METAL(II) TETRAFLUOROBORATE COMPLEXES OF SOME DICARBOXYLIC ACID HYDRAZIDES

÷

By

ADELEKE AYOOLA ADENIYI B.Sc. (Hons.) Chemistry (Ibadam) M.Sc. Inorganic Chemistry (Ibadam)

A THESIS IN THE DEPARTMENT OF CHEMISTRY SUBMITTED TO THE FACULTY OF SCIENCE IN PARTIAL FULFILMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

OF THE

UNIVERSITY OF IBADAN

ABSTRACT

Eighty-eight divalent metal complexes derived from dihydrazides of oxalic, malonic, succinic, adipic, phthalic and terephthalic acids, with manganese(II), cobalt(II), nickel(II), copper(IJ), zinc(II), cadmium(II), mercury(II) and magnesium tetrafluoroborates have been prepared. The effect of 1 I and 1:2 metal to ligand reactant ratios have been examined. The complexes have been characterized on the basis of their analytical data, magnetic susceptibility, electronic and IR spectral studies as well as conductance measurements.

Reactions involving 1:1 and 1:2 metal to ligand ratios gave.complexes with different metal to ligand stoichiometry in most cases. It is evident, from the analytical data, that complexes precipitated out mostly with 1:2 and 1:3 metal to ligand stoichiometry. However, complexes of oxalic dihydrazide with Cu(11) and Hg(11), succinic dihydrazide with Co(11), Ni(11), Zn(11) and Mg prepared using a 1:1 molar reactant ratio contained one and a half moles of ligands. Similarly, complexes of Mn(11), Ni(11) and Hg(11) prepared using a 1:2 molar ratio of metal salt to adipic dihydrazide contained one and a half moles of adipic dihydrazide. Nevertheless, reactions involving 1:1 and 1:2 molar reactant ratios gave the same set of compounds in phthalic dihydrazide with Co(11), Ni(11) and Zn(11)

ii

tetrafluoroborates respectively. Likewise the complexes of adipic and malonic dihydrazides with $Zn(BF_4)_2.6H_2O$ and $Cd(BF_4)_2.7H_2O$ respectively.

The complexes have poor solubilities in methanol, ethanol, acetone, nitrobenzene, nitromethane, benzene, hexane, acetonitrile, dimethylformamide, dimethylsulfoxide and water. But the complexes of manganese(II), cobalt(II), zinc(II) and cadmium(II) with oxalic, malonic, succinic and adipic dihydrazides were found to be soluble in water. Similarly, nickel(II), Copper(II) and magnesium complexes of malonic and succinic dihydrazides were soluble in water, so also is the complex of mercury(II) with adipic dihydrazide. In addition, the complexes of succinic dihydrazide, with manganese(II) and cadmium(II) tetrafluoroborates were soluble in dimethylsulfoxide.

The infrared spectra indicate that the bonding sites in these compounds are the carbonyl oxygen and the amino or amide nitrogens.

The electronic and magnetic data of the complexes of manganese[11], cobalt(11), nickel(11) and copper(11) at room temperature suggested that they assume octahedral geometry. Generally, for a given ligand, the 1:2 complex has a lower magnetic moment than the 1:3 complex. The variation of the moments with chain length does not appear to be systematic at room temperature. However, the magnetic moments for the Zn(II), Cd(II), Hg(II) and Mg indicates that they are diamagnetic with some evidence of polarization paramagnetism.

The conductance data of the complexes that were soluble in MERSIN OF BADANLABRAN water and dimethylsulfoxide revealed 1:2 type electrolytes.

iv

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor, Professor K.S. Patel for his meticulous supervision of this work. I also want to acknowledge the assistance of late Dr. P.O. Ikekwere, who was the co-supervisor of this work and whose immeasurable assistance set this work on its course before he was snatched away by death.

My thanks also goes to the Department of Chemistry and the Postgraduate School. Special thanks to Professor E.K. Adesogan for his unalloyed support. And to Dr. J.A.O. Woods of the Department of Chemistry, Obstemi Awolowo University for his inestimable assistance. I am also grateful to Dr. A.O. Adeyemo for his words of encouragement before and throughout the course of this work. And to Dr. O. Olubajo of the Faculty of Science, Lagos State University. My thanks also go to Mr. Patrick Okonji and Philip Aigberua for the microanalysis.

My sincere gratitude to my colleagues for their comradeship. I wish to heartily thank my friends especially Messrs Olubunmi Ayo, Owolabi Dawodu, Adesoji Adewusi, Hakem Fasina, Wale Oduekun Simeon Ohimain, Moses Ojeifo, Moses Akpokodje, Afolabi Oduniyi (Condy) and Drs. Adedapo Morawo, Adekunle Lawal, Adeleke Osundiaro, Olaolu Soolola and Moyo Osinaike. To my brothers and sisters, Arinola, Babalola, Abimbola and others for their love and understanding. And my cousin Omatsola Olumagin.

A special thanks to my loving mother whose care and concern saw me through my ambition.

OF IBADAN

And to GOD, for making everything possible.

JERSIT

CERTIFICATION BY SUPERVISOR

I certify that this work was carried out by Mr. A.A. Adeniyi in the Department of Chemistry, University of Ibadan, Ibadan, Nigeria.

NERSI

ani

Supervisor K.S. Patel, M.Sc. (Gujar), Ph.D. (Lond.), P.R.S.C., Professor in the Department of Chemistry University of Ibadan Ibadan, Nigeria

DEDICATION

This work is dedicated

to the memory of

MY LATE FATHER

and to

GOD ALMIGHTY

whose Grace made this thesis a success.

viii

TABLE OF CONTENTS

				Page
Т	ITLE			i
A	BSTRACT			н
A	CKNOWLEDGEMENTS			v
С	ERTIFICATION			'vii
D	EDICATION		0.	viii
Т	ABLE OF CONTENTS		b	ix
L	IST OF FIGURES			xx
L	IST OF TABLES			xxiv
A	BBREVIATIONS	······································		xxvi
СНАРТІ	ER ONE: INTRODUCT	ION		1
1.1	General)		1
	1.1.1 Synthesis of hy	drazides		2
	1.1.2 Infrared spectra	a of hydrazides		3
	1.1.3 Applications of	hydrazides		3
1.2	Preparation of metal co	mplexes of hydrazi	des	5
1.3	Infrared spectra of hyd	drazide complexes		6
1.4	Electronic spectra			10
1.5	Magnetic properties			10
1.6	X-ray studies			13
1.7	Applications of metal c	omplexes of hydraz	ides	13
1.8	Aim of the work			15

					Page
СНАРТ	ER TWO:	THEORET	TCAL		17
2.1	Electron	ic spectra			17
2.2	Magneto	chemistry			24
2.3	Infrared	spectra			33
СНАРТ	ER THRE	E: EXPER	IMENTAL		38
3.1	Reagent	s	V	05	38
3.2	Preparat	tion of the l	igands	\$	39
	3.2.1	Preparation	n of oxalic dihyc	drazide	39
	3.2.2	Preparation	n of malonic dih	drazide	39
	3.2.3	Preparation	n of succinic dih	nydrazide	39
	3.2.4	Preparation	n of adipic dihyd	drazide	39
	3.2.5	Preparation	n of phthalic dib	nydrazide	40
	3.2.6	Preparation	of terephthalic	dihydrazide	41
3.3	Preparat	tion of the o	complexes	· · · ·	41
	3.3.1	Preparation tetrafluoro	n of manganese(borate		41
	3.3.1.1	Preparation complexes	n of Mn(II) tetra	afluoroborate	42
	3.3.1.2	Preparation Mn(ODH)3	n of Mn(ODH) ₂ (1 (BF ₄) ₂	BF ₄) ₂ and	. 42
	3.3.1.3	Preparation Mn(MDH)3	n of Mn(MDH) ₂ (1 (BF ₄) ₂	BF ₄) ₂ and	42
	3.3.1.4	Preparation Mn(SDH) ₃ (n of Mn(SDH) ₂ (E (BF ₄) ₂	3F ₄) ₂ and	43

x

			Page
3.3.1.5	Preparation of Mn(ADH)_{3/2} and Mn(ADH)_3(BF_4)_2		43.
3.3.1.6	Preparation of $Mn(PDH)_2(BF_4)_2$ $Mn(PDH)_3(BF_4)_2$	and	44
3.3.1.7	Preparation of $Mn(TDH)_3(BF_4)_2$	·	44
3.3.2	Preparation of Cobalt(11) tetrafluoroborate		44
3.3.2.1	Preparation of Co(11) tetrafluoro complexes	borate	45
3.3.2.2	Preparation of Co(ODH) ₂ (BF ₄) ₂ Co(ODH) ₃ (BF ₄) ₂	and	45
3.3.2.3	Preparation of Co(MDH)3/2(BF4) Co(MDH)3(BF4)2	2 and	45
3.3.2.4	Preparation of Co(SDH) ₂ (BF ₄) ₂ Co(SDH) ₃ (BF ₄) ₂	and	.45
3.3.2.5	Preparation of Co(ADH) ₂ (BF ₄) ₂ Co(ADH) ₃ (BF ₄) ₂	and	46
3.3.2.6	Preparation of Co(PDH)3(BF4)2	·	47
3.3.2.7	Preparation of Co(TDH)3(BF4)2		-47
3.3.3	Preparation of Ni(II) tetrafluoro	borate	48
3.3.3.1	Preparation of Ni(II) tetrafluoro complexes	borate	. 48
3.3.3.2	Preparation of Ni(ODH) ₂ (BF ₄) ₂ Ni(ODH) ₃ (BF ₄) ₂	and	48
3.3.3.3	Preparation of Ni(MDH) ₂ (BF ₄) ₂ Ni(MDH) ₃ (BF ₄) ₂	and 	49
3.3.3.4	Preparation of Ni(SDH) $_{3/2}(BF_4)$ and Ni(SDH) $_2(BF_4)_2$	2	49

xi

		Page
3.3.3.5	Preparation of Ni(ADH) $_{3/2}(BF_4)_2$ and Ni(ADH) $_2(BF_4)_2$	50
3.3.3.6	Preparation of Ni(PDH)3(BF4)2	51
3.3.3.7	Preparation of Ni(TDH) ₃ (BF ₄) ₂	51
3.3.4	Preparation of Cu(II) tetrafluoroborate	51
3.3.4.1	Preparation of Cu(II) tetrafluoroborate complexes	52
3.3.4.2	Preparation of Cu(ODH) _{3/2} (BF ₄) ₂ and Cu(ODH) ₃ (BF ₄) ₂	52
3.3.4.3	Preparation of $Cu(MDH)_2(BE_4)_2$ and $Cu(MDH)_3(BF_4)_2$	52
3.3.4.4	Preparation of $Cu(SDH)_2(BF_4)_2$ and $Cu(SDH)_3(BF_4)_2$	53
3.3.4.5	Preparation of $Cu(ADH)_2(BF_4)_2$ and $Cu(ADH)_3(BF_4)_2$	54
3.3.4.6	Preparation of $Cu(PDH)_2(BF_4)_2$ and $Cu(PDH)_3(BF_4)_2$	54
3.3.4.7	Preparation of Cu(TDH)2(BF4)2	55
3.3.5	Preparation of Zn(II) tetrafluoroborate	55
3.3.5.1	Preparation of Zn(11) tetrafluoroborate complexes	55
3.3.5.2	Preparation of $Zn(ODH)_2(BF_4)_2$ and $Zn(ODH)_3(BF_4)_2$	55
3.3.5.3	Preparation of Zn MDH $(BF_4)_2$ and $Zn(MDH)_3(BF_4)_2$	56
3.3.5.4	Preparation of $Zn(SDH)_{3/2}(BF_4)_2$ and $Zn(SDH)_2(BF_4)_2$	57

xiii

	· · · · · · · · · · · · · · · · · · ·	
3.3.5.5	Preparation of $Zn(ADH)_3(BF_4)_2$	57
3.3.5.6	Preparation of Zn(PDH)3(BF4)2	58
3.3.5.7	Preparation of $Zn(TDH)_3(BF_4)_2$	58
3.3.6	Preparation of Cd(II) tetrafluoroborate	58
3.3.6.1	Preparation of Cd(II) tetrafluoroborate	59
3.3.6.2	Preparation of Cd(ODH) ₂ (BF ₄) ₂ and Cd(ODH) ₃ (BF ₄) ₂ $\cdot \cdot \cdot$	59
3.3.6.3	Preparation of Cd(MDH)2(BF4)2	59
3.3.6.4	Preparation of Cd(SDH) ₂ (BF ₄) ₂ and Cd(SDH) ₃ (BF ₄) ₂ \dots	59
3.3.6.5	Preparation of Cd(ADH) ₂ (BF ₄) ₂ and Cd(ADH) ₃ (BF ₄) ₂ \dots	60
3.3.6.6	$\begin{array}{llllllllllllllllllllllllllllllllllll$	60
3.3.6.7	Preparation of Cd(TDH)3(BF4)2	51
3.3.7	Preparation of Hg(II) tetrafluoroborate	61
3.3.7.1	Preparation of Hg(II) tetrafluoroborate	61
3.3.7.2	Preparation of Hg(ODH) ₃ (BF ₄) ₂ and Hg(ODH) _{3/2} (BF ₄) ₂ \cdots	61
3.3.7.3	Preparation of Hg(MDH) ₃ (BF ₄) ₂ and Hg(MDH) ₂ (BF ₄) ₂ \cdots	62
3.3.7.4	Preparation of HgSDH(BF ₄) and Hg(SDH) ₂ (BF ₄) ₂ \dots	62
3.3.7.5	Preparation of Hg(ADH) ₂ (BF ₄) ₂ and Hg(ADH) _{3/2} (BF ₄) ₂ \ldots	63

Page

3.3.7.6 Preparation of Hg(PDH)2(BF4)2 and Hg(PDH)3(BF4)2 63 Preparation of Hg TDH (BFn), 63 3.3.7.7 Preparation of Mg tetrafluoroborate 64 3.3.8 3.3.8.1 Preparation of Mg tetrafluoroborate complexes ... 64 Preparation of Mg(ODH)2(BF4)2 3.3.8.2 and Mg(ODH)3(BF4)2 54 . . . Preparation of Mg(MDH)3/2(BF4)2 3.3.8.3 and Mg(MDH)2(BF4)2 65 . . . 3.3.8.4 Preparation of Mg SDH (BF4)2 and Mg(SDH)3(BF4)2 '65 Preparation of Mq ADH (BF₄)₂ and 3.3.8.5 Mg(ADH)3(BFu)7 66 Preparation of Mg(PDH)2(BF4)2 and 3.3.8.6 Mg(PDH)3(BF4)2 66 66 Preparation of Mg TDH (BF4)? 3.3.8.7 Elemental Analysis 3.4 . . . 67 3.4.1 Manganese(II) tetrafluoroborate complexes 67 Cobalt(11) tetrafluoroborate complexes 3.4.2 67 68 3.4.3 Nickel(II) tetrafluoroborate complexes 3.4.4 Copper(II) tetrafluoroborate complexes 68 3.4.5 Zinc(II) tetrafluoroborate complexes 69 3.4.6 Cadmium(II) tetrafluoroborate complexes 69

Page

					Page
	3.4.7	Mercury(11) complexes	tetrafluoroborate		70
	3.4.8	Magnesium te	etrafluoroborate con	nplexes	70
	3.4.9	Microanalysis			70
3.5	Melting	point/Decompos	ition temperature		70
3.6	Solubilit	У			- 71
3.7	Conduct	ance measurem	ents	05	•71
3.8	Infrared	spectra			71
3.9	Electron	ic spectra		· · · ·	71
3.10	Magnetio	susceptibility	measurements		72
CHAP	TER FOU	R: RESULTS	BAY		75
4.1	Physical	and analytical	data		75
4.2	Solubilit	y data)		75
4.3	Molar co	onductivity			75
4.4	Infrarec	l spectra			75
4.5	Electron	ic spectra			75
4.6	Magnetic	susceptibility	data		157
	4.6.1	Calibration of	of sample tube		157
	4.6.2	Calculation of Ni(ODH) ₂	of the magnetic mor (BF ₄) ₂	ment 	158
	4.6.3	Calculation of 7p(SDH)	of the magnetic mor	ment	222
		01 211(0011)2	(0,4)2		159

XV

		5		Page
CHAPT	TER FIVE	: DISCUSSION OF RESULTS		167
5.1	The liga	nds		167
	5.1.1	Electronic spectra of the ligands		167
5.2	Complex dihydra	es of manganese(II) tetrafluorobor zides	ate 	168
	5.2.1	Colour of compounds		168
	5.2.2	Analytical data	*	168
	5.2.3	Melting points/Decomposition temperatures		158
	5.2.4	Percentage yields		169
	5.2.5	Solubility		169
	5.2.6	Molar conductance		169
	5.2.7	Infrared spectra		169
	5.2.8	Electronic spectra		172
	5.2.9	Magnetic properties		172
5.3	dihydra	zides		172
	5.3.1	Colour of compounds		172
	5.3.2	Analytical data		172
	5.3.3	Melting points/Decomposition temperatures		172
	5.3.4	Percentage yields		173
	5.3.5	Solubility		173
	5.3.6	Molar conductance		173
	5.3.7	Infrared spectra		173

xvi

xvii

				Page
	5.3.8	Electronic spectra		175
	5.3.9	Magnetic properties		176
5.4	Complex dihydra	tes of nickel(1) tetrafluoroborate zides		176
	5.4.1	Colour of compounds		176
	5.4.2	Analytical data	70	175
	5.4.3	Melting points/Decomposition temperatures	<u>ð</u>	177
	5.4.4	Percentage yields		177
	5.4.5	Solubility		177
	5.4.6	Molar conductance		177
	5.4.7	Infrared spectra		.177
	5.4.8	Electronic spectra		180
	5.4.9	Magnetic properties		180
5.5	Complex dihydra	kes of copper(11) tetrafluoroborate	e 	181
	5.5.1	Colour of compounds		181
	5.5.2	Analytical data		181
	5.5.3	Melting points/Decomposition temperatures	•	181
	5.5.4	Percentagesyields		181
	5.5.5	Solubility		181
	5.5.6	Molar conductance		182
	5.5.7	Infrared spectra		182

xviii

5.5.8 Electronic spectra 5.5.9 Magnetic properties 5.6 Complexes of zinc(11) tetrafluoroborate dihydrazides 5.6.1 Coldur of compounds 5.6.2 Analytical data 5.6.3 Melting point/Decomposition temperatures 5.6.4 Percentage yields	Page
5.5.9 Magnetic properties 5.6 Complexes of zinc(II) tetrafluoroborate dihydrazides 5.6.1 Coldur of compounds 5.6.2 Analytical data 5.6.3 Melting point/Decomposition temperatures 5.6.4 Percentage yields	184
 5.6 Complexes of zinc(II) tetrafluoroborate dihydrazides 5.6.1 Coldur of compounds 5.6.2 Analytical data 5.6.3 Melting point/Decomposition temperatures 5.6.4 Percentage yields 	185
 5.6.1 Coldur of compounds 5.6.2 Analytical data 5.6.3 Melting point/Decomposition temperatures 5.6.4 Percentage yields 	185
 5.6.2 Analytical data 5.6.3 Melting point/Decomposition temperatures 5.6.4 Percentage yields 	185
5.6.3Melting point/Decomposition temperatures5.6.4Percentage yields	185
5.6.4 Percentage yields	185
	186
5.6.5 Solubility	185
5.6.6 Molar conductance	186
5.6.7 Infrared spectra	186
5.6.8 Magnetic properties	188
5.7 Complexes of cadmium(II) tetrafluoroborate dihydrazides	189
5.7.1 Colour of compounds	189
5.7.2 Analytical data	189
5.7.3 Melting points/Decomposition temperatures	189
5.7.4 Percentage yields	189
5.7.5 Solubility	189
5.7.6 Molar conductance	190
5.7.7 Infrared spectra	190
5.7.8 Magnetic properties	191

3

				Page
5.8	Complexe	es of mercury(II) tetrafluoroborate ides		191
	5.8.1	Colour of compounds		191
	5.8.2	Analytical data		191
	5.8.3	Melting points/Decomposition temperatures		192
	5.8.4	Percentage yields	\mathcal{A}^{Y}	192
	5.8.5	Solubility	0	192
	5.8.6	Molar conductance		192
	5.8.7	Infrared spectra		192
	5.8.8	Magnetic properties		193
5.9	Complex dihydraz	es of magnesium tetrafluoroborate ides		194
	5.9.1	Colour of compounds		194
	5.9.2	Analytical data		194
	5.9.3	Melting points/Decomposition temperatures		194
	5.9.4	Percentage yields		194
	5.9.5	Solubility		194
	5.9.6	Molar conductance		195
	5.9.7	Infrared spectra		195
	5.9.8	Magnetic properties		195
5.10	Proposed	structures for the complexes		196
5.11	Conclusi	on and suggestions for further wo	rk	198
BIBLIC	GRAPHY			200

LIST OF FIGURES

Figure			Page
1	Hydrazide showing the keto, amino and amide functional groups		1
2	Tautomeric forms of hydrazides	•••	1
3	Possible coordination modes of hydrazide	S	8
4	Proposed structures of $MnL{NCS}_2 \cdot nH_2O$		9
5	Cis-octahedral chain structure of ZnC ₃ H ₈ N ₄ O ₂ SO ₄ .3H ₂ O		14
			iner.
Ű	Splitting of the d^5 ion in the presence of octahedral field (e.g. Mn^{2+1})	of 	22
7	Splitting of the d^7 ion in an octahedral (e.g. Co^{2+})	field 	23
â	Splitting of the d ^a ion in an octahedral field (e.g. Ni ²⁺)		23
9	Splitting of the d^9 ion in an octahedral field (e.g. C_{4r}^{2+})		25
		,	
10	The qualitative temperature dependence magnetic susceptibility for (1) normal pa magnetism, (2) Ferromagnetism and	of Ira-	
	(3) Antiferromagnetism		32
11	Deviations from the Curie law that may fitted to the Curie-Weiss law	be 	' 32
69 a		•	
	12252		

Page

12	IR spectra of the ligands	102
13	IR spectra of the ligands (contd.)	103
12	IR spectra of manganese(II) tetrafluoroborate complexes	104
15	IR spectra of manganese(II) tetrafluoroborate complexes (contd.)	105
15	IR spectra of manganese(II) and cobalt(II) tetrafluoroborate complexes	106
17	IR spectra of cobalt(II) tetrafluoroborate	107
18	IR spectra of cobalt(II) tetrafluoroborate	108
19	IR spectra of cobalt(II) and nickel(II) tetra- fluoroborate complexes (contd.)	109
20	IR spectra of nickel(II) tetrafluoroborate complexes (contd.)	110
21	IR spectra of nickel(II) tetrafluoroborate complexes (contd.)	111
22	IR spectra of nickel(II) and copper(II) tetrafluoroborate complexes	112
23	IR spectra of copper(II) tetrafluoroborate complexes (contd.)	113
24	<pre>IR spectra of copper(II) tetrafluoroborate complexes (contd.)</pre>	114
25	IR spectra of zinc(II) tetrafluoroborate complexes	124

xxi

Figure

Figure

12 IR spectra of the ligands 102 13 IR spectra of the ligands (contd.) 103 14 IR spectra of manganese(II) tetrafluoroborate 104 complexes IR spectra of manganese(II) tetrafluoroborate 15 105 complexes (contd.) IR spectra of manganese(II) and cobalt(II) 16 106 tetrafluoroborate complexes 17 IR spectra of cobalt(II) tetrafluoroborate 107 complexes (contd.) 18 IR spectra of cobalt(II) tetrafluoroborate complexes (contd.) (... 108 . . . IR spectra of cobalt(II) and nickel(II) tetra-19 fluoroborate complexes (contd.) 109 IR spectra of nickel(II) tetrafluoroborate 20 110 complexes (contd.) IR spectra of nickel(II) tetrafluoroborate 21 complexes (contd.) 111 IR spectra of nickel(II) and copper(II) 22 112 tetrafluoroborate complexes . . . 23 IR spectra of copper(II) tetrafluoroborate complexes (contd.) . . . 113 24 IR spectra of copper(II) tetrafluoroborate complexes (contd.) . . . 114 . . . 25 IR spectra of zinc(II) tetrafluoroborate complexes 124 ...

xxi

Page

xxii

Figure		Page
26	IR spectra of zinc(11) tetrafluoroborate complexes (contd.)	125
27	<pre>IR spectra of zinc(II) tetrafluoroborate complexes (contd.)</pre>	126
28	IR spectra of zinc(II) and cadmium(II) tetrafluoroborate complexes	127
29	IR spectra of cadmium(II) tetrafluoroborate complexes (contd.)	128
30	IR spectra of cadmium(II) and mercury(U) tetrafluoroborate complexes	129
31	IR spectra of mercury(II) tetrafluoroborate complexes (contd.)	130
32	IR spectra of mercury(II) and magnesium tetrafluoroborate complexes (contd.)	131
33	IR spectra of mercury(II) and magnesium tetrafluoroborate complexes (contd.)	132
34	IR spectra of magnesium tetrafluoroborate complexes (contd.)	133
35	IR spectra of magnesium tetrafluoroborate complexes (contd.)	134
36	UV spectra of the ligands in water	140
37	UV spectra of the ligands in methanol	145
38	Reflectance spectra of nickel(II) tetrafluoro- borate dihydrazides	146
39	Reflectance spectra of nickel(II) tetrafluoro- borate dihydrazides (contd.)	147
40	Reflectance spectra of cobalt(11) tetrafluoro- borate dihydrazides	148

xxiii

Figure		Page
41	Reflectance spectra of cobalt(11) tetrafluoro- borate dihydrazides (contd.)	149
42	Reflectance spectra of copper(II) tetrafluoro- borate dihydrazides	150
-43	Reflectance spectra of copper(II) tetrafluoro- borate dihydrazides (contd.)	151
44	Proposed structures of some of the complexes	197
	INFRSIT OF IBADAN	•

LIST OF TABLES

	5		
		1	1

Table		Page
1	IR frequencies (cm ⁻¹) of malonic and succinic dihydrazides	4
2	Electronic spectral data (cm ⁻¹) of some Ni(II) and Co(II) complexes of majoric and succinic dibydrazide	14
3	Room temperature magnetic moments and suggested stereochemistry for some dihydrazide complexes	12
ti,	Terms arising from the d ⁿ configuration.	118
5	Terms arising from d ⁿ configurations in octahedral and tetrahedral fields	21
6	Analytical data of the metal fluoroborates	76
7	Methods of preparation of the tetrafluoro- borate complexes	77
8	Analytical data of the ligands and the tetrafluoroborate complexes	82
9	Solubility data of the ligands and tetrafluoro- borate complexes	93
10	Conductance data of the tetrafluoroborate complexes in water and DMSO ($\sim 10^{-3}$ M)	100
11	Infrared frequencies (cm ⁻¹) and tentative assignments of the complexes of oxalic, and succinic dihydrazides	
	respectively	115
11 (conte	 Infrared frequencies (cm⁻¹) and tentative assignments of the complexes of adipic, phthalic and terephthalic dihydrazides 	135
11 (conto	 Infrared frequencies (cm⁻¹) and tentative assignments of the tetrafluoroborate salts. 	143
12	Electronic spectral data of the ligands and complexes of cobalt(11), nickel(11) and copper(11) tetrafluoroborate	150
	Contract of the second s	106

xxiv

2

Table Page Magnetic data of manganese(II), cobalt(II), nickel(II) and copper(II) tetrafluoroborate 13 complexes of the dihydrazides 161 . . . Magnetic data of zinc(11), cadmium(11), 14 mercury(11) and magnesium tetrafluoro-164 borate complexes . . . A

XXV

xxvi

ABBREVIATIONS

ODH	-	oxalic dihydrazide
MDH	-	malonic dihydrazide
SDH	-	succinic dihydrazide
ADH	-	adipic dihydrazide
PDH	÷	phthalic dihydrazide
TDH	-	terephthalic dihydrazide
EDTA	-	ethylenediaminetetraacetic acid disodium salt
DMF	-	dimethylformamide
DMSO	-	dimethylsulphoxide
IR	-	infrared
UV-VIS	-	ultraviolet visible
UV	-	ultraviolet
СТ	-	charge transfer
Fig	-	figure
e.m.u.	-	electromagnetic unit
c.g.s.	-	centimetre-gram-second
B.M.		Bohr magneton
Meff.	5	effective magnetic moment
XA	-	the susceptibility per gram atom
Хм	-	molar susceptibility
XL	-	ligand diamagnetic correction

χ_{M_c}	- calculated molar susceptibility	
χ _{Me}	- experimental molar susceptibility	* 2
B	- beta	
e	electronic charge	~ 1
h	- Planck's constant	Q
m	- electron mass	R'
с	- speed of light	
k	- Boltzmann's constant	
М	- metal(11) i.e. Mn(11), Co(11), Ni(11), Cu	(11),
	Zn(II), Cd(II), Hg(II) and Mg	
mpt	- melting point	
v	- very	
S	- strong	
sh	- shoulder	
m	- medium	
W	- weak	
br	- broad	
in	insoluble	
S	- soluble	
SS	- slightly soluble	
SSH	- slightly soluble in hot.	

xxvii

CHAPTER ONE

INTRODUCTION

1.1 General

Hydrazides are derivatives of monobasic and polybasic organic acids. They have the general formula, R-(CONHNH₂)_n, where n=1 and 2 for mono- and dihydrazides respectively. R can be alkyl, substituted alkyl, aryl, substituted aryl, heterocyclic or alicyclic group. The hydrazide is polyfunctional with the keto, amino and amide groups.

Fig. 1: Hydrazide showing the keto, amino and amide functional groups.

In aqueous solutions, most hydrazides tautomerise into the keto and enol forms¹, ², ³. The enol form could also be in equilibrium with its deprotonated form.

Fig. 2: Tautomeric forms of hydrazides.

The keto form is more in neutral or weakly acidic medium, while the enol form predominates at higher pH^{2,4}.

1.1.1 Synthesis of hydrazides

Hydrazides are prepared by refluxing the esters of the parent acids with an excess of 85% hydrazine hydrate with or without the use of solvent⁵⁻⁸. This may be represented by the following equation:

$$R \xrightarrow{COOC_2H_5}_{COOC_2H_5} + 2H_2NNH_2.H_2O \rightarrow R \xrightarrow{CONHNH_2}_{CONHNH_2} 2C_2H_5OH + 2H_2O$$

In some cases^{8,9}, it may be necessary to first prepare the acid chloride from the parent acid, followed by esterification e.g.

$$CH_2=CHCH_2C \xrightarrow{O}_{OH} + SOCI_2 + CH_2=CHCH_2C \xrightarrow{O}_{CI} + SO_2+HCI + CI + SO_2+HCI +$$

The hydrazide is subsequently prepared as described above. This procedure is generally applied to the esterification of highly selective acids which might otherwise undergo isomerisation.

1.1.2 Infrared spectra of hydrazides

The infrared spectra of hydrazides and other N-substituted amides have been extensively studied¹⁰⁻²¹. The infrared spectra of hydrazides, irrespective of the nature of R are expected to comprise the following vibrational modes: the range 3000-3500 cm⁻¹ contains broad complex bands assigned to the NH stretches of NH and NH₂ groups, and the region between 700-2000 cm⁻¹ which usually contains a system of bands due to $\mathcal{I}(C=0)$, $\mathcal{I}(C=0)$, $\mathcal{I}(C=N)$, $\mathcal{I}(C=N)$, $\mathcal{S}(NH)$, $\mathcal{S}(NH_2)$, $\mathcal{S}(NCO)$, $\mathcal{S}(C=0)$, $\mathcal{S}(C=N)$, $\mathcal{S}(CCO)$ among others.

The amide I, II and III bands are found to be related to γ (C=O), (γ (CN)+ β (NH₂)) and (γ (CN)+ δ (NH)) bands respectively. The amide I band occurs in the 1610-1690 cm⁻¹ region whereas amide II absorbs around 1500-1570 cm⁻¹ and amide III around 1200-1295 cm⁻¹ respectively. Table 1 shows the IR frequencies of malonic and succinic dihydrazides.

1.1.3 Applications of hydrazides

Hydrazides are biologically active compounds. They are useful as antitubercular agents⁵, as plant growth regulators²², as antispasmodics²³, insecticides and fungicides^{24,25}; they also have antitumor and anticancer activities²⁶⁻²⁷. A series of hydrazides also show chemiluminescent properties⁷. Hydrazides have also found use as mask-formers in colour photography²⁸, as antioxidants for glycerides²⁹ and an antiknock additives³⁰. They

3

Malonic dihydrazide	Succinic dihydrazide	Tentative assignment
3200sb	3300sb	-2(NH)
3150m	3180m	2(NH2)
1670s	1620s	$\sqrt{(c=0)}$
1600sb	1598sb	d(NH2) S(NNH)
1563s	1550m	√(cc), \$(cco)
1540s	1540s 1520sh	(CN) + S(NH)
1408m	1450s 1375sh, 1340s	-2(с - н), -2(с
1310sh	1320sh) S(CH_), S(HNO
1282sh	1252w) 2
1247m	1232s	$-2(cn) + \delta(nH)$
1203m	,0) , , , , , , , , , , , , , , , , , , ,
1163m	1172s) $\mathcal{D}(\text{HNC}), \mathcal{D}(\text{HNN})$
1142m	1120m)
1053s	S)
1008m	1008s	S (NN)
962m	942m)
908m	890w) ð(C - H)
855w	850w) S (cc)
794m	797w) \$ (NCO)
	748m) D(NOO)

TABLE 1: IR FREQUENCIES (cm⁻¹) OF MALONIC AND SUCCINIC DIHYDRAZIDES [10 - 13]

Note: s = strong, m = medium, w = weak, sh = shoulder, sb = strong and broad, $\sqrt{2} = stretching$ frequency, $\delta = bending$ frequency. have also been used to enhance the bonding of free sulphur by rubbers during vulcanization³¹, and in synthetic polymers³².

1.2 Preparation of metal complexes of hydrazides

Various methods have been used in the synthesis of metal dihydrazide complexes.

- Equimolar amounts of the desired metal salt and ligand dissolved in water/methanol and stirred vigorously and left overnight. In most cases, the complex were formed within an hour of stirring^{10,11}. The products were filtered off, washed with cold water and finally with hot methanol and dried in a desiccator over calcium chloride. The following complexes where L = malonic and succinic dihydrazides were synthesised among others using the method described above, or a slight modification of it: NiL_{3/2}(ClO₄)₂, RhL_{3/2}Cl₃, MnL₂Cl₂, CdL_{3/2}SO₄, ZnL_{3/2}SO₄.2H₂O, AgLNO₃.H₂O, FeL_{3/2}SO₄, 3H₂O, PbLCl₂.
- (ii) By refluxing a suspension of 1:3 molar ratio of metal salt to ligand for one hour, and keeping the mixture in ice for 30 minutes, PrL₃(SCN)₃, LnL₃(ClO₄)₂ (where L is malonic dihydrazide) were isolated¹². Using the same molar ratio as stated above, LnL₃(NO₃)₂ and LnL₃Cl₃ precipitated out immediately¹².

5

Using warm aqueous solution and with a 1:1 molar ratio of Mn(NCS)₂ to malonic acid dihydrazide, Mn(DM)₂(NCS)₂.H₂O was formed after two to three days³³. Manganese thiocyanate complexes of succinic,glutaric, adipic, azelaic and sebacic acid dihydrazides have been similarly prepared³³.

1.3 Infrared spectra of hydrazide complexes

The interpretation of the infrared spectra of acid amides, acid hydrazides and similar compounds, have rested on the assignment and identification of amide I (Q(C=0), amide II ($QCN+\delta NH_2$) and amide III ($QCN+\delta NH$) as well as the NCO deformation vibration^{10-12,33-59}.

The complexity of the bands in the region $3000-3300 \text{ cm}^{-1}$ probably due to the stretching vibrations of the NH bands of the amino and amide groups in which the absorption of H₂O may be superimposed in most cases have made assignments using this region unreliable^{3,43-45}.

If frequencies are lowered in the spectra of the complexes compared to that of the free ligand, one can infer coordination because the vibrational energy is lowered on bond formation. However, if frequency is stationary, it suggests non-coordination. Likewise, if frequencies increase, it is an indication of noncoordination because vibrational energy increases due probably to some sort of back donation⁶⁰ of electrons by the metal ion to the ligands on coordination. The disappearance of the NCO deformation band in dihydrazide complexes may also be an indication of coordination through the amide III band¹¹.

From spectral data^{10-12,33-54}, several modes of coordination of dihydrazides were proposed. The potential donor sites are the carbonyl oxygen and the amide or amino nitrogens (Figure 3).

Kharitonov, Machkhosvili, Ahmed and others 10-12, 33-54have established from spectral data that the dihydrazides of carboxylic acids react preferentially as bidentate ligands, forming dimeric or polymeric complexes. The proposed structure³⁸ of MnL(NCS)₂.nH₂O, where L represents the dihydrazides of malonic, succinic, glutaric, adipic, azelaic and sebacic acids, and n = 0,1,2 or 3 is as shown in Figure 4.

Ahmed and Chaudhuri¹¹ in their report on the complexes of malonic and succinic dihydrazides with some cobalt, nickel, copper and palladium salts discussed the possibility of a sevenmembered ring for succinic dihydrazide. The preference for coordination via the amide nitrogen in their complexes was speculated to mean that the carbonyl group is relatively poorer in electron density than the amide nitrogen.

It should be noted that where the enol form of the hydrazide is involved in complex formation, the infrared spectrum should

7

Fig. 3 Possible coordination modes of dihydrazides

contain an intense band around 1350 cm⁻¹ associated with the stretching vibrations of a single C-O bond ($\sqrt[3]{(C-O)}$). This band should, of course, be absent from the infrared spectrum of the keto form where there are no C-O single bond^{3,4}. The predominantly stretching vibrations of the C=N double bond ($\sqrt[3]{(C=N)}$) around 1580 cm⁻¹ (inflection) and about 1636 cm⁻¹ in the enol forms of hydrazides would also have served a useful diagonistic purpose. However, since this region also contains the bands due to δ (NH₂) deformation vibrations of the amino group, it is difficult to resolve unambiguously the $\sqrt[3]{(C=N)}$ and δ (NH₂) bands without additional investigations.

1.4 Electronic spectra

The reflectance and mull spectral studies¹¹ on the nickel and cobalt complexes of malonic (MDH) and succinic (SDH) dihydrazides revealed an octahedral environment around nickel(II) and cobalt(II) ions, and signifies the perchlorate coordination¹¹ in the nickel perchlorate complex of MDH. (Table 2).

1.5 Magnetic properties

Magnetic data have not been generally utilized with dicarboxylic acid hydrazide complexes^{10-11,47-48}. Table 3 gives a summary of the magnetic moments at room temperature of some

Compound	Meff (B.M)	Proposed Stereochemistry	Reference
	5 (1	0	Dial
^m (C ₃ ^H 8 ^N 4 ^O 2)2 ^{CI} 2· ^{2H} 2 ^O	5.64	Octahedral	010]
€ (C ₃ H ₈ N ₄ O ₂) ₂ SO ₄ .2H ₂ O	6.13	Octahedral	[10]
MmC ₄ H ₁₀ N ₄ O ₂ SO ₄ .H ₂ O	6.00	Octahedral	[11]
Mm(C ₄ H ₁₀ N ₄ O ₂) ₂ Cl ₂	5.99	Octahedral	[11]
FeC3H8N402S04.4H20	4.73	Distorted Octahedron	[10]
Fe(C4H10N402)3/2SO 4* 3H20	5.65	Octahedral	[11]
Co(C ₃ H ₈ N ₄ O ₂) ₂ Cl ₂	4.74	Octahedral	[10]
Co(C ₃ H ₈ N ₄ O ₂) _{3/2} Cl ₂	4.49	Octahedral	[10]
CoC ₄ H ₁₀ N ₄ O ₂ Cl ₂ .3H ₂ O	4.76	Octahedral	[11]
(1(C3H8N402)3/2S04.4H20	3.04	Octahedral	[10]
%i(C3H8N402)2C12.2H20	3.34	Octahedral	[11]
Si(C3H8N402)3/2(C104)2.H20	3.15	Octahedral	[11]
i(C4H10N402)3/2C12.4H20 -	3.18	Octahedral	[11]
Si(C4H10N402)3/2 SO4.2H20	3.01	Octahedral	[11]
Cu(C4H10N402)3/2C12.3H20	2.04	Octahedral	[11]

TABLE 3: ROOM TEMPERATURE MAGNETIC MOMENTS AND SUGGESTED STEREOCHEMISTRY FOR SOME DIHYDRAZIDE COMPLEXES

*-

dihydrazide metal complexes. The values revealed that the complexes are magnetically dilute with absence of metal-metal interactions.

1.6 X-ray studies

X-ray diffraction studies of dihydrazide complexes, like for other coordination compounds, are of interest. The x-ray structure of the compound formed by zinc sulphate with malonic acid dihydrazide³⁴⁻³⁵ showed that $ZnC_3H_8N_4O_2$ SO_4 . $3H_2O$ is made up of polymeric cations, $[ZnC_3H_8N_4O_2(OH_2)_2]^{2+}$ and tetrahedral anions, SO_4^{2-} . It showed³⁴ (Fig. 5) that malonic dihydrazide is bidentate, forming five-membered metal-containing rings through the oxygen atoms of the carbonyl group and the nitrogen atom of the amino group with different zinc atoms. Two of the water molecules were in the inner sphere to make up the cis-octahedral chain structure, while the sulphato group was outside apparently because of the relatively weak tendency of sulphato groups to enter the inner sphere of the complex.

1.7 Applications of metal complexes of hydrazides

Interest in the study of metal complexes of hydrazides has increased apparently because of their potential biological ^{34,36,59,61-64} and industrial ⁶⁵⁻⁶⁸ applications.

- (a) The cytostatic³⁶ and antibacterial⁶¹ activities of hydrazides were further enhanced on complex formation. In vitro studies in animal cells on the behaviour of isonicotinoyl and its copper complex revealed a reduced activity on complexation⁶². This may be due to the fact that amino acids which are present in animal cells have better complexing tendency than the isonicotinic acid hydrazide used.in the study.
- (b) Collizi and co-workers⁶³, in their work, reported the effectiveness of hydrazide complexes in the reduction of the toxic effects of heavy metals in animal cells.
- (c) Metal complexes of hydrazides have also found use as synthetic high polymers⁶⁷.
- (d) They are used in analytical chemistry in the spectrophotometric determination of gold, copper and cobalt⁶⁸.

Aim of the Work

Though the complexes of monocarboxylic acid hydrazides are well known, ^{2,4}, those of dicarboxylic acid hydrazides have received less attention^{10-12,47,48}. Studies on the possible effect of varying metal to ligand reactant ratios have not been systematically carried out.

A survey of the literature showed that no work has yet been reported on metal(II) tetrafluoroborate complexes of

dicarboxylic acid hydrazides.

Divalent tetrafluoroborates of manganese, cobalt, nickel, copper, zinc, cadmium, mercury and magnesium will be prepared and complexed with the hydrazides of oxalic, malonic, succinic, adipic, phthalic and terephthalic acids. This will be done using a 1:1 and 1:2 metal to ligand reactant ratios. The complexes will be characterized by elemental analysis, room temperature magnetic susceptibility, electronic and infrared spectral studies as well as conductance measurements.

The results are expected to provide information relating to their possible structures and also provide information that will be of use in future as to their possible biological and industrial applications.

WERSHI

CHAPTER TWO

THEORETICAL

2.1 Electronic spectra^{60,69-75}

Each of the several electrons in a partly filled shell may be assigned its own set of four quantum numbers n, I, M_L , and s; where n is the principal quantum number, L azimuthal or orbital quantum number, M_L magnetic quantum number and s the spin quantum number.

In filling an orbital with two electrons for instance, the spir. quantum number is employed so that the Bault's exclusion principle is satisfied. There are usually strong interactions among these electrons. These are spin-spin coupling, orbit-orbit coupling and spin-orbit coupling.

Russel-Saunders or L-S coupling scheme

This scheme assumes that

spin-spin coupling > orbit-orbit coupling > spin-orbit coupling s_1s_2 l_1l_2 s_1l_1 This situation is found to apply to the elements in the first transition series and the ground state of the heavier metals. For convenience, the terms which may arise by Russel-Saunders coupl-

ing from all dⁿ configurations are listed in Table 4.

Configuration	Terms
d ¹ , d ⁹	2 _D
d ² , d ⁸	${}^{3}_{F}, {}^{3}_{P}, {}^{1}_{G}, {}^{1}_{D}, {}^{1}_{S}$
d ³ , d ⁷	4 F, 4 P, 2 G, 2 H, 2 F, 2 D ₍₂₎ , 2 P
d ⁴ , d ⁶	⁵ D, ³ H, ³ G, ³ F ₍₂₎ , ³ D, ³ P ₍₂₎
	1 I, 1 G ₍₂₎ , 1 F, 1 D ₍₂₎ , 1 S ₍₂₎
d ⁵	⁶ s, ⁴ G, ⁴ F ₍₂₎ , ⁴ P ₍₂₎ , ² I, ² H ₍₂₎ ,
	${}^{2}G_{(2)}, {}^{2}F_{(2)}, {}^{2}D_{(3)}, {}^{2}P_{(2)}, {}^{2}S.$
d ⁰ , d ¹⁰	1 _s

TABLE 4: TERMS ARISING FROM THE dⁿ CONFIGURATION

N.B.: Figures in parentheses refer to the number of times the term occurs.

Selection Rules: For a transition to give an optical absorption, $\Delta S=0$. Transitions for which $\Delta S \neq 0$ are said to be spintoroidden (spin selection rule). Other transitions which involve redistribution of electrons in a single quantum shell (e.g. d+d) z=0, s+s, etc.) are orbitally forbidden (Laport rule). For an arbitally allowed transition, $\Delta L = \pm 1$. And for a transition to setisfy the electronic selection rule, the symmetry of the wavetanction must change as excitation occurs, that is $\Delta \Psi = 0$, hence transitions of the type g*g and u u are described as being parity torbidden whereas g*u is parity allowed, g and u are spectroscopic terms describing the symmetry of the wave function (Ψ) •here g = gerade and U = ungerade.

In an octahedral complex for example, there are a number of normal modes of vibrations, some of which are antisymmetric with respect to the inversion centre (u-type vibrations). On mixing the vibrational and electronic parts of the wave function iso-called vibranic coupling), the ground term may become mixed with a g-type vibration and the excited term with a u-type vibration. The transition instead of being g-ig becomes g-u and the therefore allowed.

"Intensity stealing": This phenomenon occurs when a ligand field transition occurs close to a charge-transfer band, causing

the intensity of the ligand field to increase markedly. This is believed to be due to the mixing of the electronic wavefunctions of the forbidden excited term with the allowed level, resulting in electronic transitions to the excited term becoming allowed. This phenomenon decreases rapidly as the separation between the allowed and forbidden bands increases.

The laxity of the Laporte rule coupled with the "intensity stealing" phenomenon makes it possible for most d d transitions and other spin-forbidden transitions to be observed in the spectra of most transition complexes.

In a ligand field, the terms arising from free-ion dⁿ configurations in both octahedral and tetrahedral fields are listed in Table 5.

A high spin d^5 configuration is not expected to have strong d d transitions because there is no excited state of the same spin multiplicity as the ground term is ${}^6A_{1g}$ (Figure 6). In high spin d^7 ion in an octahedral field, the 4F ground state and 4P lowest excited state of cobalt(11) ion splits according to the energy diagram shown in Figure 7.

In an octahedral field, the splitting pattern of d⁸ nickel(II) ion is as shown in Figure 8.

The d⁹ configuration gives rise to the ²D ground term. In an octahedral field, the ground term is ²Eg, hence there is only one transition in the octahedral field, ²Eg ²T_{2g} as shown in Figure 9. In a tetrahedral field, the transition is however ${}^{2}T_{2}$ ²E. Though a single transition is predicted, there are actually several transitions in close proximity⁶⁰.

Magnetochemistry^{60,69,72,77-79}

volume

Magnetochemical measurements are associated with the presence of paramagnetism, which inturn may be related to the presence of unpaired electrons in the metal ion. When a substance is placed in a magnetic field of strength H, the magnetic flux B within the substance is given by:

 $B = H + 4\overline{\Lambda} I \qquad (2.2.1)$ where I is the intensity of magnetization or magnetic moment per unit volume. Alternatively, we can divide by H and write $P = I + 4\overline{\Lambda} K \qquad (2.2.2)$ where P is the permeability and K the susceptibility per unit

there is a tendency for the magnetic dipoles of the paramagetic material to be aligned in the direction of the field. For a diagmagnetic substance there is polarization of the electron cloud.

In either case, equation (2.2.1) and (2.2.2) holds.

In practice, susceptibility is usually expressed per unit mass and given the symbol g

 $\chi_g = K/c$... (2.2.3) where c is the density of the material. And the molar susceptibility χ_m is defined as

$$\chi_m = \chi_g.M$$

where M is the molecular mass of the material.

On the basis of I, K and I, therefore, substance may be divided into three categories: diamagnetic, paramagnetic and ferro- or antiferromagnetic.

(2.2.4)

<u>Diagmagnetism</u>: Substances with negative susceptibilities are said to be diamagnetic and have values of the order of -1 to -500×10^{-6} c.g.s. units are usually independent of field strength and temperature. The diamagnetic susceptibility of a molecule may be written as:

$$\chi_{mol} = \sum_{i} n_{i} \chi_{i} + \sum E \dots (2.2.5)$$

where the molecule contains n_i atoms of atomic susceptibility, χ_i (i.e. per gram atom), χ_i represents "constitutive" corrections which depend on the nature of the bonds involved. All substances have diamagnetic susceptibility hence it is necessary to attempt to correct for this in determining paramagnetic susceptibilities. Diamagnetism arises mostly from the interaction of paired electrons with the magnetic field.

<u>Paramagnetism</u>: Paramagnetic compounds have positive susceptibilities and these are of the order 0-100 x 10^{-6} c.g.s units, and are independent of field strength, but dependent on temperature (inversely) because the ordering of the magnetic moments that give rise to them is resisted by thermal motion. The variation of paramagnetic susceptibility χ , with temperature T is given by Curie's law

where C is the Curie's constant. Normal paramagnetic substances substances obey the Curie law, and most substances obey the Curie-Weiss law.

$$\chi = c/T + \theta$$

0 is known as the Weiss constant.

The magnetic properties of paramagnetic substances are usually expressed in terms of the effective magnetic moment, μ_{e} shown by the equation

$$\mathcal{K}_{A} = \frac{N\beta^{2}\mu_{e}^{2}}{3kT} + NK$$

where β is the Bohr magneton = 0.9273x10²⁰ erg/guass, K is the Boltzmann's constant = 1.3806x10⁻⁶ erg/deg, \mathcal{A}_{A} is the susceptibility per gram atom, NX is the temperatue independent paramagnetism, and N is the Avogadro's number.

$$\mu_e = 2.828 \sqrt{(\chi_A - N)T} B.M.$$

The temperature independent paramagnetism, N is often neglected and the effective magnetic moment of becomes

$$\mu_e = 2.828 \int \vec{\chi}_A T = B.W$$

Usually, the effective magnetic moment, μ_e , of a paramagnetic material lies between $\mu_s = \sqrt{45(s+1)}$ and $\mu_{s+L} = \sqrt{45(s+1)+L(L+1)}$ that is μ_s (spin only magnetic moment) and μ_{s+L} (spin + orbital contribution) respectively. When μ_e exceeds μ_s , it is assumed to be finite value of D i.e. of an "orbital contribution" to the magnetic moment. For an electron to have orbital angular moment about an axis, the orbital which it occupies must be transformable into an entirely equivalent and degenerate orbital by rotation about the axis in question. Both orbitals must contain electrons of the same spin. For a free ion, all the orbitals are degenerate and the dxy, dxz and dyz orbitals are transformable

into each other by 90° rotations about the relevant axes. And 45° rotations of the dxy orbital about the z axis transform it into the dx²-y² orbital.

For d⁵ and d¹⁰, L=O and no orbital contribution to the magnetic moment is expected. In these cases, every orbital contains electrons of the same spin, thus preventing the development of any orbital angular momentum.

In an octahedral or tetrahedral field, the d arbitals are split into triplet, t_{2g} (dxy, dyz, dxz) and a doublet eg (dz², dx²-y²), which are no longer degenerate. Thus, the dx²-y² and dz² orbitals, being of different shapes, cannot be interchanged and hence have no orbital angular momentum associated with them. Also the interchange of dxy and dx²-y² orbitals which hitherto was an important source of orbital contribution in the free ion has been quenched. In the octahedral field, therefore, the configurations t_{2g}^{3} and t_{2g}^{6} will now have a total angular momentum of zero, while among the high spin complexes only the configurations t_{2g}^{1} , t_{2g}^{2} , $t_{2g}^{4}e_{g}^{2}$ and $t_{2g}^{5}e_{2g}^{2}$ have any orbital angular momentum. For tetrahedral species only, the configurations $e^{2}t_{2}^{1}$, $e^{2}t_{2}^{2}$, $e^{4}t_{2}^{4}$ and $e^{4}t_{2}^{5}$ is expected to have orbital angular momentum. However, in cases where orbital contributions are not expected of a

particular configuration, the effective magnetic moment still differs from the spin only value. For instance, it is not expected that A and E terms should give any orbital contribution. But, if thef eis a T term of the same multiplicity at a higher energy level, it is possible for the spin-orbit coupling to "mix" some of this into the ground term, thus introducting certain amount of orbital angular momentum into the latter. A and E terms arising from F and D terms respectively are accompanied by a higher T term of the same multiplicity. For these, the "mixing-in" effect is expressed by the formula:

$$\mu_{e} = \mu_{s} \left(1 - \frac{K}{100}\right)$$

where \bigotimes is a constant which depends on the spectroscopic ground state and the number of d electrons, $\bigotimes = 4$ for A terms and 2 for E terms; \bigwedge is the spin-orbit coupling constant for the terms involved, and 10Dq is the separation between the ground level and the level being mixed in. The parameter \bigwedge is positive for less than half-filled shells and negative for more than halffilled shells, \bigotimes and 10Dq are positive quantities. Hence, the observed moments may be greater or less than the spin only value. The magnetic moments of the complexes with T ground terms generally vary with temperature and depart significantly from the spin-only value.

<u>Ferromagnetism and Antiferromagnetism</u>: These are special cases of paramagnetism where the magnetic dilution is inadequate, thus making the magnetic dipoles on adjascent paramagnetic centres interact. The two possibilities are either that adjascent dipoles may tend to align themselves parallel to the applied field or antiparallel to the applied field. The former leads to ferromagnetism and the latter being antiferromagnetism. Ferro- and antiferromagnetism are known as "Cooperative phenomena". In ferromagnetic materials, P>>1 and can be as high as 10⁴, being both field and temperature dependent. In antiferromagnetic materials χ is usually less than for normal paramagnetic materials and it is temperature and sometimes field dependent.

Figure 10 compares the temperature dependence of the susceptibility for (1) a normal paramagnetism, (2) ferromagnetism, and (3) antiferromagnetism.

For ferromagnetism above T_c , the substance follows Curie or the Curie-Weiss law and susceptibility is independent of field strength. Below T_c , the susceptibility does not depend on temperature or field strength in a simple manner. For

•Fig. 1) Deviations from the Curie Law that may be fitted to the Curie – Weiss Law

antiferromagnetism there is again a characteristic temperature, T_N , called the Neel temperature. Above T_N the susceptibility drops with decreasing temperature.

In general, in magnetically concentrated systems a positive Weiss constant is characteristic of antiferromagnetism and a negative one of ferromagnetism (Figure 11).

Many methods have been employed in the measurements of the magnetic properties of materials in solid, liquid and gaseous states among which are the Gouy, Faraday, Quincke and NMR methods. The simplest and most commonly used method is the Gouy method.

2.3 Infrared spectra^{69,80-83}

The energies required for molecular vibrations are comparable to those of quanta of infrared radiation. A simple diatomic covalent bond is considered as a spring with atomic masses at either side. The stiffness of the spring is described by a force constant, i. When in motion, the induced vibrations are adequately described by Hooke's law of simple harmonic

F = -kX ... (2.3.1)

where F is the force tending to restore it to equilibrium,

k is the force constant and X is the displacement. The force constant (k) is a direct measure of the bond strength. The force constant (k) is a direct measure of the bond strength. The frequency of motion is

$$\sqrt{2} = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \qquad \dots \qquad (2,3,2)$$

where μ is the reduced mass, i.e. the harmonic mean of the individual masses.

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$$
 ... (2.3.3)

or

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \qquad \dots \qquad (2.3.4)$$

From quantum theory, only certain energy transitions are allowed, as determined by a quantum number, n

$$E_n = (n + \frac{1}{2})h\sqrt{2}$$
 ... (2.3.5)

where n = 0, 1, 2, 3, ... etc.

From the Bonr's principle, the frequency of a radiation exciting a molecule from the lowest energy level (n=0) of energy E_0 to the first energy level (n=1) of energy E_1 is given by

$$h = E_1 - E_0 \qquad \dots \qquad (2.3.6)$$

Equation (2.3.5) gives the value of $E_0 = \frac{1}{2}h\sqrt{2}$ and $E_1 = 3/2h\sqrt{2}$. By substituting therefore in Bohr's equation, give

$$\sqrt{2} = \frac{(E_1 + E_0)}{h} \dots (2.3.7)$$

Selection rules

- For a molecule to absorb infrared radiation, there must be a change in dipole moment during molecular vibrations.
- The change in the vibrational quantum number must be equal to ±1.
- 3. For overtones and combinations, 12, ±3, ±4, ...

The absorption bands in the intrared region of the spectrum, arising from excitation of molecular vibrations and rotations, are determined by the arrangement of atoms in space, their masses, bond lengths and angles and by the forces between them.

There are two types of fundamental vibrations: stretching, in which the distance between two atoms increases or decreases but the atoms remain in the same bond axis, and bending (or deformation), in which the position of the atom changes relative to the original bond axis,

A non-linear molecule that contains n atoms has 3n-6 possible fundamental modes that can be responsible for the absorption of infrared radiation. For a linear molecule there are however, 3n-5 possible fundamental vibrational modes. However, if the absorption occurs outside the region ordinarily examined or if the resulting absorptions are so close that they cannot be resolved or of very weak intensity, the predicted number of peaks will not be observed.

Additional (non-fundamental) absorption bands may occur because of the presence of overtones (or harmonics) combination bands (the sum of two or more different vibrations) and difference bands (the difference of two or more different vibrations).

The spectrum of a coordinated ligand differs from that of the free ligand since an additional atom is introduced into the ligand vibrating system; the bond lengths, angles and interatomic forces are directly or indirectly affected. The differences between the spectra of free ligand and complex fall into three categories.

<u>Band position</u>: On coordination, bands associated with the stretching of bonds involving the coordinated atom(s) usually move to longer wavelength (lower energy). For example, the free carbonate anion absorption at 890 cm⁻¹ shifts to 850 and 830 cm⁻¹ on coordination as unidentate and bidentate ligand respectively.

- Relative band intensities: While the band position remains 2. unchanged, there is a change in the intensity.
- Splitting of the bands: Single peaks in the free ligand 3. may be split into several closely spaced bands in the complex.

In practice, the spectrum of the ligand is usually compared with that of a compound in which the ligand is coordinated.

WERSTH OF BRUM

BADP

CHAPTER THREE

EXPERIMENTAL

3.1 Reagents

Adipic acid, terephthalic acid, diethyl oxalate, diethyl malonate, diethyl succinate, diethyl phthalate, calcium carbonate, manganese carbonate, cobalt carbonate, nickel carbonate, copper carbonate (basic), zinc carbonate (basic), cadmium carbonate, mercury carbonate, magnesium carbonate, sodium sulphate, sodium hydrogen carbonate, hydrazine hydrate, fluoroboric acid, ethylenediamine tetraacetic acid (sodium salt), zinc sulphate heptahydrate, ammonium chloride, hexamine, solochrome black, xylenol orange, murexide, triethanolamine, hydroxylammonium chloride, potassium nitrate, sodium chloride (spectroscopic grade), perchloric acid, nitric acid, sulphuric acid, ammonium hydroxide.

Solvents. Methanol, ethanol, benzene, hexane, acetone, nitrobenzene, nitromethane, acetonitrile, dimethylsulfoxide (DMSO), dimethylformamide (DMF). The solvents were further purified, using the appropriate methods outlined in the literature⁸.

All the reagents were obtained from British Drug Houses (BDH) Chemical and the Fischer Scientific Company Ltd.

3.2 Preparation of the ligands 5,6,8,9,11,86

3.2.1 Preparation of oxalic dihydrazide (ODH)

This was prepared by adding 20 g diethyl oxalate (0.137 mol) into 20 ml (0.382 mol) hydrazine hydrate in a 250 ml beaker while stirring with a Gallenkamp magnetic stirrer at room temperature. The white precipitates of ODH which separated were filtered, washed several times with ethanol and dried in a vacuum desiccator over silica gel.

3.2.2 Preparation of malonic dihydrazide (MDH)

A sample of 25 g diethyl malonate (0.156 mol) was slowly added into a 250 ml beaker containing 25 ml (0.479 mol) hydrazine hydrate and stirred as described above. The white precipitates which formed were filtered off, washed thoroughly with ethanol and dried in a desiccator over silica gel.

3.2.3 Preparation of succinic dihydrazide (SDH)

A quantity of 30 g diethyl succinate (0.172 mol) was slowly added to 30 ml (0.575 mol) hydrazine hydrate in a beaker with stirring. The white precipitates were filtered off, washed several times with ethanol and dried as before over silica gel.

3.2.4 Preparation of adipic dihydrazide (ADH)

Adipic acid (74.9 g,0.513 mol) was placed in a two-litre

Ethanol (95.3 ml) was added round-bottomed flask. followed by benzene (187.5 ml) and concentrated sulphuric acid (16.5 ml), while gently swirling the contents of the flask. The mixture was then refluxed for six hours on a water bath. The contents of the flask were then poured into a large volume (500 ml) of distilled water. The benzene layer was separated from the aqueous layer using a separating funnel. The aqueous layer was further washed with ether and the ether extract added to the benzene layer. The mixture was then washed with a saturated solution of NaHCO3 until effervescence ceased. It was further washed several times with water, Anhydrous Na2SO4 was then added to dry the mixture. The distillation of the diethyl ester was carried out under reduced pressure. The diethyl adipate collected was redistilled several times to ensure high purity8. The adipic dihydrazide (ADH) was obtained by adding 20 g (0.099 mol) of the diethyl adipate slowly into a beaker containing 20 ml (0.383 mol) of hydrazine hydrate with stirring for four hours. The white precipitates formed were filtered, washed with ethanol and dried in a vacuum desiccator over silica gel.

3.2.5 Preparation of phthalic dihydrazide (PDH)

Diethyl phthalate (27 g, 0.121 mol) was placed in a 250 ml round-bottomed flask containing hydrazine hydrate 27 ml

(0.517 mol). The mixture was refluxed for 3 hours on a water bath. The dirty white caky precipitate which formed was filtered, washed several times with ethanol and dried in vacuo over silica gel.

3.2.6 Preparation of terephthalic dihydrazide (TDH)

A mixture of terephthalic acid, 25 g (0.151 mol), ethanol (300 ml) and concentrated H_2SO_4 (12.5 ml) was refluxed for sixteen hours and distilled to half its volume and poured into aqueous Na₂CO₃ (250 ml). The brownish precipitate of diethyl terephthalate obtained was recrystallized from ethanol and dried in a vacuum desiccator over silica gel (M.pt. (°C) 42-44, literature value⁸⁴ 42-44). Terephthalic dihydrazide (TDH) was obtained by refluxing a mixture of diethyl terephthalate 14 g (0.063 mol), ethanol (150 ml) and 14 ml (0.268 mol) hydrazine hydrate in a round bottomed flask for four hours on a water bath. The dirty white precipitates of TDH were washed thoroughly with ethanol and dried as described above.

3.3 Preparation of the complexes

3.3.1 Preparation of manganese(II) tetrafluoroborate (Mn(BF4)2.6H2O)

Excess manganese(II) carbonate was added, pinchwise, to 30 ml of tetrafluoroboric acid in a 250 ml beaker with stirring until effervescence ceased. The mixture was then filtered and concentrated by heating on a hot plate and left in a desiccator over silica gel to crystallize. Manganese was determined by EDTA titration using Soloch ome black as an indicator⁸⁵. The analytical data are shown in Table 6.

3.3.1.1 Preparation of Mn(II) tetrafluoroborate complexes

3.3.1.2 <u>Preparation of Mn(ODH)₂(BEA)</u> and Mn(ODH)₃-(BF₄)₂.

 $Mn(ODH)_2(BF_4)_2$. A 1:1 molar ratio of oxalic dihydrazide (2.36 g, 0.02 mol), $Mn(BF_4)_2.6H_2$ (5.74 g, 0.02 mol) in 90 ml methanol was stirred for 15 hours using a Gallenkamp magnetic stirrer at room temperature. The white compound which formed was filtered, washed thoroughly with methanol and dried over silica gel in a vacuum desiccator.

 $Mn(ODH)_3(BF_4)_2$. A mixture of ODH (2.36 g, 0.02 mol) and $Mn(BF_4)_2$. $6H_2O$ (3.37 g, 0.01 mol) in 80 ml methanol was stirred for 16 hours. The product obtained was isolated as described for $Mn(ODH)_2(BF_4)_2$.

3.3.1.3 Preparation of Mn(MDH)₂(BF₄)₂ and Mn(MDH)₃-(BF₄)₂.

 $Mn(MDH)_2(BF_4)_2$. A quantity of 2.64 g (0.02 mol) malonic dihydrazide (MDH), and 6.74 g (0.02 mol) $Mn(BF_4)_2.6H_2O$, in

100 ml methanol was stirred for 19 hours using a magnetic stirrer. The white precipitates of $Mn(MDH)_2(BF_4)_2$ obtained were filtered, washed with methanol and dried in a vacuum desiccator over silica gel at room temperature.

 $Mn(MDH)_3(BF_4)_2$. A mixture of MDH (2.64 g 0.02 mol) and (3.37 g 0.01 mol) $Mn(BF_4)_2.6H_2O$ in 95 ml methanol was stirred for 18 hours. The whitish compound which formed was filtered off, washed several times with methanol and dried in vacuo over silica gel.

3.3.1.4 <u>Preparation of Mn(SDH)₂(BF4)₂ and Mn(SDH)₃-</u> (BF4)₂.

 $Mn(SDH)_2(BF_4)_2$. This was prepared using the procedure outlined for $Mn(MDH)_3(BF_4)_2$ but with (2.92 g, 0.02 mol) succinic dihydrazide (SDH) and (6.74 g, 0.02 mol) $Mn(BF_4)_2.6H_2O$.

 $Mn(SDH)_3(BF_4)_2$. Using a 2:1 molar ratio of SDH and $Mn(BF_4)_2.6H_2O$ and a similar procedure as outlined above, $Mn(SDH)_3(BF_4)_2$ was isolated.

3.3.1.5 Preparation of $Mn(ADH)_{3/2}(BF_{4})_{2}$ and Mn(ADH)_3(BF_{4})_{2}.

 $Mn(ADH)_{3/2}(BF_4)_2$. With a 1:1 molar ratio of (1.74 g, 0.01 mol) adipic dihydrazide (ADH) and (3.37 g, 0.01 mol) $Mn(BF_4)_2.6H_2O$, stirred for 17 hours in 90 ml methanol, whitish Mn(ADH)3/2(BF4)2 was prepared.

 $Mn(ADH)_3(BF_4)_2$. Using a similar procedure as outlined for $Mn(MDH)_3(BF_4)_2$ but with a 2:1 molar ratio of ADH to $Mn(BF_4)_2$. $6H_2O$, $Mn(ADH)_3(BF_4)_2$ was isolated.

3.3.1.6 Preparation of Mn(PDH)₂(BF₄)₂ and Mn(PDH)₃-(BF₄)₂

 $Mn(PDH)_2(BF_4)_2$. To a solution of $Mn(BF_4)_2$. $6H_2O$ (3.37 g, 0.01 mol) in 100 ml methanol was added (1.94 g, 0.01 mol) phthalic dihydrazide (PDH). The mixture was stirred for 18 hours at room temperature and the dirty white precipitates formed were isolated as before.

 $Mn(PDH)_3(BF_4)_2$. With a similar procedure as described for $Mn(PDH)_2(BF_4)_2$ and a 2:1 molar ratio of PDH to $Mn(BF_4)_2$.- $6H_2O$, $Mn(PDH)_3(BF_4)_2$ was isolated.

3.3.1.7 Preparation of Mn(TDH)₃(BF₄)₂

Using (1.94 g, 0.01 mol) terephthalic dihydrazide (TDH) and (3,37 g, 0.01 mol) of Mn(BF₄)₂.6H₂O, Mn(TDH)₃(BF₄)₂ was obtained in the manner Mn(PDH)₂(BF₄)₂ was isolated.

3.3.2 Preparation of cobalt(11) tetrafluoroborate (CO(BF₄)₂.6 H₂O)

An excess of Co(II) carbonate was added, pinchwise, to 45 ml of tetrafluoroboric acid in a 250 ml beaker. $Co(BF_4)_2.6H_2O$
was then isolated as described for $Mn(BF_4)_2.6H_2O$ above. Cobalt was estimated by EDTA titrations using xylenol orange as an indicator⁸⁵. The analytical result is presented in Table 6.

3.3.2.1 Preparation of Co(II) tetrafluoroborate complexes

3.3.2.2 Preparation of $Co(ODH)_2(BF_4)_2$ and $Co(ODH)_3^-$ (BF₄)₂

 $Co(ODH)_2(BF_4)_2$. A quantity of 2.36 g (0.02 mol) of ODH was mixed with 6.82 g (0.02 mol) of $Co(BF_4)_2$.6H₂O in 90 ml of methanol and stirred using a Gallenkamp magnetic stirrer for 14 hours at room temperature. The pinkish product was filtered, washed several times with methanol and dried over silica gel in a vacuum desiccator.

 $Co(ODH)_3(BF_4)_2$. A mixture of ODH (2.36 g, 0.02 mol) and $Co(BF_4)_2.6H_2O$ (3.41 g, 0.01 mol) in 80 ml of methanol was stirred. The pink coloured compound which precipitated was filtered off, washed thoroughly with methanol and dried as before.

3.3.2.3 Preparation of $Co(MDH)_{3/2}(BF_4)_2$ and $Co(MDH)_3(BF_4)_2$.

 $Co(MDH)_{3/2}(BF_4)_2$. A mixture of malonic dihydrazide (2.64 g, 0.02 mol) and $Co(BF_4)_2^{1}$.6H₂O (6.82 g, 0.02 mol) in 100 ml of methanol contained in a quick-fit conical flask was stirred for 16 hours. The pinkish powdery compound formed was isolated as described before.

 $Co(MDH)_3(BF_4)_2$. A mixture of 2.64 g (0.02 mol) MDH and (3.41 g, 0.01 mol), $Co(BF_4)_2.6H_2O$ in 100 ml of methanol was stirred for 18 hours using a magnetic stirrer. The pinkish compound formed was separated by filtration, washed thoroughly with methanol and dried over silica gel.

3.3.2.4 Preparation of $Co(SDH)_2(BF_4)_2$ and $Co(SDH)_3(BF_4)_2$.

 $Co(SDH)_2(BF_4)_2$. A quantity of SDH (2.92 g, 0.02 mol) and $Co(BF_4)_2.6H_2O$ (6.82 g, 0.02 mol) mixed together in 90 ml of methanol was stirred for 19 hours. The pink product was isolated as described before

 $Co(SDH)_3(BF_4)_2$ A 1:2 molar mixture of SDH (5.82 g, 0.04 mol) and $Co(BF_4)_2.6H_2O$ (6.82 g, 0.02 mol) in 100 ml of methanol was stirred for 20 hours in a conical flask at room temperature. The pinkish product was isolated by filtration and thorough washing with methanol and dried in vacuo over silica gel.

3.3.2.5 Preparation of $Co(ADH)_2(BF_4)_2$ and $Co(ADH)_3^-$ (BF₄)₂

 $Co(ADH)_2(BF_4)_2$. A 1:1 molar mixture of adipic dihydrazide (1.74 g, 0.01 mol) and $Co(BF_4)_2.6H_2O$ (3.41 g, 0.01 mol) in

80 ml of methanol was stirred for 16 hours. The pink precipitate was isolated and dried in the manner described above.

 $Co(ADH)_3(BF_4)_2$. A mixture of ADH, 3.48 g (0.02 mol) and 3.41 g (0.01 mol) of $Co(BF_4)_2.6H_2O$ in 90 ml methanol was stirred. The pink coloured compound formed was isolated as before.

3.3.2.6 Preparation of Co(PDH)₃(BF₄)₂

To a solution of Co(BF₄)₂.6H₂O (3.45 g, 0.01 mol) in 95 ml methanol was added 1.94 g (0.01 mol) of PDH. The mixture was stirred and the precipitates filtered off, washed thoroughly with methanol and dried in a vacuum desiccator over silica gel.

A 1:2 molar mixture of metal salt to PDH yielded the same product.

3.3.2.7 Preparation of Co(TDH)₃(BF₄)₂

A mixture of 1.94 g (0.01 mol) of terephthalic dihydrazide and 3.41 g (0.01 mol) of $Co(BF_4)_2.6H_2O$ in 90 ml methanol was stirred for 20 hours at room temperature. The pink precipitate formed was isolated as described for $Co(PDH)_3(BF_4)_2$.

3.3.3 Preparation of Ni(11) tetrafluoroborate (Ni(BF₄)₂.6H₂O)

To 40 ml of HBF₄ was added, pinchwise, excess basic nickel(II) carbonate until effervescence ceased. The resulting mixture was filtered and concentrated by heating on a bot plate and left in a desiccator to crystallize. Nickel was determined by EDTA titration using murexide as an indicator⁸⁵. The analytical data is shown in Table 6.

3.3.3.1 Preparation of Ni(11) tetrafluoroborate complexes

3.3.3.2 Preparation of Ni(ODH)₂(BF₄)₂ and Ni(ODH)₃(BF₄)₂

 $Ni(ODH)_2(BF_4)_2$. A mixture of oxalic dihydrazide (2.95 g, 0.025 mol) and 8.50 g (0.025 mol) $Ni(BF_4)_2.6H_2O$ in methanol (98 ml) was stirred in a quick-fit conical flask for 16 hours using a magnetic stirrer at room temperature. The light blue compound which formed was filtered, washed thoroughly with methanol and dried over silica gel in a vacuum desiccator.

Ni $\{ODH\}_3(BF_4)_2$. A mixture of oxalic dihydrazide (5.90 g, 0.050 mol) and Ni $(BF_4)_2.6H_2O$ (8.50 g, 0.025 mol) in methanol (150 ml) was stirred as described above. A 2:1 molar ratio of ligand to metal was used. The light blue compound formed was filtered off, washed several times with methanol and dried in the manner described above.

3.3.3.3 Preparation of Ni(MDH) $_2(BF_4)_2$ and

NI(MDH)₃(BF₄)₂

 $Ni(MDH)_2(BF_4)_2$. A quantity of 2.64 g (0.02 mol) malonic dihydrazide and 6.80 g (0.02 mol) $Ni(BF_4)_2.6H_2O$ in 100 ml methanol was stirred in a quick-fit conical flask for 18 hours using a magnetic stirrer. A small amount of a greenish precipitate was initially formed and the solution was left to stand for about 18 hours in an evaporating dish at room temperature. More of the precipitate was formed and was filtered, washed with methanol and dried at room temperature in a vacuum desiccator over silica gel.

Ni(MDH)₃(BF₄)₂. 5.28 g (0.04 mol) of MDH and 6.80 g (0.02 mol) Ni(BF₄)₂.6H₂O in 120 ml methanol reacted on stirring in a quick-fit conical flack for 17 hours using a magnetic stirrer. The green compound which formed was filtered off, washed several times and dried as described for Ni(MDH)₂(BF₄)₂.

3.3.3.4 Preparation of Ni(SDH)_{3/2}(BF₄)₂ and Ni(SDH)₂(BF₄)₂

 $Ni(SDH)_{3/2}(BF_4)_2$. A mixture of SDH (2.92 g, 0.02 mol) and $Ni(BF_4)_2.6H_2O$ (6.90 g, 0.02 mol) in methanol (100 ml) was stirred for 20 hours as described above. A small quantity of light blue precipitate was formed initially the solution was left to stand in an evaporating dish for 12 hours at room temperature. The product was isolated as described for $Ni(MDH)_2(BF_4)_2$.

 $Ni(SDH)_2(BF_4)_2$. A mixture of SDH (5.84 g, 0.04 mol) and $Ni(BF_4)_2.6H_2O$ (6.80 g, 0.02 mol) in methanol (100 ml) was . stirred for 15 hours. The light blue product was isolated by filtering, washing several times with methanol and drying over silica gel in vacuo.

3.3.3.5 Preparation of Ni(ADH)_{3/2}(BF₄)₂ and Ni(ADH)₂(BF₄)₂

 $Ni(ADH)_{3/2}(BF_4)_2$. A 1:1 molar mixture of adipic dihydrazide (3.48g, 0.02 mol) and $Ni(BF_4)_2$, $6H_2O$ (6.80 g, 0.02 mol) in 100 ml (methanol) was stirred for 18 hours in a conical flask at room temperature. The light blue compound formed was filtered, washed thoroughly with methanol and dried over silica gel in a vacuum desiccator.

Ni(ADH)₂(BF_{4})₂. A mixture of ADH (3.48 g, 0.02 mol) and 3.40 g (0.01 mol) Ni(BF_{4})₂.6H₂O in 80 ml methanol was stirred for 18 hours as described above. The bluish compound which precipitated was isolated as described for Ni(ADH)_{3/2}-(BF_{4})₂.

3.3.3.6 Preparation of Ni(PDH)₃(BF₄)₂

A 1:1 molar mixture of phthalic dihydrazide (3.88 g, 0.02 mol) and 6.80 g (0.02 mol) Ni(BF_4)₂.6H₂O in 90 ml methanol was stirred for 20 hours and the light green precipitates formed were isolated as before.

When a 2:1 molar mixture of PDH and Ni(BF_{4})₂, $6H_{2}O$ was reacted together as outlined above, the same product Ni(PDH)₃-(BF_{4})₂ was obtained.

3.3.3.7 Preparation of Ni(TDH)₃(BF₄)₂

1.94 g (0.01 mol) of terephthalic dihydrazide (TDH) and 3.40 g (0.01 mol) Ni(BF₄)₂.6H₂O in 100 ml methanol was stirred for 22 hours at room temperature. The greenish compound which formed was isolated as before.

3.3.4 Preparation of Cu(II) tetrafluoroborate (Cu(BF₄)₂.6H₂O)

To 45 ml of tetrafluoroboric acid (HBF₄) in a 250 ml beaker was added excess basic Cu(II) carbonate portionwise, with stirring until effervescence ceased. The tetrafluoroborate salt was isolated as described for Ni(BF₄)₂.6H₂O. Copper was estimated by EDTA titration using murexide as an indicator⁸⁵ (Table 6).

3.3.4.1 Preparation of Cu(II) tetrafluoroborate complexes

3.3.4.2 Preparation of $Cu(ODH)_{3/2}(BF_4)_2$ and $Cu(ODH)_3(BF_4)_2$

 $Cu(ODH)_{3/2}(BF_4)_2$. A mixture of oxalic dihydrazide (2.36 g, 0.02 mol) and $Cu(BF_4)_2.6H_2O$ (6.90 g, 0.02 mol) in methanol (95 ml) was stirred in a quick-fit conical flask for 14 hours using a magnetic stirrer at room temperature. The bluish compound which formed was filtered, washed thoroughly with methanol and dried in vacuo over silica gel.

 $Cu(ODH)_3(BF_4)_2$. A mixture of ODH, 4.72 g (0.04 mol) and $Cu(BF_4)_2.6H_2O$ (6.90 g, 0.02 mol) in methanol (120 ml) was stirred as described above. A 2:1 molar ratio of ligand to metal was.used. The bluish compound which formed was filtered off, washed several times with methanol and dried in the manner described above.

3.3.4.3 Preparation of $Cu(MDH)_2(BF_4)_2$ and $Cu(MDH)_3(BF_4)_2$

 $Cu(MDH)_2(BF_4)_2$. A quantity of 2.64 g (0.02 mol) MDH, and 6.90 g (0.02 mol), $Cu(BF_4)_2.6H_2O$ in 90 ml (methanol) was stirred in a conical flask for 16 hours using a magnetic stirrer. A small amount of greenish precipitate was initially formed and the solution was left to stand for about 14 hours in an evaporating dish at room temperature. More of the precipitate was formed and was filtered, washed with methanol and dried at room temperature in a vacuum desiccator over silica gel.

 $Cu(MDH)_3(BF_4)_2$. A mixture of 5.28 g (0.04 mol) of MDH and 6.90 g (0.02 mol), $Cu(BF_4)_2.6H_2O$ in 90 ml (methanol) reacted on stirring in a quick-fit conical flask for 18 hours using a magnetic stirrer. The bluish compound formed was filtered, washed several times with methanol and dried in vacuo over silica gel.

3.3.4.4 Preparation of $Cu(SDH)_2(BF_4)_2$ and $Cu(SDH)_3(BF_4)_2$

 $Cu(SDH)_2(BF_4)_2$. A mixture of succinic dihydrazide (2.92 g, 0.02 mol) and $Cu(BF_4)_2$, $6H_2O$ (6.90 g, 0.02 mol) in methanol (80 ml) was stirred for 18 hours as described before. A small quantity of light green precipitates were formed initially. The solution was left to stand in an evaporating dish for about 10 hours at room temperature. The product was isolated as described for $Cu(MDH)_3(BF_4)_2$.

 $Cu(SDH)_3(BF_4)_2$. A mixture of 5.84 g (0.04 mol) SDH and $Cu(BF_4)_2.6H_2O$ (6.90 g, 0.02 mol), in methanol (85 ml) was stirred for 14 hours. The greenish product was isolated by filtering, washing several times with methanol and drying over

silica gel in vacuo.

3.3.4.5 Preparation of Cu(ADH)₂(BF₄)₂ and Cu(ADH)₃(BF₄)₂

 $Cu(ADH)_2(BF_4)_2$. A 1:1 molar mixture of adipic dihydrazide (1.74g, 0.01 mol) and $Cu(BF_4)_{2.6H_2O}$, (3.45 g, 0.01 mol) was stirred for 15 hours in a conical flask at room temperature. The green product formed was filtered, washed thoroughly with methanol and dried over silica gel in a vacuum desiccator.

 $Cu(ADH)_3(BF_4)_2$. A mixture of ADH, 3.48 g (0.02 mol), and 3.45 g (0.01 mol) $Cu(BF_4)_2.6H_2O$ in 85 ml methanol was stirred for 16 hours as described above. The precipitated greenish compound was isolated as described for $Cu(ADH)_2(BF_4)_2$.

3.3.4.6 Preparation of $Cu(PDH)_2(BF_4)_2$ and $Cu(PDH)_3(BF_4)_2$

Cu(PDH)₂(BF₄)₂. To a solution of Cu(BF₄)₂.6H₂O (3.45 g, 0.01 mol) in 85 ml methanol was added 1.94 g (0.01 mol), phthalic dihydrazide. The mixture was stirred and the brownish precipitates formed were isolated as before.

 $Cu(PDH)_3(BF_4)_2$. Using a similar procedure as outlined for $Cu(PDH)_2(BF_4)_2$ and 2:1 molar ratio of PDH to $Cu(BF_4)_2.6H_2O$, brownish $Cu(PDH)_3(BF_4)_2$ was obtained.

3.3.4.7 Preparation of Cu(TDH)₂(BF₄)₂

A suspension of 1.94 g (0.01 mol) of terephthalic dihydrazide (TDH) and 3.45 g (0.01 mol) $Cu(BF_4)_2.6H_2O$ in 80 ml methanol was stirred for 20 hours at room temperature. The light green precipitate formed was isolated as described for $Cu(PDH)_2(BF_4)_2$.

3.3.5 <u>Preparation of Zn(II) tetrafluoroborate</u> (Zn(BF₄)₂.6H₂O)

To 36 ml tetrafluoroboric acid in a 250 ml beaker was added, pinchwise, excess basic ZnCO₃ with stirring until effervescence ceased completely. The mixture was filtered several times, concentrated by heating on a hot plate and then left in a desiccator to crystallize. Zinc was determined by EDTA titration using solochrome black as an indicator⁸⁵. The analytical data is presented in Table 6.

> 3.3.5.1 Preparation of Zn(11) tetrafluoroborate complexes 3.3.5.2 Preparation of $Zn(ODH)_2(BF_4)_2$ and $Zn(ODH)_3(BF_4)_2$

 \sim Zn(ODH)₂(BF₄)₂. A mixture of 3.47 g (0.01 mol) in methanol (80 ml) was stirred in a quick-fit conical flask for 11 hours using a magnetic stirrer at room temperature. The whitish compound which formed was filtered, washed several times with methanol and dried in vacuo over silica gel.

 $Zn(ODH)_3(BF_4)_2$. A mixture of oxalic dihydrazide (ODH), 2.36 g (0.02 mol) and $Zn(BF_4)_2.6H_2O$, 3.47 g (0.01 mol) in methanol (80 ml) was stirred as described above. A 2.1 molar ratio of ligand to metal was used. The whitish compound which separated was filtered, washed several times with methanol and dried at room temperature in the manner above.

3.3.5.3 Preparation of Zn_MDH (BF₄)₂ and Zn(MDH)₃(BF₄)₂

 $ZnMDH(BF_4)_2$. Malonic dihydrazide, 2.64 g (0.02 mol) and $Zn(BF_4)_2.6H_2O$, 6.94 g (0.02 mol) in 85 ml methanol reacted on stirring in a quick-fit conical flask for 14 hours using a magnetic stirrer. The faint yellow compound was filtered, washed with methanol and dried in a vacuum desiccator over silica gel at room temperature.

 $Zn(MDH)_3(BF_4)_2$. A 2:1 molar mixture of MDH, 5.28 g (0.04 mol) and $Zn(BF_4)_2.6H_2O$, 6.94 g (0.02 mol) in methanol (90 ml) was stirred for 16 hours in a conical flask at room temperature. The whitish product was filtered, washed with methanol and dried in a vacuum desiccator with silica gel as a desiccant.

3.3.5.4 Preparation of $Zn(SDH)_{3/2}(BF_4)_2$ and $Zn(SDH)_2(BF_4)_2$

 $Zn(SDH)_{3/2}(BF_4)_2$. Succinic dihydrazide, 2.92 g (0.02 mol) and $Zn(BF_4)_2.6H_2O$, 6.94 g (0.02 mol) in methanol (95 ml) reacted on stirring in a quick-fit conical flask for 12 hours to give a white-coloured compound. The complex was isolated by filtering, washing several times with methanol and drying in a vacuum desiccator with silica gel as a desiccant.

 $Zn(SDH)_2(BF_4)_2$. A mixture of SDH, 5.84 g (0.04 mol) and $Zn(BF_4)_2.6H_2O$ 6.94 g (0.02 mol) in 100 ml methanol was stirred for 12 hours in a quick-fit conical flask at room temperature. The whitish compound was isolated as described for $Zn(SDH)_{3/2}$ - $(BF_4)_2$.

3.3.5.5 Preparation of Zn(ADH)₃(BF₄)₂

To a solution of $Zn(BF_4)_2.6H_2O$, 3.47 g (0.01 mol) in 90 ml methanol was added adipic dihydrazide, 1.74 g (0.01 mol). The mixture was stirred at room temperature in a conical flask for 14 hours using a Gallenkamp magnetic stirrer. The whitish precipitates were filtered, washed thoroughly with methanol and dried in vacuo over silica gel at room temperature.

When a 2:1 molar mixture of ADH to metal salt was reacted together the same product, $Zn(ADH)_3(BF_4)_2$ was obtained.

3.3.5.6 Preparation of Zn(PDH)₃(BF₄)₂

A mixture of PDH, (1.94 g, 0.01 mol) and $Zn(BF_4)_2.6H_2O$, 3.47 g (0.01 mol) in methanol (90 ml) was stirred for 20 hours by means of a magnetic stirrer. The whitish product was filtered, washed several times with methanol and dried in a vacuum desiccator over silica gel.

However, a 2:1 molar ratio of PDH to $Zn(BF_4)_2$.6H₂O gave the same product, $Zn(PDH)_3(BF_4)_2$.

3.3.5.7 Preparation of Zn(TDH)₃(BF₄)₂

To a solution of 6.94 g (0.02 mol) $Zn(BF_4)_2.6H_2O$ in 90 ml methanol was added 3.88 g (0.02 mol) terephthalic dihydrazide (TDH). The mixture was stirred in a conical flask for 20 hours at room temperature. The whitish compound was isolated and dried as described above.

3.3.6 Preparation of Cd(II) tetrafluoroborate (Cd(BF₄)₂.7H₂O)

Excess of Cd(II) carbonate was added, pinchwise, to 55 ml of HBF₄ in a 250 ml beaker, until effervescence ceased. Cd(BF₄)₂.7H₂O was obtained as described for Zn(BF₄)₂.6H₂O. Cadmium was estimated by EDTA titration⁸⁵, using xylenol orange as an indicator (Table 6).

3.3.6.1 Preparation of Cd(II) tetrafluoroborate complexes

3.3.6.2 Preparation of $Cd(ODH)_2(BF_4)_2$ and $Cd(ODH)_3(BF_4)_2$

 $Cd(ODH)_2(BF_4)_2$. With a 1:1 molar ratio of 2.36 g (0.02 mol) ODH and 8.24 g,(0.02 mol) of $Cd(BF_4)_2.7H_2O$ stirred for 17 hours in 100 ml of methanol, white precipitates of $Cd(ODH)_2(BF_4)_2$ was formed, filtered, washed several times with methanol and dried at room temperature over silica geL in a vacuum desiccator.

 $Cd(ODH)_3(BF_4)_2$. This was prepared as described above but with 2.36 g (0.02 mol) ODH and 4.12 g (0.01 mol) of $Cd(BF_4)_2.7H_2O$.

3.3.6.3 Preparation of Cd(MDH)₂(BF₄)₂

 $Cd(MDH)_2(BF_4)_2$ was prepared using a quantity of 2.64 g (0.02 mol) MDH and 8.24 g (0.02 mol) of $Cd(BF_4)_2.7H_2O$ in the manner described above.

When a 2:1 molar ratio of malonic dihydrazide to Cd(BF4)₂.7H₂O was used the same compound was obtained. 3.3.6.4 Preparation of Cd(SDH)₂(BF4)₂ and

Cd(SDH)₃(BF₄)₂

 $Cd(SDH)_2(BF_4)_2$. A mixture of SDH 2.92 g (0.02 mol) and 8.24 g (0.02 mol) of $Cd(BF_4)_2.7H_2O$ in methanol was used in the isolation of Cd(SDH)2(BF4)2.

 $Cd(SDH)_3(BF_4)_2$. When a 2:1 molar ratio of SDH to metal salt was used $Cd(SDH)_3(BF_4)_2$ was isolated.

3.3.6.5 Preparation of $Cd(ADH)_2(BF_4)_2$ and $Cd(ADH)_3(BF_4)_2$

Cd(ADH)₂(BF₄)₂. With 1.74 g (0.01 mol) adipic dihydrazide and (4.12 g, 0.01 mol) of Cd(BF₄)₂.7H₂O the compound Cd(ADH)₂(BF₄)₂ was isolated.

 $Cd(ADH)_3(BF_4)_2$. The use of (3.48 g, 0.02 mol) of ADH and (4.12 g, 0.01 mol) of $Cd(BF_4)_2$. The oresulted to the formation of $Cd(ADH)_3(BF_4)_2$.

3.3.6.6 Preparation of $Cd(PDH)_2(BF_4)_2$ and $Cd(PDH)_3(BF_4)_2$

 $Cd(PDH)_2(BF_4)_2$. Using 1.94 g (0.01 mol) of PDH and 4.12 g (0.01 mol) of Cd(BF_4)_2.7H_2O as described before, Cd(PDH)_2(BF_4)_2 was isolated.

Cd(PDH)₃(BF₄)₂. This was prepared with the use of 3.88 g (0.02 mol) phthalic dihydrazide and 4.12 g (0.01 mol)Cd(BF₄)₂.7H₂O, representing a 2:1 molar ratio of ligand to metal salt. 3.3.6.7 Preparation of Cd(TDH)₃(BF₄)₂

With a similar method described earlier, but using (3.88 g, 0.02 mol) of TDH and (8.24 g, 0.02 mol) of Cd(BF₄)₂.7H₂O, Cd(TDH)₃(BF₄)₂ was isolated.

3.3.7 Preparation of Hg(II) tetrafluoroborate (Hg(BF₄)₂.6H₂O)

 $Hg(BF_4)_2.6H_2O$ was prepared using the method described for $Zn(BF_4)_2.6H_2O$, with 50 ml tetrafluoroboric acid and excess mercury(II) carbonate. Mercury was determined by EDTA titration⁸⁵ using xylenol orange as an indicator. The analytical result obtained is shown in Table 6,

3.3.7.1 Preparation of Hg(II) tetrafluoroborate complexes

3.3.7.2 Preparation of Hg(ODH)₃(BF₄)₂ and Hg(QDH)_{3/2}(BF₄)₂

Hg(ODH)₃(BF₄)₂. With a 1:1 molar ratio of (2.36 g, 0.02 mol) ODH and (9.64 g, 0.02 mol) Hg(BF₄)₂.6H₂O stirred for 17 hours in 100 ml of methanol, brownish Hg(ODH)₂(BF₄)₂ was filtered, washed thoroughly with methanol and dried over silica gel in a vacuum desiccator

 $Hg(ODH)_{3/2}(BF_4)_2$. Using a 2:1 molar ratio of oxalic dihydrazide to metal salt and with the procedure outlined above,

brownish Hg(ODH)3/2(BF4)2 was isolated.

3.3.7.3 Preparation of Hg(MDH)₃(BF₄)₂ and Hg(MDH)₂(BF₄)₂

 $Hg(MDH)_3(BF_4)_2$. A quantity of (2.64 g, 0.02 mol) malonic dihydrazide and (9.64 g, 0.02 mol) $Hg(BF_4)_2.6H_2O$ in 100 ml methanol was stirred for 17 hours. The light brown precipitates obtained was filtered, washed several times with methanol and dried in vacuo with silica gel as a desiccant.

 $Hg(MDH)_2(BF_4)_2$. With a 2:1 ligand to metal salt ratio, $Hg(MDH)_2(BF_4)_2$ was obtained as described for $Hg(MDH)_3(BF_4)_2$.

3.3.7.4 Preparation of HgSDH(BF₄)₂ and Hg(SDH)₂(BF₄)₂

HgSDH(BF₄)₂. A mixture of succinic dihydrazide (2.92 g, 0.02 mol) and (9.64 g, 0.02 mol). Hg(BF₄)₂.6H₂O in 120 ml methanol was stirred for 19 hours. The product was isolated as described before.

Hg(SDH)₂(BF₄)₂. With a similar procedure as described for HgSDH(BF₄)₂ and a 2:1 molar ratio of succinic dihydrazide to Hg(BF₄)₂.6H₂O, brownish precipitates of Hg(SDH)₂(BF₄)₂ was obtained and isolated.

3.3.7.5 Preparation of Hg(ADH)₂(BF₄)₂ and Hg(ADH)_{3/2}(BF₄)₂

Hg(ADH)₂(BF₄)₂. Using (1.74 g, 0.01 mol) adipic dihydrazide and (4.82 g, 0.01 mol) Hg(BF₄)₂.6H₂O, Hg(ADH)₂(BF₄)₂ was obtained.

Hg(ADH)_{3/2}(BF₄)₂. With (3.48 g, 0.02 mol) of ADH \cdot (4.82g, 0.01 mol) Hg(BF₄)₂.6H₂O and 100 mL methanol, the compound Hg(ADH)₃(BF₄)₂ was isolated.

3.3.7.6 Preparation of Hg(PDH)₂(BF₄)₂ and Hg(PDH)₃(BF₄)₂

 $Hg(PDH)_2(BF_4)_2$. To a solution of $Hg(BF_4)_2.6H_2O$, (4.82 g, 0.01 mol) in 100 ml methanol was added (1.94 g, 0.01 mol) phthalic dihydrazide. The mixture was stirred for 18 hours and the light brown precipitates formed were isolated as before.

Hg(PDH)₃(BF₄)₂. Using a similar procedure as outlined for Hg(PDH)₂(BF₄)₂ and 2:1 molar ratio of PDH to Hg(BF₄)₂.6H₂O, brownish Hg(PDH)₃(BF₄)₂ was isolated.

3.3.7.7 Preparation of HgTDH(BF4)2

A quantity of (1.94 g, 0.01 mol) terephthalic dihydrazide and (4.82 g, 0.01 mol) Hg $(BF_4)_2.6H_2O$ in 100 ml methanol was stirred for 18 hours. The brown precipitates formed were filtered, washed several times with methanol and dried in the manner described before.

3.3.8 Preparation of Mg tetrafluoroborate (Mg(BF₄)₂.6H₂O)

To 50 ml HBF₄ in a 250 ml beaker was added, pinchwise, excess magnesium carbonate until effervescence ceased. The isolation of Mg(BF₄)₂.6H₂O was done in the same manner as $Zn(BF_4)_2.6H_2O$. Magnesium was estimated⁸⁵ by EDTA titration using solochrome black as an indicator (Table 6).

3.3.8.1 Preparation of Mg tetrafluoroborate complexes

3.3.8.2 Preparation of $Mg(ODH)_2(BF_4)_2$ and $Mg(ODH)_3(BF_4)_2$

 $Mg(ODH)_2(BF_4)_2$. To 3.06 g (0.01 mol) of $Mg(BF_4)_2.6H_2O$ in 80 ml methanol was added with stirring (1.18 g, 0.01 mol) of oxalic dihydrazide. The mixture was further stirred for 17 hours. The separated compound was filtered, washed with methanol and dried in a vacuum desiccator over silica gel at room temperature.

 $Mg(ODH)_3(BF_4)_2$. With a 1:2 molar ratio of $Mg(BF_4)_2.6H_2O$ (3.06 g, 0.01 mol), and ODH (2.36 g, 0.02 mol), $Mg(ODH)_3(BF_4)_2$ was isolated as described before.

3.3.8.3 Preparation of Mg(MDH)_{3/2}(BF₄)₂ and Mg(MDH)₂(BF₄)₂

 $Mg(MDH)_{3/2}(BF_4)_2$. A mixture of MDH (2.64 g, 0.02 mol) and $Mg(BF_4)_2.6H_2O$ (6.12 g, 0.02 mol) in 100 ml of methanol contained in a quick-fit conical flask was stirred for 16 hours with a magnetic stirrer. The light brown product was isolated as described for $Mg(ODH)_2(BF_4)_2$.

Mg(MDH)₂(BF₄)₂. A mixture of malonic dihydrazide (3.48 g, 0.02 mol), and (3.06 g, 0.01 mol) of Mg(BF₄)₂.6H₂O in 110 ml methanol was stirred. The light brown compound formed was isolated as above.

3.3.8.4 Preparation of MgSDH(BF₄)₂ and Mg(SDH)₃(BF₄)₂

MgSDH(BF₄)₂. A quantity of SDH (2.92 g, 0.02 mol) and (6.12 g, 0.02 mol) of Mg(BF₄)₂.6H₂O in 100 ml methanol was stirred for 17 hours. The product was isolated as described before.

Mg(SDH)₃(BF₄)₂. With a similar procedure as described for Mg(SDH (BF₄)₂ and a 2:1 molar ratio of SDH to Mg(BF₄)₂.6H₂O, white precipitates of Mg(SDH)₃(BF₄)₂ were obtained and isolated as before.

3.3.8.5 Preparation of MgADH(BF₄)₂ and Mg(ADH)₃(BF₄)₂

MgADH(BF₄)₂. A 1:1 molar mixture of adipic dihydrazide (3.48 g, 0.02 mol) and Mg(BF₄)₂.6H₂O (6.12 g, 0.02 mol) in 110 ml of methanol was stirred for 17 hours. The light brown compound formed was isolated as above.

 $Mg(ADH)_3(BF_4)_2$. Using 3.48 g (0.02 mol) of ADH and 3.06 g (0.01 mol) of $Mg(BF_4)_2.6H_2O$, $Mg(ADH)_3(BF_4)_2$ was obtained and isolated as before.

3.3.8.6 Preparation of Mg(PDH)₂(BF₄)₂ and Mg(PDH)₃(BF₄)₂

 $Mg(PDH)_2(BF_4)_2$. With (1.94 g, 0.01 mol) of PDH and (3.06 g, 0.01 mol) $Mg(BF_4)_2$.6H₂O in 90 ml of methanol, $Mg(PDH)_2(BF_4)_2$ was prepared as described before.

Mg(PDH)₃(BF₄)₂. A 2:1 molar ratio of phthalic dihydrazide to Mg(BF₄)₂. $\overline{B}H_2O$ gave Mg(PDH)₃(BF₄)₂ as earlier outlined.

3.3.8.7 Preparation of MgTDH(BF₄)₂

A mixture of (1.94 g, 0.01 mol) of terephthalic dihydrazide and (3.06 g, 0.01 mol) of Mg(BF₄)₂.6H₂O in 100 ml of methanol was stirred for 20 hours at room temperature. The precipitates formed were filtered off, washed thoroughly with methanol and dried in vacuo over silica gel.

3.4 Elemental Analysis

The metals, manganese, cobalt, nickel, copper, zinc, cadmium, mercury and magnesium were determined by EDTA titrations as outlined in the literature⁸⁵. The disodium salt of ethylenediamine tetraacetic acid (EDTA) was first standardised against zinc sulphate solution⁸⁵.

3.4.1 Manganese(II) tetrafluoroborate complexes

The compounds were prepared for metal analysis by digesting mildly with 3 ml conc. H_2SO_4 , about 0.2 g of each sample was mixed with 0.5 g hydroxylamine hydrochloride. The resulting solutions were made up to 100 ml in a standard flask with distilled water. 10 ml portions of solution was pipetted into a conical flask and 10 ml distilled water added. This was followed by the addition of 2 ml triethanolamine while gently swirling the contents of the flask. Ammonia/ammonium chloride buffer was then added until a pH of 10 was attained. A drop of Solochrome black indicator turned the solution into a wine-red colour. Standard (9.8x10⁻³ M) EDTA solution was then added dropwise until the wine-red colour changed to blue.

3.4.2 Cobalt(II)' tetrafluoroborate complexes

About 0.2 g each of the cobalt(11) tetrafluoroborate complexes was digested with 3 ml conc. HNO₃. In all cases the

volume was made up to the 100 ml mark in a 100 ml standard flask with distilled water. 10 ml portions of the solutions diluted further with 20 ml distilled water, were buffered using hexamine (pH 6). Xylenol orange indicator was added. With gentle swirling, the temperature of the solution in the flask was raised to 40°C on a hot-plate. The titration was done as this temperature with a colour change of red to yellow as the end point.

3.4.3 Nickel(II) tetrafluoroborate complexes

Nickel was estimated after about 0.2 g of each sample was digested with 3 ml conc. HNO_3 . A pinch of murexide/potassium nitrate indicator was added to 10 ml portions of solution pipetted from 100 ml stock solution from a standard flask (100 ml) and diluted with 20 ml distilled water. NH_3/NH_4CI buffer was added (about 3 ml) until the solution furned yellowish. The solution was then titrated with standard (9.8x10⁻³ M) EDTA solution until a violet colour was obtained.

3.4.4 Copper(II) tetrafluoroborate complexes

About 0.2 g of each complex was weighed into a platinum erucible with dropwise addition of few drops of 1:1 conc. $HNO_3/$ 60% HClO₄ mixture. The contents of the crucible was heated on a hot-plate to dryness. A little quantity of distilled water was added and the contents filtered into a standard flask. This was diluted to the 100 ml mark with distilled water. NH₃/NH₄Cl buffer was added dropwise to 10 ml portions of solution until it became light blue. A pinch of murexide/sodium chloride indicator was then added and titrated against EDTA solution until a violet colour was obtained.

3.4.5 Zinc(II) tetrafluoroborate complexes

In the determination of Zn in the Zn(f) complexes, conc. HNO₃ was used in the digestion as in the case of nickel complexes. 10 ml portions of solution was taken, diluted with 20 ml distilled water and buffered with NH₃/NH₄Cl buffer (pH 10). Solochrome black indicator was used, with the colour change from violet to blue.

3.4.6 Cadmium(11) tetrafloroborate complexes

Samples (about 0.2 g) of each complex was digested with 3 ml conc. HNO₃, made up to 100 ml with distilled water in a standard flask. Hexamine was used to bring 10 ml portions of solutions to pH 5, and titrated against standard (9.8×10^{-3} M) EDTA solution with xylenol orange as an indicator. Colour change was from red to yellow.

3.4.7 Mercury(II) tetrafluoroborate complexes

Following the procedure for estimating cadmium in cadmium(II) complexes but with a pH 6 using hexamine as buffer, 10 ml portions of Hg(II) solutions of the respective complexes were titrated against standard EDTA solution with xylenol orange as an indicator. The change in colour was from red to yellow.

3.4.8 Magnesium tetrafluoroborate complexes

About 0.2 g of complex was digested with 3 ml conc. HNO₃ and made up to the 100 ml mark in a standard flask with distilled water. The metal was then estimated by taking 10 ml portions with the pipette, buffered to pH 10 with NH₃/NH₄Cl solution and titrated against standard EDTA solution with Solochrome black as an indicator. The end point was noted when the colour of the solution changed from red to blue.

3.4.9 Microanalysis

3.5

Microanalysis for carbon, hydrogen and nitrogen was performed in the Microanalytical Laboratory of the University of Ibadan.

Melting point/Decomposition temperature

These were done for the ligands and complexes using a Gallenkamp melting point apparatus, with small quantities of the materials driven into melting point tubes. The values were

corrected as dictated by the calibrant (benzoic acid).

3.6 Solubility

The test for the solubility of the complexes was carried out in some polar and non-polar solvents.

3.7 Conductance measurements

The molar conductances of the complexes soluble in DMSO and water (concentration $\sim 1 \times 10^{-3}$ M) were determined using an Electrolytic Conductivity Measuring Set, Model MC-1, Mark V, with a cell constant of 0.1.

3.8 Infrared spectra

The infrared spectra of the ligands and complexes as pressed KBr discs were recorded on a Unicam SP3-300 Infrared Spectrophotometer. In few cases, a Perkin-Elmer IR-457 Spectrophotometer was used. The instruments were calibrated with polystyrene film.

3.9 Electronic spectra

The electronic spectra of the ligands that were fairly soluble in water and methanol were obtained using Pye Unicam SP8-400 uv/vis Spectrophotometer.

The diffuse reflectance spectra of the complexes in the

range 28,600-10,000 cm^{-1} were taken on a Unicam SP500 Spectrophotometer equipped with a reflectance attachment using CaCO₃ as a reference.

3.10 Magnetic susceptibility measurements

The magnetic susceptibilities of the complexes at room temperature were determined by the Gouy method as earlier described⁸⁶. The diamagnetic corrections for the figands were obtained from Pascal's constants⁸⁷. The calibrant used was mercury tetrathiocyanato cobaltate, Hg[Go(CNS)₄]. The effective magnetic moments, M_{eff} were calculated using the expression:

$$\mathcal{U}_{eff} = 2.828 \mathcal{A}_{AT}$$

where χ_A is the susceptibility per gram atom, and T is the temperature in Kelvin.

Procedure

(1) The volume of the tube was determined by weighing it empty and reweighing with the tube filled to the mark. This was done using the Gouy balance without the magnetic field. The volume of the tube was then calculated.

Weight of empty tube, field off	= 1.2561 g
Weight of tube + water, field off	= 1.5158 g
Mass of water	= 0.2597 g
Temperature	= 29°C (302 K

Density of water (30	4 K)	= 0.995976 g/cm ³
Volume of tube	$= \frac{0.2597}{0.995976}$	= 0.2607 cm ³

(2) The tube was then dried and weighed with and without the magnetic field. The glass being diamagnetic lost weight on application of the magnetic field (x grams). The tube was packed to the mark with finely powdered Hg[Co(CNS)₄] by tapping the tube on the table several times until the packing was uniform and the required mark attained, and ceases to pack with further tapping. The packed tube was then weighed with and without the magnetc field. The tube was found to increase in weight (y grams) apparently because of the paramagnetic nature of the calibrant, however, the effect of the glass was allowed for: w = y+x, w being the force exerted on the specimen. The weight of the sample (W) was obtained by difference, knowing the weight of the empty tube β was then calculated from the relationship

$$\chi = \frac{V_x + \beta_w}{W}$$

using $1 = 16.44 \times 10^{-6}$ at 20°C (decreasing by approximately 0.04×10^{-6} per degree rise). This operation was repeated several times until an agreement of within 1% was obtained between consecutive β values.

(3) The tube was then unpacked and cleaned. The process outlined in (2) was followed using finely ground specimens of the respective complexes of interest. From the value of β obtained originally, the χ value was calculated. The value of χ obtained is the gram susceptibility of the complexes from which the molar susceptibility, χ_m were obtained by multiplying by the molecular masses of the respective complexes. The diamagnetic corrections for the ligands, χ_L were obtained from Pascal's constants⁸⁷. χ_A (susceptibility of the metal ions) were then obtained from the relationship:

 $X_A = X_m - X_m$

Finally, the effective magnetic moments were calculated from the equation:

 $\mathcal{U}_{eff} = 2.828 \int \chi_{AT} B.M.$

Great care was taken during the packing of the sample as the experiment depends largely on the uniformity of the packing. For each complex, the packing was done thoroughly, three times.

CHAPTER FOUR

RESULTS

4.1 Physical and analytical data

The analytical data of the metal fluoroborates are shown in Table 6. A summary of the methods used in the synthesis of the complexes is given in Table 7. The analytical data, colours, percentage yields and melting/decomposition temperatures are summarised in Table 8.

4.2 Solubility data

The solubility of the ligands and complexes in the respective solvents are summarised in Table 9.

4.3 Molar conductivity

The conductance data of the complexes that were soluble in water and DMSO are given in Table 10.

4.4 Infrared spectra

The infrared spectra of the dihydrazides used and the metal complexes investigated are shown in Figures 16-39. The vibrational frequencies and their proposed assignments are listed in Table 11.

4.5 Electronic spectra

The electronic spectra of the ligands and some of the complexes at room temperature are shown in Figures 40-47. And the tentative assignments are given in Table 12.

Compound	Molecular Mass	Percentage (%) Metal
Mn(BF4)2.6H20	336.54	16.52(16.32)
Co(BF ₄) ₂ 6H ₂ 0	340.54	17.47(17.31)
Ni(BF ₄) ₂ .6H ₂ 0	340.31	17.07(17.25)
Cu(BF4)2.6H20	345.14	8.36(18.40)
Zn(BF4)2.6H20	346.97	18.90(18.84)
Cd(BF4)2.7H20	412.01	27.19(27.28)
Hg(BF4)2.6H20	482.19	41.52(41.60)

7.89(7.95)

ANALYTICAL DATA OF THE METAL FLUOROBORATES[88] TABLE 6:

The figures in parentheses are the calculated values.

305.91

Hg(BF4)2.6H20

Mg(BF4)2.6H20

No.	Compound	Reactant ratios	Methanol (ml)	Duration of stirring (hours)
1.	$Mn(ODH)_2(BF_4)_2$	1:1	90	15
2.	$Mn(ODH)_3(BF_4)_2$	1:2	90	16
3.	$Mn(MDH)_2(BF_4)_2$	1:1	92	19
4.	$Mn(MDH)_3(BF_4)_2$	1:2	95	18
5.	Mn(SDH) ₂ (BF ₄) ₂	1:1	100	18
6.	Mn(SDH) ₃ (BF ₄) ₂	1:2	110	19
7.	Mn(ADH) 3/2(BF4) 2	1:1	90	17
8.	Mn (ADH) 3 (BF4) 2	112	100	18
9.	Mn(PDH) ₂ (BF ₄) ₂	1:1	95	17
10.	Mn(PDH) ₃ (BF ₄) ₂	1:2	100	19
11.	Mn(TDH) 3(BF4)2	1:1	95	18
12.	Co(ODH) 2(BF4)2	1:1	80	14
13.	Co(ODH) 3(BF4) 2	1:2	100	16
14.	Co(MDH) 3/2 (BF4) 2	1:1	100	16
15.	CO(MDH) 3(BF4) 2	1:2	100	18
16.	\bigcirc Co(SDH) ₂ (BF ₄) ₂	1:1	90	19
17.	Co(SDH) 3(BF4) 5	1:2	100	20
18.	Co(ADH) 2(BF4) 2	1:1	80	16
19.	Co(ADH) 3(BF4) 2	1:2	90	18

TABLE 7: METHODS OF PREPARATION OF THE TETRAFLUOROBORATE

No.	Compound	Reactant ratios	Methanol (ml)	Duration of stirring (hour <mark>s</mark>)
20.	Co(PDH) 3 (BF4) 2	1:1	95	19
21.	Co(PDH) 3(BF4) 2	1:2	100	19
22.	Co(TDH) (BF)	1:1	100	20
23.	Ni(ODH) 2(BF4) 2	1:1	98	16
24.	Ni(ODH) 3(BF4) 2	1:2	150	16
25.	Ni(MDH) ₂ (BF ₄) ₂	1:1	100	18
26.	Ni(MDH) 3(BF4) 2	1:2	120	17
27.	Ni(SDH) 3/2 (BF4) 2	11	100	20
28.	Ni(SDH) ₂ (BF ₄) ₂	1:2	100	18
29.	N1(ADH) 3/2(BF4) 2	1:1	100	18
30.	Ni(ADH) ₂ (BF ₄) ₂	1:2	80	18
31.	Ni(PDH) 3(BE4) 2	1:1	90	20
32.	Ni(PDH) 3 (BF4) 2	1:2	90	20
33.	Ni(TDH) ₃ (BF ₄) ₂	1:1	100	22
34.	Cu(ODH) 3/2 (BF4) 2	1:1	95	14
35.	Cu(ODH) ₃ (BF ₄) ₂	1:2	120	16
36.	Cu(MDH) ₂ (BF ₄) ₂	1:1	90	16
37.	$Cu(MDH)_3(BF_4)_2$	1:2	90	18
38.	Cu(SDH) ₂ (BF ₄) ₂	1:1	80	18
39.	Cu(SDH) ₂ (BF ₁) ₂	1:2	85	14

TABLE 7 (Contd.)

No.	Compound	Reactant ratios	Methanol (ml)	Duration of stirring (hours)
40.	$Cu(ADH)_2(BF_4)_2$	1:1	80	15
41.	$Cu(ADH)_3(BF_4)_2$	1:2	85	16
42.	Cu(PDH) ₂ (BF ₄) ₂	1:1	85	18
43.	Cu(PDH)3(BF4)2	1:2	90	18
44.	Cu(TDH) ₃ (BF ₄) ₂	1:1	80	20
45.	Zn(ODH)2(BF4)2	1:1	80	11
46.	Zn(ODH)3(BF4)2	1:2	80	12
47.	Zn MDH(BF ₄) ₂	1:1	85	14
48.	Zn(MDH)3(BF4)2	1:2	90	16
49.	Zn(SDH) 3/2 (BF4) 2	1:1	95	12
50.	Zn(SDH) ₂ (BF ₄) ₂	1:2	100	12
51.	Zn(ADH)3(BF4)2	1:1	90	14
52.	Zn(ADH), (BF4)2	1:2	100	13
53.	Zn (PDH) 3 (BF4) 2	1:1	90	20
54.	Zn(PDH) ₃ (BF ₄) ₂	1:2	90	20
55.	Zn(TDH) ₃ (BF ₄) ₂	1:1	90	20
56.	Cd(ODH) ₂ (BF ₄) ₂	1:1	100	17
57.	Cd(ODH) ₃ (BF ₄) ₂	1:2	100	17
58.	Cd(MDH) ₂ (BF ₄) ₂	1:1	100	18
59.	Cd(MDH) ₂ (BF ₄) ₂	1:2	100	17.

TABLE 7 (Contd.)

No.	Compound	Reactant ratios	Methanol (ml)	Duration of stirring (hours)
60.	Cd(SDH) ₂ (BF ₄) ₂	1:1	90	19
61.	Cd(SDH) ₃ (BF ₄) ₂	1:2	95	19
62.	$Cd(ADH)_2(BF_4)_2$	1:1	100	18
63.	Cd(ADH) ₃ (BF ₄) ₂	1:2	100	19
64.	Cd(PDH) ₂ (BF ₄) ₂	1:1	100	20
65.	Cd(PDH) ₃ (BF ₄) ₂	1:2	110	20
66.	Cd(TDH) ₃ (BF ₄) ₂	1:1	95	19
67.	Hg(ODH) ₃ (BF ₄) ₂	1.1	100	17
68.	Hg(ODH) 3/2(BF4) 2	1:2	100	17
69.	Hg(MDH) ₃ (BF ₄) ₂	1:1	100	17
70.	Hg(MDH)2(BF4)2	1:2	100	18
71.	Hg SDH (BF4)2	1:1	100	19
72.	Hg(SDH)2(BF4)2	1:2	120	18
73.	Hg(ADH)2(BF4)2	1:1	95	17
74.	$Hg(ADH)_{3/2}(BF_4)_2$	1:2	100	17
75.	Hg(PDH) ₂ (BF ₄) ₂	1:1	100	18
76.	Hg(PDH) ₃ (BF ₄) ₂	1:2	100	18
77.	Hg TDH (BF ₄) ₂	1:1	100	18
78.	Mg(ODH)2(BF4)2	1:1	80	17
79.	Mg(ODH) (BF,)	1:2	90	18

TABLE 7 (Contd.)
No.	Compound	Reactant ratios	Methanol (ml)	Duration of stirring (hours)
80.	Mg(MDH) 3/2(BF4)2	1:1	100	16
81.	$Mg(MDH)_2(BF_4)_2$	1:2	110	18
82.	Mg SDH (BF ₄) ₂	1:1	100	17
83.	Mg(SDH)3(BF4)2	1:2	110	17
84.	Mg ADH (BF ₄) ₂	1:1	110	17
85.	Mg(ADH)3(BF4)2	1:2	90	18
86.	Mg(PDH)2(BF4)2	1:1	100	19
87.	Mg(PDH)3(BF4)2	1:2	100	19
88.	MgTDH(BF ₄) ₂	1:1	100	20

TABLE 7 (Contd.)

TABLE 8: ANALYTICAL DATA OF THE LIGANDS AND THE TETRAFLUOROBORATE COMPLEXES

NG.	Compound	Empirical Formula	Colour	M.P (^O C)	Yield (%)	M	Percen C	ntage Comp H	osition N	- 2
1.	ODH	C2H6N4O2	White	241-243	90	O ^X	20.30 (20.35)	5.11 (5.08)	47.52 (47.16)	
2.	MDH	C3H8N402	White	152-154	83		27.45 (27.27)	6.04 (6.06)	42.28 (42.42)	
3.	SDH	$C_4H_{10}N_4O_2$	White	167-168	87		32.91 (32.88)	6.79 (6.85)	38.34 (38.36)	
4.	ADH	$C_6H_{14}N_4O_2$	White	171-172	89		41.53 (41.38)	8.02 (8.04)	32.57 (32.18)	
5.	PDH	C8H10N402	Dirty white	> 300	91		50.01 (49.48)	5.17 (5.15)	28.57 (28.87)	
6.	TDH	C ₈ H ₁₀ N ₄ O ₂	Dirty white	>300	77		49.64 (49.48)	5.16 (5.15)	28.77 (28.87)	
7.	Mn (ODH) 2(BF4) 2	MnC ₄ H ₁₂ N ₈ - O ₄ B ₂ F ₈	White	>300	78	11.94 (11.83)	10.29 (10.33)	2.60 (2.58)	24.09 (24.11)	
8.	$Mn(ODH)_3(BF_4)_2$	MnC ₆ H ₁₈ N ₁₂ - O ₆ B ₂ F ₈	White	>300	77	9.61 (9.43)	12.40 (12.36)	3.02 (3.09)	28.97 (28.84)	
9.	$Mn (MDH)_2 (BF_4)_2$	${}^{MnC_{6}H_{16}N_{8}-}_{O_{4}B_{2}F_{8}}$	Dirty white	227-229	84	11.09 (11.15)	14.45 (14.62)	3.30 (3.25)	22.85 (22.74)	
10.	$Mn (MDH)_3 (BF_4)_2$	$\frac{MnC_9H_{24}N_{12}}{MnC_9E_2F_8}$	White	193-195	81	8.84 (8.80)	17.18 (17.29)	3.86 (3.84)	26.74 (26.90)	

0	~
242	- - R
o	0
	_

TABLE 8 (Contd.)

No	Compound	Empirical	Colour	M.P	Yield		Percenta	age Compos:	ition
110.	compound	Formula	COTOUT	(°C)	(3)	M	С	Н	N
11.	$Mn(SDH)_2(BF_4)_2$	MnC ₈ H ₂₀ N ₈ - 0 ₄ B ₂ F ₈	White	195-197	68	10.60 (10.55)	18.38 (18.44)	3,90 (3,82)	220.99 (21.52)
12.	$Mn(SDH)_3(BF_4)_2$	MnC ₁₂ H ₃₀ N ₁₂ - 0 ₆ B ₂ F ₈	White	135-137	69	8.38 (8.24)	21.81 (21.60)	4.55 (4.50)	25.08 (25.20)
13.	$Mn (ADH)_{3/2} (BF_4)_2$	MnC ₉ H ₂₁ N ₆ - O ₃ B ₂ F ₈	White	271-273	72	11.21 (11.22)	22.14 (22.06)	4.33 (4.29)	17.22 (17.16)
14.	$Mn(ADH)_3(BF_4)_2$	$^{MnC}_{18}^{N}_{42}^{N}_{12}^{-}_{06}^{B}_{2}^{F}_{8}$	White	153-155	76	7.19 (7.32)	29.03 (28.98)	5.60 (5.62)	22.51 (22.38)
15.	$Mn(PDH)_2(BF_4)_2$	${}^{MnC}_{16}\!{}^{H}_{20}\!{}^{N}_{8\overline{3}}\!$	Dirty white	> 300	78	9.08 (8.97)	31.15 (31.14)	3.27 (3.24)	18.40 (18.17)
16.	$Mn(PDH)_3(BF_4)_2$	${}^{MnC_{24}H_{30}N_{12}}_{O_6B_2F_8}$	Dirty white	>300	80	6.96 (6.78)	35.41 (35.53)	3.69 (3.70)	20.91 (20.73)
17.	$Mn(TDH)_3(BF_4)_2$	MnC ₂₄ H ₃₀ N ₁₂ - 0 ₆ B ₂ F ₈	White	>300	62	6.69 (6.78)	35.71 (35.53)	3.68 (3.70)	20.69 (20.73)
18.	$Co(ODH)_2(BF_4)_2$	$C_{0}C_{4}H_{12}N_{8} - O_{4}B_{2}F_{8}$	Pink	215-217	85	12.61 (12.58)	10.38 (10.24)	2.60 (2.56)	24.01 (23.90)

			TA	BLE 8 (Conto	1.)		S		
0.	Compound	Empirical Formula	Colour	M.P (^o C)	Yield (%)	M	Perc	entage Co H	omposition N
19.	Co(ODH)3(BF4)3	CoC ₆ H ₁₈ N ₁₂ - O ₆ B ₂ F ₈	Pìnk	183-185	88	10.34 (10.05)	12.24 (12.28)	3.06 (3.07)	28.77 (28.64)
0.	$Co(MDH)_{3/2}(BF_4)_2$	$^{\rm CoC_{4.5}H_{12}N_{6}-}_{0_3B_2F_8}$	Light pink	>300	69	13.61 (13.69)	12.39 (12.54)	2.90 (2.79)	19.46 (19.51)
1.	Co (MDH) $_3$ (BF ₄) $_2$	CoC9H24N12- 06B2F8	Pink	140-142	63	9.41 (9.38)	17.29 (17.18)	3.82 (3.82)	26.39 (26.73)
2.	$Co(SDH)_2(BF_4)_2$	CoC ₈ H ₂₀ N ₈ - O ₄ B ₂ F ₈	Pink	245-247	70	11.17 (11.24)	18.36 (18.27)	3.77 (3.81)	20.99 (21.35)
3.	$Co(SDH)_3(BF_4)_2$	${}^{\rm CoC_{12}H_{30}N_{12}-}_{{}^{\rm O}_6{}^{\rm B}_2{}^{\rm F}_8}$	Pink	150-152	70	8.64 (8.79)	21.51 (21.48)	4.40 (4.47)	25.41 (25.05)
4.	$Co(ADH)_2(BF_4)_2$	CoC ₁₂ H ₂₈ N ₈ - O ₄ B ₂ F ₈	Pink	200-202	84	9.81 (9.64)	24.68 (24.80)	4.82 (4.82)	20.02 (19.29)
5.	$Co(ADH)_3(BF_4)_2$	CoC ₁₈ H ₄₂ N ₁₂ - O ₆ B ₂ F ₈	Pink	160-162	80	7.91 (7.80)	28.59 (28.63)	5.61 (5.57)	22.19 (22.27)
5.	$Co(PDH)_3(BF_4)_2$	$CoC_{24}H_{30}N_{12} - O_6B_2F_8$	Pink	> 300	90	7.43 (7.24)	35.31 (35.36)	3.57 (3.68)	20.94 (20.63)

				85			5		
			TAB	LE 8 (Contd.))		~		
ŃO.	Compound	Empirical Formula	Colour	M.P (^o C)	Yield (%)	M	Percent	tage Com H	uposition N
27.	$Co(TDH)_3(BF_4)_2$	^{CoC} 24 ^H 30 ^N 12 ⁻ 06 ^B 2 ^F 8	Pink	> 300	71	7.28 (7.24)	35.40 (35.36)	3.70 (3.68)	20.79 (20.63)
28.	$\text{Ni(ODH)}_2(\text{BF}_4)_2$	NiC ₄ H ₁₂ N ₈ - O ₄ B ₂ F ₈	Light blue	> 300	82	12.59 (12.53)	10.18 (10.24)	2.60 (2.56)	24.04 (23.90)
29.	$\text{Ni(ODH)}_{3}(\text{BF}_4)_2$	NiC ₆ H ₁₈ N ₁₂ - O ₆ B ₂ F ₈	Light blue	235-237	81	10.14 (10.01)	12.38 (12.27)	3.05 (3.07)	28,49 (28,63)
50.	$\text{Ni(MDH)}_2(\text{BF}_4)_2$	${}^{\rm NiC_6H_{16}N_8}-$ ${}^{\rm O_4B_2F_8}$	Green	114-116	67	11.89 (11.82)	14.37 (14.50)	3.19 (3.22)	19.40 (19.33)
51.	$Ni(MDH)_3(BF_4)_2$	NiC ₉ H ₂₄ N ₁₂ - O ₆ B ₂ F ₈	Green	108-110	69	9.30 (9.34)	17.13 (17.18)	3.90 (3.82)	26.77 (26.72)
52.	$\text{Ni(SDH)}_{3/2}(\text{BF}_4)_2$	NiC ₆ H ₁₅ N ₆ - O ₃ B ₂ F ₈	Light blue	295-297	- 70	13.03 (13.00)	15.90 (15.94)	3.40 (3.32)	18.33 (18.60)
53.	$Ni(SDH)_2(BF_4)_2$	NiC ₈ H ₂₀ N ₈ -	Light blue	145-147	72	11.21 (11.19)	18.41 (18.30)	3.78 (3.81)	20.99 (21.35)
54.	Ni(ADH) 3/2 (BF4) 2	$NiC_{9}H_{21}N_{6}-$ $O_{3}B_{2}F_{8}$	Light blue	>300	88	11.98 (11.89)	21.74 (21.88)	4.30 (4.25)	17.19 (17.01)

			TA	86 BLE 8 (Contd	.)		2P		
No.	Compound	Empirical Formula	Colour	м.р ([°] С)	Yield (%)	M	Percen C.	itage c	omposition N
5.	Ni(ADH)2(BF4)2	NiC ₁₂ H ₁₄ N ₈ - O ₄ B ₂ F ₈	Blue	>300	87	10.07 (10.11)	24.31 (24.80)	4.97 (4.82)	19.18 (19.29)
6.	$\text{Ni(PDH)}_{3}(\text{BF}_{4})_{2}$	NiC ₂₄ H ₃₀ N ₁₂ - 0 ₆ B ₂ F ₈	Light green	>300	85	7.17 (7.21)	35.47 (35.35)	3.70 (3.68)	20.41 (20.62)
7.	$\text{Ni(TDH)}_{3}(\text{BF}_{4})_{2}$	NiC ₂₄ H ₃₀ N ₁₂ - O ₆ B ₂ F ₈	Light green	> 300	71	7.23 (7.21)	35.59 (35.35)	3.66 (3.68)	20.57 (20.62)
8.	Cu(ODH) 3/2 (BF ₄) 2	CuC ₃ H ₉ N ₆ - O ₃ B ₂ F ₈	Blue	226-228	90	15.74 (15.33)	8.57 (8.69)	2.18 (2.19)	20.39 (20.28)
9.	$Cu(ODH)_3(BF_4)_2$	$CuC_6H_{18}N_{12} - O_6B_2F_8$	Blue	206-208	81	10.81 (10.74)	12.16 (12.18)	3.00 (3.04)	29.01 (28.42)
).	${\rm Cu(MDH)_2(BF_4)_2}$	CuC ₆ H ₁₆ N ₈ - O ₄ B ₂ F ₈	Green	248-250	63	12.75 (12.67)	14.51 (14.37)	3.22 (3.19)	22.26 (22.35)
ι.	$Cu(MDH)_3(BF_4)_2$	$CuC_9H_{24}N_{12} - O_6B_2F_8$	Blue	106-108	71	9.88 (9.73)	16.59 (16.54)	3.64 (3.67)	26.71 (26.53)
2.	Cu(SDH) ₂ (BF ₄) ₂	$CuC_{8}H_{20}N_{8} - O_{4}B_{2}F_{8}$	Lìght green	> 300	63	12.10 (12.00)	18.21 (18.14)	3.80 (3.78)	21.20 (21.17)

TA A TY	1 7 1	0	(())
F/A H	1 here 1	- XC	(ODTA)
LAD.	Like !	0	1 COILCU. 1

No	Compound	Empirical	Colour	M.P	Vield		Percenta	age Comp	osition
140.	compotata	Formula	COTOUT	(°C)	(%)	M	С	Н	N
43.	$Cu(SDH)_3(BF_4)_2$	CuC ₁₂ H ₃₆ N ₁₂ -	Green	268-270	67	9.61 (9.41)	21.63 (21.33)	(4.40 (4.44)	25.02 (24.88)
44.	$Cu(ADH)_2(BF_4)_2$	CuC ₁₂ H ₂₈ N ₈ - O ₄ B ₂ F ₈	Green	210-212	74	10.54 (10.22)	23.11 (23.18)	4.73 (4.51)	19.09 (19.14)
45.	$Cu(ADH)_3(BF_4)_2$	CuC ₁₈ H ₄₂ N ₁₂ - O ₆ B ₂ F ₈	Green	285-287	77	8.57 (8.36)	28.66 (28.45)	5.50 (5.53)	22.38 (22.13)
46.	$Cu(PDH)_2(BF_4)_2$	^{CuC} 16 ^H 20 ^N 8 ⁻ 04 ^B 2 ^F 8	Greenish Brown	> 300	82	9.98 (10.16)	30.70 (30.71)	3.22 (3.20)	18.01 (17.92)
47.	$Cu(PDH)_3(BF_4)_2$	CuC ₂₄ H ₃₀ N ₁₂ - O ₆ B ₂ F ₈	Greenish Brown	7300	82	7.80 (7.75)	35.42 (35.16)	3.70 (3.66)	20.66 (20.51)
48.	$Cu(TDH)_3(BF_4)_2$	CuC ₂₄ H ₃₀ N ₁₂ - 0 ₆ B ₂ F ₈	Light green	>300	75	7.92 (7.75)	35.13 (35.16)	3.58 (3.66)	20.49 (20.51)
49.	$Zn(ODH)_2(BF_4)_2$	ZnC ₄ H ₁₂ N ₈ - O ₄ B ₂ F ₈	White	> 300	82	13.88 (13.76)	10.24 (10.11)	2.50 (2.53)	23.67 (23.58)
50.	Zn (ODH) 3 (BF4) 2	^{2nC₆H₁₈N₁₂- O₆B₂F₈}	White	237-239	79	11.12 (11.02)	12.18 (12.14)	2.98 (3.04)	28.41 (28.33)

Ø

と

			TA	<u>BLE 8</u> (Contd	•)	0			
No.	Compound	Empirical Formula	Colour	M.P (^O C)	Yield (%)	M	Percent C	age Comp H	osition N
51.	$ZnMDH(BF_4)_2$	ZnC ₃ H ₈ N ₄ - O ₂ B ₂ F ₈	Light yellow	>300	69	17.58 (17.62)	9.63 (9.70)	2.14 (2.16)	15.02 (15.10)
52.	$\operatorname{Zn}(\operatorname{MDH})_{\overline{3}}(\operatorname{BF}_4)_2$	ZnC ₉ H ₂₄ N ₁₂ - O ₆ B ₂ F ₈	White	173-175	85	10.87 (10.29)	17.17 (17.01)	3.72 (3.78)	26.21 (26.46)
53.	$Zn(SDH)_{3/2}(BF_4)_2$	^{ZnC₆H₁₅N₆- O₃B₂F₈}	White	255-257	75	14.16 (14.27)	15.78 (15.72)	3.26 (3.28)	18.44 (18.34)
54.	$Zn(SDH)_2(BF_4)_2$	^{ZnC₈H₂₀N₈- O₄B₂F₈}	White	218-220	78	12.22 (12.31)	18.20 (18.08)	3.75 (3.77)	21.19 (21.09)
5.	$\operatorname{Zn}(\operatorname{ADH})_3(\operatorname{BF}_4)_2$	^{ZnC} ₁₈ H ₄₂ N ₁₂ - O ₆ B ₂ F ₈	White	268-270	69	8.71 (8.59)	28.26 (28.38)	5.57 (5.52)	22.20 (22.08)
6.	$Zn(PDH)_3(BF_4)_2$	ZnC ₂₄ H ₃₀ N ₁₂ - O ₆ B ₂ F ₈	White	>300	57	8.06 (7.96)	35.04 (35.08)	3.69 (3.65)	20.51 (20.46)
57.	$2n(TDH)_3(BF_4)_2$	ZnC ₂₄ H ₃₀ N ₁₂ = O ₆ B ₂ F ₈	White	>300	55	7.90 (7.96)	34.84 (35.08)	3.70 (3.65)	20.51 (20.51)
8.	Cd(ODH)2(BF4)2	$CdC_4H_{12}N_8 - O_4B_2F_8$	Dirty white	> 300	80	21.24 (21.53)	9.11 (9.20)	2.26 (2.30)	20.94 (21.46)

				89				\$, j
			TABLE	8 (Contd.)		10 ar	S.	5	
No.	Compound	Empirical Formula	Colour	M.P (°C)	Yield (%)	М	Percenta	.ge Compo H	osition N
59.	$Cd(ODH)_3(BF_4)_2$	CdC ₆ H ₁₈ N ₁₂ - O ₆ B ₂ F ₈	Dirty white	>300	79	17.61 (17.56)	11.04 (11.25)	2.80 (2.81)	25.99 (26.25)
60.	$Cd(MDH)_2(BF_4)_2$	CdC ₆ H ₁₆ N ₈ - O ₄ B ₂ F ₈	Dirty white	245-247	74	20.24 (20.44)	13.07 (13.09)	3.00 (2.91)	20.74 (20.36)
61.	Cd(SDH) ₂ (BF ₄) ₂	CdC ₈ H ₂₀ N ₈ = 0 ₄ B ₂ F ₈	White	174-176	81	19,52 (19,45)	16.68 (16.61)	3.40 (3.46)	19.26 (19.38)
62.	Cd(SDH) ₃ (BF ₄) ₂	CdC ₁₂ H ₃₀ N ₁₂ - 06 ^B 2 ^F 8	White	211-213	69	15.63 (15.52)	20.01 (19.89)	4.13 (4.14)	23,52 (23,20)
63.	$Cd(ADH)_2(BF_4)_2$	$^{CdC}_{12}H_{28}N_8-0_4B_2F_8$	White	297-299	72	17.80 (17.73)	22.67 (22.71)	4.47 (4.42)	18.01 (17.67)
64.	$Cd(ADH)_3(BF_4)_2$	CdC ₁₈ H ₄₂ N ₁₂ - O ₆ B ₂ F ₈	White	116-118	77	14.03 (13.91)	26.81 (26.73)	5.24 (5.20)	20.38 (20.79)
65.	Cd(PDH) ₂ (BF ₄) ₂	$CdC_{16}H_{20}N_{8} - O_{4}B_{2}F_{8}$	Dirty white	>300	70	16.80 (16.68)	28.46 (28.49)	3.01 (2.97)	17.01 (16.62)
66.	Cd(PDH) ₃ (BF ₄) ₂	$CdC_{24}H_{30}N_{12}-O_6B_2F_8$	Dirty white	283-285	80	13.04 (12.95)	33.16 (33.18)	3.39 (3.46)	19.24 (19.35)

P

S

4

- 44		-	-	
			-	
ч.				
-	-			
-		ъ.		
	~	~	~	

TABLE 8 (Contd.)

No:	Compound	Empirical	Colour	M.P	Yield		Percenta	ige Co	mposition
		Formula		(°C)	(§)	М	С	Н	N
67.	$Cd(TDH)_3(BF_4)_2$	CdC ₂₄ H ₃₀ N ₁₂ - 0 ₆ B ₂ F ₈	White	>300	62	13.00 (12.95)	33.30 (33.18)	3.39 (3.46)	19.41 (19.35)
68.	$Hg(ODH)_3(BF_4)_2$	${}^{\mathrm{HgC}_{6}\mathrm{H}_{18}\mathrm{N}_{12}-}_{\mathrm{O}_{6}\mathrm{B}_{2}\mathrm{F}_{8}}$	Light brown	267-269	78	27.64 (27.55)	9.84 (9.89)	2.51 (2.47)	23.19 (23.07)
69.	Hg(ODH) 3/2(BF4)2	HgC ₃ H ₉ N ₆ - O ₃ B ₂ F ₈	Light brown	> 300	72	36.41 (36.39)	6.66 (6.53)	1.65 (1.63)	15.43 (15.24)
70.	$Hg(MDH)_3(BF_4)_2$	HgC ₉ H ₂₄ N ₁₂ - O ₆ B ₂ F ₈	Light brown	>300	62	26.10 (26.04)	14.21 (14.02)	3.10 (3.12)	22.02 (21.81)
71.	Hg (MDH) 2 (BF4) 2	$^{\rm HgC_6H_{16}N_8}_{^{\rm O_4B_2F_8}}$	Brown	258-260	62	31,39 (31,43)	11.22 (11.28)	2,52 (2,51)	17.47 (17.55)
72.	HgSDH(BF ₄) ₂	HgC ₄ H ₁₀ N ₄ - 0 ₂ B ₂ F ₈	Dirty white	198-200	66	38.71 (38.56)	9.28 (9.23)	2.01 (1.92)	10.98 (10.77)
73.	Hg(SDH) ₂ (BF ₄) ₂	HgC ₈ H ₂₀ N ₈ 0 ₄ B ₂ F ₈	Brown	222-224	66	30.07 (30.11)	14.62 (14.41)	3.04 (3.00)	16.56 (16.81)
74.	$Hg(ADH)_2(BF_4)_2$	$^{HgC}_{12}^{H}_{28}^{N}_{8}^{H}_{04}^{B}_{2}^{F}_{8}^{F}_{8}$	Dirty white	117-119	74	27.41 (27.77)	19.87 (19.84)	3.91 (3.88)	15.38 (15.51)

			TAB	LE 8 (Contd.	.)		$\langle \! \rangle$	ku j	
No.	Compound	Empirical Formula	Colour	M.P ([°] C)	Yield (%)	м	Percenta C	age H	Composition N
75.	$Hg(ADH)_{3/2}(BF_4)_2$	HgCgH ₂₁ N ₆ - O ₃ B ₂ F ₈	Light brown	>300	79	51.50 (51.58)	17.08 (17.00)	3.39 (3.31)	13.46 (13.22)
76.	$Hg(PDH)_2(BF_4)_2$	HgC ₁₆ H ₂₀ N ₈ - 0 ₄ B ₂ F ₈	Light brown	>300	82	26.41 (26.32)	25.08 (25.19)	2.64 (2.62)	14.50 (14.68)
77.	$\mathrm{Hg}(\mathrm{PDH})_{3}(\mathrm{BF}_{4})_{2}$	HgC ₂₄ H ₃₀ N ₁₂ - 0 ₆ B ₂ F ₈	Light brown	> 300	82	20.91 (20,98)	30.20 (30.12)	3.09 (3.14)	17.62 (17.57)
78.,	HgTDH(BF ₄) ₂	$^{HgC_8H_{10}N_4}_{O_2B_2F_8}$	Brown	> 300	78	35.24 (35.30)	16.82 (16.90)	1.82 (1.76)	10.03 (9.86)
79.	$Mg(ODH)_2(BF_4)_2$	$MgC_4H_{12}N_8 - O_4B_2F_8$	White	>300	85	5.64 (5.60)	11.05 (11.06)	2.56 (2.77)	26.04 (25.81)
80.	$Mg(ODH)_3(BF_4)_2$	MgC ₆ H ₁₈ N ₁₂ - O ₆ B ₂ F ₈	White	≥300	81	4.32 (4.41)	13.12 (13.05)	3.21 (3.26)	30.17 (30.44)
81.	$Mg(MDH)_{3/2}(BF_4)_2$	MgC _{4.5} H ₁₂ - N ₆ O ₃ B ₂ F ₈	Light brown	> 300	76	6.09 (6.14)	13.46 (13.64)	2.98 (3.03)	21.24 (21.22)
82.	Mg (MDH) 2 (BF4) 2	$MgC_6H_{16}N_8 - O_1B_2F_9$	Light brown	>300	80	5.19 (5.26)	15.30 (15.59)	3.46 (3.46)	24.44 (24.25)

¢.

00	

TABLE 8 (Contd.)

								2	
			9	2			1	\sim	
			TABLE	(Contd.)			\$		
No.	Compound	Empirical Formula	Colour	M.P (°C)	Yield (%)	М	Percenta C	nge Com H	position N
83.	$MgSDH(BF_4)_2$	MgC ₄ H ₁₀ N ₄ - O ₂ B ₂ F ₈	White	>300	71	7.05 (7.07)	14.04 (13.96)	3.02 (2.91)	16.71 (16.28)
84.	$Mg(SDH)_3(BF_4)_2$	MgC ₁₂ H ₃₀ N ₁₂ - 0 ₆ B ₂ F ₈	White	>300	70	3.91 (3.82)	22.53 (22.64)	4.69 (4.72)	26.27 (26.42)
85.	MgADH(BF ₄) ₂	MgC ₆ H ₁₄ N ₄ - O ₂ B ₂ F ₈	Light brown	>300	81	6.47 (6.54)	9.45 (9.36)	3.72 (3.76)	14.99 (15.06)
86.	$Mg(ADH)_3(BF_4)_2$	$MgC_{18}H_{42}N_{12} - O_6B_2F_8$	White	300	88	3.34 (3.38)	30.16 (30.00)	5.79 (5.83)	23.45 (23.34)
87.	$Mg(PDH)_2(BF_4)_2$	$MgC_{16}H_{20}N_8 = O_4B_2F_8$	White	>300	81	4.21 (4.15)	32.89 (32.77)	3.36 (3.41)	19.28 (19.12)
88.	$Mg(PDH)_3(BF_4)_2$	MgC ₂₄ H ₃₀ N ₁₂ - 0 ₆ B ₂ F ₈	Dirty white	>300	82	3.20 (3.12)	37.02 (36.93)	3.79 (3.85)	21.41 (21.54)
89.	MgTDH(BF ₄) ₂	$MgC_8H_{10}N_4 = 0_2B_2F_8$	Light brown	>300	70	6.16 (6.20)	24.58 (24.50)	2.60 (2.55)	14.16 (14.29)

Figures in parentheses are the calculated values.

									E			
No.	Compound	Water	Metha- nol	Etha- nol	Ace- tone	Hexane	Ben- zene	Aceto- nitrile	DMSO	DMF	Nitro- ben- zene	Nitro- methane
1.	ODH	SS	SS	SSH	SSH	In	In	In	SSH	SSH	In	In
2.	MDH	SH	SS	SSH	SSH	In	In	In	SSH	SSH	In	In
3.	SDH	SS	SS	SSH	SSH	In	In	In	SSH	SSH	In	In
4.	ADH .	SS	SS	SSH	SSH	In	In	In	SSH	SSH	In	In
5.	PDH	SS	SS	SSH	SSH	In	In	In	SSH .	SSH	In	In
6.	TDH	SS	SS	SSH	SSH	In	In	In	SSH	SSH	In	In
7.	Mn (ODH) 2 (BF 4) 2	S	SSH	SSH	In	SSH	SSH :	SSH	In	SSH	In	In
8.	Mn(ODH)3 (BF4)2	S	SSH	SSH	SSH	In	In	SSH	In	SSH	In	SSH ·
9.	Mri (MDH) 2 (BF 4) 2	S	SSH	SSH	In	In	In	SSH	In	SSH	SSH	SSH
10.	Mn (MDH) 3 (BF 4) 2	S	In	SSH	SSH	In	In	SSH	SSH	In	In	SSH
11.	Mn(SDH) 2 (BF 4) 2	s	SSH	In	SSH	SSH	In	SSH	SSH	SSH	SSH	SSH
12.	Mn(SDH) 3 (BF 4) 2	S	In	In	In	In	In	SSH	In	SSH	In	In
13.	Mn(ADH) 3/2 (BF4) 2	S	SSH	In	In	In	In	In	SSH	SSH	In	In

94 TABLE 9 (Contd.) Ô

No.	Compound	Water	Metha- nol	Etha- nol	Ace- tone	Hexane	Ben- zene	Aceto- nitrile	DMSO	DMF	Nitro- ben- zene	Nitro- methane
14.	Mn(ADH) 3(BF4) 2	S	In	In	In	In	In	In	SSH	In	In	In
15.	Mn(PDH) ₂ (BF ₄) ₂	In	In	In	In	In	In	In	SSH	In	In	In
16.	Mn(PDH) 3(BF4)2	In	In	In	In	In	In	In	SSH	SSH	In	SSH
17.	Mn (TEH) 3 (BF4) 2	In	In	In	In	In	In	SSH	In	In	In	In
18.	Co(ODH) 2(BF4) 2	S	SSH	SSH	SSH	In	In	In	SSH	In	In	SSH
19.	Co(ODH) 3(BF4) 2	S	SSH	SSH	SSH	In	In	SSH	SSH	In	In	In
20.	Co(MDH) 3/2 (BF4) 2	S	In	SSH	In	In	In	SSH	In	In	In	In
21.	Co(MDH) 3(BF4) 2	S	In	In	In	In	In	In	In	In	In	In
22.	Co(SDH) 2(BF4) 2	S	In	Iń	In	In	In	In	In	In	In	In
23.	Co(SDH) 3(BF4) 2	S	SSH	In	In	In	In	In	In	In	In	In
24.	Co(ADH) 2(BF4) 2	s	SSH	SSH	SSH	In	In	In	SSH	In	In	In
25.	Co(ADH) 3 (BF4) 2	S	SSH	SSH	SSH	In	In	In	SSH	In	In	In
26.	Co(PDH) 3 (BF4) 2	SSH	SSH	SSH	SSH	In	In	SSH	In	In	In	SSH

TABLE 9 (Contd.)

											the second se	and the second se
No.	Compound	Water	Metha- nol	Etha- nol	Ace- tone	Hexane	Ben- zene	Aceto- nitrile	DMSO	DMF	Nitro- ben- zene	Nitro- methane
27.	Co(TDH) 3(BF4) 2	In	In	In	In	In	In	In	In	In	In	SSH
28.	Ni(ODH) 2(BF4) 2	SSH	SSH	SSH	In	In	In	SSH	In	In	SSH	In
29.	Ni(ODH) 3(BF4) 2	SSH	SSH	In	In	In	In	SSH	In	In	In	In
30.	Ni(MDH) ₂ (BF ₄) ₂	S	SSH	In	In	In	In	In	In	In	In	In
31.	Ni(MDH) 3(BF4) 2	S	SSH	In	In	In	In	In	In	In	In	In
32.	Ni(SDH)3/2(BF4)2	S	In	In	In	In	In	In	In	In	In	In
33.	Ni(SDH) 2(BF4) 2	S	In	In	In	In	In	In	In	In	In	In
34.	Ni(ADH) 3/2(BF4)2	SSH	SSH	In	In	In	In	In	In	In	In	In
35.	Ni(ADH) 2(BF4) 2	SSH	SSH	SSH	In	In	In	In	SSH	In	SSH	In
36.	Ni(PDH) 3 (BF4) 2	In	SSH	SSH	SSH	In	In	SSH	In	In	In	In
37.	Ni(TDH) 3 (BF4) 2	In	In	In	In	In	In	SSH	In	SSH	In	In
38.	Cu (ODH) 3/2 (BF4) 2	SSH	SSH	In	In	In	In	SSH	SSH	SSH	In	In
39.	Cu (ODH) 3 (BF4) 2	SSH	SSH	SSH	In	SSH	In	SSH	In	SSH	In	In

95

RAFT

										4	•	
					96					\leftarrow		
				TAB	LE 9 (Co	ontd.)	a.					
		1. 1. 1. 	2011 - 10 - 10 - 10 - 10 - 10 - 10 - 10						C			
No.	Compound	Water	Metha- nol	Etha- nol	Ace- tone	Hexane	Ben- zene	Aceto- nitrile	DMSO	DMF	Nitro- ben- zene	Nitro- methane
40.	Cu(MDH) ₂ (BF ₄) ₂	S	SSH	SSH	In	In	In	SSH	In	In	In	In
41.	Cu(MDH) 3 (BF4) 2	S	SSH	SSH	In	In	In	SSH	In	SSH	In	In
42.	Cu(SDH) ₂ (BF ₄) ₂	S	In	SSH	In	In	In	SSH	SSH	SSH	SSH	In
43.	Cu(SDH) 3 (BF4) 2	S	In	SSH	In	In	In	SSH	SSH	SSH	In	In
44.	Cu (ADH) 2 (BF4) 2	SSH	SSH	In	In	In	In	In	SSH	SSH	In	In
45.	Cu (ADH) 3 (BF 4) 2	SSH	SSH	In	In	In	In	In	In	SSH	SSH	SSH
46.	Cu(PDH) ₂ (BF ₄) ₂	SSH	SSH	In	In	In	In	SSH	SSH	SSH	SSH	In
47.	Cu(PDH) 3(BF4) 2	SSH	SSH	SSH	In	In	SSH	In	SSH	SSH	In	In
48.	Cu(TDH) ₂ (BF ₄) ₂	In	In	In	In	In	In	SSH	SSH	SSH	In	In
49.	Zn(ODH) ₂ (BF ₄) ₂	S	SSH	In	In	In	In	In	In	SSH	In	SSH
50.	Zn(ODH) 3(BF4)2	S	In	In	In	In	In	In	In	SSH	In	In
51.	Zn MDH (BF ₄) ₂	s	SSH	SSH	In	In	In	In	SSH	SSH	In	In
52.	$Zn(MDH)_3(BF_4)_2$	S	SSH	In	In	In	In	In	SSH	SSH	In	In
53.	Zn(SDH) 3/2 (BF4) 2	SSH	In	In	In	In	In	In	SSH	In	In	In
											-	

TABLE 9 (Contd.)

											7	
				TAB	9 LE 9 (C	7 ontd.)				8		
No.	Compound	Water	Metha- nol	Etha- nol	Ace- tone	Hexane	Ben- zene	Aceto- nitrile	DMSO	DMF	Nitro- ben- zene	Nitro- . methane
54.	Zn(SDH)2(BF4)2	SSH	In	In	In	In	In	In	SSH	In	In	In
55.	Zn(ADH) 3(BF4)	S	SSH	In	In	In	In	In	In	In	In	In
56.	Zn(PDH) ₃ (BF ₄) ₂	In	SSH	In	In	In	In	In	In	SSH	SSH	SSH
57.	Zn(TDH) ₃ (BF ₄) ₂	In	In	In	In	In	In	In	In	In	SSH	In
58.	Cd(ODH) (BF)	S	SSH	In	In	In	In	In	SSH	SSH	In	In
59.	Cd(ODH) (BF)	S	SSH	In	In	In	In	In	SSH	SSH	In	In
60.	Cd(MDH) ₂ (BF ₄) ₂	S	SSH	SSH	In	In	In	In	SSH	In	In	In
61.	Cd(SDH) (BF,)	S	In	In	In	In	In	In	SSH	In	In	In
62.	Cd(SDH) ₂ (BF ₄) ₂	S	In	In	In	In	In	In	SSH	In	SSH	In
63.	Cd(ADH) (BF ₄)	S	In	In	In	In	In	In	SS	In	SSH	In
64.	Cd (ADH) (BF ₄)	S	In	SSH	In	In	In	In	SSH	In	In	In
65.	Cd(PDH) (BF ₄)	In	In	In	In	In	In	In	SSH	In	In	In
66.	Cd (PDH) (BF,)	In	In	In	In	In	In	In	SSH	In	In	In
67.	Cd(TDH) ₃ (BF ₄) ₂	In	In	In	In	In	In	In	SSH	In	In	In

					98	3			0	5		
				TAB	LE 9 (C	ontd.)			25			
No.	Compound	Water	Metha- nol	Etha- nol	Ace- tone	Hexane	Ben- zene	Aceto- nitrile	DMSO	DMF	Nitro- ben- zene	Nitro- methane
68.	Hg(ODH) 3(BF4) 2	SSH	SSH	SSH	In	In	In	In	SSH	SSH	In	In
69.	Hg(ODH) 3/2(BF4) 2	SSH	SSH	In	In	In	In	In	SSH	SSH	In	In
70.	Hg(MDH)3(BF4)2	In	In	In	In	In	In	In	SSH	In	In	In
71.	Hg(MDH)2(BF4)2	In	In	In	In	In	In	In	SSH	In	In	In
72.	Hg(SDH)(BF ₄) ₂	ssH	In	In	In	In	In	In	In	SSH	In	In
73.	Hg(SDH)2(BF4)2	SSH	In	SSH	In	In	In	In	In	In	In	SSH
74.	Hg(ADH)2(BF4)2	S	In	In	In	In	In	In	SSH	SSH	In	SSH
75.	Hg(ADH) 3/2(BF4)2	SSH	In	In	In	In	In	In	SSH	In	In	In
76.	Hg(PDH)2(BF4)2	In	In	In	In	In	In	In	In	In	In	In
77.	Hg(PDH)3(BF4)2	SSH	In	In	In	In	In	In	In	In	In	In
78.	HgTDH(BF ₄) ₂	In	In	In	In	In	In	In	In	In	In	In
79.	Mg(ODH)2(BF4)2	SSH	SSH	In	In	In	In	In	In	In	In	In
80.	Mg(ODH)3(BF4)2	In	SSH	In	In	In	In	In	SSH	In	In	In
81.	Mg(MDH) 2/2(BF,) 2	S	SSH	In	In	In	In	In	SSH	SSH	In	In

TABLE 9 (Contd.)

No.	Compound	Water	Metha- nol	Etha- nol	Ace- tone	Hexane	Ben- zene	Aceto- nitrile	DMSO	DMF	Nitro- ben- zene	Nitro- methane
82.	Mg(MDH) ₂ (BF ₄) ₂	SSH	In	SSH	In	In	In	In	SSH	SSH	In	In
83.	MgSDH(BF ₄) ₂	SSH	In	In	In	In	In	In	SSH	In	In	In
84.	Mg(SDH) ₃ (BF ₄) ₂	SSH	In	In	In	In	In	In	SSH	In	In	In
85.	MgADH(BF ₄) ₂	SSH	In	In	In	In	In	In	SSH	In	In	In
86.	Mg(ADH) ₃ (BF ₄) ₂	SSH	In	In	In	In	In	In	SSH	In	In	In
87.	Mg(PDH) ₂ (BF ₄) ₂	In	In	In	In	In	In	SSH	SSH	SSH	In	In
88.	Mg(PDH)3(BF4)2	SSH	In	In	In	In	In	SSH	SSH	In	In	In
89.	MgTDH(BF ₄) ₂	In	In	In	In	In	In	SSH	SSH	In	In	In

Notes: S = Soluble -

- SS = Slightly soluble
- SSH = Slightly soluble in hot
- In = Insoluble.

TABLE	10:	CONDUCTANCE	DATA	OF	THE	TETRAFLUOROBORATE	COMPLEXES
-------	-----	-------------	------	----	-----	-------------------	-----------

IN WATER AND DMSO ($\sim 10^{-3}$ M)

No	Compound	∧ m	
10.	Compound	$(ohm^{-1} cm^2 mol^{-1})$	
1.	Mn(ODH) ₂ (BF ₄) ₂	194	
2.	Mn(ODH)3(BF4)2	207	
3.	Mn(MDH) ₂ (BF ₄) ₂	193	
4.	$Mn(MDH)_3(BF_4)_2$	218	
5.	Mn(SDH)2(BF4)2	187	
6.	Mn(SDH)3(BF4)2	193	
7.	Mn(ADH) 3/2(BF4)	2 204	
8.	Mn(ADH) 3(BF4)2	195	
9.	Co(ODH)2(BF4)2	198	
10.	Co(ODH) 3(BF4) 2	206	
11.	Co(MDH) 3/2(BF4)	2 189	
12.	Co(MDF) (BF4)2	197	
13.	Co(SDH) ₂ (BF ₄) ₂	186	
14.	Co(SDH) ₃ (BF ₄) ₂	201	
15.	Co(ADH) 2(BF4) 2	159	
16.	$Co(ADH)_3(BF_4)_2$	180	
17.	Ni(MDH) ₂ (BF ₄) ₂	211	
18.	Ni(MDH) ₃ (BF ₄) ₂	197	
9.	Ni(SDH) 3/2(BF4)	2 184	

No.	Compound	/m (ohm ⁻¹ cm ² mo1 ⁻¹)
20.	Ni(SDH) ₂ (BF ₄) ₂	175
21.	$Cu(MDH)_2(BF_4)_2$	187
22.	Cu(MDH) 3(BF4) 2	205
23.	Cu(SDH) ₂ (BF ₄) ₂	157
24.	Cu(SDH) 3(BF4) 2	183
25.	$Zn(ODH)_2(BF_4)_2$	204
26.	Zn(ODH) 3(BF4) 2	198
27.	Zn MDH(BF ₄) ₂	180
28.	Zn(MDH) ₃ (BF ₄) ₂	169
29.	Zn(ADH) 3(BF4)2	197
30.	Cd(ODH)2(BF4)2	170
31.	Cd(ODH) 3(BF4) 2	184
32.	Cd(MDH) ₂ (BF ₄) ₂	181
33.	Cd(SDH) 2(BF4) 2	151
34.	Cd(SDH)3(BF4)2	166
35.	Cd(ADH)2(BF4)2	161
36.	Cd(ADH)3(BF4)2	156
37.	Hg SDH(BF4)2	219
38.	Hg(ADH) ₂ (BF ₄) ₂	192
39.	Mg(MDH) 3/2(BF4)2	175
40.	Mn(SDH) ₂ (BF ₄) ₂	86
41.	Mn(SDH) ₃ (BF ₄) ₂	89
42.	Cd(MDH) ₂ (BF ₄) ₂	82

TABLE 10 (Contd.9)

N.B. *Conductance in DMSO, the rest in water.

102a R Fig. 12 A - Oxalic dihydrazide B - Malonic dihydrazide C - Succinic dihydrazide NER

103a Fig. D - Adipic dihydrazide 13 E - Phthalic dihydrazide Perephthalic dihydrazide F NIVERS

110a Fig. 20 25. NI(MDH)2(BF4)2 26. Ni(MDH)3(BF4)2 27. Ni(SDH)3/2(BF4) JH)2(L OF IBADA 28. Ni(SDH)2(BF4)2 ANERSHY OF IE

TABLE	11: INFRARED	FREQUENCIES (cm	-1) AND TENTATI	VE ASSIGNMEN	NTS OF OXALIC	DIHYDRAZID	E COMPLEXES
ODH	Mn(ODH) ₂ - (BF ₄) ₂ ² -	Mn(ODH) ₂ - (BF ₄) ₂	Co(ODH) 3- (BF4) 2	Co(ODH)3- (BF4)2	Ni(ODH)2- (BF4)2	Ni(ODH) ₃ - (BF ₄) ₂	Tentative assignments
32645	3240m,br	3243m,br	3260m,br	3260s,br	3280m,br.	3260s,br	$\sqrt{2}$ as(NH ₂)
3160w 2995m	3140m 3010w	3145m 3000w	3152w 2990w	3150m,br 2998w	3180m,br 2850w	3190w 2910w), $\sqrt{(NH)}$, $\sqrt{3}$ s(NH ₂)) Overtone
2780w	2760w	2760w	2772vw	2778w	2610w	2030w) and) Combination
1768w							
1710: şh	1710 sh	1708 sh					
1660s 1610s	1628s 1596m	1623s 1590s	1630vs,br	1632s	1645vs 1615vs	1650s	$\sqrt{c} = 0$
1510s 1340w	1490w 1340w	1490w 1343m	1515w 1310w	1520w 1350w	1500m,br 1390w	1506m,br 1333w	$\sqrt{2}$ cn + δ nH ₂
1303s			1290w	1305m	1310m	1070	$\sqrt{C} - C$
1265vs	1265m	1265m	1260m, br	1259s	1290w	1270m	V CN+ ONH
1096 sh	1060s,br	1050s,br	1080vs,v.br	1090s,br	1060s,v,br	1070s,v.b	$2_{BF_4} - 2_{CH_2}$
968vs 829w 795vs,br	940w 809s 792m,br	940w 809 sh 790s,br	975vw 828m 790w	970s 830w 790s	864w 830m 798m	870w 838w 798m,br	S = HNN S = C S = C S = C S = C
523vs	516s,br 415m	518vs 412s	520vs 450w	529vs 425w 390w	510m 465w 380w	528s 480w 420m-br)) M - L +) ligand vibra-
350 [.] sh 310s	340w	340m 320w	320w 290w	356m 309m	3004	350w) tional modes

3			116				Æ
			TABLE 1	<u>1</u> (Contd.)		2	35
ODH	Cu(ODH) 3/2- (BF ₄) 2	Cu(ODH) 3- (BF4)2	Zn(ODH) ₂ - (BF ₄) ₂	Zn(QDH) (BF ₄) ₂ -	Cd(ODH) ₂ - (BF ₄) ₂	Cd (ODH) 3 (BF 1) 2	Tentative assignments
3264s	3400m,br	3400m,br 3270m,br	3255m	3265s	32585	3250s	$\sqrt{as(NH_2)}$
3160w	3190m,br		3005vw	3155w	3135w	3130w	$\mathcal{J}(\text{NH})$, $\delta s(\text{NH}_2)$
2995 m 2780w 1768w 1710 <i>s</i> h	2910w 2785w 1768w 1710sh	3000w 2780w 1775w 1715sh	2705w	2985m,br 2775w 1773w,br	2900m 2750w	3000w 2780w) Overtone and) combination)
1660s 1610s	1650s 1610s	1655s 1605s	1660s 1615s	1670s 1605s	1664s 1640s	1650s	$\sqrt{c} = 0$
1510s	1550m	1530m,br	1500m	1505s	1510m,br	1515m	$\Im CN + \delta NH_2$
1340w	1406w			1353m	1410m,br	1410w	√с - н
1303s	1303m	1330m		1305w	1312w	1310w	Vc - c
1265vs	1295w	1265m	1265s	1270s	1255s	1265vs	JCN + 8 NH
1125vs 1096sh	1070vs,v,br	1200w 1060vs,br	1070vs,br	1078vs,br	1064vs,v.br	1060vs,v	,br) JBF4, JCH2
968vs	880s	880m	990w	990 sh 975s	950m	995w 950w	'δ HNC, δ HNN)δC - Η)δC - C
829w 795vs,br 523vs	790w,br 555m	790m.br 570w	830w 790s	835w 790vs	715s	795vs	S NCO
350 sh 310s	515m 415w 320m,br	525m 415m,br 330m,br	480s 397w 353w	485vs 420m 320w	515vs 42Om 362w 32Ow	520vs 415m 340m,br 300w) M - L +) Ligand) Vibrational) modes

		11	7		A
INFR	ARED FREQUENCIES	TABL (cm ⁻¹) 'AND TENTATIVE	E 11 (Contd) ASSIGNMENTS OF O	KALIC DIHYDRAZIDE	COMPLEXES (Contd.)
ODH	Hg (ODH) 3 (BF 4) 2	Hg (ODH) 3/2 (BF ₄) 2	Mg (ODH) 2 (BF 4) 2	Mg (ODH) 2 (BF 4) 2	Tentative assignments
264s	3310s	3310w 3260s	3260vs	3260vs	2as(NH_)
160w 995m 780w	3010vw 2789w	3009vw	3180vs 3015m	3250m,br 2980m,br) Overtone and
.768w .710 sh	1774w	2782w 1768w	2780m 1770w	2780w 1775w) combination)
.660s .610s .510s	1645vs 1570vs 1512s	1640s 1570s 1515m	1660vs 1598m 1535m 1490s	1660vs 1600m 1504s,br	$\sqrt{C} = 0$ $\sqrt{CN} + \delta NH_2$
.340w	1405m,br	1410m	1350m	1350s	-7С - Н
.303s .265vs .125vs .096 sh	1302m 1292m 1255s 1132m 1070vs,v,br	1315w 1288m 1255s 1115s 1080s, y-br	1260s 1205m 1090s,br	1265vs 1090s,br	$\sqrt{C} - C$ $\sqrt{CN} + \sqrt{S} NH$ $\sqrt{BF_{4}}, \sqrt{CH_{2}}, \sqrt{S} HNC, \sqrt{S} HNT$
68vs 29w	955s 825m	955s 825m	1000w 860vs,br	990s)	δc - H δc - C
95vs,br	720s	720s		796vs	S NCO
23vs	525vs	510vs	528vs 485vs	528s) 415m)	M - L + Ligand
50vs 10s	340m,br	365m 330m	310s 245w	350m) 350m) 317m)	Vibrational modes
			245w	317m)	

			118				
	, TABLE 1	1 (Contd.):	INFRARED FREQUED OF MALONIC DIHYI	NCIES (cm ⁻¹) DRAZIDE COMPL	AND TENTATIVE	ASS LOWENTS	
MDH	Mn (MDH) ₂ - (BF ₄) ₂	$\frac{Mn(MDH)_3 - (BF_4)_2}{$	$(MDH)_{3/2} - (BF_4)_2$	Co (MDH) ₃ - (BF ₄) ₂	Ni(MDH) ₂ - (BF ₄) ₂	$Ni(MDH)_3 - (BF_4)_2$	Tentative Assignments
3180m,br	3120m,br	3184s,br	3250m,br	3240vs,br	3248m,v.br	3230in,br	\mathcal{J} as (NH ₂)
3030w	3030m 3020w	3100m 3018m	3011w	3019w	302 5w	3040w	$\mathcal{J}(\mathrm{NH}), \mathcal{J}s(\mathrm{NH}_2)$ Overtone and
2848w 1650vs,br	1650s,br	1650vs	1640s	1645 vs 1590m	1660s 1612m	1635s,br 1590m	$\sqrt{C} = 0$
1515m	1510m	1510m	1512w	1510m	1540m	1530m	ZCN + SNH
1418m 1388w	1410w 1353w	1410m 1358s	1405m 1360m	1405s 1350s	1420m,br 1390m	1410m 1340m,br	√С - н √С - С
13355 1282vw	1320s 1290w	1320VS 1285w	1296w	1290w	1291w	1290w	-7 CH2
1250w	1260w	1258vs	1250w	1250m	1205w	1250w	$\sqrt{2}$ CN + δ NH ₂
1155w	1155m	1170vs	1104s,br	1100vs,br			7 BF4, 7 CH2
1110w	1090s,br	1060s,v.br			1100s,br	1100m,br	δ HNC, δ HNN
1025s,br 950m,br	957w 942w	950w	9 50w	805m	950w	940m	8 С - Н 8С - С
895m 725s,br 660m,br	900w 725s,br 625w	690w 635m	725m 710m,br	740m 680m	720m	740m,br 640m,br	S NCO S CH2
550m 415s 378m	519m 468m	518vs 450m	555w 510m 470m 390w	540s 510s 400m,br 350w	520m,br 410w	510m 445w 390m)) M - L + ligand) vibrational) modes

		11	19			Q-'
	TABLE 11 (Conto	1.): INFRARED F	REQUENCIES (c DIHYDRAZIDE	cm ⁻¹) AND TENTATI COMPLEXES	VE ASSIGNMENTS	
MEH	Cu(MDH) 2-	Cu(MDH) 3 -	Zn MDH -	Zn(MDH) ₃ —	Cd (MDH) 2 -	Tentative
-	(BF ₄) ₂	(BF ₄) ₂				
	3280w, 5r	3280w, br		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	32.50m.	2
3180m,br 3030w	3040w	3008vw	3175w 3005vw	3170vw 3000vw	3150m 3000w	$\sqrt{as(NH_2)}$ $\sqrt{(NH)}, \sqrt{s(NH_2)}$
2848w			2825vw 2305w	2820w 2300w) Overtone and combination
1650vs,br	1620m,br	1635m,br	1635s 1598m	1637s 1605 sh	1650s,br 1605m	2c = 0
1605s,br		1580m				
1515m	1555m 1515w	1515w	1510m	1510m	1518w	JON + SNH2
1418m	1400m,br	14 30m	1415w,br	1495w	1455w 1405w	-7C-н
1388w		1382m	1355s	1385w	1350c	2c - c
1335s	1325w	1320w		135011	1315m	2~.
1282vw			1290w	1290w	1295w	VCH2
1250w	1265m,br	1265m	1250w	1250m	1238m	$\sqrt{CN} + \delta NH_2$
1155w 1110w	1116w 1075s,v.br	1190w 1070s,v.br	1170vw 1050m,br	1160w 1050w,br	1180m 1040vs,br	JBF4-, JCH2
1025s,br 950m,br		925w	965 vw 92 5w	960w 927vw	975m 819m	δHNC, δHNN SC - H SC - C
895m 725s,br 660m,br	725m,br 66Os,br	795w 745w	714m 682w	715m 690m,br	735m,br 675s,br	δ NCO δ CH ₂
550m	520m,br	510m	529vw	530vw	586w 555m	
415s		4 30w	480w.br	413vw	409s 415m) vibrational
378m 31.8w	350w,br	365w	348vw	352 vw	345w 280w;,br.) modes

	TABLE 11 (Co	ntd.): INFRARED I OF MALONIC	REQUENCIES (cm ⁻¹) AN	D TENTATIVE ASSIG	MMENTS
MDH	$Hg(MDH)_3(BF_4)_2$	$Hg(MDH)_2(BF_4)_2$	'Mg(MDH) 3/2 (BF4) 2	Mg(MDH)2(BF4)2	Tentative Assignments
3180m,br	3160m,br	3200m,br	3280m 3170m	3270s 3160m	\Im as(NH ₂)
3030w 2848w	3030vw	3032w 2860w	301.5w 2890w	30 30m	$\mathcal{T}(\mathrm{NH}), \mathcal{T}\mathrm{s}(\mathrm{NH}_2)$ Overtone and combination
1650vs,br	1650s,br	1645s,br	1630s	1630vs	-2c = 0
L605s,br	1590s	1590w	1575s	1580s	
.515m	1492m,br	1495m	1520w,br	1520m	JCN + SNH2
418m	3.745	1410m	1480m 1400m	1485m 1404m) - Дс - н
.335s	1.545m	1320w	1340m	1350s) ~/C - C
282vw	1290w	1295w	1292w	1285w	-7CH2
1250w	1230w	1260m	122Om	1228m	$\sqrt{2}$ CN + 8 NH ₂
.155w				1190m	
1110w 1025s,br	1060s,v.br	1070s,v.br	1070m,br	1080m,br	SHNC, SHNN
50m,br 895m	955m	950 vw	945m,br	950s	SC - H SC - C
725s,br	740m,br	780m	740w,br	740w	\$ NCO
660m,br 590w 550m 415s 378m 318w	650m, br 520m 450w 380w, br	685m 525m,br 485w 395w	660w,br 540w 440m,br	660m,br 580w 544m 450m,br 400m) M - L + Ligand) vibrational) modes)

			1.21	121			8-1
	TABLE 11 (C	ontd.): INFR	ARED FREQUENCI	ES (cm ⁻¹) AND ZIDE COMPLEXES	TENTATIVE ASS	IGNMENT'S	
SDH	Mn(SDH) ₂ - (BF ₄) ₂	Mn(SDH) ₃ - (BF ₄) ₂	Co(SDH) ₂ - (BF ₄) ₂	Co(SDH) ₃ - (BF ₄) ₂	Ni(SDH) 3/2 (BF ₄) ₂	$\frac{\text{Ni(SDH)}_2}{(\text{BF}_4)_2}$	Tentative Assignments
.3180m,br	3230m,br	3250m,br	3200s,br	3200s,br	3250m,v.br	3200s,v.br	\Im as(NH ₂)
3020w	3010m	3010m	3040w	3010w	2930w	2920w	$\mathcal{J}(NH), \mathcal{J}s(NH_2)$
2630vw	2625w	2620w	2600w		2638w	2640w	Overtone and combination
1630s,br	1645s 1589s	1640s 1589s	1630s 1585s	1635s 1590m	1630s,br 1580w	1630s,br 1585s	-2c = 0
1510m	1520w	1520w	1535w	1520m	1530w	1520m,br	2CN + 8 NH2
1445w	1415w 1398m	1415w 1400m	1394m	1380m,br	1400m,br	1400s,br	√с - н
1335m	1353w	1.356w 1.320w	1345w				-7c - c
1232m	1280m,br	1275w 1265w	1280w 1247w	1280w	1285m,br	1285m	JCN + SNH2
1174s 1112w	1116m 1070vs,br	1115m 1074s,br	1160s 1060s,br	1060s,br	1100s,v.br	1100s,br) $\Im BF_4$, $\Im CH_2$) $\delta HNC, \delta HNN^{12}$
997s 940w,br	940w 870w	915w 890m	965m .895m	890m	895w	970w 948w 895m) & C - H) & C - C
740m			730vs				§ NCO
620m,br	630w,br	645w, br	630vw	640w	650w,br	640m,br	
450s	54 5w 505w	547w 508w 460w 435w		510m-	510m 445w	510m) M - L +) ligand) vibrational
	380w	385w	300vw	350w	390w 345w	390w) modes

295w

292w

385w 290w

....

300vw

	TABLE 11 (Contd.): INFRARED FREQUENCIES (cm ⁻¹) AND TENTATIVE ASSIGNMENTS OF SUCCINIC DIHYDRAZIDE COMPLEXES (Contd.)							
SDH	Cu(SDH) ₂ (BF ₄) ₂	Cu(SDH) ₃ - (BF ₄) ₂	Zn (SDH) (BF ₄) ₂ 3/2	Zn(SDH) ₂ - (BF ₄) ₂	Cd(SDH) ₂ (BF ₄) ₂	Cd(SDH) ₃ (BF ₄) ₂	- Tentative Assignments	
-3180m,br 3180m,br	3200w,br 3100w	3230m,br	3175m,br	3105w	3240s,br	3200s,br	\Im as(NH ₂)	
3020w 2630vw	2630vw	2350w	3025m 2905w,br 2305w,br	3035w 2885w 2305m	3040m 2910w	3041vw	√(NH), √s(NH ₂ Overtone and combination	
1630s,br	1625w,br 1550w,br	1620m,br	1630s	1630s,br	1640vs 1580s	1630s 1589s	$\sqrt{2}c = 0$	
1510m	1525w	1515m	1530w	1530m	1530s	1510m	$\sqrt{CN + \partial NH_2}$	
1445w	1400m,br	1410m	1406w 1395w	1405m,br	1450w 1430s	1405m	√с - н	
1335sh 1232m	1295w	1295w 1270w	1230m 1205sh	1228m	1290 m 1228s	1290m 1225m	2 C - C 2 CN + 8 NH	
1174s			1155m	1155m	1170s		~7BF4-, ~7CH2	
1112w [°] 997s	1100m,v.br	1080m,v.br 970w	1045s,br 973m,br	1055m,v.br 968w	1050vs,br	1080vs,v.	br SHNC SHNN	
940w 740m	740w,br	740w,br	897m,br	900vw	940w 730s	885m 700w	SC - C SNCO	
620m,br	640w,br 510m	640w,br 520w	645m,br 525w		655w 630m		2	
450s	a ca	4 60w	455w	515w	580m 525m	510m)) M - L + Ligar	
292w	360w	370w 32.5w	398vw 349vw	348vw	470 sh 395w	330w) modes	

	; TABLE 11 (Cont	d.): INFRARED FREC OF SUCCINIC I	123 QUENCIES (cm ⁻¹) AND IHYDRAZIDE COMPLE	D TENTATIVE ASSIGNM	ENTS
SDH	Hg SDH(BF ₄) ₂	Hg(SDH) ₂ (BF ₄) ₂	Mg SDH(BF ₄) ₂	Mg(SDH)3(BF4)2	Tentative Assignments
3180m,br	3200m, Br	3170s,br	3200s,br	3280vs 3190m	$\mathcal{J}as(\mathrm{NH}_2)$
3020w	3024vw	3022vw	3020w	3010m	$\sqrt{(NH)}, \sqrt{s(NH_2)}$
2630vw		1695w	1680s		Overtone and combination
1630s,br	1620s	1615m	1615s 1590ys	1620vs 1580s	$\sqrt{C} = 0$
1510m	1520m	1525w	1520m	1505s	-7 CN + 8 NH2
1445w	1420m,br	1472m 1390s	1475s 1403vs	1445m	√с - н
1335m	1295m	1290m	1300w 1275w	1340vs	√с - с
1232m	1230w	1228w	1210m	1235s	JON + SNH2
1174s			1110s,br	1175s,br	JBF, SCH
1112w	1060vs,v.br	1040s,br			SHNC, SHNN
997s		940w	942m	940s) 8с-н
940w	880w	800w,br	860w,br 810w) Sc-c .
740w,br	735w	740w	735w,br	740s	5 NCO
620m,br	515s	630m,br 510m	585w	625s,br)
450s	455w		440s,br	445m) M - L + ligand) vibrational
	415w	490w	345w	350m) modes
292w	330w,br			310m	
	\sim				,

126a RAF Zn(PDH)3(BF4)2 Fig. 27 53. WEP

130a Hg(MDH)3(BF4)2 Fig. 31 69. 70. Hg(MDH)2(BF4)2 71. HgSDH(BF4)2 Hg(SDH)2(BF4)2 72.

131a Fig. 32 Hg(ADH)2(BF4)2 73. Hg(ADH)3/2(BF4)2 74. Hg(PDH)2(BF4)2 75. 76. Hg(PDH)3(BF4)2

132a HgTDH(BF4)2 Fig. 33 77. 78. Mg(ODH)2(BF4)2 79. Mg(ODH)3(BF4)2 Mg(MDH)3/2(BF4)2 80. MINER

133a Mg(MDH)2(BF4)2 Fig. 34: 81. MgSDH(BF4)2 82. 83. Mg(SDH)3(BF4)2 Mg(MDH)2(BF4)2 84.

134a Fig. 35 Mg(ADH)3(BF4)2 85. 86. Mg(PDH)2(BF4)2 87. Mg(PDH)3(BF4)2 MgTDH(BF4)2 88.

ADH	Mn (ADH) 3/2-	Mn (ADH) 3 -	Co(ADH) ₂ -	Co(ADH) 3-	Ni(ADH) 3/2	- Ni(ADH) ₂ -	- Tentative Assignments
 	(514)2	(14)2	(014)2	(b1 4 ⁷ 2	(014)2	(214)2	
3270s 3140w	3240m,br 3149m	3270m,br	3210s	3250s 3120s.br	3200s,br	3200m,br	$\sqrt{\frac{2}{\sqrt{2}}} as(NH_2)$
			3030m		3040m		2
3019m 2930w	3000w 2940w	3015w	3020m 2940w	3025m 2940w	3030w	3015w	$\sqrt{s(NH_2)}$
		2890w		2900w	2930m	2940w,br	Overtone and combination
2832m				2850w			2
1640 sh	1630s,br	1610s	1640 sh	1645 sh	1630vs	1625s	$\sqrt{C} = 0$
1612vs	1580s	1578w	1625vs	1630vs	1590vs	1580s	2 (
1510s	1510m	1510m	1505w	1505w	152Om	1520m,br	VCN + ONH2
1455m	1430m	1445m	1445m	1455m		1430w,br) _
1419m	1395w		1410m	1420m	1400w,br)√C - H
1366s	1363m	1365w	1360m,br	1370m	1367w	1372w)~7C - C
1315	1332w	1300w,br	1310m	1312w	1309vw	1312vw)
1295s	1280m	1265m					2 C
1262m	1280m	1262w	1285w,br	1285w	1290m	1285w	√CN + ∂ NH
1203s		1204m	1220w				2 - 2
1154vs	1158m	1150m	1180s	1138w		1180w,br	VBF, VCH
1024vs	1065s,br	1060s,br	1070vs,br	1070vs,br	1090s,br	1050s,v.b	SANC, SHIN
974vs		970s	970w	975w			
947w	943w	940w	930w	922w	950vw	948vw	<i>c</i>
885w	885w	890w	850w	890w) 9С – Н
770vw	730vw	770vw	-780vw	780vw	730vs,br	720s,br) &C - C
		730vw	690m	698w			
675s,br		670m	62 5m	650w			
585 s	540m,br	580m		587m			
417vs	470s	415m	500m	500m,br	506m	510m)
			410m	420m	470m	465m) M - L + Ligand
345s	320 w	345 w	390w	390w	390m, br	380w,br) vibrational
290m		295w	350w	350w		342w) modes

S-

ų,

		OFADI	PIC DIHIDRALIDE	COMPLEXES		
			4			
ADH	$Cu(ADH)_2 -$	Cu(ADH) 3 -	Zn(ADH) 3 -	Cd(ADH) ₂ -	Cd(ADH) 3	Tentative
ALI	(BF ₄) ₂	Assignments				
270s	3200m,br	3200m,br	3205m,br	3260m, 5r	3298s	⊋as NH2
140w	7020- L	7070	3115m	3160w	3150w	$\sqrt{(\mathrm{NH})}, \sqrt{\mathrm{s}(\mathrm{NH}_2)}$
0301	3020m, Dr	3030W	3005m	2020	3035W	
832m	2850w	2860w	2845w,br	2920w 2890w	2950m 2850w	combination
640sh	1630s.br	1630w	1630vs	1620s	1632s	$\sqrt{2}C = 0$
.612vs	1580m	1590s	1600s 1577w	1595m		
510s	1500s	1506m	1515m	1513w,br	1513s	JCN + S NH2
455m	1465w		1447m	1480s	1450m)
419m	1410m	1400m	1408w	1405s	1420w) ~2с - н
366s	1370m			1365w	1370m) ~7C - C
315s	1320m		1310m	1340w	1300w)
262m	1262m	1270m,br	1225w	1224m	1215m	ZON + SNH
203s	1190w	1189m, br				Tai Trui
154vs			1175m		1115s	JBF, JCH,
024vs	1050s,v.br	1080m,v.br	1065s,br	1074s,br	1060s,br	SHNC, SHNN
9/4VS	980w	980w	955m,br	0.75	978m	
885W		930W		935m	200.) OC - H
770vw	740vw	730vw		92.511	690W) ac - c
			665m, br			8 NCO
675s,br	600w	650w,br			588w)
5855	510m	52Ow	532w	510m	510m) M - L + Ligand
41/VS	380m ha	370m has	707-	470s	125-) vibrational
3455	500m, 01	STOM, DT	39/m 353m	410W	425m) modes
290m		298w	222011	205W	300m	1

Ð.

	TABLE 11 (Con	td.): INFRARED FREQ	UENCIES (cm ⁻¹) A	ND TENTATIVE ASSIGN	MENTS	
		OF ADIPIC DIH	YDRAZIDE COMPLEX	ES		
ADH	$Hg(ADH)_2(BF_4)_2$	Hg(ADH) 3/2 (BF4) 2	$Mg(ADH)BF_4)_2$	Mg(ADH) 3(BF4) 2	Tentative Assignments	
270s	3295m	32.90m	3290m	3290s	Jas (NH ₂)	
140w	3190w	32 30m	32 30m	3160m	$-\gamma(\mathrm{NH}), \bar{\gamma}s(\mathrm{NH}_2)$	
019m 930w 832m	2912vw	2910w	2900m 2840w	2910s 2850s	Overtone and combination	
640sh	1635m	1636m	1620s	1620s	$\sqrt{C} = 0$	
512vs	1512m,br	1525s	1512m	1512m	JON + SNH2	
455m	1470w	1485w	1480m	1450m 1420m) -2с - н	
366s	1366m	1370m	1373m	1370s) 70 0	
315s	1308w	1310w	1300m,br	1315m 1300s) ~	
262m 203s	1250w 1265w	1265w 1200w	1245m	1250m	ZCN + SNH	
154vs	1000	1155w	1155m	1120w	7pc - 7c4	
024s	1080s,m.br	1070w, br	1070%, Br	10000,01	SHNC, SHNN	
974vs	920vw	92 5w	980m	976s) SC H	
947w	892w	890w	928m 890w	890m) SC - C	
885w 770vw			730vw		\$ NCO	
675s,br	680m,br		650w	675m		
585s	590w 51.5m	560m 480m		585m]	
17vs	425m		440m	428s] M - L + Ligand	
345s	350w	350w	390w	390 sh) vibrational	

	TABLE 11 (Co	ned.): INFRARED F	138 REQUENCIES (cm ⁻¹) IC DIHYDRAZIDE COM	AND TENTATIVE ASSI	DIMENTS
PEH	Mn(PCH) ₂ (BF ₄) ₂	Mn(PDH) ₃ (BF ₄) ₂	$Co(PDH)_{3}(BF_{4})_{2}$	Ni(PDH) ₃ (BF ₄) ₂	Tentative Assignments
335Cm,br	3250m,br	3350m,br	3238m	5258m 2830w	$\sqrt{as(NH_2)},$ $\sqrt{s(NH_2)}, \sqrt{NH}$
1625vs 1589m 1558s	1625s 1550s	1630s 1550s	164Cvs 1565m	1550w	-701 + 8 NH2
1540sh 1457s	1525 sh 1468s 1423s 1350s	1340sh 1470s 1430s 1355s	1478s 1430m 1304m	1470s 1432 m 1360m 1340m) , Дс - н , Дс - с
1245m 1230s	1250s 1210s	1250m 1208s	1225w 1210s	1248m 1200m,br	201 + 8 NH
1149m 1117w 106Os 1018m 942m	1150m 1085m 1065s 1015m 980w	1150m 1070s 1012m 955w	1159m 1110w 1074s 1015m 945w	1176m 1145w 1074m 1018w 950w	$\mathcal{J}_{BF_4}^{-}, \delta_{HNC}$ δ_{HNN}
921w 858w 820s	955w 925w 858w 830s	92.5w 3.50s 81.2m	920w 832m 817m	860 vw 820m) бс-н) бс-с)
760m,br 670m,br	760m 650m,br	770s 674m 615w	770s 674m 615m,br	770m,br 680m 620w	δ NCO 2
536w 480s 430vs,br 370m 342w	550w 470m 435w 370m 340w	545w 470m 440w 370m 340w 275w	480m 430w 368m 340w 29m6m	480w 390m,br) M - L + Ligand) vibrational) modes)

				139		
	TABLE 11 (Contd.): INFRA	RED FREQUENCIES THALIC DIHYDRAZ	(cm ⁻¹) AND TEN IDE COMPLEXES	TATIVE ASSIGN	ENTS
DDH	Cu(PDH) 2 -	Cu(PDH) 3 -	Zn(PDH) 3 -	Cd(PDH) ₂ -	Cd(PDH) 3	Tentative
r Dri	(BF ₄) ₂	(BF ₄) ₂	(BF ₄) ₂	(BF ₄) ₂	(BF ₄) ₂	ASSIgumentos
3350m.br	3220s	3220m	3165m,br	3250m,br	3250m,br	Jas(NH2)
			11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2980m,br		~?s(NH2), ~?(NH)
			2325w	2870w	7	Overtone and combination
1625vs	1635vs	1645vs	1649s 1613s	1640vs	162Cs	$\sqrt{2}c = 0$
1589m	1595s	1590m		1587m	1585m	combination
1558s 1540sh	1550vs 1510m	1555s 1510w	1553s 1505vs,br	1550m 1498s2	1555m	$\sqrt{2}$ + 5 NH ₂
14575	1455w	1370m 1350m	1448w 4	1445w 1430w	1450 sh 1368s	$\sqrt{c} - H$ $\sqrt{c} - c$
	10/00	1325m		1319s	1290w)
1245m	1248s	1250m,br	1250m	1250s	1244m 1218s	VCN + SNH
1230s 1149m	1155m	1150w,br	1147s	1133m	1149s 1135s) 7BF SHNC
1060s	1068s	1060m	1065m,br	1070s 1025m	1065s 1010w) SHNN
1018m 942m	1015m	1025w	1017w			
921w 858w	840m	820 x ba	840s	950m 830w 81.6m	948w 825w,br) &с - н) &с - с
820s 760m,br	780m,br 720m	770m, br 720w	785w 685s	770s	770w,br	S NCO
670m,br 536w	670w 520m	650w,br 595w	604s	670m 607m	675m,br) M = I + ligand
480s 430vs,br 370m	490m 435m 365w	428w	480m 385w	500w, Dr 470s	480s 435w.br) vibrational) modes
342w	320m		354w	320w	370m)

			140		\$
	TABLE 11 (C	ontd.): <u>INFRARED</u> OF PHTHAL	FREQUENCIES (cm ⁻¹) LIC DIHYDRAZIDE COMP	AND TENTATIVE ASS	IGNEVIS
PEH	Hg(PEH) ₂ (BF) 4 2	Hg(PDH) ₃ (BF ₄) ₂	Mg(PDH)2(BF)2	Mg(PDH) 3(BF4) 2	Tentative Assignments
5350m,br	3000w,br	3140m 3000w	3120m 3000m 2880m	3120m 3000m 2380m	$\sqrt{2}as(NH_2)$ $\sqrt{(NH)}$ $\sqrt{2}s(NH_2)$
1625vs 1589m 1558s	1645s 1588m 1555w	1645s 1590sh 1542w	1645vs 1590s 1540m	1645vs 1590s 1540m	$\sqrt{2C} = 0$ Overtone and combination $\sqrt{2CN} + \delta NH_2$
1540sh 1457s	1480m 1365m 1342m 1322m 1295m,br	1448w 1430w 1370s 1342s	1475vs 1445w 1430w 1365s 1340s	1480vs 1448w 1430w 1346s 1340s	7C - H 7C - C
1245m 1230m 1149m 1117w	1255m 1215m 1075m	1257s 1218m 1160w 1075s	1258vs 1215s 1155m 1074vs	1255s 1215s 1158w 1080vs) $-\overline{\partial}CN + SNH$) $-\overline{\partial}BF_4^-$, SHNC
1060s 1018m 942m 921w 858w	1020w	1045w 1018m, br 860w	1015s 855sh	1015vs 940w 850sh	δ HNN) δ c - H } - δ c - C
820s 760m,br 670m,v.br	820m 775m,br 670w,br	8205 7755 675m,br 615w,br	775s 670m 610m,br	775s 670m 618m,br	δνο
536w 480s	550w 475m,br	485m 415w	450vs,br	470m,br 415w)) M - L + Ligand) vibrational
450VS,br 370m 342w	375w,br 275m	390s 280m,br	385s	380w 345w 299w) modes

	TABLE 11	(Contd.): INFR OF T	ARED FREQUENCI EREPHINALIC DI	ES (cm ⁻¹) AND T HYDRAZIDE COMPL	ENTATIVE ASSIC	INMENTS
TDH	Mn(TDH) ₃ - (BF ₄) ₂	Co(TDH) ₃ - (BF ₄) ₂	Ni(TDH) ₃ - (BF ₄) ₂	$Cu(TDH)_3 - (BF_4)_2$	Zn(TDH) ₃ -	Tentative Assignments
3280m 3200m,br	3325s 3250m	3270s 3225m	3278s 3230m	3280vw	3250s,br	Jas(NH2)
3010m,br	3140w	3020w 1915w	3150w	3050w		$\sqrt{(NH)}, \sqrt{s(NH_2)}$
1640m	1635s	1600vs	1615vs 1595vs	1665m,br	1625m,br	$\sqrt{C} = 0$
1545m	1558vs	1530s	1555w	1550m,br	1570vs,br	$\sqrt{CN} + \delta NH_2$
1490m,br	1455vs	1460w	1410 sh	1490w	1490sh) 2с - н
1365sh	1370vs	1367vs	1370vs	1380vs	1385vs,br 1307m	j ~C - C
1285m 1175m	1285m 1200w	1300w	1204m 1140s	1280m 1200w	1285m 1185s	7CN + 8 NH
1110s	1125m	1187s 1136s	1105w	1155w	1135m) $\neg BF_4$, δHNC
	1000s	1005s	1005s	1030m	1100m 1008m) SHNN
990m	880m	964m 875m	974m 93()m	9%0m br	975m) &с-н
865m,br	845m	8155	870m 820m	870m	875m 830m) Sc-c
775m	810s	7365	7306	765w	820m 735vs) SNOD
735m	720s	6550	6800	7203	15545	01100
00011,01	57011,01	587m	615m)
500m	500s	530m, br	540w 490m	515m	560m) M - L + ligand) vibrational
400m, br	420m	377s	405w		520w) modes
330m,br	320s	335w	340w	298m 235s	380w 290w)

	TABLE 11 (Contd.)): INFRARED FREQUENCIES OF TEREPHTHALIC DIHY	(cm ⁻¹) AND TENTATIVE A	ASSIGNMENTS
TDH	Cd(TDH) ₃ (BF ₄) ₂	Hg TDH(BF ₄) ₂	Mg TDH $(BF_{44})_2$	Tentative Assignment
3280m 3200m.br	3250s,br	3200vw 3195vw	3000m.br	Vas(NH2)
17050			2850m,br	2(NH) 7S(NH)
1703S	1635m	1618w	1665vs	$\sqrt{C} = 0$
1603s 1545m	1625w 1585w 1545s	1570sh 1560s	1558s	201 + -2 NH2
1490m,br 1400s 1365sh 1285m 1175m 1110s 1096s	1380s 1275m,br 1185w 1135s 1000m	1378s 1270w 1080w,br 1010w,br	1495s 1415vs 1275vs 1130s 1105s 1075m	$\begin{array}{c} 7C - H \\ 7C - C \\ 7C + \delta NH \\ 7BF_4, SHNC \\ SHNN \end{array}$
990m	94 5m		10075)
865m,br 820w,br 735m 680m br	826s 735s 570w	815m 735m 600nm	930s,br 870m 770s 730s) & C - H) & C - C) & NCO
500m	4955	100	510s,br) M - L + Ligand
400m, br	440w	490VW 410w	440s) modes
330m,br	300m,br	295w	385w 310w)

INFRARED FREQUENCIES (cm⁻¹) AND TENTATIVE ASSIGNMENTS OF THE TETRAFLUOROBORATE SALTS

Mn(BF4) 2 6H20	Co(EF4)2.6H20	Ni(EF4)2.6H20	Cu(BF4)2.6H20	Zn(EF4)2.6H20	cd(BF4)2.7H20	Hg(EF4)2.6H20	Mg(EF4)2*6H20	Tentative Assignments
3406s,v.br	3400s,v.br	3450s,v.br	3420s, br	3480s, br	3400s, br	3435s,v.br	3500s,v.br	2(он)
1614m	1605m	1614m	1612s	1608s	16185	1610m	1612m	2(H_0)
1306m	1290w	1310m	1285m	1300m	1300m	1304m	2310m	S(OH) + S(H20
1108s,br	1100m, br	1102s,br	1106s,br	1100s, br	1100s,br	1110s,br	1112s,br	JBF4
765m, br	750m	740m	756m	760 s	740m	750m	74 2m	7m-oH2
530 s	540m -	530m	540 s	535w	535s	535s	540s	» <
520s	525w	525m	520W	525m	520s	- 518s	5.22s)) O HF 4

s = strong, m = medium, w = weak, br = broad, v.br = very broad, sh = shoulder

√ = stretching frequency

S= bending frequency

149a Fig.41: 17. Co(SDH)3(BF4)2 Co(ADH)2(BF4)2 18. 19. Co(ADH)3(BF4)2 20. Co(PDH)3(BF4)2

Fig. 43 Reflectance Spectra of Copper(II) tetrafluoroborate dihydrazides Contd.

ų.

Compound	Wavelength x 10 ³ cm ⁻¹	Tentative Assignments
ODH	33.9 ^a , 34.5	⊼-~₹
MDH	35.0	$\land \rightarrow \land^*$
SDH	35,1	$\overrightarrow{} \rightarrow \overrightarrow{}^*$
ADH	35.0	$\times \to \wedge^*$
PDU	33.9 ^a , 32.0	$\land \rightarrow \land^{*}$
TDH	34.5 ^a , 35.1	$\land \rightarrow \land^*$
$(ODH)_2(BF_4)_2$	20.4	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{1g}(P)$
	10.3	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{2g}(F)$
(ODH) 3 (BF4) 2	20.4	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{1g}(P)$
	10.4	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{2g}(F)$
$(MDH)_{3/2}(BF_4)_2$	20.0	${}^{4}T_{1e}(F) \longrightarrow {}^{4}T_{1e}(P)$
	10.2	${}^{4}T_{jg}(F) \longrightarrow {}^{4}T_{2g}(F)$
$(MDH)_3(BF_4)_2$	21.3	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{1g}(P)$
	10.3	${}^{4}T_{jg}(F) \longrightarrow {}^{4}T_{2g}(F)$

۰.

 TABLE 12:
 ELECTRONIC SPECTRAL DATA OF THE LIGANDS AND COMPLEXES OF COBALT(11), NICKEL(11) AND COPPER(11) TETRAFLUOROBORATE

TABLE 12 (Contd.)

Compound	Wavelength $\times 10^3 \text{ cm}^{-1}$	Tentative Assignments
$Co(SDH)_2(BF_4)_2$	20.5	⁴ T _{1g} (F)
	10,3	$^{4}T_{1g}(F) \rightarrow ^{4}T_{2g}(F)$
$Co(SDH)_3(BF_4)_2$	20.4	${}^{4}T_{1g}(P) \longrightarrow {}^{4}T_{1g}(P)$
	10.3	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{2g}(F)$
$Co(ADH)_2(BF_4)_2$	20.4	$4_{T_{1g}(F)} \longrightarrow 4_{T_{1g}(P)}$
	10.1	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{2g}(F)$
$Co(ADH)_3(BF_4)_2$	20.4	$^{4}T_{1g}(F) \longrightarrow ^{4}T_{1g}(P)$
	10.4	$^{4}T_{1g}(F) \longrightarrow ^{4}T_{2g}(F)$
Co(PDH)3(BF4)2	20.6	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{1g}(P)$
, , , , , ,	10,3	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{2g}(F)$
Co(TDH) 3 (BF412	20.4	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{1g}(P)$
	10.3	${}^{4}T_{1g}(F) \longrightarrow {}^{4}T_{2g}(F)$
Ni(ODH)2(BF4)2	17.1	$^{3}A_{2g}(F) \longrightarrow ^{3}T1_{q}(F)$
	11.0	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{2g}(F)$
$Ni(ODH)_3(BF_4)_2$	17.2	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{1g}(F)$
	10.8	${}^{3}A_{2e}(F) \longrightarrow {}^{3}T_{2e}(F)$

TABLE 12 (Contd.)

Compound	Wavelength x 10 ³ cm ⁻¹	Tentative Assignments
$Ni(MDH)_2(BF_4)_2$	16.8	³ A _{2g} (F) - ³ T _{1g} (F)
	10.7	$^{3}A_{2g}(F)$ $^{3}T_{2g}(F)$
$Ni(MDH)_3(BF_4)_2$	17,2	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{1g}(F)$
	10,5	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{2g}(F)$
$Ni(SDH)_{3/2}(BF_4)_2$	17.1	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{1g}(F)$
	10.6	${}^{3}A_{2g}(F) \longrightarrow {}^{3}T_{2g}(F)$
$\text{Ni(SDH)}_2(\text{BF}_4)_2$	16.9	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{1g}(F)$
	10.5	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{2g}(F)$
Ni(ADH) 3/2 ^{(BF} 4)2	17.2	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{1g}(F)$
ch l	10.7	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{2g}(F)$
Ni(ADH)2(BF4)2	17.2	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{1g}(F)$
SV.	11.0	$^{3}\Lambda_{2g}(F) \longrightarrow ^{3}T_{2g}(F)$
Ni(PDH)3(BF4)2	18.2	$^{3}A_{2g}(F) \longrightarrow ^{3}T_{1g}(F)$
\sim	10.5	$^{3}A_{2g}(F) \longrightarrow ^{3}A_{2g}(F)$
$\text{Ni(TDH)}_{3}(\text{BF}_4)_2$	17.7	$^{3}A_{2g}(F) \longrightarrow ^{3}I_{1g}(F)$
	10.3	$^{3}A_{2}(F) \longrightarrow ^{3}T_{2}(F)$

.

TABLE 12 (Contd.)

Compound	Wavelength x 10 ³ cm ⁻¹	Tentative Assignments
Cu(ODH) 3/2 (BF ₄) 2	25.0sh	CT band
	15.7	d ra
$Cu(ODH)_3(BF_4)_2$	25.3sh	CI band
	16,5	$d \rightarrow d$
$Cu(MDH)_2(BF_4)_2$	25.6sh	CT band
	15,9	$d \rightarrow d$
$Cu(MDH)_3(BF_4)_2$	24.4sh	CT band
	15, 5	$d \longrightarrow d$
Cu(SDH) ₂ (BF ₄) ₂	25,6sh	CT band
	15.9	d —) d
Cu(SDH) 3 (BF4)	24.4sh	CT band
	15.5	d → d
$Cu(ADH)_2(BF_4)_2$	25.0sh	CT band
\mathbf{v}	14.6	b∠→b
$Cu(ADH)_3(BF_4)_2$	24.1sh	CT band
	15.5	d -> d

TABLE	12	(Contd.))
			e.

Wavelength $x 10^3 \text{ cm}^{-1}$	Tentative Assignments
23.3sh	CT band
15.6	d-to
23,8sh	CT band
16.4	$d \rightarrow d$
25.0sh	CT band
15.4	d→d
arge-transfer s	h = shoulder
	Wavelength x 10 ³ cm ⁻¹ 23.3sh 15.6 23.8sh 16.4 25.0sh 15.4 lution spectra of 1: st in water; spectra solids arge-transfer s
4.6 Magnetic susceptibility data

The results of the magnetic susceptibility measurements at room temperature are given in Tables 13 and 14 respectively.

4.6.1 Calibration of sample tube		1
Weight of empty tube, field off	=	1.2561 g
Weight of empty tube, field on	=	1.2548 g
Weight of tube + water, field off	Q	1.5158 g
Weight of tube + calibrant, field off	=	1.7079 g
Weight of tube + calibrant, field on	=	1.7372 g
Temperature	=	304 K
Density of water at 29°C (304 K)	=	0.995976 g/cm ³
x (volume susceptibility of air)	=	0.029×10 ⁻⁶
Mass of water in tube	=	0.2597 g
Volume of water in tube (V)	=	0.2607 cm ³
Weight of calibrant (W)	=	0.4518 g
Diamagnetic correction of glass (x)	=	0.0013 g
Paramagnetic pull on Hg[Co(CNS)4] (y)	=	0.0293 g
Actual change in weight under magnetic field: $w = y+x$	н	0.0306 g
But $\chi = \frac{xV + \beta w}{W}$		
$\therefore \beta = \frac{\chi_{W-xV}}{W}$		
$= \frac{(15.99 \times 10^{-6} \times 0.4518) - (0.029)}{(0.029)}$	x10	⁻⁶ x0.2607)
R 0.0306		
$V = 235.0 \times 10^{-6}$.		

4.6.2 Calculation of the magnetic moment of Ni(ODH)₂(BF₄)₂

Weight of sample tube, field off (X_0) 1.2561 g Weight of sample tube, field on (X1) 1.2548 g Weight of sample tube + sample, field on (X_2) 1.3598 q = Weight of sample tube + sample, field off (X_3) 1.3571 g = Paramagnetic pull on sample (X_2-X_3) (x) 0.0027 g Diamagnetic correction of glass (X_1-X_0) (y) 0.0013 q Weight of sample (W) 0.1010 q Actual change in weight under magnetic field(w) = w=y+x0.004 q Temperature 304 K

Molecular mass of the sample

 $\chi = \frac{xV + \beta w}{w}$

= 468.7 g

 $\chi = 9.0 \times 10^{-6}$ c.g.s. unit $\chi_{M} = \chi_{X}$ molecular mass = 4397×10⁻⁶ c.g.s. unit $\chi_{A} = \chi_{M} - \chi_{L}$

The calculation of the diamagnetic ligand correction (X_L) is from the Pascal's constants⁸⁷.

$$\begin{array}{rcl} &=& -177 \times 10^{-6} \text{ c.g.s. unit} \\ &\swarrow &=& 4397 \times 10^{-6} + 177.10^{-6} \text{ c.g.s. unit} \\ &=& 4574 \times 10^{-6} \text{ c.g.s. unit} \\ &\pounds & \text{eff} &=& 2.828 \sqrt{\chi_A T} & \text{B.M.} \\ &=& 3.34 \text{ B.M.} \end{array}$$

Calculations for the other transition metal complexes were similarly made.

4.6.3	Calculation of the magnetic mo	ment of	f
	$Zn(SDH)_2(BF_4)_2$		7
Weight of samp	ble tube, field off	=	1.2561 g
Weight of samp	ole tube, field on	=	1.2548 g
Weight of samp	ole tube + sample, field off		1.5031 g
Weight of samp	ole tube + sample, field on		1.5016 g
Paramagnetic p	oull on sample (x)	=	-0.0015 g
Diamagnetic co	prrection of glass (y)	=	0.0013 g
Weight of samp	ole (W)	=	0.2470 g
Temperature		=	302 K
Molecular mass	s of sample	=	530.98 g
$\chi = \frac{xV}{V}$	$\frac{+\beta_{w}}{v}$		

 $\chi = -0.160 \times 10^{-6}$ c.g.s unit

XM calculated XMc.		
Diamagnetic correction of $Zn(BF_4)_2$	=	-93x10 ⁻⁶ c.g.s. unit
Diamagnetic correction of (SDH) ₂	=	-146.64×10 ⁻⁶ c.g.s. unit
X Mc	=	-240x10 ⁻⁶ c.g.s. unit

$$\begin{array}{l} \chi_{M} \text{ experimental }\chi_{Me} \\ \chi = -0.160 \times 10^{-6} \text{ c.g.s unit} \\ \chi_{Me} = (-0.160 \times 10^{-6}) \times 530.98 \text{ c.g.s unit} \\ = -85 \times 10^{-6} \text{ c.g.s. unit} \\ \text{But} \\ \Delta \chi_{M} = \chi_{Me} - \chi_{Mc} \\ = (-85 + 240) \times 10^{-6} \\ = + 155 \times 10^{-6} \text{ c.g.s. unit} \\ \chi_{A} = \chi_{M} - \chi_{L} \text{ and } \Delta \chi_{M} = \chi_{Me} - \chi_{c} \text{ hence} \\ \chi_{A} = \Delta \chi_{M} \\ \therefore \mathcal{M}_{eff} = 2.828 \sqrt{\Delta \chi_{M} \cdot T} \\ = 0.61 \text{ B.M.} \end{array}$$

Calculations for the other non-transition metal complexes were similarly made.

		161			Q-	
					$2^{\mathbf{r}}$	
	TABLE 13: MA AN DI	GNETIC DATA OF MAN D COPPER(II), TET HYDRAZIDES	GANESE(II), COBAL RAFLUORŌBORATE COM	T(II), NICKEL(II) PLEXES OF THE		
Compound	Temp. (K)	X _M x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	$-\chi_L \times 10^{-6}$ (erg gauss ⁻² mole ⁻¹)	$X_A \times 10^{-6}$ (erg gauss ⁻² mole ⁻¹)	Meff (B.M.)	
$(\text{ODH})_2(\text{BF}_4)_2$	306	13414	177	13591	5.77	
$(ODH)_3(BF_4)_2$	306	13954	227	14181	5.90	
$h(MDH)_2(BF_4)_2$	306	13532	201	13733	5.80	
$(MDH)_3(BF_4)_2$	306	14002	262	14264	5.91	
$(SDH)_2(BF_4)_2$	304	14239	225	14464	5.93	
(SDH) 3 (BF4) 2	304	14384	298	14682	5.98	
$(ADH)_{3/2}(BF_4)_2$	304	14708	224	14931	6.03	
$(ADH)_3(BF_4)_2$	304	14871	369	15240	6.09	
$(PDH)_2(BF_4)_2$	304	14525	303	14828	6.01	
$(PDH)_3(BF_4)_2$	304	14506	415	14922	6.03	
$(TDH)_3(BF_4)_2$	304	14745	415	15160	6.08	
$(ODH)_2(BF_4)_2$	304	7723	177	7900	4.39	
	\sim					

			102		
					\mathcal{C}
		TABLE 13	(Contd.)		
Compound	Temp. (K)	X _M x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	-X _L x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	$\chi_A \ge 10^{-6}$ (erg gauss ⁻² mole ⁻¹)	Meff (В.М.)
$CO(ODH)_3(BF_4)_2$	305	8519	227	8746	4.62
(MDH) 3/2 (BF4) 2	301	9471	170	9641	4.82
(MDH) 3 (BF4) 2	300	10892	262	11154	5,18
SDH) ₂ (BF ₄) ₂	304	8045	225	8270	4.49
$SDH)_3(BF_4)_2$	304	10061	298	10359	5.02
$DH)_2(BF_4)_2$	304	9484	272	9756	4 87
OH) 3 (BF4) 2	301	10254	369	10623	5.06
$(BF_4)_2$	301	9375	415	9790	4.85
DH) 3 (BF4) 2	299	10282	415	10697	5.06
$(BF_4)_2$	304	4397	177	4574	3.00
$(BF_4)_2$	299	4329	227	4556	3.34
$(DH)_2(BF_4)_2$	301	3945	201	4330	3.30
$(DH)_3(BF_4)_2$	303	4269	262	4140	5.10
DH) 3/2 (BF4)2	301	3709	188	4532 3897	3.31
H) ₂ (BF ₄) ₂	303	3804	225	4029	3 13

			163		γ	
		1,			$\boldsymbol{\varsigma}$	
	5	TABLE 13	(Contd.)			
Compound	Temp. (K)	X _M x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	-X _L × 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	$X_1 \times 10^{-6}$ (erg gauss ⁻²) mole ⁻¹)	Heff (B.M.)	
(i(ADH) 3/2(BF4)2	299	4212	224	4436	3,26	
$li(ADH)_2(BF_4)_2$	301	4111	272	4383	3.25	
(PDH)3(BF4)2	303	4106	413	4521	3.31	
Hi(TDH)3(BF4)2	299	3088	415	3503	2,90	
(ODH) 3/2 (BF4)2	304	1233	152	1385	1.84	
Cu(ODH) 3(BF4) 2	299	1758	227	1984	2.18	
$(MDH)_2(BF_4)_2$	299	1589	201	1790	2.07	
$MDH)_3(BF_4)_2$	303	1463	262	1725	2.05	
$(SDH)_2(BF_A)_2$	299	1450	225	1674	2.00	
$u(SDH)_3(BF_A)_2$	301	1788	298	1586	1.96	
$u(ADH)_{2}(BF_{4})_{2}$	101	1575	223	1947	2.12	
(ADH) 3 (BF4) 2	300	1373	369	1677	2.01	
(PDH) 2 (BF4) 2	304	1021	303	1324	1.80	
$(PDH)_3(BF_4)_2$	299	1503	415	1918	2.14	
$u(TDH)_3(BF_4)_2$	299	1575	415	1991	2.18	

	TABLE 14: MAGNETIC DATA OF ZINC(II), CADMIUM(II), MERCURY(II) AND MAGNESIUM TETRAPLUOROBORATE COMPLEXES						
Compound	Temp. (K)	$-X_g \times 10^{-6}$ (erg gauss ⁻² mole ⁻¹)	-X _{M(exp.)} x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	M(calc.) x 10 ⁻⁰ (erg gauss mole ⁻¹	$\Delta X_{M} \times 10^{-6}$ (erg gauss ⁻² mole ⁻¹)	Ad _{eff} (B⋅M.)	
$2n(ODH)_2(BF_4)_2$	302	0.118	56	192	136	0.57	
$Zn(ODH)_3(BF_4)_2$	302	0.371	220	242	27	0.23	
ZnMDH(BF ₄) ₂	302	0.366	136	154	10	0.23	
$Zn(MDH)_3(BF_4)_2$	302	0.246	156	277	121	0.21	
Zn(SDH) 3/2(BF4)2	302	0.116	76	203	121	0.54	
Zn(SDH)2(BF4)2	302	0.160	85	203	127	0.55	
$Zn(ADH)_3(BF_4)_2$	302	0.362	276	240	155	0.61	
$Zn(PDH)_3(BF_4)_2$	302	0.407	334	384	109	0.51	
$Zn(TDH)_3(BF_4)_2$	302	0.470	304	430	96	0.48	
Cd(ODH)2(BF4)2	304	0,107	107	430	44	0.33	
Cd(ODH) 3(BF4)2	303	0.15	103	199	96	0.48	
Cd(MDH) ₂ (BF ₄) ₂	303	0.115	74	249	175	0.65	
Cd(SDH) (BF,)	303	0.249	137	223	86	0.46	
2 412	306	0.175	101	247	146	0,60	

		•	165			5
					Δ^{X}	
			FABLE 14 (Contd.)		S	
Compound	Temp. (K)	-Xg x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	-X _{M(exp.)} x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	-X _{M(calc.)} x 10 ⁻⁶ (erg gauss 2 mole ⁻¹)	$ \Delta \chi_{M} \ge 10^{-6} $ (erg gauss ⁻² mole ⁻¹)	$\mathcal{H}_{\rm eff}^{(B,M,)}$
Cd(SDH) 3(BF4)2	306	0.375	272	320	48	0.54
Cd(ADH)2(BF4)2	305	0.270	171	294	123	0.55
Cd(ADH) 3(BF4)2	303	0.382	309	391	82	0.15
Cd(PDH)2(BF4)2	303	0.271	183	325	142	0.59
Cd(PDH) 3(BF4) 2	303	0.212	184	437	253	0.79
Cd(TDH)3(BF4)2	303	0.169	147	437	290	0.84
$Hg(ODH)_{3}(BF_{4})_{2}$	306	0.256	186	264	78	0.44
$Hg(ODH)_{3/2}(BF_4)_2$	304	0.275	152	190	38	0.30
Hg(MDH) 3(BF4)2	303	0.274	211	299	88	0.46
Hg(MDH)2(BF4)2	303	0.171	109	238	129	0.56
HgSDH(BF ₄) ₂	305	0.202	105	188	83	0.45
Hg(SDH)2(BF4)2	303	0.169	113	262	149	0.60
$Hg(ADH)_2(BF_4)_2$	303	0.167	120	309	189	0.68
$Hg(ADH)_{3/2}(BF_4)_2$	305	0.231	147	261	114	0.53
Hg(PDH) ₂ (BF ₄) ₂	304	0.189	144	340	196	0.69
					0.000	

			TABLE 14 (Contd.)			
Compound	Temp. (K)	-X x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	-X _{M(exp.)} x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	-X _{M(calc.)} x10 ⁻⁶ (erg gauss mole ⁻¹)	X _M x 10 ⁻⁶ (erg gauss ⁻² mole ⁻¹)	Heff ^(B.M.)
$Hg(PDH)_3(BF_4)_2$	303	0,204	195	452	257	0.79
Hg TDH(BF ₄) ₂	303	0.168	95	227	132	0.57
$Mg(ODH)_2(BF_4)_2$	304	0.304	132	180	48	0.34
Mg(ODH) 3(BF4) 2	305	0.363	200	230	30	0.27
Mg (MDH) 3/2 (BF4)2	304	0.180	71	173	102	0.50
Mg(MDH) 2(BF4)2	303	0.218	101	204	103	0.50
Mg SDH(BF ₄) ₂	302	0.179	62	155	93	0.47
Mg(SDH) 3(BF4) 2	305	0.317	202	301	99	0.49
Mg ADH(BF ₄) ₂	304	0.264	98	178	80	0.44
$Mg(ADH)_3(BF_4)_2$	302	0.404	291	372	81	0.44
$Mg(PDH)_2(BF_4)_2$	304	0.356	140	194	54	0.36
Mg(PDH) 3(BF4) 2	303	0.471	367	418	51	0.35
Mg TIH(BF4)2	303	0.233	91	193	102	0.50

 $\Delta \chi_{M} = \chi_{M(exp.)} - \chi_{M(calc.)}.$

-

166

CHAPTER FIVE

DISCUSSION OF RESULTS

5.1 The ligands

The preparation of the ligands from their acids may be represented by the following equations:

$$R \xrightarrow{\text{COOH}}_{\text{COOH}} + 2C_2H_5OH \xrightarrow{\text{H}^+}_{\text{H}^+} R \xrightarrow{\text{COOC}_2H_5}_{\text{COOC}_2H_5} + 2H_2O \qquad (5.1.1)$$

$$R \xrightarrow{COOC_2H_5}_{COOC_2H_5} + 2H_2NNH_2.H_2O \xrightarrow{COONHNH_2}_{COONHNH_2} + 2C_2H_5OH$$

+ 2H₂O

(5.1.2)

where

$$R = (CH_2)_n$$
 (n = 0,1,2,4) or C₆H₄.

In cases where the diethyl esters were available commercially, only equation (5.1.2) applies. The melting points and analytical data of the ligands given in Table 8 agree with the expected or literature values^{5-6,8-9,11}.

5.1.1 Electronic spectra of the ligands

The bands observed in the spectra of the ligands (Table 12) around 32,600-35,100 cm⁻¹ may be assigned to internal $\pi \rightarrow \pi^*$ transitions. There was little variation in band positions in going

from ODH to ADH.

5.2 <u>Complexes of manganese(11) tetrafluoroborate</u> dihydrazides

5.2.1 Colour of compounds

All the complexes are dirty white powdery solids (Table 8) which are expected of octahedral high spin manganese(11) complexes⁶⁰.

5.2.2 Analytical data

The analytical result for the complexes (Table 8) indicates that the reactions involving 1:2 metal to ligand reactant ratios yielded complexes having a 1:3 metal to ligand stoichiometry, whereas, the use of a 1:1 metal to ligand reactant ratios gave mostly complexes with 1:2 metal to ligand stoichiometry. However, the complex of ADH prepared using the 1:1 molar ratio of ligand to metal salt contained one and a half moles of ADH. This phenomenon has been observed before^{10,11}.

(Table 8) at temperatures above 300°C, whereas, the melting points/decomposition temperatures of the MDH, SDH and ADH complexes were generally between 135-273°C.

5.2.4 Percentage yields

The yields obtained for the complexes ranged between 62% and 84% (Table 8).

5.2.5 Solubility

The solubilities of the complexes in various polar and nonpolar solvents are shown in Table 9. Most of the complexes were slightly soluble in these solvents, while some were found to be soluble in water and DMSO.

5.2.6 Molar conductance

The molar conductances of the ODH, MDH, SDH and ADH complexes that were soluble in water and DMSO are shown in Table 10. These values reveal a 1:2 type of electrolytes¹¹, and indicate that the anions are probably not coordinated in the complexes. Nonetheless, water as a solvent for conductance purposes is not popular because of problems of occasional hydrolysis.⁸⁹

5.2.7 Infrared spectra

The infrared spectra of the complexes and those of other complexes studied (Table 11) were assigned by comparison with those of the ligands and related compounds^{3,10-12,33}. The bands in the region 3300-300 cm⁻¹ in both the ligands and Mn(11) tetrafluoroborate complexes and the others, that is complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Mg were complicated by splittings thereby making the assignment of the $\mathcal{A}(NH)$ and $\mathcal{Q}(NH_2)$ in this region unreliable. This complication has been observed by other workers^{3,47}. Changes in the frequencies in this region could not therefore be used to infer the coordination of the amino nitrogen. However, changes in the amide I, amide II and amide III have been used in this work to interprete the IR spectra of all the complexes studied.

The amide I band ($\sqrt[3]{C=0}$) is displaced to lower frequencies in the ODH, ADH and TDH complexes. This suggests the coordination of the carbonyl group. The behaviour of these complexes resembles those observed for some transition metal complexes of these and related ligands^{4,10,11}. The amide I band remains practically unchanged ' in the MDH complexes and Mn(PDH)₂(BF₄)₂, while it increased in Mn(PDH)₃(BF₄)₂ and the succinic dihydrazide complexes. These observations suggest the non-involvement of the carbonyl oxygen in coordination.

The amide II band $(JCN + S_{NH_2})$ is lowered in frequency in the ODH, MDH and PDH complexes, and suggest the involvement of the amino nitrogen in coordination in accord with previous studies^{3,34}. Whereas the band rose on complex formation in Mn(SDH)₂(BF₄)₂, Mn(SDH)₃(BF₄)₂ and Mn(TDH)₃(BF₄)₂, but remains stationary in the adipic dihydrazide complexes.

The amide III band ($7CN + \delta NH$) rose on complex formation

in the succinic dihydrazide complexes, whereas the SNCO band disappears, an indication that the amide nitrogen is coordinated¹¹. In the spectra of the ODH and TDH complexes as well as Mn(ADH)₃(BF₄)₂ there is a shift to higher frequencies of the amide III band. The SNCO band is lowered in the oxalic dihydrazide and Mn(MDH)₃(BF₄)₂ complexes but remains stationary in Mn(MDH)₂(BF₄)₂ and Mn(TDH)₃(BF₄)₂. This band is however very weak in the adipic dihydrazide complexes and adipic dihydrazide as a result no meaningful deductions could be made. Observations involving shifts in the amide (III) and SNCO bands preclude the involvement of the amide nitrogen in the formation of ODH, MDH, ADH, PDH and TDH complexes.

A broad band between 1200-1000 cm⁻¹ in the spectra of ODH, MDH, SDH and ADH complexes has been assigned to the $\mathcal{P}_{BF_4}^-$ mode ⁹². This band is taken as an envelope of $\mathcal{P}_{BF_4}^-$ and some ligand vibrational modes which occur in this region. Though there is some weak splitting of this band, the presence of ligand modes makes it difficult to associate the splitting with the coordination of the BF₄⁻ ion. In the PDH and TDH complexes, like in similar complexes of the other metals studied, the broad band was not observed. Other bands between 1000-1150 cm⁻¹ similar to those in the ligand spectra were observed. The bands in the region below 580 cm⁻¹ in the

complexes are assigned to metal-ligand stretching modes .

Because of the effect of H-bonding in hydrazides and their complexes^{11-12,44}, these assignments and those of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), mercury(II) and magnesium discussed later in this work are tentative. And the factors which determine whether N or O bonding is obtained are not yet clear¹⁰⁻¹².

5.2.8 Electronic spectra

The complexes showed no $d \rightarrow d$ transitions as would be expected of a high spin d^5 configuration since there is no excited state of the same spin multiplicity as the ground term $({}^{6}A_{1a})^{79}$.

5.2.9 Magnetic properties

The magnetic moments of the complexes (Table 13) are in the range 5.77-6.08B.M. High spin octanedral or tetrahedral Mn(II) complexes with an Alground term is expected to give a spin-only temperature independent moment, 60 , 90,91 of 5.92B.M. The observed deviations could be attributed to magnetic interactions in the complexes 60,91

5.3 Complexes of cobalt(II) tetrafluoroborate dihydrazides

5.3.1

Colour of compounds

The colours of the complexes are indicated in Table 8, they are typical of octahedral cobalt(II) $complexes^{60, 90}$.

5.3.2 Analytical data

The analytical results shown in Table 8 shows that the cobalt(II) complexes have metal to ligand stoichiometries similar to those of manganese(II) discussed above.

5.3.3 Melting points/Decomposition temperatures

Some of the complexes did not melt or decompose up to 300°C while the others melted in the range 140-247°C (Table 8).

5.3.4 Percentage yields

The yields are in the range 63% - 90% (Table 8).

5.3.5 Solubility

The complexes are slightly soluble in the polar and nonpolar organic solvents used. They are, however, soluble in water except the PDH and TDH complexes (Table 9).

5.3.6 Molar conductance

The molar conductances of the complexes that were soluble in water are presented in Table 10. These values reveal a 1:2 type of electrolytes¹¹.

5.3.7 Infrared spectra

In the spectra of the oxalic dihydrazide complexes the amide I band around 1660 cm⁻¹ shifted to lower frequency, an indication of carbonyl group coordination. The amide II band around 1510 cm⁻¹ rose to higher frequencies in both complexes. This suggests that the amino nitrogen is not coordinated. But the amide III and δ NCO bands at 1265 cm⁻¹ and 795 cm⁻¹ respectively were lowered on coordination. These observations suggest the involvement of the amide group in coordination.

The bands in the region below 575 cm^{-1} in all the complexes are assigned to metal-ligand stretching modes⁹³.

The amide I band around 1650 cm⁻¹ shifted to a lower frequency in Co(MDH)_{3/2}(BF₄)₂ and Co(MDH)₃(BF₄)₂ and this suggests the involvement of the carbonyl group in complexation^{10,11}. Similarly, the amide II band around 1515 cm⁻¹ decreased in frequency in both complexes, an indication that the amino nitrogen is also involved in coordination. The amide III band around 1250 cm⁻¹ remained unchanged in the complexes, while the δ NCO band around 725 cm⁻¹ remained stationary in Co(MDH)_{3/2}(BF₄)₂ but rose to a higher frequency in Co(MDH)₃(BF₄)₂. These observations suggest the noninvolvement of the amide nitrogen in coordination.

In the spectra of $Co(SDH)_2(BF_4)_2$ and $Co(SDH)_3(BF_4)_2$, the amide I, II and III bands around 1630 cm⁻¹, 1510 cm⁻¹ and 1232 cm⁻¹ respectively rose to higher frequencies. But the ONCO band around 740 cm⁻¹ decreased to a lower frequency in $Co(SDH)_2(BF_4)_2$ and disappeared in $Co(SDH)_3(BF_4)_2$ thus indicating coordination through the amide nitrogen^{11,12}.

The amide I band around 1640 cm^{-1} in the complexes of ADH remained unchanged in $Co(ADH)_2(BF_4)_2$ but rose slightly on coordination in $Co(ADH)_3(BF_4)_2$, this probably suggests the non-involvement of the carbonyl oxygen in complex formation. On the other hand, the amide II band around 1510 cm⁻¹ was lowered on coordination in both complexes

while the amide III band increased in frequency in both complexes. The &NCO band was very weak in the ligands and complexes hence no meaningful deductions could be made. These observations suggest that coordination is via the amino group.

In the spectrum of $Co(PDH)_3(BF_4)_2$, the amide 1 and 11 bands at around 1625 cm⁻¹ and 1558 cm⁻¹ bands respectively increased in frequency showing that the carbonyl and amino groups are not coordinated. The & NCO band also shifted to a higher frequency in the complex. The frequency of the amide 111 band at 1245 cm⁻¹ in the free ligand was lowered in the complex. It is suggested that this compound bond through the amide nitrogen.

The amide I and II bands around 1640 cm⁻¹ and 1545 cm⁻¹, respectively were lowered in $Co(TDH)_3(BF_4)_2$, indicating the coordination of the carbonyl and amino groups. The SNCO band remained practically unchanged, whereas the amide III band around 1285 cm⁻¹ shifted to a higher frequency on complexation.

5.3.8 Electronic spectra

The electronic spectra of the complexes (Table 12) exhibited two bands in the region 10,100 - 10,400 cm⁻¹ and 20,000 - 21,300 cm⁻¹ respectively. The lower bands (10,100 -10,400 cm⁻¹) may be assigned to ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{2g}(F)$, while the

second band is due to ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{1g}(P)$ transitions. The electronic spectra indicates that the complexes are octahedral ${}^{59-60, 90, 94}$.

5.3.9 Magnetic properties

The magnetic moments of the cobalt(11) tetrafluoroborate complexes (Table 13) are in the range 4.39-5.18 B.M. This agrees with the values reported in the literature 59-60,90 for octahedral cobalt(11) complexes. The magnetic moments are higher than the spin only value of 3.87 B.M. for cobalt(11) high configuration with three unpaired electrons. In octahedral cobalt(11) the ground term is ${}^{4}T_{19}$ and orbital contribution to the magnetic moment is expected being a T term 60,90 . This explains the high values observed.

5.4 Complexes of hickel(II) tetrafluoroborate dihydrazides

5.4.1 Colour of compounds

The colours of the complexes are shown in Table 8. These colours are typical of octahedral nickel(II) complexes 59,60 , with a d⁸ configuration.

5.4.2 Analytical data

The analytical results (Table 8) shows that most of the complexes have 1:2 and 1:3 metal to ligand stoichiometry and a

177

few with 1:3/2 stoichiometry.

5.4.3 Melting points/Decomposition temperatures

The melting points/decomposition temperatures (Table 8) were quite high in most cases ranging between 214 and above 300°C, except the MDH complexes and Ni(SDH)₂(BF₄)₂ which melted below 200°C.

5.4.4 Percentage yields

The yields ranged between 67% and 88% (Table 8).

5.4.5 Solubility

The complexes have poor solubilities in the range of solvents used except a few that were water soluble (Table 9).

5.4.6 Molar conductance

The molar conductances (Table 10) revealed that the MDH and SDH complexes are conductors in water¹¹.

5.4.7 Infrared spectra

The amide I band ($\sqrt[3]{C=0}$) around 1660 cm⁻¹ was lowered in frequency in Ni(ODH)₂(BF₄)₂ and Ni(ODH)₃(BF₄)₂. This shift in frequency suggests that the carbonyl oxygen is one of the bonding sites in the complexes. Similarly, the amide II band ($\sqrt[3]{CN} + \sqrt[3]{NH_2}$), around 1510 cm⁻¹ was lowered in frequency on complexation, an indication that the amino nitrogen is probably coordinated¹¹. However, the amide III (\Im CN + \S NH) and \S NCO bands around 1265 cm⁻¹ and 795 cm⁻¹ respectively rose to higher frequencies in both complexes. These observations suggest the non-involvement of the amide nitrogen in coordination⁵⁸. The bands in the region below 680 cm⁻¹ in the complexes may be assigned to metal-ligand stretching modes⁹³.

In the spectra of the complexes of malonic dihydrazide, the amide II band around 1650 cm^{-1} shifted to a higher frequency on coordination in Ni(MDH)₂(BF₄)₂, but is lowered in the spectrum of Ni(MDH)₃(BF₄)₂. This suggests the noninvolvement of the carbonyl group in bonding in Ni(MDH)₂-(BF₄)₂. The amide II band around 1515 cm⁻¹ rose to a higher frequency in both complexes suggesting that the amino group is not coordinated. The spectrum of Ni(MDH)₂(BF₄)₂ reveals that the amide III and δ NCO bands are lowered in frequencies on coordination. This presupposes the coordination of the amide nitrogen. The amide III band around 1250 cm⁻¹ remained stationary, while the δ NCO band around 725 cm⁻¹ rose to a higher frequency in the spectrum of Ni(MDH)₃(BF₄)₂. This may preclude the amide group in bonding in the complex.

In the spectra of the SDH complexes, the amide I band around 1630 cm⁻¹ remained unshifted in the complexes. Whereas the amide II and III bands around 1510 cm⁻¹ and 1232 cm⁻¹

respectively rose to higher frequencies in Ni(SDH)_{3/2}(BF₄)₂ and Ni(SDH)₂(BF₄)₂ complexes. The SNCO band around 740 cm⁻¹ in the ligand disappeared in the spectra of the complexes. Bonding in these complexes is presumed to be through the amide nitrogen¹¹.

In the spectra of the ADH complexes, the amide I band around 1640 cm⁻¹ decreased on complexation suggesting that the carbonyl oxygen is involved in bonding. The amide II and III bands rose on complex formation; these observations suggest that the amino and amide groups are not involved in bonding in these complexes. The spectra of these compounds indicate that the molecules of the dihydrazide are bonded to the nickel(II) ion through the carbonyl oxygen.

The amide I band around 1625 cm⁻¹ rose to higher frequencies in the PDH complex, whereas the amide II band around 1558 cm⁻¹ decreased in frequency on complex formation. The amide III and δ NCO bands rose to higher frequencies in the complex. The bonding in this compound is through the amino nitrogen ³⁴.

The spectrum of Ni(TDH)₃(BF₄)₂ revealed that the amide I band around 1640 cm⁻¹ is lowered in frequency on coordination. Likewise, the amide III and &NCO bands. Whereas, the amide II band around 1545 cm⁻¹ rose to a higher frequency on coordination. The general features of the TDH spectrum suggests that coordination is via the carbonyl and amide groups.

5.4.8 Electronic spectra

Octahedral nickel(II) complexes with ${}^{3}A_{2g}$ ground state are expected to have three spin allowed transitions, ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$; ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$; and ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ respectively⁶⁰. Some workers⁵⁸⁻⁶⁰ have reported two or three of these spin-allowed transitions. The nickel(II) complexes studied exhibit two bands in the regions 10,300-11,000 cm⁻¹ and 16,800-18,200 cm⁻¹ which may be assigned to ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F)$ and ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$ transitions, respectively (Table 12) ⁹⁵. Sutton ⁹⁶, also reported that for octahedral nickel(II) complexes the ratio of the first and second bands should be \leq 1.8, whereas, for tetrahedral complexes it should be close to 2.2. In this study, this ratio lies between 1.6 and 1.7 indicating that the complexes assume octahedral geometry.

5.4.9 Magnetic properties

The magnetic moments of the nickel(II) tetrafluoroborate complexes studied are in the range 2.90-3.34 B.M. For octahedral nickel(II) complexes with two unpaired electrons, magnetic moments ranging from 2.9 to 3.4 B.M. is expected depending on the magnitude of orbital contribution⁶⁰. The complexes are presumed to be octahedral and free from magnetic interactions (Table 13).

5.5 Complexes of copper(II) tetrafluoroborate dihydrazides

5.5.1 Colour of compounds

The colours of the complexes are typical of compounds of Cu(11) with a d^9 configuration⁶⁰ (Table 8).

5.5.2 Analytical data

The metal to ligand stoichiometries (Table 8) are similar to those obtained in the complexes of Mn(11), Co(11) and Ni(11) respectively.

5.5.3 <u>Melting_points/Decomposition temperatures</u> The melting points/decomposition temperatures were generally > 200°C, except Cu(MDH)₃(BF₄)₂ which melted betweep 106-108°C.

5.5.4 Percentage yields

The experimental yields were quite high (Table 9), ranging from between 63-82% (Table 8).

5.5.5 Solubility

The complexes were slightly soluble in most of the solvents

used, while the MDH and SDH complexes were soluble in water (Table 9).

5.5.6 Molar conductance

Molar conductances of the MDH and SDH complexes in water suggests that they are conductors and 1:2 type electrolytes (Table 10)¹¹.

5.5.7 Infrared spectra

Infrared spectra of the complexes were assigned by comparison with those of the ligands and related compounds¹⁰⁻¹² (Table 11).

The amide I band around 1660 cm⁻¹ is lowered in Cu(ODH)_{3/2}(BF₄)₂ and Cu(ODH)₃(BF₄)₂ complexes, showing coordination through the carbonyl group. Whereas, the amide II band around 1510 cm⁻¹ rose to higher frequencies in both complexes, this suggests that the amino group is not coordinated. The amide III band around 1265 cm⁻¹ remained practically unchanged in the Cu(ODH)₃(BF₄)₂ complex but rose on coordination in the Cu(ODH)_{3/2}(BF₄)₂ complex. The δ NCO decreased slightly in frequency on complexation. These observations suggest the non-involvement of the amide nitrogen in coordination¹².

In the spectra of the MDH complexes, the amide I band

around 1650 cm⁻¹ experience a negative shift to lower frequencies in both, this suggests the involvement of the carbonyl oxygen in coordination. But the amide II band around 1515 cm⁻¹ remained unchanged in the complexes, whereas the amide III band rose to a higher frequency in both Cu(MDH)₂- $(BF_4)_2$ and Cu(MDH)₃(BF₄)₂. The band due to ONCO around 725 cm⁻¹ remained also unchanged in Cu(MDH)₂(BF₄)₂ but rose in Cu(MDH)₃(BF₄)₂ complex. Bonding in these complexes is presumed to be through the carbonyl group ⁴, ¹¹.

In the SDH complexes, the amide I band around 1630 cm⁻¹ decreased on complexation suggesting that the carbonyl oxygen is involved in bonding. Whereas, the amide II and III bands rose on complex formation and δ NCO band unaffected, these observations suggest that the amino and amide groups are not bonded in these compounds.

In the spectra of the complexes of ADH, the amide I and II bands were lowered in frequencies in both complexes. While the amide III band rose slightly in $Cu(ADH)_3(BF_4)_2$ but remained unaltered in $Cu(ADH)_2(BF_4)_2$ complex, the spectra of these compounds indicate that the molecules of the hydrazide are bonded to the copper ion through the amino and carbonyl groups in agreement with previous studies^{3,34}.

The amide I band (Table 11) around 1625 cm⁻¹ rose to

higher frequencies in the PDH complexes, whereas the amide II band decreased in frequency on complex formation. The frequencies of the amide III and \S NCO bands rose in the complexes. It is presumed that these complexes bond through the amino group.

In the spectrum of the TDH complex, the amide I band around 1640 cm⁻¹ shifted to a higher frequency, likewise, the amide II band around 1545 cm⁻¹ and δ NCO band around 735 cm⁻¹ rose on complexation. However, the amide III band decreased on coordination. It is suggested that coordination is via the amide nitrogen^{11,12}

5.5.8 Electronic spectra

The reflectance spectra of the complexes (Table 12) show a broad band between 14,600 - 16,500 cm⁻¹ assigned to d \rightarrow d transitions. The asymmetric nature of the bands indicates distorted octahedral geometry resulting from Jahn-Teller distortion of the ${}^{3}e_{g}$ state 58,94 . The weak shoulders in the range 23,300-25,600 cm⁻¹ in the electronic spectra of the complexes resemble those found in binuclear Cu(II) compounds 58,97 . This band is now known to be a charge-transfer band 98 .

5.5.9 Magnetic properties

The magnetic moments of the complexes (Table 13) are in the range 1.80-2.18 B.M. The magnetic moments of copper(11) complexes excluding those with Cu-Cu interactions are usually in the range 1.75-2.20 B.M. regardless of stereochemistry, and they are independent of temperature except at extremely low temperatures ($<5^{\circ}$ K)⁶⁰. The complexes can be regarded therefore as being magnetically dilute with no metal-metal interaction^{60,90}.

5.6 Complexes of zinc(II) tetrafluoroborate dihydrazides

5.6.1 Colour of compounds

Table 8 indicates the colours of the complexes, and are as expected of Zh(II) ion with d^{10} configuration.

5.6.2 Analytical data

Analytical results for the complexes are presented in Table 8. The stoichiometries are similar to those discussed earlier.

5.6.3 Melting point/Decomposition temperatures

The melting points/decomposition temperatures were quite high in most cases ranging between 173 and above 300°C (Table 8).

5.6.4 Percentage yields

As shown in Table 8, the yields are in the range 55-85%.

5.6.5 Solubility

Solubilities in the solvents used were poor except the ODH, MDH and ADH complexes that were soluble in water (Table 9).

5.6.6 Molar conductance

Table 9 indicates the molar conductances of the ODH, MDH and ADH complexes in water. It revealed that they are conductors with 1:2 type electrolytes¹¹.

5.6.7 Infrared spectra

The amide I band remained practically unchanged in the spectrum of $Zn(ODH)_2(BF_4)_2$ but rose to a higher frequency in $Zn(ODH)_3(BF_4)_2$ showing that the carbonyl group is not involved in coordination. Similarly, the amide III band around 1265 cm⁻¹ and the S NCO band remained either unchanged or rose slightly in going from the ligand to the complexes (Table 11). This may indicate the non-involvement of the amide nitrogen in coordination 11,12 .

The amide II band around 1510 cm⁻¹ was lowered in frequency compared to the free ligand in the spectrum of

 $Zn(ODH)_2(BF_4)_2$ and $Zn(ODH)_3(BF_4)_2$. It is suggested that bonding in these complexes is probably through the amino nitrogen.

In the MDH complexes, the carbonyl absorption around 1650 cm^{-1} (amide I band) was lowered in frequency on complex formation in both complexes. This may be taken as evidence for coordination through the carbonyl group. The amide II band decreased slightly in frequency on complex formation, while the amide III and SNCO bands remained invariant in the complexes. It is presumed that these complexes bond through the carbonyl and amino groups³⁴

The amide I band remained unshifted in the complexes of SDH, but the amide II band rose to a higher value in the complexes. The amide III band was slightly lowered whereas the δ NCO band disappeared on complex formation, probably indicating coordination through the amide nitrogen¹².

The spectrum of the ADH complex has the amide I band lowered in frequency on complex formation, while the amide II band increases in frequency on coordination. However, the amide III band shifted from around 1262 cm⁻¹ in the ligand to about 1225 cm⁻¹ in the complex.

In the spectrum of $Zn(PDH)_3(BF_4)_2$ amide I band at 1625 cm⁻¹ in the ligand was shifted to 1649 cm⁻¹. This is an indication that the C=O bond is not coordinated. Likewise, the amide II and III bands rose to a higher frequency. The δ NCO disappeared in the spectrum of the complex, an indication that the hydrazide moiety coordinated through the amide nitrogen¹².

In the spectrum of the TDH complex, the amide I band is lowered on coordination indicating carbonyl group participation in bonding. However, the amide II band rose to a higher frequency on coordination, likewise the amide III and ONCO bands remained unshifted on complexation.

5.6.8 Magnetic properties

The magnetic susceptibilities of the Zn(II) complexes are in the range 0.21-0.57 B.M. These values revealed that they are nearly diamagnetic as expected of Zn(II) with a d¹⁰ configuration. However, comparison of the experimental susceptibilities with the calculated values (Table 14) reveals a large deviation from the additivity law in most of the complexes. This behaviour has been explained before⁹⁹, in terms of polarization paramagnetism. It is suggested that they are probably asymmetric⁹⁹⁻¹⁰⁰.

5.7 Complexes of cadmium(11) tetrafluoroborate dihydrazides

5.7.1 Colour of compounds

The colours of the complexes (Table 8) were as expected of cadmium(II) with a d^{10} configuration⁹⁰.

5.7.2 Analytical data

The analytical results of the cadmium(1) tetrafluoroborate complexes (Table 8) revealed that the 1:1 and 1:2 metal to ligand reactant ratios gave different metal to ligand stoichiometry in most cases.

5.7.3 Melting points/Decomposition temperatures

All the complexes have sharp melting points (Table 8) ranging between 211 and above 300° C, except for Cd(SDH)₂-(BF₄)₂ and Cd(ADH)₃(BF₄)₂ which melted below 200°C.

5.7.4 Percentage yields

Vields obtained were between 62% and 80% (Table 8).

5.7.5 Solubility

The complexes have poor solubilities in the solvents used. Nonetheless, the ODH, MDH, SDH and ADH were soluble in water (Table 9).

5.7.6 Molar conductance

Presented in Table 10 are the molar conductances of the ODH, MDH, SDH and ADH complexes in water and DMSO. The values indicate that they are conductors with a 1:2 type electrolytes ¹¹.

5.7.7 Infrared spectra

The infrared spectra of the complexes (Table 11) revealed that the amide I band was lowered in $Cd(ODH)_3(BF_4)_2$, $Cd(PDH)_3(BF_4)_2$, ADH and TDH complexes suggesting that the carbonyl group is involved in bonding in these complexes. While the amide I band shifted to higher frequencies in $Cd(ODH)_2(BF_4)_2$, $Cd(SDH)_2$ and $Cd(PDH)_2(BF_4)_2$. This band remained almost stationary in $Cd(MDH)_2(BF_4)_2$ and $Cd(SDH)_3(BF_4)_2$. The IR features suggest the non-involvement of the carbonyl oxygen in coordination in these compounds.

The amide II band was lowered in frequency in the PDH complexes, whereas the complexes of ODH,MDH, ADH and $Cd(SDH)_3(BF_4)_2$ experienced a shift to higher frequency. This band remained unchanged in $Cd(SDH)_3(BF_4)_2$ and $Cd(TDH)_3(BF_4)_2$.

The amide III band was lowered in $Cd(ODH)_2(BF_4)_2$, MDH, SDH and ADH complexes. These complexes also either have the δ NCO band lowered or absent in their spectra except for the MDH complex where the \$ NCO band rose to a slightly higher frequency. The shifts associated with the amide III and \$ NCO bands are indications that the amide nitrogen is probably involved in bonding. On the other hand, the amide III band rose on complexation in Cd(PDH)₂(BF₄)₂ and cd(TDH)₃-(BF₄)₂ but remained practically unchanged in Cd(ODH)₃(BF₄)₂ and Cd(PDH)₂(BF₄)₂.

5.7.8 Magnetic properties

The room temperature magnetic moments of the complexes (Table 14) show that they are diamagnetic as expected. But the experimental and calculated molar susceptibilities differ significantly and probably indicate the presence of polarisation paramagnetism $^{99-100}$ in the complexes.

5.8 Complexes of mercury(11) tetrafluoroborate dihydrazides

5.8.1 Colour of compounds

the colours of the complexes are typical of Hg(11) complexes (Table 8) 9^{9} .

5.8.2 Analytical data

The analytical results are indicated in Table 8.

5.8.3 Melting points/Decomposition temperatures

Phthalic and terephthalic dihydrazide complexes melted/ decomposed at temperatures above 300°C. The other complexes have either melting/decomposition temperatures between 117-269°C (Table 8).

5.8.4 Percentage yields

The yields were between 66% and 82%.

5.8.5 Solubility

A summary of the solubilities of the complexes in various polar and non-polar solvents is presented in Table 9. A few of them were soluble in water, while all of them have poor solubilities in the organic solvents used.

5.8.6 Molar conductance

The molar conductivities of Hg SDH(BF₄)₂ and Hg(ADH)₂(BF₄)₂ (Table 10) revealed that they are conductors and a 1:2 type electrolytes. The molar conductivities of the other complexes could not be taken because of poor solubility.

5.8.7 Infrared spectra

The IR spectra of the complexes of ODH, SDH, ADH, TDH as well as $Hg(MDH)_2(BF_4)_2$ have their amide I band lowered in frequency on complex formation. This may be taken
as evidence for coordination through the carbonyl oxygen. The amide I band in Hg(MDH)₃(BF₄)₂ remained invariant, whereas there was a shift to higher frequencies in the PDH compounds.

The amide II band was lowered in frequency in the MDH and PDH complexes, an indication of amino group participation in coordination in the complexes. Nevertheless, the ODH, SDH, ADH and TDH complexes experienced shift to higher frequencies, an observation which suggest the non-involvement of the amino nitrogen in complexation in this group of compounds.

The amide III band was lowered in ODH, SDH and TDH in addition to $Hg(MDH)_3(BF_4)_2$. This band however rose to higher frequencies in the ADH and PDH complexes as well as $Hg(MDH)_2(BF_4)_2$.

5.8.8 CMagnetic properties

The magnetic susceptibilities of the complexes (Table 14) show that they are diamagnetic as would be expected of mercury(II) with d¹⁰ configuration. Nonetheless, the experimental and calculated molar susceptibilities differ significantly and probably indicate the presence of polarisation paramagnetism in the complexes⁹⁹⁻¹⁰⁰.

5.9 Complexes of magnesium tetrafluoroborate dihydrazides

5.9.1 Colour of compounds

The colours of the complexes are indicated in Table 8. Magnesium complexes are expected to be colourless, magnesium being a non-transitional element ⁹⁰.

5.9.2 Analytical data

The analytical results indicate different ligand to metal stoichiometries (Table 8).

5.9.3 Melting points/Decomposition temperatures

All the magnesium complexes have melting/decomposition temperatures above 300°C (Table 8).

5.9.4 Percentage yields

Yields were between 71% and 85%.

5.9.5 Solubility

The complexes were slightly soluble in the polar and nonpolar organic solvents used. They also have poor solubility in water except $Mg(ADH)_{3/2}(BF_4)_2$ that was soluble in water (Table 8).

5.9.6 Molar conductance

The molar conductance of Mg(MDH)_{3/2}(BF_4)_2 in water (Table 10) reveals a 1:2 type electrolyte $\overset{11}{\bullet}$

5.9.7 Infrared spectra

In the IR spectra of the magnesium complexes (Fable 11) the amide I band was lowered in MDH, SDH and ADH complexes. It is suggested that these compounds bond through the amide nitrogen. However, the amide I band rose on complexation in PDH and TDH complexes, but remained practically unchanged in $Mg(ODH)_2(BF_4)_2$ and $Mg(ODH)_3(BF_4)_2$. These observations suggest the non-involvement of the carbonyl oxygen in the compounds

The amide II band in Mg(ODH)₃(BF₄)₂, Mg(SDH)₃(BF₄)₂ and PDH complexes shifted to lower frequencies, whereas it rose to higher frequencies in Mg(ODH)₂(BF₄)₂, Mg(MDH)_{3/2}-(BF₄)₂, Mg(MDH)₂(BF₄)₂, MgSDH(BF₄)₂, ADH and TDH complexes,

The lowering in frequency probably indicates that the amino nitrogen is involved in bonding while the rise in frequency may be taken as an indication of the non-involvement of the amino group in bonding in the complexes involved.

The complexes of $Mg(ODH)_2(BF_4)_2$, $MgSDH(BF_4)_2$ MDH, ADH and TDH have their amide III band lowered in frequency on complexation. Except for the MDH complexes which have the \S NCO band slightly increased in complexation, the others, that is, Mg(ODH)₂(BF₄)₂, Mg SDH(BF₄)₂, ADH and TDH complexes have their \S NCO band either lowered or absent on coordination. But the amide III band in Mg(ODH)₃(BF₄)₂, Mg(SDH)₃(BF₄)₂ and PDH complexes shifted to higher frequencies on coordination. The corresponding \S NCO band also rose to higher frequencies.

5.9.8 Magnetic properties

As would be expected, the room temperature magnetic susceptibilities of the Mg complexes (Table 14) shows that they are diamagnetic with some evidence of polarisation paramagnetism ^{99,100}

5.10 Proposed structures for the complexes

Based on the analytical data and physicochemical data discussed above, structures I-V are suggested for some of the complexes. The proposed structures are only tentative in the absence of X-ray data.

5.11 Conclusion and suggestions for further work

Reactions involving 1:1 and 1:2 metal to ligand reactant ratios, yielded complexes with different metal to ligand stoichiometry in most cases. This is an indication that the ligand to metal stoichiometry depends to some extent on the ratio of the reactants used during their preparations.

The infrared studies based on the interpretation of changes in the amide I (\Im C=O), II (\Im CN+ δ NH₂) III (\Im CN+ δ NH) and δ NCO bands revealed that coordination in the complexes was via the carbonyl, amide or amino groups.

The magnetic moments and electronic spectra of the complexes of manganese(II), cobalt(II), nickel(II), and copper(II) indicated that they assume octahedral geometry. Whereas the magnetic moments of the complexes of zinc(II), cadmium(II), mercury(II) and magnesium indicated that they are diamagnetic as expected with some evidence of polarisation paramagnetism.

The molar conductances of the complexes which were soluble in water and DMSO indicated 1:2 type electrolytes, which is an indication that the BF₄ anion is probably not coordinated in the complexes. The coordination of the tetrafluoroborate anion is rare^{60,100-104}, and there are no evidence from this study to suggest "semi-coordinated" BF_4^- anion¹⁰⁰⁻¹⁰⁴.

The complexes with 1:1, 1:3/2 and 1:2 metal to ligand

198

stoichiometries are probably dimeric or polymeric^{10-12,33,34}. The effect of H-bonding in hydrazides and their complexes^{11,12,44} makes the IR assignments tentative.

Suggestions for further work

- X-ray structural studies of the complexes to confirm some of the proposed structures.
- (2) Industrial and biological applications of these complexes could also be exploited.
- (3) Characterisation of complexes formed using 1:3 and 1:4 metal to ligand reactant ratios for comparative purposes.
- (4) Variable temperature magnetic measurements between 320 and 80K could be carried out to estimate the extent of magnetic interactions, if any, in the complexes of manganese(II), cobalt(II), nickel(II) and copper(II) respectively.

BIBLIOGRAPHY

 Kharitonov, Y.Y., R.I. Machkhoshvili, P.V. Gogorishvili and O.K. Shamilishvili (1972).

> Infrared spectroscopic study of complexes of metals with metanitrobenzoylhydrazine Russian Journal of Inorganic Chemistry (London)

17, 843-846.

- Gogorishvili, P.V., Y.Y. Kharitonov, M.V., Karkarashvili and R.I. Machkhoshvili (1969). Complexes of metals with benzoyl hydrazine. <u>Russian Journal of Inorganic Chemistry</u> (London) 14, 1525-1526.
- Kharitonov, Y.Y., R.I. Machkhoshvili, P.V. Gogorishvili and O.K. Shamilishvili (1972).

An infrared spectroscopic study of metal complexes of oxalyl dihydrazide.

Russian Journal of Inorganic Chemistry (London) 17, 1574–1576.

4. Kharitonov, Y.Y., R.I. Machkhoshvili and N.B. Generalova (1974).

> Metal complexes of salicyclic acid hydrazide. <u>Russian Journal of Inorganic Chemistry</u> (London) 19, 149.

 Yale, H.L., K. Losee, J. Martins, M. Holsing, F.M. Perry and J. Bernstein (1953).

> Chemotherapy of experimental tuberculosis. VIII. The synthesis of acid hydrazides, their derivatives and related compounds.

Journal of American Chemical Society (Easton) 75, 1933-1942.

6. Volovel'skii and G.V. Knorozova (1964).

Synthesis of derivatives of the androstaine series III. Dihydrazones of 2-Hydroxy methylenedihydrotestosterone and 2-Hydroxymethylene-174-Methyldihydrotestosterone.

Journal of General Chemistry (USSR), 34, 341-344.

7. Drew, H.D.K. and H.H. Hatt (1937).

Chemiluminescent organic compounds. Part I. Isomeric simple and complex hydrazides of ohthalic acid and mode of formation of phthalazine and Indole rings.

Journal of Chemical Society (London) Part 1, 16-26. 8. Vogel, A.I. (1978).

> "A Textbook of Practical Organic Chemstry (Including Qualitative Organic Analysis)". 3rd Edition, Longman (London).

9. Cook, A.H., H.M. Bunbury and D.H. Hey (Editors) (1965). "Dictionary of Organic Compounds" Vol. 5, 4th Edition; Eyre - Spottiswoode (London)

pp. 2950.

Ahmed, A.D., P.K. Mandal and N.R. Chaudhuri (1966).
 Metal complexes of malonicdihydrazide.
 <u>Journal of Inorganic and Nuclear Chemistry</u> (New York), 28, 2951–2959.

11. Ahmed, A.D. and N.R. Chauduri (1969).

Acid hydrazides as ligands - 11. Metal complexes of dicarboxylic acid (di)hydrazides.

Journal of Inorganic and Nuclear Chemistry (New York) 31, 2545-2556.

12. Dutt, N.K. and A.S. Gupta (1971).

Chemistry of lanthanons - XXXII. Malondihydrazide complexes of lanthanides.

Journal of Inorganic and Nuclear Chemistry

(New York). 33, 4185-4189.

13. Mashima, M. (1962).

Infrared absorption spectra of hydrazides III. Hydrazides of aliphatic acids.

Bulletin Chemical Society Japan, 35, 423-429. Chemical Abstracts (Columbus) 57:8080b (1962). 14. Arnold, G. and C. Schiele (1968).

Infrared spectra of substituted benzohydrazides in the region of $4000-600 \text{ cm}^{-1}$.

Zhurnal Naturforsch B23(9), 1192-1197.

Chemical Abstracts (Columbus) 70:15611((1968).

Richards, R.E. and H.W. Thompson (1947).
 Spectroscopic studies of amide linkages.
 Journal of the Chemical Society PT2 (London)
 124-1260.

16. Letaw, H.Jnr. and A.H. Gropp (1953).

A study of the infrared spectrum of the amide group.

Journal of Chemical Physics (Lancaster) 21, 1621-1627.

17. Miyazawa, T., T. Shimanouchi and S. Mizushima (1956).

Journal of Chemical Physics (Lancaster) 24, 408-418.

18. Chekushin, S.T. and E.V. Titov (1971).

Calculations of band intensities for (N-H) stretching vibrations of carboxylic acid hydrazides.

Opt. Spektrosk. 30(5), 982-984.

Chemical Abstract (Columbus) 75: 5583w.

204

19. Rybachenko, V.I. and E.V. Titov (1971).

Effects of substituents on the spectroscopic characteristics of carbonyl and amino groups in the infrared spectra of carboxylic acid hydrazides.

Teor. Eksp. Khimii 7(2), 212-7 (Russ.)

Chemical Abstracts (Columbus)

75: 82008u (1971).

20. Jensen, J.B. (1956).

Infrared spectroscopic investigations of hydrazides. <u>Acta Chemica Scandinavica</u> (Copenhagen) 10, 667-672.

21. Dusan, P. (1958).

22.

Infrared spectra of the hydrazides of carboxylic acids.

Bulletin de la Societe Chimique de France 795-801. Chemical Abstracts (Columbus) 53: 21160c (1958). Hackman, T. (1957).

Aromatic sulfonhydrazides for plant protection.

United States: 2813-057.

Chemical Abstracts (Columbus) 52:6707a (1958).

23. Vanghelovici, M and C. Demetrescu (1960).

Synthesis of spasmolitic medicaments. I. The synthesis of new active substituted hydrazides.

Ser. Stiinte Chimie 7, 157-168.

Chemical Abstracts (Columbus) 55:15481b (1961).

24. Bottger, G.T., A.P. Yerington and S.T. Gertler (1951).
 Hydrazides and hydrazones as insecticides.
 U.S. Dept. Agr. Bur. Entomol. and Plant

Quarantine, E-815, 17pp.

Chemical Abstracts (Columbus) 45;6335h.

Thucuc, N.T., N.P. Buu-Hoi and N.D. Xuong (1961).
 Potential antifungal benhydrazides.
 <u>Journal of Medicine and Pharmaceutical Chemistry</u>
 3, 361-367. Chemical Abstracts (Columbus) 55:
 15398f.

26. Hayashi, H.E., T. Higashino, E. Oishi, C. lijma, M.

Yamagishi and C. Ota (1978).

Hydrazides as antitumor agents.

Yakugaku Zasshi 98(11), 1560-1565.

Chemical Abstracts (Columbus) 90: 152111h.

27. Kametani, T. (1965).

Hydrazides as cancer inhibitors.

Japan 20; 382 ('65) 2pp.

Chemical Abstracts (Columbus)

63: P16268e.

205

28. Jaeken, J. (1961).

Hydrazides as mask-formers in colour photography. <u>Belgium</u> 601938, 22pp Chemical Abstracts (Columbus) 60: P14653a (1964).

29. Shappiro, S. (1947).

Glyceride antioxidant.

United States, 2, -430031.

Chemical Abstracts (Columbus) 42:1752a.

30. Shappiro, S. (1952).

Motor fuels and lubricants containing hydrazides. United States, 2, 587581

Chemical Abstracts (Columbus) 46: 5308f.

31. Klochkov, V.I. and A.B. Kusov (1972).

Bonding of free sulphur by rubbers in the presence of benzenesulfonyl hydrazides.

Issled Obl. Fizicheskoi Khimii Reziny 37-43 (Russ.)

Chemical Abstracts (Columbus)

78: 85535m (1973).

32. Prichard, W.W. (1946).

Polymers from dihydrazides of dicarboxylic acids.

United States 2, -395642.

Chemical Abstracts (Columbus) 40: 49188.

206

Gogorishvili, P.V., R.I. Machkhoshvili, L.D., Tsitsishvili,
 Y.Y. Kharitonov, A.E. Shvelashvili and T.I.
 Tsutsunava (1977).

Complexes of manganese(II) thiocyanate with acid dihydrazides.

Russian Journal of Inorganic Chemistry (Condon). 22, 1784–1787.

 Shvelashvili, A.E., R.I. Machkhoshvili, E.B., Miminoshvili, B.M. Shchedrin, N.N. Vekua, A.I., Kvitashvili and E.A. Mikeladze (1980). The structure of the compound formed by zinc sulphate with the dihydrazide of malonic acid. <u>Russian Journal of Inorganic Chemistry</u> (London).
 25, 987-989.

35. Shvelashvili, A.E., E.B. Miminoshvili, P.V., Cogorishvili,
R.I. Machkhoshvili, N.N., Vekula, A.I.,
Kvitashvili and B.M. Shchedrin (1976).
The structure of the malonodihydrazide zinc sulphate trihydrate complex.

Russian Journal of Inorganic Chemistry (London) 21, 159.

Bontchev, P.R., M. Boneva, M. Mitewa, D. Mehandjiev,
 E. Golovinsky (1981).

Journal of Inorganic and Nuclear Chemistry (New York). 43, 3163-3168.

 37. Kharitonov, Y.Y., R.I. Machkhoshvili, N.I. Pirtskhalav and M.S. Abashmadze (1978).
 Complex compounds formed by rare-earth metal nitrates with acetyl hydrazine.
 Russian Journal of Inorganic Chemistry (London).

23, 1662-1665.

 Abashmadze, M.S., N.J. Pirtskhalava, Y.Y. Kharitonov and R.I. Machkhoshvili (1978).

> Complexes of rare-earth elements with salicylohydrazide.

Russian Journal of Inorganic Chemistry (London). 23, 1467-1470.

39. Buez, P.N. and N.I. Pechurova (1981).

Complex formation of transition metals with the hydrazides of aromatic acids in aqueous solution. <u>Russian Journal of Inorganic Chemistry</u> (London). 26, 69-71.

 Belousova, E.M., I.N. Nazarova and I.I. Seifullina (1973).
 Interaction of germanium tetrachloride with isonicotinic acid hydrazide. Russian Journal of Inorganic Chemistry (London). 18, 48-50.

Gogorishvili, P.V., L.D. Tsitsishvili, T.I. Tsutsunava,
 Y.Y. Kharitonov and R.I. Machkhoshvili (1977).
 New complexes of metals with dihydrazides of glutaric and azelaic acids.

Koord. Khimii 3(9), 1438 (Russ.). <

Chemical Abstracts (Columbus) 87: 176888f.

42. Kharitonov, Y.Y. and R.I. Machkhoshvili (1971). Infrared absorption spectra of the complex of zinc with acetyl hydrazine.

Russian Journal of norganic Chemistry (London) 16, 638-642.

43. Kharitonov, Y.Y. and R.I. Machkhoshvili (1971).

Complexes of metals with acetylhydrazine. Russian Journal of Inorganic Chemistry (London). 16, 492-495.

44. Kharitonov, Y.Y. and R.I. Machkhoshvili (1971).

Infrared absorption spectra of complexes of manganese(II), iron(III), cobalt(II) and nickel(II) with acetylhydrazine.

Russian Journal of Inorganic Chemistry (London) 16, 1438-1442.

41.

45. Kharitonov, Y.Y. and R.I. Machkhoshvili (1971).

Infrared absorption spectra of complexes of copper(II), cadmium(II) and platinum(II) with acetylhydrazine.

Russian Journal of Inorganic Chemistry (London). 16, 847-850.

 Machkhoshvili, R.I., T.V. Shalamberidze and R.N. Shchelokov (1983).

> The infrared spectra of coordination compounds of metals with primary hydrazides of aliphatic acids - nitrate and chloride derivatives. <u>Russian Journal of Inorganic Chemistry</u> (London) 28, 1132-1137

47. EI-Baradie, H.Y.F., M.A. Khattab, A.L. EI-Ansary and R.M. Issa (1983).

Studies on the cobalt(II), nickel(II) and copper(II) chelates with malonic, succinic and phthalic hydrazides.

Egypt Journal of Chemistry, 25(2), 165-172 (Eng.) Chemical Abstracts (Columbus) 99: 9818e.

48. Kumbar, G.G. and N. Sadasivan (1982).

Cobalt(II), nickel(II) and copper(II) complexes of oxalic, malonic and terephthalic dihydrazides.

к.

Def. Science Journal 32(2), 113-117 (Eng.) Chemical Abstracts (Columbus) 98:190534w.

49. Kumar, V., S.K. Sahni, S.K. Kher and N. Ramesh (1980). Reactions of uranyl(VI) complexes of acid hydrazides with -diketones. <u>Transition Metal chemistry</u> (Weinhem Ger.) 5(2), 85-87 (Eng.)

Chemical Abstracts (Columbia) 92: 225837c.

50. Aggarwal, R.C. and B. Singh (1978)

Synthesis and structural studies of some malonyl and succuryl dihydrazide complexes of some 1st row transition metal ions. Curr. Science 47(18) 679-80 (Eng.)

Chemical Abstracts (Columbus) 89: 208305y. 51. Aggarwal, R. and B. Singh (1976).

> Synthesis and structural studies of simple and mixed acids dihydrazide complexes of oxovanadium(IV).

Transition Metal Chemistry (Weinhem Ger.) 1(4) 161-166 (Eng.)

Chemical Abstracts (Columbus) 86: 83017k.

 Fridman, Y.D., O.P. Svanidze, N.V. Dolgashova and P.V. Gogorishvili (1974).

> Mixed compounds of cobalt, nickel and zinc with amino-acids and hydrazides of carboxylic acids, <u>Russian Journal of Inorganic Chemistry</u> (London). 19, 1809–1813.

53. Issa, R.M., Y.M. Temerk, M.R. Mahmoud and M.A. Khattab (1976).

> The chelates of cobalt(11), nickel(11), copper(11), zinc(11) and cadmium(11) with malonic hydrazide and its arylidene derivatives. Monatsch Chemistry 107(2), 485-493.

Chemical Abstracts (Columbus) 85: 28026s.

54. Machkhoshvili, R.I., Y.Y. Kharitonov and N.N. Vekua (1978).

IR absorption spectra of zinc, cadmium and strontium complexes with malonic and succinic acid dihydrazides.

Issled: Obl: Khimii Komplksh. Prostykh. Svedin. Nek. Perekhodynyk Met. 3, 63-67 (Russ.).

Chemical Abstracts (Columbus). 90:212553r.

55. Pandey, O.P. (1986).

Oxovanadium(IV) complexes of carbohydrazones

ŧ,

and thiocarbohydrazones.

Polyhedron (Great Britain), 5(10), 1587-1591.

Arora, D.L., K. Lal, S.P. Gupta and S.K. Sahni (1986). 56. Studies on homo-trinuclear complexes of Mn(11), Co(II) and Ni(II) with a nonadentate ligand. Polyhedron (Great Britain) 5(10), 1499-1501.

Bhoon, Y.K. (1983). 57.

> Magnetic and EPR properties of Mn(11), Fe(111), Ni(II) and Cu(II) complexes of thiosemicarbazone of $\sqrt{-hydroxyl-\beta-napthaldehyde}$. Polyhedron (Great Britain) 5(2), 365-368.

Singh, B., R.N. Singh and R.C. Aggarwal (1984). 58.

> Synthesis and structural studies of oxovanadium(IV), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and mercury(II) complexes with 2thenoylacetone hydrazone.

Indian Journal of Chemistry (India). 23, 480-483.

Singh, N.K., N. Agrawal and R.C. Aggarwal (1984).

Synthesis, characterization and antibacterial studies of iron(II), cobalt(II), nickel(II), copper(11) and zinc(11) complexes of pyridine-4carboxaldehyde isonicotinoyl hydrazone.

Indian Journal of Chemistry (India). 23, 1011-1015.

59.

60. Coton, F.A. and G. Wilkinson (1980).

"Advanced Inorganic Chemistry: A Comprehensive Text". 4th Edition. Wiley-Interscience (New York) pp. 82; 535-619, 814.

61. Pothman, J. and G. Stuttgen (1955).

The influence of isonicotinoyl hydrazine and its copper complex in respiration and growth of tubercele bacteria. <u>Zhurnal Ytyg. Infektions Kranth</u>, 147, 359–62 (German) Chemical Abstracts (Columbus) 49:1419e.

62. Besson, S,C. Blin and I. Tavernier (1957).

Behaviour of isonicotinoyl and its combination with copper in relation to tissues <u>in vitro</u>. <u>Bulletin Society of Pharmacology</u> (Nancy) 33, 4-7. Chemical Abstracts (Columbus) 52: 2282b.

63. Collizzi, C. and S. Garattinic (1953).

Antituderculous pharmaceuticals and heavy metals; the inhibition of the action of copper and mercury by isonicotinoyl hydrazine.

Atti. Soc. Lombardi Sci. Med. e, biology. 8,45-50. Chemical Abstracts (Columbus) 48: 2250h.

64. Srivastava, A., A. Abraham and R. Thekkeyat (1978). Molecular mechanism for the specific inhibition of reverse transcriptase of Rous sarcoma virus Biochemistry and Pharmacology 27(4), 57-59.

Chemical Abstracts (Columbus) 89: 16737u.

65. Grecu, I. and E. Curea (1960).

Metal thiocyanates of isonicotinic acid hydrazide (111). A new gravimetric and volumetric method for determination of isonicotinic acid hydrazide. <u>Farmacia</u> (Burcharest) 8, 503-506. Chemical Abstracts (Columbus) 55: 19136e.

66. Grecu, I. and E. Curea (1962)

Metal thiocyanates of isonicotinic acid hydrazide V. Application to determination of zinc and isonicotinic acid hydrazide.

Review Chimie (Bucharest) 13, 162-163.

Chemical Abstracts (Columbus) 57: 11856i.

67. Frazer, A.H. and F.T. Wallenberger (1964).

Metal chelates of polyhydrazides.

Journal of Polymer Science (New York) Pt.A. 2(4), 1825-1832.

 Hashmi, M.H., A. Rashid, M. Umar and F. Azam (1966).
 Spectrophotometric determination of gold, copper and cobalt.

9 -

Analytical Chemistry (Easton) 38(3), 439-441.

69. Kettle, S.F.A. (1969).

"Coordination Compounds".

Thomas Nelson (Canada), pp 1-169.

70. Jaffe, H.H. and M. Orchin (1962).

"Theory and Applications of Ultra-violet Spectroscopy".

John Wiley (New York) pp. 508-533

71. Williams, D.H. and I. Fleming (1980).

"Spectroscopic Methods in Organic Chemistry". McGraw-Hill (London) pp. 35-73.

72. Emeleus, H.J. and A.G. Sharpe (1973).

"Modern Aspects of Inorganic Chemistry". Routledge and Kegan Paul (London). 4th Edition pp. 474-489.

73. Ferguson, J. (1970).

Spectroscopy of 3d complexes.

Progress in Inorganic Chemistry.

Lippard (Editor). Interscience (New York) 12, 159.

74. Harvey, K.B. and G.B. Porter (1963).

"Introduction to Physical Inorganic Chemistry". Addison-Wesley (Reading), pp. 227. 75. Orgel, L.E. (1966).

"An Introduction to Transition-Metal Chemistry

Ligand-Field Theory". Methuen (London) pp.59-61. 76. Manku, G.S. (1980).

> "Theoretical Principles of Inorganic Chemistry" Tata McGraw-Hill (New Delhi) pp. 527-536.

77. Earnshaw, A. (1968).

"Introduction to Magnetochemistry". Academic Press (London) pp. -94.

Purcel, K.F. and J.C. Kotz (1977)
 "Inorganic Chemistry".
 Saunders (London) pp. 553-584.

79. Mabbs, F.E. and D.J. Machin (1973). Magnetism and Transition Metal Complexes". Chapman and Hall (London) pp. 96-97.

80. Dillard, C.R. and D.E. Goldberg (1978).

"Chemistry-Reactions, Structure and Properties". Macmillan (New York) 2nd Edition. pp. 263-266.

 Recsok, R.L., L.E. Shields, T. Cains and I.G. Mcwilliam (1976).

"Modern Methods of Chemical Analysis".

John Wiley (New York) 2nd Edition. pp. 166-170.

82. Banwell, C.N. (1983).

"Fundamentals of Molecular Spectroscopy".

McGraw-Hill (London) 3rd Edition. pp. 156-159.

83. Sylverstein, R.M. and G.C. Bassler (1967).

"Spectroscopic Identification of Organic Compounds".

Wiley (New York) pp. 64-109.

84. Koelsch, C.F. (1946).

86.

Terephthalic acid.

Organic Synthesis (London). 26, 95-97.

 Basset, J., R.C. Denney, G.H. Jeffer and J. Mendham (Editors) (1985).

"Vogel's Textbook of Qualitative Inorganic

Analysis".

4th Edn., ELBS/Longman (London) pp. 324-325. Ikekwere, P.O. and K.S. Patel (1981).

> Magnetic and spectral properties of Cu(II) cycloalkane carboxylates, cyclopentaneacetate and their quinoline additives.

Journal of Inorganic and Nuclear Chemistry (New York) 43, 1085-1088.

87. Weissberger, A. and B.W. Rossiter (Editors) (1980).

"Physical Methods of Chemistry, Part IV -Techniques of Chemistry, Volume I". Wiley-Interscience (New York), pp. 448-451. 88. Warf, J.C. (1952).

Toluene soluble copper and silver fluoroborates: Decomposition of Diazonium fluoroborates.

Journal of American Chemical Society (Easton),

74, 3702-3704.

89. Geary, W.J. (1971).

Characterization of coordination compounds.

Coordination Chemistry Reviews (Netherlands),

7, 81-122.

- Greenwood, N.N. and A. Earnshaw (1984).
 "Chemistry of the Elements" Pergamon (New York) pp. 1231.
- 91. Figgis, B.N. (1964).

The Magnetic Properties of Transition Metal

Complexes.

Progress in Inorganic Chemistry. F.A. Cotton (Editor), 6, 154.

92. Milkulski, C.M., L.S. Gelfand, E.S.C. Schwartz, L.L.

Pytlewski and N.M. Karayannis (1981).

Main group metal(II) tetrafluoroborate interactions with 2,6-Litidine N-oxide.

Journal of inorganic and Nuclear Chemistry. (New York) 43, 1981-1984.

93. Ferraro, J.R. (1971).

"Low frequency Vibrations of Inorganic and Coordination Compounds".

Plenum (New York), pp. 89-95.

94. Lever, A.B.P. (1968).

"Inorganic Electronic Spectroscopy".

Elsevier (Amsterdam). pp. 320-361.

95. Sacconi, L. (1968).

"Transition Metal Chemistry" Volume 4, R.L. Carlin (Editor), Marcel Decker (New York). pp. 199-205.

96. Sutton, D. (1968).

"Electronic Spectra of Transition Metal Complexes". McGraw-Hill (London), pp. 125-131.

97. Kato, M., H.B. Jonassen and C. Fanning (1964). Complexes of copper(II).

> Coordination Chemistry Reviews (Netherlands). 64, 99-106.

98. Syamal, A. and K.S. Kale (1978).

Magnetic and spectral properties of copper(11) complexes of some tridentate dibasic ligands having ONO donor atoms.

Indian Journal of Chemistry (India). 16A, 46-51. 99. Ikekwere, P.O. and K.E. Johnson (1985).

> Synthesis and physicochemical properties of some complexes of aniline, p-nitrosodimethylaniline and p-nitrosodiethylaniline with cadmium halides

220

and sulphate.

100

Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry (New York). 15, 883-896. Osipov, O.A. and O.E. Kashireninov (1961). The magnetic susceptibility of some molecular compounds of Tin 1. Journal of General Chemistry (USSR). 31, 1639-1642.

101 Gaughan, A.P., Z. Dori and J.A. Ibers (1974).
A structure of tetrafluoroboratotris (triphenyl phosphine) copper(1), Cu(BF₄)(P(C₆H₅)₃)₃.
An example of a copper(1) complex containing a weakly coordinated tetrafluoroborate anion.
<u>Inorganic Chemistry</u> (New York). 13, 1657-1667.
102 Procter, I.M., B.J. Hathaway and P. Nicholls (1968).
The electronic properties and stereochemistry of the Cu(11) ion. Part I. Bis(ethylenediamine) Cu(11) complexes.

Journal Chemical Society (London). 1678-1684. Brown, D.S., J.D. Lee, B.G.A. Melsom, B.J. Hathaway, I.M. Procter and A.A.G. Tomlinson (1967). The structure of Cu(en)₂(BF₄)₂ and an IR spectral criterion for "semi-coordinated" polyanions. Journal Chemical Communications (London). 369-371.

104 Hathaway, B.J., D.G. Holah and A.E. Underhill (1962). The preparation and properties of some bivalent Transition-metal Tetrafluoroborate-Methyl cyanide complexes.

Journal Chemical Society (London). 2444-2448.

105 Raper, E.S., J.R. Creighton, D. Robson, J.D. Wilson,

MUEP

W. Clegg and A. Milne (1988). Tetrakis (1-methylimidazoline-2-thione) 2-bis (1-methylimidazoline-2-thiondb copper(1) tetra; fluoroborate: preparation, thermal analysis and crystal structure.

Inorganica Chimica Acta (London) 143, 95-100. Chemical Abatracts (Columbus). 108: 215226.