+250 & =400 \\
400 & =400
\end{aligned}
$$

The solution of the equation is $x=25$ Kobo, $y=2.5$ Kobo.
(ii) Let the digits be x and y 。

Since the number is made up of two digits then, there would be unit and tenth digits: $10 \mathrm{x}+\mathrm{y}$

Digits reversed $10 \mathrm{y}+\mathrm{x}$
Hence:

$$
\begin{equation*}
10 x+y=10 y+x+54 \tag{i}
\end{equation*}
$$

Sum of the digits:
$=12$

$$
\begin{equation*}
9 x-9 y=54 \tag{ii}
\end{equation*}
$$

Divide through by 9

$$
\begin{align*}
& x-y=6 \tag{i}\\
& x+y=12 \tag{ii}
\end{align*}
$$

$$
\begin{aligned}
& x^{2}-2 x-x+2=0 \\
& x(x-2)-1(x-2)=0 \\
& (x-1)(x-2=0 \\
& \text { Either } x-1=0 \text { or } x-2=0 \\
& x=1 \text { or } 2 \text {. }
\end{aligned}
$$

Check: When $x=1: 1^{2}-3(1)+2=0$

$$
\begin{aligned}
1-3+2 & =0 \\
2-2 & =0
\end{aligned}
$$

$$
\text { When } x=2: 2^{2}-3(2)+2=
$$

$$
4-6+2=0
$$

$$
6-6=0
$$

The solution of the equation is $x=1$ or 2
ii) Solve the quadratic equation: $2 x^{2}-7 x+3=0$ Using the formula $x=\frac{-b^{ \pm} \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& \text { Where } a=2, b=\frac{-7, \quad 0=3}{: 0} x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4 \times 2 \times 3}}{2} \times 2 \\
& x=\frac{7 \pm \sqrt{49-24}}{4}
\end{aligned}
$$

$$
x=\frac{7 \pm \sqrt{25}}{4}
$$

$$
\left.x=\frac{7 \pm 5}{4}, \frac{12}{4} \text { or } \frac{2}{4} \text { i.0. } \begin{array}{l}
7+5=12 \\
7-5=2
\end{array}\right\}
$$

$$
x=3 \text { or } 0.5
$$

Chook when $x=3,2(3)^{2}-7(3)+3=$

$$
\begin{array}{r}
18-21+3=0 \\
21-21=
\end{array}
$$

When $x=\frac{1}{2}, 2\left(\frac{1}{2}\right)^{2}-7\left(\frac{1}{2}\right)+3=$

$$
\begin{aligned}
& 2 \times \frac{7}{4}-\frac{7}{2}+3=-333- \\
& \frac{1}{2}-\frac{7}{2}+3=0 \\
& 3 \frac{1}{2}-3 \frac{1}{2}+3=0
\end{aligned}
$$

The solution of the equation is $x=3$ or $\frac{1}{2}$.
IN-CLASS PUPILS PRACTISE EXERCISES
Solve the equations (i) $2 x^{2}-5 x+2=$

$$
\begin{aligned}
& \text { (ii) } 2 y^{2}-3 y-21=0 \\
& \text { (iii) } \frac{3}{x-1}=5 x
\end{aligned}
$$

SOLUTION:
i) $2 x^{2}-5 x+2=0$. Check for factorisation:

$$
\begin{gathered}
2 \times 2=4, \text { factors of } 4 \text { are }-4-1 \text { to give }-5 \\
\text { Hence: } 2 x^{2}-4 x-x+2=0 \\
2 x(x-2)-1(x-2)=1 \\
2 x-1=0 \text { or } x-2=0 \\
x=\frac{1}{2} \text { or } 2
\end{gathered}
$$

Check: When $x=\frac{1}{2}, 2\left(\frac{1}{2}\right)^{2}-5(2)+2=0$

$$
\begin{aligned}
& \frac{2}{4}-\frac{5}{2}+2=0 \\
& 2 \frac{1}{2}-2 \frac{1}{2}=0
\end{aligned}
$$

When $x=2,2(2)^{2}-5(2)+2=$

$$
\begin{array}{r}
8-10+2=0 \\
10+10=0
\end{array}
$$

The solution of the equation $x=\frac{1}{2}$ or 2 .
ii)

$$
\begin{aligned}
& 2_{y}^{2}-3 y-21=0 \text { : Check for factorisation: } \\
& 2 x-21=-42 \text {; far less than }-3 \text {, cannot be factorised. }
\end{aligned}
$$

Using the general formula:

$$
y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& a=2, b=\frac{-3,0=-1}{2 \times 2} \\
& y=\frac{-(-3) \pm \sqrt{\left((-3)^{2}-4 x-x-21\right.}}{2} \\
& y=\frac{3 \pm \sqrt{177}}{4} \\
& y=\frac{3 \pm 13,30}{4} \text { i.0. } \frac{3+13.30}{4} \text { or } \frac{3-13.30}{4} \\
& y=\frac{16.30}{4} \text { or }-\frac{10.30}{4} \\
& y=4.075 \text { or }-2.575
\end{aligned}
$$

Check: When $x=4.075,2(4.075)^{2}-3(4.075)-21=0$

$$
\begin{array}{ll}
33.20-12.15-21 & =0 \\
33.20-33.20 & =0
\end{array}
$$

$$
\text { When } x=-2.575, \quad 2\left(-2.575,2(-2.575)^{2} 3(-2.575)-21=0\right.
$$

$$
\begin{array}{rlr}
13.261-5+7.725-21 & =0 \\
21-21 & =0
\end{array}
$$

Nonce, the solution of the equation is:

$$
x=4.075 \text { or }-2.575
$$

iii) Solve: $\frac{3}{3-1}=5 x$

$$
\begin{gathered}
3=5 x(x-1) \\
3=5 x^{2}-5 x \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
a=5, b=-5, \quad c=-3
\end{gathered}
$$

$$
\begin{aligned}
x & =\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 5 \times-3}}{2 \times 5} \\
& =\frac{5 \pm \sqrt{25+60}}{10} \\
x & =\frac{5 \pm \sqrt{85}}{10} \\
x & =5 \pm 9.22 \\
x & =\frac{14.22}{10} \text { or }=\frac{-1.22}{10} \\
x & =1.422 \quad \text { r }-0.422
\end{aligned}
$$

Chook: When $x=1.422$

$$
\begin{aligned}
& 5(1.422)^{2}-5(1.422)-3=0 \\
& 10.110-7.11-3=0 \\
& 10.110-10.110=0 \\
& \text { When } x=-0.422
\end{aligned}
$$

$$
\begin{aligned}
5(-A .422)^{2}-5(-9.422)-3 & =0 \\
0.89042+2.11-3 & =3 \\
0.89+2.11-3 & =0 \\
3.0-3.0 & =0
\end{aligned}
$$

Fence, the solution of the equation is

$$
\begin{gathered}
x=1.422 \text { or }=0.422 \\
E N D
\end{gathered}
$$

Pages 336-342 contain the instruction on the -se of calculator with the module.

GENERAL INSTRUCTION ON THE USE OF CALCULATOR WITH INSTRUCTIONAL MODULE

Introduction

There are different types of calculators in the market ranging from scientific, non-programmable to programmable ones. However, the type used for this instructional module is shown in the figure below. It has capacity for values up $=08$ digits or 7 places of decimal, and it is battery operated.

Model of Modern Electronic Calculator
This type of calculator is capable of performing the following mathematical operations (the operational keys):

1. Addition (+)
2. Subtraction (-)
3. Multiplication (x)
4. Division ($\overline{\mathrm{O}}$)
5. Add to the memory $\left(M^{+}\right)$
6. Subtract from the memory $\left(\mathrm{M}^{-}\right)$
7. Retrieve and compute memory (R.CM).
e r-ar from memory
8. Square root $(\sqrt{ })$
9. Compute percentage (\%)
10. Decimal point (.)
11. Equality (=)

Other operational keys are:
ON/C Starts the calculator and clears with zero (0) appearing on the screen.

OFF Shut off the calculator and it also has an automatic shut off which turns the power-off when the calsulator is not used for 7 minutes.

Numerals: 0,1-9. Finally we have the display screen.
With this bavkyound one can proceed to discuss how this calcula'วr 31 : ic od to solve mathematical problems on simple, simultaneous and quadratic equations. Example 1 of Part II: Using the calculator s - lve the simple equation:- $22=x-6$. SOLUTION

which is equal to 22 the value which we have started with. Thus, $x=4$ is the solution. You amay wish to try other values $x=1,2,3$, etc. and check if they will be equal to 22 . [Hint: To solve simple equaiions in fraction forms it is easier to change the fractions into whole numbers.]

Example I of Part III
Use the calculator to solve the simultaneous equations;

$$
\begin{array}{ll}
3 x-y=-13 & \text {)(i) } \\
2 x \div y=17 & \text { (ii) }
\end{array}
$$

The solution of these equations implies obtaining values of x and y which will satisfy equations (i) and (ii).

SOLUTION: Eliminate one of the values by method of substitution to reduce it intu simple linear equation in just one variable. Then use the calculato to sonve the linear equation in one variable. By substitution,

$$
\begin{equation*}
y=3 x+13 \text { from equation } \tag{i}
\end{equation*}
$$

Put (i) in (ii) $2 x+3 x+13=17$

$$
5 x=17-13
$$

Simple linear equation: $5 x=4$
STEP 1 -- DPERATIONAL KEYS
DISPLAY ON SCREEN
Punch ON/C
u.

nch (${ }^{*}$) and 5	0.5
$" \quad=$	$2.5:$ Not equal to 4
$" \quad 5$	5.
$" \quad X$	5.
$"$ point (.) and 8	0.8
$"=$	$4:$ Equal to 4

So $x=0.8$ is one of the solution.
STEP 2: Put $x=0.8$ in equation (i) $y=3 x+13$. $y=3(0.8)+13$: So as to obtain value of y

OPERATIONAL KEYS

Punch ON/C	
n	3
n	X
$"$	point $($.$) and 8$
n	$=$
n	\vdots
n	1 a d 3
n	$=$
y	$=15.1$ is a solution

DISPLAY ON SCREEN

$$
0 .
$$

3.
4.

0.8
2.4
2.4

13
15.4

The solution of the simultaneous equations are $x=0.8$ and $y=15.2$ Example of III of Part IV

Solve the quadratic equation

$$
2 x^{2}-7 x+3=0
$$

First check if the equation can be factorised. If not, then apply the general formula. Most importantly, all quadratic equations can be solved by the general formula and it is therefore, easier and faster with the calculator to user the formula.

General formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ where a, b and c are constants from the general form of quadratic equation

$$
a x^{2}+b x+c=0
$$

From this example: $a=2, b=-7, c=3$

$$
\therefore \quad x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4 \times 2 \times}}{2 \times 2}
$$

Pupils nuts that

$$
-x-=+
$$

$$
-x+=-\quad x=\frac{-1 \times-7 \pm \sqrt{-7 \times-7}-\frac{-7 \times 2 \times 3}{2 \times 2}}{2}
$$

SOLUTION: Star .t the operation with the square root values from right to left.

OPERATIONAL KEYS
Punch ON/C
" 7
" $\quad \mathrm{x}$
n $\quad 7$
$"$
$\begin{array}{ll}n & M^{+} \\ n & 4 \\ n & X\end{array}$
"
n $\quad \mathrm{X}$
" 3
" =
$\begin{array}{ll}n & \text { M- } \\ n & \text { R. CM }\end{array}$

DISPLAY ON SCREEN
0.
7.
7.
49.
49. M
4. ${ }^{M}$
4. ${ }^{M}$
$2 .{ }^{M}$
8.
3. ${ }^{M}$
$24 .{ }^{M}$
$24 .{ }^{\text {M }}$
25. M

For quadratic equation solution we have \pm
(the square root values are negative and positive)

OPERATIONAL KEYS
Punch - and 5

Negative)	$"$	$=$
solution)	$"$	+ and 7
	$"$	M^{+}

Final solution

$$
x=\frac{12}{2 \times 2} \text { or } \frac{2}{2 \times 2}
$$

POSITIVE CALCULATION

DISPLAY ON SCREEN 5.
5.-
7.
2. ${ }^{M}$

NEGATIVE CALCULATIOív
$\frac{\text { OPERATION }}{\text { Punch } 2} \quad \frac{\text { SCREEN }}{2}$
$" \div$ and 2 .
" = 1.
$n \div$ and 2
2.
0.5

Note that negative value sign appears to the right of the number on the screen unlike the way it is wry ten down on paper.
Check for values of $x=3$ or 0.5 in the equation $2 x^{2}-7 x \quad=$ $+3-0$, ard you determine if values on the right hand side (R.H.S.) will be equal to zero.

For $x=3,2(3)^{2}-7(3)+3$, is it equal tc zero?

OPERATIONAL KEYS	DISPLAY ON SCREEN	
Punch	ON/C	0.
n	2	2.
n	X	2.
n	3	3.
$"$	X	6.
n	3	3.
$"$	$=$	18
n	M^{+}	18^{M}
n	7	7^{M}
n	v	7^{M}
$"$	3	3^{M}
n	2	21^{M}
n	$M-$	21^{M}
$"$	$? C M$	33^{M}
n	3	3^{M}
n	M^{+}	3
n	$R . C M$	0

Here the va? e $x=3$ satisfies the equation. You may use the same staps for $x=0.5$ it should also satisfthe equation.

The few worked examples have been carried out using the celculator you will now practise with your teacher some of tins in-class exercises.

APPENDIX 8

A.C.E.R. ML TEST

Name: Age Now
Class:
This is a test to see how well you can thing. It contains questions of different kinds. Some examples and practice questions will be given to show you how to answer the questions.

Example A. Four of the following are alike in some way, write the number of the other two in thebrackets at the end of the line.
I. tea 2. Cofee 3. Cocoa 5 Pencil 6. Milk ($\begin{aligned} & \text { \& }\end{aligned}$)

Question I. Four of the following are alike in some way. Write numbers of the other two in the brackets.

1. apple 2. pear 3. potato 4. babana 5. carrot 6 . oranges (3 \& 4) Question 2. Four of the following are alike in some way. Write the numbers of the other two in the brackets.
2. door 2. window 3. coat 4. wall 5. roof 6. book $\left(\begin{array}{lll}3 & 8 & 6\end{array}\right)$

EXAMPLE TOWEL IS TO WATER AS BLOTTING PAPER IS TO -
I. school 2. ink 3. writing 4. deak 5. pen

QUESTION 3. Hand is to finger as foot is to

1. leg 2. arm 3. too 4. man 5. ankle (3)

Question 4. Newspaper to tc see as Wireless is to

1. vire 2. hear 3 . dial 4. car 5. deaf (2)

EXAMPLE: Which two of the following statements mean most nearly the same?

1. Too many cooks spoils the broosh.
2. Make hay while the sun shines.
3. A stitch in time saves nine
4. It's a long lane that has no turning. $(2,3)$
5. Strike while the iron is hot.

Question 5. Kich two of the following statements mean most nearly the same?

1. A careles: master makes a negligent servant.
2. To resist him that is set in authority is evil.
3. Little is done when many cormand.
4. When the cat is away the nice play.
5. Where there are seven shephards there is no flock. $(3,5)$.

Question 6. Our gdog bit the postman yesterday? Which of the following statement are together

1. Dur dog is the only German shepard dog in the street.
2. The postman was late yesterday
3. The postman is in bed because a German shepard dog bit him yesterday in our street
4. Dogs seem to dislike postmen.
5. The postman had sore leg last week ()

You will have 30 minutes to do the test. Some questions are earier than ot others. Try each question as you come to it, but if you find any question is too hard, leave it out and come back to it later if you have time.
Do not spend too much time on any one question.
Try to get as many right as possible.

1. Of the following are alike in some way. Write the number of the other two in the brackets.
2. table 2. chair 3. man 4. bed 5. cupboard 6. towel ()
3. FILTHY is to DISEASE as CLEAN is to:
4. dirty 2. safety 3 . water 4 . illness 5 . health.
5. Four of the following are alike in some way. Write the numbers of the other two in the brackets.
6. tube 2. artery 3. tunnel 4. string 5. pipe 6. wire ()
7. INCH is to SPACE as SECOND is to:
8. hour 2. age 3. time 4. clock 5. time ()
9. Four of the following are alike in some way. Write the number of the other two in the. brackets.
10. lagoon 2. pool 3. swarm 4. lake 5. march 6. pond ()
11. PIN is to HEAD as NEEDLE is to:
12. prick 2. sew 3. eye 4. point 5. threa ()

7 Four of the following are alike in some way. Write the number of the other two in the brackets.

1. onlooker 2 2. spectator 3 . critic 4. eye-witness 5 . author
2. bystander
3. HEAT Is to ASHES as CARPENTRY is to:
4. carpenter 2. sawdust 3. chest 4. furniture 5. wood ()
5. Four of ine following are alike in some way. Write the numbers of the other two in the brackets.
6. sponge 2. water 3 . map 4. towel 5. blotting paper 6. dirt.

IO Which two of the following statemento uidan most noosly tha game?
I Time is a heap that ouras all diseases.
2 Anticipation is better then realization.
3 To-day is worth two to-morrow.
4 To speed to-dey is tobe set back to-morrow.
5 There is no time like the presont TYMIPPHONE IS TO VOICE Ω LEIEFFR is to-
I stamp 2 post office 3 writing 4 correspondent 5 onvolope ()
I2 Which two statemonts prove that ' J JOEN IS A GOOD SWIlIIER'?
I Bob goes to the baths evury day.
2 John and Bob are Priends
3 John beat Bob in a race last wesk
4 John hes challenged Bob to is revoe. ()
I3 MAMMRAS are to POLITE AS HORIIS are to-
I politios 2 politonoss 3 wealthy 4 virtous 5 strong ()
I4 Which two stetements prove that 'MI SIITI OWMS SOME MAMMORMES'?
I Tanmorths are bettor pige then Barshires.
2 One-aight of the pigs in that pen sre Tammortis.
3 host of the pigs in that pen art Bershires.
4111 the pigs in that pon bolong to Mr. Siith.
3 Host of the famers in the district om Homrowths. ()
I5 In tho following are disliko in some sey. Wirito the numbers of the other two in the brackets.
I spire 2 church 3 flagpole 4 steoplc 5 tover 5 hall ()
I6 OCELA is to LAKE as COMTINEM is to-
I river 2 lond 3 mountain 4 ialand 5 Purope ()
If Which two of the folloring statuments mean most nearly the same?
I Bire thet's clossest kopt burns fiercest.
2 Set a thief to catch a thief.
3 A dog with a bone know no friend.
4 Fight fire with fire.
5 Sow the wind, reep the whirvind.
I8 Three days in the week have the sane number of letters. In the bracket Frite the first letter of the day which begins with the letter which, of the

IE 'ONLY PRETAECTS WEAR A BADGE' AL工 PRTMPEGTS ARRE IT FORM VL.
Therefore, which now of the following statemente is true? Write its number in the brackets.
I All Form VI boys may-wear a badge.
2. A boy wearing a badge in Porm VI.
$3 \Delta 11$ Ist X boys may wear badges.
4. V Form Prefects do not wear badges. ()

20 Four of the following are alike in some way. Write the numbers of the other two in the brackets.
I Blame 2 accuse 3 indict 4 loathe 5 censure 6 ape
2I. Which two of the following stetoments moen most newly the same?
I He who follows two hares will cutch neither.
2 To blow and swallow at the same iime is not easy.
3 He holds nothing fast who grasps at too much.
4 Dospise the man who cen blow hot and cold with the sane breath.
5 It is casy to dospise what you emrnot obtain
22 MWH is to MMNY as OCCASICHALY is to-
I seldon 2 nevor 3 every 4 often 5 alweys. ()
23 Four of the following are alike in some way. Write the numbers of the other two in the brackets.

I comugated 2 involved 3 complicoted 4 intricatc 5 coins
24 Which tro of the following statonents together prove that-'MR MED DOES NOT Wh
IT HUNTG SIREETE?
I 111 the buildings in Fume Street cre modern.
2 Nll the buildings in Hume Street cre flats.
3 Kr . Reed lives in comfort
4. Mr. Reed does not live in a flat.

5 Nr. Reed lives five miles Irom town. ()
25 If these words were reare god correctly to form a sentense, with what letter would the middle word begin?
226 GiTE is to FhHCE as PORT is toland 2 Coast 3 town 4 sea 5 destination

27 Which two of the following stutemonts mean most nearly the same? I. It's' petty expenses that empty the punse.

2 Stall gains bring riches in.
3 Fiven the weak are strong when united.
4 Constant dripping wears away the stone.
5 i. chain is as strong as its weakest link.
28 Four of the following are alike in some way. Write the numbers of the other two in the brackets.
I rulor 2 heat 3 clock 4 thermometer 5 raingusce 6 yard ()
29 Which two of the following statements mean most nearly the same?
I Repentanco is noor consolation.
2 hore haste less speed.
3 Quick docisions ofton breed regret.
4 he'll have a bucket of tears for a oup of joy.
5 larry in liaste, repent in Leisure. ()
30 DRULIMIST is to PLAY as COMPOSSR is to-
I orchestre 2 piano 3 symphomy 4 performance 5 concert ()
3I Whiols of the following statements toguther prove that 'TODiY IS COLDER QTiAT MESTGRDAY?
I Evory Priday this month tas a cold doy.
2 To-monrow is the first day of the month.
3 Iast Thursdey was a hot day.
4 The last dey of each month this year has boun the oolaust day in the ronth
5 sumner is hearly over.
Ifugitive 2 enemy 3 ovacuec 4 esoapee j prisoner 6 truant ()
33 Which two of the following statements mear most norrly the same?
I A great fortune is a great slavery
2 Better beans and bacon in freedom than cakes and ale in kondage.
3 Put a chain round the n ck of a slave and the end fastens round your own
4 Lean liberty is better in fat slavery.
Stone walls do not a prison nake.

34 In certain onde the English word BOARD is written CODVI. What wald the English word PAl bo in this code?
35 Which two of the following statements mean most nearly the same?
I Porwarned is forearmed.
2 The loss which is unknown is 20 lose at all
3 No men is happy that does not think so.
4 Uneasy lies the hoad that rears a crown.
5 Where ignorance is bliss, 'tis Polly to be wise. 36 3MTMU is to DUEL as CHORUS IS to I twins 2 duet 3 selection 4 music 5 Song.

LOOK BRiCK OVER YOUR WORK.
A.C.E.R. MQ TEST
Name: Age now:
Date of Test: Birthday:
School: Class:

This is a test to see how well you can think. It contains questions of different kinds. Some examples and practice question will be given to show you how to answer the questions.
EXAMPLE: (a) Find out how the following numbers go Write the missing numbers in the brackets:

$$
258 * 14 \quad 17 * 23
$$

Question 1: Find out how the following numbers. Write the missing numbers in the brackets.

$$
456 * 5 * 710
$$

Question 2: Find out how the following numbers go. Write the missing numbers in the brackets.

$$
\begin{array}{lllllll}
1 & 3 & 5 & 7 * & 11 & * \tag{array}
\end{array}
$$

Question 3.: Find out how the following numbers go. Write the missing numbers in the brackets

$$
\begin{array}{llllllllll}
26 & 23 & 20 & 17 & 14 & * & 8 & * & . . & . .
\end{array}
$$

EXAMPLE (b) Find the number which should be in the square with the question mark and write it in the brackets

3	5	7
6	8	10
9	11	$?$

.. . (13)

Question 4: In this table two numbers are missing. find the number which should be in the square with the question mark and write it in the brackets.

2	5	9
6	\cdot	13
11	14	$?$

Question 5:- Find the number which should be in the q square with the question mark, and write it in the brackets.

Question 6. तFind the number which. should be in. the souare with the question mark, and write it in the orackets.

You will have 20 minutes to do the test. Some quertions are easier than others. Try each question as you come to it, but if you find any question is too hain, leave it out and come back to it later if you have time.
START

Do not spend too much time on any one question.
Try to get as many right as possible.

1. Find out how the following numbers go. Write the missing numbers in the brackets:

$$
15-13-2 \quad 21 \quad 25 \quad 29 \quad . . \quad . \quad . . \quad\left(\begin{array}{llllll}
& \& & 17)
\end{array}\right.
$$

2. What change should I got from a $\begin{aligned} & \text { w1 } \\ & r_{1} \text { ote }\end{aligned}$ if I buy two theatre tickets @ 25 k ?
3. Find the number which should be in the square with the quastion mark, and write it in the brackets.

2	1	5
7	6	10
12	$?$	15

4. Find out how the folluwing numbers go. Write the missing numbers in the brackets,

$$
199188-716-
$$

5. Oliver is three times as old as his sister P_{a}. Their father who is 35 , is seven times as old as Pat. How old is Oliver ?
6. Find the number which should be in the square with the question and write it in the brackets.

7. Find out how the following numbers go. Write the missing number in the brackets:

$$
\begin{array}{lllllll}
512 & 256 & 128 & 64 & -16 & -4
\end{array}
$$

8. Which of the followirg prices for oranges is the cheapest? (1) 5 k each; (2) 10 for 45 k ; (3) 5 for 24 k ; (4) 4 for 18 k (5) 3 for 12 k
9. Find the number thich should be in the square with the question and write it in the brackets.

32	8	2
0	16	4
96	24	$?$

10. Find out how the following numbers go. Write the missing numbers in the brackets;

$$
\begin{array}{lllllllll}
87 & 78 & 76 & 67 & 65 & 56 & 54 & - & . .
\end{array}
$$

11. The total cost of ten books bound in leather is 220.00 . Fach book in an ordinary edition costs one Naira. How much extra do I pay on each book for the leather binding? ($\# 10,00$)
12. Find the number whion should be in the square with the question mark, and write it in the brackets.

13. John and "Kary are twine whose ages together are half their mother's Their father, who is three years' older than their r her, is 51. HCw old is John?
14. Find the number which should be in the square with the question mark, and write it in the bracket.

1	3	9
2	25	10
5	7	$?$

15. It took me four times as long to climb a mountain 6000 m high as it took me to come down. I decended 3000 m in an hour. How many hours did it take to climb up ?
16. Find the number which should be i_{1} the square with the question mark, and write it in the brackets.

1	0	9
4	12	36
$?$	48	144

17. What are two numbers whose sum is 16 , such that the first divided by the second gives three ?
18. Find out how the following numbers go. Write the missing numbers in the brackets

$$
\begin{equation*}
0-3568-11 \tag{2,9}
\end{equation*}
$$

19. Find the number which should be in the square with the question mark and write in the brackets.

20. Find out how the following numbers go. Write the missing numbers in the brackets:

$$
487-13 \quad 26-50 \quad \text {.. } \quad \text {. } \quad \text {.. }(44 \& 25)
$$

21. If nine framed pictures cost $\# \approx 7.00$: and each picture unframed only costs ono third as much, how many unframed pictures could I buy for the same money?
22. Find the number which should $b e$ in the square with the question mark, and write it in the brackets.

23. Find or i how the following numbers go. Write the missing number in the brackets.

$$
13 \cdots \quad 81 \quad 243 \quad 729
$$

24. I bought an equal number of 5 k magnazined and $2 \frac{1}{2} \mathrm{k}$ exercise books, which cost me 45 k altogether. How many of each did I buy?
25. Find out how the following numbers go. Write the missing number in the brackets.
26. A vegetable farmer finds that by selling his carrots at 40 k per kilogram, he rakes exactly the same profit as by selling at 30 k per br oh, what is the average weight of each bunch of his carrots?
27. A furniture dealer bought 12 chairs at 48.00 . In selling them, he received as much for two chairs as he had paid for three chairs. What was the selling price for the twelve. chairs ?
28. Find the number which should be in the square with the question mark, and write its number in the brackets.

29. I can buy $5 \frac{1}{2} \mathrm{~kg}$. of potatoes for 33.30 k . How much do I pay for $4 \frac{1}{2} \mathrm{~kg}$. ?
30. In a class of 46 pupils, there are 8 more boys than girls. How many boys are there?
31. Find the number which should be in the square with the question mark, and write it in the brackets.

0	1	8
18	2	$?$
27	0	24

32. Three new books cost $45 \mathrm{k}, 90 \mathrm{k}$ and $\% 1.05$ respectively. If I buy them secondwhand, I only pay two thirds of the new price. How much money do I save?
33. A piece of wood 35 cm long is to be out in three parts, each successive part being twice as long as the previous part. What is the length of the longest ?
34. A Kitten is 3 days old and a puppy is 11 days old. In how many day o will the puppy be twice as old as kitten?
35. A desire, serves a mixture of two parts cream and three parts milk. How mary litres of cream will it take to make 15 litres of the mixture ?
36. Find our how the following numbers go. Write the missing numbers in the brackets,

$$
\begin{equation*}
87 \quad 74 \quad 63 \quad 54 \quad 47-39- \tag{42,38}
\end{equation*}
$$

Attitude questionnaire to te completed ty pupilis in secondery echools on the ugu of eloctranic calculator

Please, complete this section:
Name of School:
Address of School:
Male/Fomale:
Age:
Class:
This is not an examination. Please, give your honest opinion on each item. You should only thick (w) under the most appropriate response according to the format.

$$
\begin{array}{ll}
S A-5 & \text { Strongly Agree } \\
A-4 & \text { Agree } \\
U-3 & \text { No Opinion (Undecided) } \\
D-2 & \text { Disagree } \\
S D-1 & \text { Strongly Disagree. }
\end{array}
$$

A: ATMITUDES TOHARD MATHPMATICS \quad| 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: |

1. Mathematios is one of the subjeots I have always enjoyed studying
2. I approach mathematics class with a feeling of hesitation resulting from fear of not being able to do mathematics.

I like mathematios, and I am happier in a mathematics class than in any other class.

4o Nathematics is very interesting to me becaus I enjoy working with numbors.
5.

Mathematics makes ne feel secure, and at the same tim $n t$ is stimulating.
6. When I hear the word 'Methomntics', I have feeling of dislike.

My mind goes blarik, and I am unable to think clearly or ramember anythine when doing

ATMITUDFS TOWARD THE USE OF FLECIRONIC CALCULATORS IN MATHF ATICS

1. Calculator increases one's computational skill in mathomatics, schools should encourage it's use.

I think four figure table is more useful in the classroom and in cominaticns, calculator will not be necessary.

Calculators will make one lazy, it should not be used in Mathematics.
4. I will like to see people use more of calculato: 10

Sometimes I feel that the oaloulators are desirable and sometimes I doubts it.
The caloulator is one of the few things I enjoy using in Mathematics.

Pupils who use calculators in the classroom and in examinations should be punished.
Many pup.1s lack the ability to do simple calcul. ons, so calculators can be usefui.

The use of caloulators by pupils in schools should be decided by teachers al one.
Pupils should be permitted to use calculators only in their final examinations.
11. There would be tray littlo progress in Mathematics without the calculator.
12. Ihe computational advantage of the calculator is bound to weaken the mental ability of those who use it.
13. As of now calculators are completely bad for school pupils.
14. Calculator will help me in solving Mathematios problems.

APPENDIX 11

Internal consistency reliability coefficient of the at.t.itude measure

No.	X (0dd)	Y (Even)	X2	Y2	I XY
1.	105	101	11025	10201	10605
2.	101	99	10201	9801	9999
3.	96	95	9216	9025	9120
4.	94	92	8836	8464	8648
5.	89	88	7921	7744	7832
6.	88	86	7921	7396	\| 7568
7.	85	84	7225	7056	7140
8.	84	83	7056	6889	6972
9.	81	79	6561	6241	6399
10.	78	77	6084	5929	6006
11.	77	77	5929	5929	5929
12.	77	77	5929	5029	5929
13.	76	76	5776	5776	5776
14.	76	76	5776	5776	5776
15.	2	71	5184	5041	5112
16.	69	69	4761	4761	4761
12.	69	68	4761	4761	4692
18.	64	57	4096	4761	4692
19.	57	52	! 3249	2704	2964
20.	45	44	; 2025	1936	\| 1980

$$
\begin{aligned}
\text { Computing: } & \left.=\frac{N\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{V\left(N \sum X^{2}\right)-\left(\sum X\right)^{2}\left(N \sum Y^{2}\right)}-\left(\sum Y\right)^{2}\right)= \\
& =\frac{81900}{83862.219} \\
& =0.98 \\
Y & =0.98 \quad \begin{array}{l}
\text { (reliability coefficient of odd and Even) } \\
\text { (Split half reliability) }
\end{array}
\end{aligned}
$$

Using Spearman-Brown formula, $R=N(r) /(1+(N-1) r)$
R is the reliability coefficient

$$
\begin{aligned}
R=N r / 1+(N-1) r) & =19.6 / 19.62 \\
& =0.99
\end{aligned}
$$

APPENDIX

Correlation between 27\% Upper Score and 27\% Lower Score on Attitude Scale (MAS And CAS)

27% Upper		Score		27%	Lower	Score
STR	X	Rank of X	Y	Rank of Y	$X-Y$	D^{2}
1	105	10	69	9	1.0	1
2	101	8.5	69	9	-0.5	0.25
3	101	8.5	69	9	-0.5	0.25
4	99	7	7	7	0	0
5	98	6	6	6	0	0
6	95	5	4.5	4.5	0.5	0.25
7	94	4	4.5	4.5	-0.5	0.25
8	92	3	3	3	0	0
9	89	2	2	2	0	0
10	88	1	1	1	01	0

Using Spearman - Rank Order Correlation Coefficient

$$
\begin{aligned}
r & =1-\frac{6 \Sigma D^{2}}{N\left(N^{2}-1\right)} \Sigma D^{2}=3 \\
r & =1-\frac{6 \times 3}{10(99)} N=10 \\
& =1-\frac{21}{990} \\
& =0.98
\end{aligned}
$$

APPEINDIX

Si~nificant me. 1 diffurence in mathematics at.ticuco coors (i:SS) anc càculat I atticude score (ritis) 'o: $\angle 7^{\circ}$ unp, r scors

APPENDIX 14
Significant mean Difference in Mathematics attitude Score (MAS) and Calculator Attitude Score (CAS) for 27% Lower Score

Mean Age $=16.6$ yeans

$$
\begin{aligned}
& 16.6 \text { yeans } \\
& \begin{aligned}
\bar{X}=\Sigma N / N & =307 / 10=30.7,-\quad N_{x}=10, N_{y}=10 \\
& =\bar{X}=30.7, \bar{\gamma}=26.7
\end{aligned} \\
& \sigma_{x}^{2}=\frac{\Sigma X^{2}}{N-1}-\frac{N \Sigma \bar{x}^{2}}{N-1}=\frac{11553}{9}-\frac{9424.9}{9}=\frac{236.5}{9} \\
& \sigma_{y}^{2}=\frac{\Sigma Y^{2}}{N-1}-\frac{N \Sigma Y^{2}}{N-1}=\frac{7731}{9}-\frac{7128.9}{9}=\frac{602.1}{9}=68.9
\end{aligned}
$$

$t-$ ratio $=\frac{\bar{x}-\bar{y}}{\sqrt{\frac{\sigma_{x}^{2}+\sigma_{y}^{2}}{N_{x}} \frac{N_{y}}{N_{y}}}}$

t-ratio $=\frac{44^{\circ}}{\sqrt{30.14}}=\underline{0.73^{6}}$ at $\alpha^{\circ}=0.05$

APPENDIX 15

Internal raliability co-ufficient of mathematics protictot scorms \qquad

S/N	AGE	SEX	SCORE OUT of 15
1.3	14	F	5
2.	14	M	11
3.	18	M	7
4.	18	M	12
5.	18	M	14
6.	16	F	9
7.	16	F	7
8.	14	F	6
9.	17	M	9
10.	13	F	10
11.	15	M	3
12.	17	F	4
No. of test-items $=\mathbf{1 5}$			
RANGE $=3-14$			
MEAN $\bar{x} *=8.00$			
ST/ .JARD DEVIATION, SD: 3.35			
RELIABILITY COEFFICIENCE, $r=0.67$			
Female $=6$, Male $=6$.			

- Questionnaire directed to teachers of mathematics in the secondary school.

PLEASE COMPLETE:
Name of School
The School was established in 19
Your Sex: \qquad Your Age in Years

Your qualifications to date: \qquad

Your years of experience in the teaching of mathematics:

Classes taught mathematics to date:

One would appreciate your responses to the following items please complete the correct response where applicable:

1. If you teach mathematics in forms IV or/ and V; do you always cover the mathematics syllabus fully or partially in pref ring your schemes of work? underline partially or fully.
2. Which of the following types of equations have you taught in your class?

Equations Class
(i) Simple
(ii) Simultaneous
(iii) Quadratic
3. List the types of instruments used by you or your students in facilitating quick and reliable numerical calculations.

5. \qquad
3.
6. \qquad
4. If you teach in forms IV or/and V you would assess your student's performance in mathematics as (i) above average, (ii) average and (iii) below average:

Class arm
\qquad
\qquad
\qquad
\qquad

Assessment
\qquad
\qquad
\qquad
\qquad
\qquad
£. You would consider the electronic calculator as (i) very
(i) effective
(ii) effective
(iii) not effective
teaching learning aid.
6. If you consider the electronic calculator as an effective teaching - learning aid, indicate in which class or classes it can be used.

* Face and content validity of the questionnaire were carried ou by the author and some lecturers in the Teacher Education S'epartment, University of Ibadan.

APPENDIX 17

Data from Maj in Study

GROUP A

VARIABLES

NOS. SEX VAR 01 VAR 02 VAR 03 VAR 04 VAR 05 VAL 06 VAL 07
MAT PEA PET POA POT MAS LAS

1.	F	42	79	9	78	25	49	29
2.	M	37	64	10	88	26	47	41
3.	M	52	72	12	106	22	53	53
4.	M	38	77	11	103	13	49	54
5.	F	37	74	9	115	18	55	60
6.	F	38	105	8	99	12	49	50
7.	M	44	74	14	78	24	59	19
8.	F	37	87	6	90	20	46	44
9.	M	39	93	11	107	29	54	53
10.	M	49	78	4	109	24	50	59
11.	M	39	80	9	79	19	56	23
12.	F	39	60	13	77	20	43	34
13.	F	37	60	6	77	15	27	50
14.	F	45	93	13	54	23	51	3

Male (7) Female (7)

VAR 01: MAT - Mental ability TEst Scores (72)
VAR 02: PEA - Pre-Attitude questionnaire scores (130)
VAR 03: PET - Pre-test scores ?15)
VAR 04: POA - Post-Attitude questionnaire scores (130)
VAR 05: POT - Post-test scores (30)
VAR 06: MAS - Mathematics Attitude scores (60)
VAR 07: CAS - Calculator Attitude Scores (70)

MALE (7) FEMALE (7)

- -369 -

GROUP C

MALE (7) FEMALE (7)

GROUP D

| NOS. | SEX | MAT | PEA | PET | POL | POT | MAS | PAS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | F | 47 | 72 | 11 | 81 | 18 | 47 | 34 |
| 2. | M | 44 | 88 | 12 | 85 | 16 | 51 | 34 |
| 3. | F | 46 | 79 | 13 | 91 | 17 | 53 | 38 |
| 4. | M | 42 | 58 | 13 | 86 | 9 | 49 | 37 |
| 5. | F | 59 | 69 | 15 | 86 | 20 | 46 | 40 |
| 6. | M | 54 | 54 | 12 | 78 | 16 | 44 | 34 |
| 7. | F | 50 | 74 | 11 | 78 | 21 | 51 | 27 |
| 8. | F | 50 | 84 | 14 | 83 | 17 | 50 | 33 |
| 9. | F | 45 | 63 | 12 | 78 | 19 | 53 | 25 |
| 10. | F | 48 | 85 | 9 | 93 | 11 | 47 | 45 |
| 11 | M | 45 | 85 | 10 | 82 | 17 | 51 | 31 |
| 12. | M | 50 | 71 | 13 | 71 | 17 | 51 | 20 |
| 13. | M | 50 | 73 | 12 | 77 | 14 | 53 | 24 |
| 14. | M | 46 | 76 | 12 | 69 | 12 | 49 | 20 |

MALE (7) FEMALE (7)

GROUP E

GROUP F

NOS.	SEX	MAT	PEA	PET	POA	POT	MAS	CAS
1.	M	30	99	10	71	12	57	14
2.	M	32	88	6	90	13	56	34
3.	M	30	82	7	83	17	52	31
4.	M	29	81	5	80	5	54	26
5.	M	32	80	7	82	8	56	26
6.	M	32	112	10	119	10	57	62
7.	F	28	79	7	84	12	52	32
8.	F	31	72	6	58	8	32	26
9.	F	30	66	7	68	10	46	22
10.	F	30	97	5	75	11	55	20
11.	F	26	89	6	82	6	36	46
12.	M	27	95	6	82	9	44	38
13.	F	25	81	9	77	10	48	29
14.	F	32	105	2	86	6	48	38

GROUP G

NOS.	SEX	MAT	PEA	PET	POA	POT	MAS	CAS
1.	M	44	85	9	97	9	52	45
2.	M	52	90	7	97	9	54	46
3.	M	48	88	6	72	8	51	21
4.	M	45	72	5	80	14	48	32
5.	M	51	78	9	79	12	50	29
6.	M	49	99	5	95	9	49	46
7.	M	43	61	5	77	7	32	45
8.	F	43	102	11	96	12	51	45
9.	F	41	93	14	89	9	55	34
10.	F	41	95	15	77	12	41	36
11.	F	51	83	14	100	14	53	47
12.	F	$47 C$	94	15	107	25	47	60
13.	F	45	79	13	81	20	52	29
14.	F	52	83	15	79	17	53	26

GROUP H

NOS.	SEX	MAT	PEA	PET	POA	POT	MAS	CAS
1.	M	39	114	11	105	19	55	50
2.	M	37	84	11	80	12	47	33
3.	M	40	98	13	91	19	48	43
4.	M	40	63	8	79	14	43	36
5.	M	37	88	4	83	12	45	38
6.	M	35	95	8	82	15	42	40
7.	17	40	84	7	74	10	45	29
8.	F	39	79		78	18	42	36
9.	F	37	$10 ?$	13	113	14	52	61
10.	F	36	73	9	72	11	48	24
11.	F	40	78	12	80	14	47	33
12.	F		82	7	78	11	45	33
13.	F	40	82	12	80	14	49	31
14.	¢	34	84	9	91	12	47	44

GROUP I

NOS.	SEX	MAT	PEA	PET	POA	POT	MAS	CAS
1.	M	33	78	13	82	19	50	32
2.	M	33	92	2	76	8	31	45
3.	M	30	90	3	65	7	35	30
4.	M	33	78	4	82	8	48	34
5.	M	26	74	5	77	8	48	2.9
6.	M	27	94	13	75	15	51	24
7.	M	25	77	12		14	54	20
8.	F	27	64	0	50	6	20	30
9.	F	33	94		65	9	47	18
10.	F	33	87	5	104	6	46	58
11	F	31	77	6	78	7	36	42
12.	F	33	83	6	79	12	29	-0
13.	F		104	9	105	6	47	58
14.	F	25	69	11	81	14	4?	32
		MALE (7)			FEMALE (7)			

APPEIVOIX 18
 Data from the Piiot Study

GROLUP A

NOS.	SEX	V ARIABLES				
		VAR 01	VAR 02	VAR 03	VAR 04	JAR 05
		MAT	ATS	ACT	MAS	CAS
1.	M	400	89	7	52	37
2.	F	38	101	8	13	52
3.	F	37	74	10	38	36
4.	M	43	76	9	47	29
5.	F	34	79	7	45	34
6.	M		67	16	49	18
7.	M	44	60	9	31	29
3.		44	66	14	39	27
9.		33	73	12	44	29
10.	F	33	76	11	43	33

MALE (5) FEMALE (5)
VAR 01 : MAT - Mental abiljty scores (72)
VAR 02 : A^{-}. - Fittitude questionnaire scores (130)
VAR 03 : ACT - Post-achievement Scores (30)
VAR 04 : MAS - Mathematics Attitude Scores (60)
VAR 05 : CAS - Calculator Attitude Scores (70)

GROUP B

NOS.	SEX	MAT	ATS	ACT	MAS	CAS
1	M	29	86	9	38	48
2.	F	30	69	10	41	28
3.	M	30	57	7	35	22
4.	F	29	87	5	47	40
5.	F	29	86	12	35	51
6.	M	28	101	9	44	57
7.	F	28	90	5	44	46
8.	F	26	81	8	44	37
9.	M	28	69	6	43	26
10.	M	27		7	43	52
MALE (5) FEMALE (5) GROUP C						
NOS.	SEX	MAT	ATC	ACT	MAS	CAS
1		23	52	4	28	24
2.		22	84	4	43	41
	M	22	97	6	48	49
	F	18	92	9	51	41
5.	-	21	77	5	41	36
6.	M	22	98	7	50	48
7.	F	18	99	5	45	54
8.	F	18	78	9	58	20
9.	F	23	64	4	31	33
10.	M	21	77	3	36	41

GROUP D

NOS.	SEX	MAT	ATS	ACT	MAS	CAS
1.	M	35	76	9	39	37
2.	M	36	88	11	28	60
3.	M	36	94	14	4	45
4.	M	27	77	13	41	36
5.	M	$4 ?$	63		30	33
6.	F	32	73	6	$4 t$	30
7.	F	34	5	14	36	22
8.	F	32	31	10	44	37
9.	F	32	89	7	51	38
10.	F	44	96	6	34	62
		MALE	FEMALE (5)			

GROUP E

NOS.	SEX	MAT	ATS	ACT	MAS	LAS
1	M	28	76	10	46	30
2.	F	25	73	9	35	38
3.	M	28	72	11	20	52
4.	F	27	88	7	47	41
5.	F	28	68	8	43	25
6.	M	29	79	9	44	31
7.	F	2,	58	10	34	24
8.	M	30	73	12	52	21
9.	F	29	75	12	52	23
10.	M	27	76	6	42	34
		MALE	(5)	FEMALE (5)		

$$
-380-\cdots
$$

GROUP F

NOS.	SEX	MAT	ATS	ACT	MAS	CAS
1.	M	20	88	9	26	62
2.	F	23	105	5	53	52
3.	F	23	85	2	45	40
4.	M	22	73	7	45	28
5.	F	19	76	8	56	20
6.	F	20	76	10	39	37
7.	F	19	69	7	47	22
8.	M	20	57	8	39	18
9.	M	21	78	5	52	26
10.	M	19	83	4	50	33
		MALE	(5)	FEMALE (5)		

- 331 -

GROUP G

NOS.	SEX	MAT	ATS	ACT	MAS	CAS
1.	M	46	77	6	58	19
3.	F	35	84	8	46	38
4.	F	36	82	7	52	30
5.	M	32	79	68	50	29
7.	F	48	72	11	.1	31
8.	M	45	71	4	40	31
10.	M	33	68	13	21	47

- 382 -

GROUP H

NOS.	SEX	MAT	ATS	ACT	MAS	CAS
1.	M	27	45	11	21	24
2.	M	29	92	5	55	37
3.	F	27	81	8	54	37
4.	F	26	76	10	49	27
5.	F	28	84	6	44	36
6.	F	26	80	4	49	43
7.	M	27	92	4	49	43
8.	M	28	85	14	48	37
9.	F	29	44	12	21	23
10.	M	30	47	9	32	15

GROUP I

NOS.	SEX	MAT	ATS	ACT	MAS	CAS
1.	M	21	82	5	48	34
2	M	13	68	7	38	30
3.	F	20	75	7	50	25
4.	F	20	99	6	39	60
5.	M	22	78	3	36	42
6.	F	21	79	4	50	29
7.	F	29	65	9	47	18
8.	M	22	90	5	44	46
9.	M	19	50	4	30	20
10.	F	13	70	6	40	30
	MALE		$5)$	FEMALE (5)		

APPEiNDIX 19

List of secondary schoois in Itadan Funicipality sampled for the study

YearEstablishedName of School
1965

1. Mount Olivet Grammar School, Bodija, Ibadan
1966
2. **Hnly Trinity Grammar School, Old Ife Road, \&badan
1964
3. Bishop Phillips Academy, Iwo Road, Ibadan
1964
4. *Adekile Gcodwill Grammar School, Aperin, Ibadan
1960
5. C.A.C. Grammar School, Aperin, Ibadan
1967
6. Adelagun Memorial Grammar School, Odinjo, Ibadan.
1946
7. * *Ibadan City Academy, Eleta, Ibadan.
1955
8. *Ahmadiyya Grammar School, Eleyele, Ibadan
1966
9. Baptist Grammar School, Idi-Isin, Ibadan
1913
10. Ibadan Grammar School, Molete, Ibadan
1961
11. Methodist High School, Express Road, Ibadan.
1966
12. Eyinni High School, Lagos Road, Ibadan
1964
13. Renascent High School, Aremo, Ibadan.
1960
14. African Church Grammar School, Apata, Ibadan:
1957
15.** Islamic High School, Basorun, Ibadan
1964
15. Oke 'Badan High School, Oluyoro, Ibadan.

* Fi e schools selected for pilot and main study
** Three schools selected for the main study

Anslysis of Variance of Post-attitude Scores
 of HMA, AMA and LMA Groups

SOURCE	df	SUM OF SQUARES	MEAN SQUARES	F。 RATIO	SIGNIF $\text { OF } \mathrm{F}$
MAIN EFFECTS	2	822.9375	411.4688	2.418	0.091 ns
EXPLAINED	2	822.9376	411.4689	2.418	0.091 ns
RESIDU.AL		20942.000	170.2602		
TO:ALQ	125	21764.9376	174.120		

Analysis of Variance of Post-Attitude
 Scores of UCU, RCU and NCU
 Groups

SOURCE	DF	SUM OF SQUARES	MEAN SQUARES	F- RATIO	SIGNIF UF
MAIN EFFECTS	2	471.443	235.722	1.218	0.299 ns
EXPLAINED	2	471.445	235.723	1.218	0.299 ns
RESIDUAL	123	23811.625	193.590		
TOTAL	125	24283.070	194.265		

[^0]: * Capital letters by the authors: are used to emphasis the relevance of the portion of this study.

[^1]: 11. Hohlfeld, J.F, Effeciiveness of an immediate feedback device for leaming basic multiplication facts (Doctoral Dissertation, Indiana University, 1973).
 12. Whitaker, W.H. A stucy of change in achievement, interest, and attitudinal variates accompany the use of alectron:c calculators i: a first grade mathematics curriculum. Unpublished Ph. 0 Thesis, University of Southern Califorria, 1977.
[^2]: 13. Quinn, D. R. The effect of the usage of a programmable calcuiator upon achievement and attitude of eight and ninth grade algebra students. Doctoral Dissertation, Saint Louis University, 1975.
[^3]: 15. Stultz, i. Electronic caloulators in the classroom. Arithmetic Teacher, 21, 1975.
[^4]: 19. Flanders, N. Analyzing Teaching Behaviour, Reading, M.ss: Addison-Wesley Publishing Company, 1970, p. 317-319.
[^5]: 22. Suydam, M. N. Researches in Mathematics Education, $\frac{\text { Journal for Ressarch in Mathematics Education }}{\text { TO(4), 1979. }}$
[^6]: 49. Fishbein, M.A. Current studies in social Psy., N.Y.: Holt, Rinehart \& Winston, 1965.
 50. Festinger, L.A. Theory of cognitive Dissonance: N.Y.: Harper \& Low, 1957.
 51. Krawthwohl, D.R, et al. Taxonomy of Educ. Ob,j. Handbook II: Affective Doman, New York: McKay, 1964.
 52. In Morris, J. Math Anxiety: Teaching to avoid it.
[^7]: S6. Fisher, R. The disign of Expyriments, 6th Ed., Jew York: Fiafner, $1551, \mathrm{Fg} .11$.

[^8]: S8. Bell, Max. S. Calculators in Elementary Schools? Some tentativz guidelines and questions based on classroom experience. The Arithmetic Teacher 23(7), No. 1976, pp. 502-507.

[^9]: 107. Cnein, I. "An Intreduction to Sampling". In
 C. Selltiz et al. Sosearch Methods in Social relations. New York. Holt, Rinehart and Winston, 1959, pp. 509-545.
[^10]: + Dneway LSD, Scheffe, TUKEY-HSD and SNK were carried out, and they showed the same result.

