AN X-RAY CRYSTALLOGRAPHIC STUDY

 OF SOME WOOD EXTRACTIVESA. Thesis Submitted for the Degree of Doctor of Philosophy
in the

UNIVERSITY OF IBADAN
by

SAMUEL ABIDOYE ADEOYE

ACKIOWIEDGEMENTS

The author wishes to acknowledge the personal interest of Rev. Canon E.O. Alayande for relieving him of his bond with Ibadan Grammar School, a step without which this work could not have been done. He is sincerely thankful to Professor C.W.I. Beven for organising the research project and recommending the University scholarship award.

His gratitude also goes to his colleagues and memivers oi staff at the Crystallographic Laboratory, Oxford, for their discussions and services; to Dr. J.W. Powell for his advice and supervision of a portion of the work, to Dr. J.S. Rollett for a free access to the Computing Laboratory, Oxford and interest in the work, and to Professor D.C. Hodgkin for occasional supervision and keen interest in the progress of the work. The outhor also wishes to thank the starf of the Corputing Laboratories at Legan, Lagos and Ibadan for facilities made available to him, and Messrs T.V. Onijogun, M.O. Abiona and E.A. Nwaoha for the speed with which they have produced the thesis.

Pinally his unreserved thanks go to Professor D.A. Bekoe for his oareful supervision of the work.

I certify that the work here roported has been largely oarried out under my supervision.
D.A. Bekoe, B.Sc., D.Phil. (Oxon) Professor in Chemistry, University of Ghana, Legon, Ghana. University of Iidadan, Ibadan, Nigeria.

February, 1967.

CONTENTS

Page
GENERAL INTRODUCTION
CEDRELA ODORATA SUBSTANCE B 1
INIRODUCTION 1
PREPARATION OF IODOACETATE DERIVATIVE 8
X-RAY CRYSTALLOGRAPHIC ANALYSIS 11
(i) Re-crystallisation 11
(ii) Preliminary Examination and Crystal Data 11a
(iii) Collection of Intensity Data 14
(iv) Intensity Measurement 16
(v) Correction of Intensities 18
(vi) Scaling and Temperature Factors 19
(vii) Observed Structure Amplitude 31
STRUCTURE ANALYSIS 32
(i) Location of Iodine Atom 32
(ii) Two Dimensional Patterson 33
(iii) Three Dimensional Patterson 38
(iv) First Phase Calculation 41
(v) First Three Dimensional Fo Fourier 46
(vi) Second Phase Calculation 49
(vii) Second Approximate Electron Density Distribution 49
(vii) First Difference Synthesis 50
(ix) Third Phasing and First Model 54
Page
(x) Fourth Phasing and Second Difference Synthesis 58
(xi) Fifth Phasing 61
(xii) Third Fo Fourier 62
(xiii) Sixth Phasing 74
(xiv) Review of Chemical Evidence 75
(xv) Third Difference Synthesis 83
(xvi) Seventh Phasing 88
(a) Structure Factor Calculations 88
(b) Chlorine Atom 90
(c) Further Structure Factor Calculations 91
(xvii) Fourth Fo and Difference Syntheses 93
(xviii) Einghth Phosing 99
FURTHER REFTNEMENTI 103
DISCUSSION 109
The structure of $C O B$ 113
Flow Sheet 114
TURRAFANTHIN 128
Introduction 128
Crystallisation and Crystal Data 129
Space Group Determination 130
Measurement of Intensities 130Determination of the Bromine and Chlorine Positions
(a) 3-D Patterson 131
(b) 2-D Patterson 132
(c) 2-D Fourier Summations 133
CONTLENTS
Page
Structure Analysis 134
Discussion 136
Flow Chart 137
APPENDIX: Computing 148
REFERENCES 151

GENERAI TNTRODUCTION

The discovery of X-ray was first reported in 1895 and in 1913 its diffraction by orystals was also discovered by a number of workers including Bragg ${ }^{2}$ and Laue ${ }^{3}$. The use of this property of X-ray to determine the structure of some simple crystals was reported ${ }^{4}$ the same year. This property has become a powerful tool in modern science particularly in the fields of Physics, Chemistry, Metallurgy and Mineralogy. It has provided an easy approach to the study of the riorphology of crystals and has led to methods of finding the locations of the atoms in the unit cell of the crystal of any compound.

The determination of the atomic positions leads to a detailed knowledge of the geometry of the nolecule, the spatial distribution of the atoms and information such as bond distances and angles and the forces (intra-molecular and intermolecular) that may be inferred from the spatial distribution of the atoms in the orystal.

The X-ray crystallographic method was applied to mostly inorganic structures at the early stages of its development. Recently the application to organio chemistry has become pronounced and it has been used to elucidate the structure of many complex organic substances such as haemoglobin ${ }^{5}$ and vitamin $B_{12}{ }^{6,7}$.

In this work an attempt is made to determine the structure of two wood extractives: Cedrela Odorata Substance B and Turraeanthin.

CEDRELA ODORATA SUBSTANCE B

INTRODUCTION

Early in 1963, Bevan ${ }^{8}$ and others carried out a light petroleum extraction of a number of samples of West African timbers. One of thon was a spocios of tho genus Correla wish is not nonthlly fanm in West Africa. The species Cedrela Odorata is cultivated. The timber of the different specimens were examined and the light petroleum extract of each gave colourless crystals from methanol. These crystals had ranges of molting points varying with the specimen from which they were isolated. Whatever the source, they were shown to be a mixture of two compounds which are referred to subsequently as COA and COB. The proportions of the two components varied with the source of the crystals, hence the varying ranges of melting points.

The separation of the two compounds was based on the following observations:
(i) That $C O B$ is very easily hydrolysed by alkali to form the compound $C O B$ (I) now recognised ${ }^{2}$ as I or II in figure I. COA is not affected and remains in crystalline form. COB (I) goes into solution.
(ii) COA reacts readily with hydroxylamine hydrochloride to give a non-crystalline product, whilst $C O B$ does not react, remaining in the crystalline form.

Fig. I. $\operatorname{COB}(I)$ - Alkaline hydrolysis product of COB.
COA crystallises from methenol as colourless prismatic crystals melting at 262°. The results of its chemical analysis were consistent with the formula $\mathrm{C}_{26} \mathrm{H}_{30} 0^{0}$. It was later identified as 7 - deacetoxy-7-oxogedunin (Fig. 2), a compound

Fig. 2
which had earlier been obtained in the same laboratory by A. Akisanya in an attempt to establish the structure of gedunin ${ }^{10,11}$.

-3-

COB, crystallised from methanol, melted at $228^{\circ}-232^{\circ}$ and had [a] $]_{D}^{20}$ of $+41^{\circ}$ in chloroform. Analysis gave the formula $\mathrm{C}_{2} 7_{32}{ }^{\mathrm{O}} 7^{\circ}$ Bevan ${ }^{8}$ and others also reported the extraction of $C O B$ from the timber of "carapa procera". The petroleum extract crystallised from methanol, gave a substance of which different samples melted between 180° and 210°. In spite of the difference in melting point the infra-red spectrum was similar to that of COB. Rapid chromatography of a sample gave a pure specimen with mip. 226° to 228°.

A mixture of this with $C O B$ as obtained from Cedrela Odorata gave no depression of melting point, and the infra-red spectra of both samples were identical.

From the identification of COA as 7 -deacetoxy-7-oxogedunin (Fig. 2), it was assumed as a working hypothesis that $C O B$ might be related to gedunin. Early stages of the investigations on the structure of $C O B$ was carried out on this basis. J.W. Powell and others ${ }^{12}$ pursued the chemical degradation together with spectral studies, Chemical analysis showed the presence of one methoxy group and a carbonyl group which was later confirmod by the infra-red spectrum. The assumed similarity in structure to gedunin and related compounds - cedrelone ${ }^{13}$ and Limonin ${ }^{1 / 4}$, woula suggest the presence of the following features:
(a) furan ring
(b) lactone ring
(c) epoxide ring
(d) keto-group or groups
(e) four or five angular methyl groups and
(f) four skeleton rings fused thus

However, the rather complex nature of the reaction of $C O B$ on treatment with alkali suggested some kind of departure.

The alkaline hydrolysis product, COB (I), later shown to have structure I or II of figure 1 was found stable and isomeric with COB, formula $\mathrm{C}_{2} \mathrm{H}_{32} \mathrm{O}_{7}$. The infra-red spectra of both COB and COB (I), showed the presence of a furan ring. From the nuclear magnetic resonance spectrum ${ }^{15}$ it was possible to recognise a furan ring, an ester group of the type - COOMe, and the presence of four angular methyl groups in COB. Thus whilst a fundamental difference between gedunin and COB has been indicated by the presence of the ester group, it still seemed to possess some similarity by the presence of four angular methyl groups, the keto group and the furan ring.

It was then thought that X -ray analysis might provide a definite clue to the structure of $C O B$ and to this end a procedure whereby a heavy atom would be introduced into COB was outlined. The kew-group would be reduced to the alcohol which in turn would be treated with iodoacetyl chloride to obtain the iodoanetate.

The reduction of the keto-group gave a sticky mass which was not possible to crystallise and which thin layer chromatography proved to be a mixture of about four substances. Since it is now known that COB contains a β-dicarbonyl system, it can be inferred that the four substances are the α or β reduction products of each of the two carbonyl groups. There is of course in addition to this, the siight possibility of having the two carbonyl groups reduced assuming that there is no unreduced $C O B$ in the sticky mass. As the presence of the G-dicarbonyl system was then not knom, it was not possible to draw these inferences. There was tinerefore no attempt to isolate one of the reduction products in this mixture and continue the programme for the preparation of the iodoacetate. A similar compound - Mexicanolide ${ }^{9}$ with the structure
recently formulated for it, is most probably a stereoisomer of COB. Like COB, it is obtained from the timber of a species of Cedrele Cedrela Mexicana. The same process of reduction, with sodium borohydride, has been reported to yield one major product, implying the presence of other products.

Connolly and his co-workers were virtually certain they were reducing a compound containing a β-dicarbonyl systen and hence must have expected a mixture of products which they proceeded to separate. Latest work ${ }^{16}$ on the reduction of $C O B$ with the knowledge of the presence of the β-dicarbonyl systen suggests as many as nine reduction products in which the lactone ring is affected in some instances.

The next line of approach was to methylate $C O B$ in the hope that the new compound might yield a purer reduction product. Chemical analysis of $C O B$ (II) (tho nethylation product), showed the proscmoc of three aothoxy-urours which neant that the process of zothylnition sdded two wore nethoxy - Eroups to COB. COB (II), did indeed give one major reduction product, the alcohol COB (III). The iodoacetate of COB (III) was then prepared. The preparation of the iodoacetate from $C O B$ was first carried out successfully by J.T. Povell.

The work here reported consists of a repetition of the preparation of iodoacetate and its subsequent X-ray analysis to obtain the molecular
and crystal structures. From the nolocular structure of the iodoacotate, the molecular structure of $C O B$ is dorived.

To sum up, the following chenical infomation vas available at the beginning of the X-ray analysis:
(a) a probable furan ring
(b) iodoacetate
(c) three methoxy groups
(d) Sour nethyl groups
(e) an estor group of the form - COOMe.

PREPARATION OF THE IODOACETATE OF CEDREIA ODORATA SUBSTANCE B

Mothylation of COB

Mixed extract crystals of cedrela odorata (40 g.) were added to methanol (2 lit.) in a 5 lit. flange flask. The nixture was refluxed until the crystals were all dissolved and to this was added 40 ml . conc. sulphuric acid in about 330 ml . methanol. Some mothanol was aistilled off in 40 minutes and 2 lit. water was added. There was a white precipitate which was extracted with chlorofom in bits of 200,100 , 50 and 25 mls. The chloroforn extract was washed with sone sodium carbonate solution and then with water. The chlorofom extract was evaporated until crystals could form on cooling the renaining solution.

The crystals in othylacetate/benzene rixture were passed down a chronatographic coluan of about 750 ml . aluaina, 5 per cent deactivated with 10 per cent acetic acid. The elute was collected in fractions the first crop being the nethylation product of COB. An elute of 2.4 lit. yielded 13.7 gr. m.p. $170^{\circ} \mathrm{C}$.

Both substances A and B, and of course, the nethylation product were shown by the I.R. to contain carbonyl groups on the rings.

Reduction of the Methylation Product

The methylation product (4.0 g .) in 40 ml . chloroforn and 200 ml . ethanol were mixed up in 500 ml . conical flask. Sodiun borohydride (0.8 g .) dissolved in 10 ml . cold water was added and the whole mixture
was mechanically stirred for one hour. Hore sodium borohydride (0.4 ge) in 5 ml cold wator was added and the mixture stirred for another hour. Water was added in portions until the solution was clear and it was stirred further for 3 hours. 100 ml . water was added and the reduction product was extracted with chlorofora in bits of $100,35,35$ and 35 mls . The extract was washed with a little quantity of water and dried with sone quantity of magnesiun sulphate. It was then evaporated to a greenish yellow oily product.

Benzene/petroleun ether ($60^{\circ}-80^{\circ}$) mixture was added until it all dissolved. The solution looking cloudy was covered loosely and left to crystallise by evaporation for over 24 hous. This reduction process was repeated a number of times. The reduction product consists of yellowish crystals, yields vary fron 1.6 to 2.8 gn . for each 4 gn. of the methylation product. In each instance only a range of $\mathrm{m} . \mathrm{p}$. point (130 to $157^{\circ} \mathrm{C}$) could be obtained but the I.R. gave an absorption band at about 3,700 cn^{-1} for the presence of the -OH group.

Chloroacetylating the Reduction Product

Chlorvacetylchloride was propared by heating equinolecular quantities of chloroacetic acid and thionyl chloride on a water bath until the production of hydrogen chloride slackened. The product was then distilled through a fractionating colum and chloroacetyl chloride collected between 99° to 105°.

Using the method of Barton ${ }^{17}$ and others, 8.6 . of the reduction product in 250 ml . chlorofom to which had been added 55 ml . chloroacetyl

X-RAY CRYSTALILOGRAPFIC ANALYSIS

Recrystallisation

The iodoacetate separated from the reaction mixture as olums of plates which proved difficult to separate. It was therefore necessary to recrystallise the product. I few clups of about one milligram were put in a nicro-specinen tube which had a tight-fitting cover. To this was added the same number of drops of benzene and petrolew ether $\left(60^{\circ}-80^{\circ}\right)$. The nixturo was wamed on a waterbath until the crystals dissolved in the mininun quantity of benzene/petrol mixture. An extra drop of each solvent was added and the solution warmed for a further ten seconds. The tube was imediately covered and themally insulated to prevent rapid cooling. It cooled slowly for several hours. When the solution attained the room temperature, the cover was romoved and the solution was left standing overnight.

The symmetry of the reflections obtained from the two photographs indicated that the crystal belongs to the orthorhombic systen. This was later confimed by the symnetry of the Weissenberg equi-indination photographs for the general reflections hkl.

From these photographs and the zero layer photograph about the a axis, the following systematic absences were observed:

$$
\begin{aligned}
& \text { hoo with } h \text { odd } \\
& \text { oko with } k \text { odd } \\
& \text { ool with } 1 \text { odd }
\end{aligned}
$$

These absences implied the presence of two-fold screw axes parallel to each of the crystal axes. Since there were no other absences, the space group was detemined unambiguously as $\mathrm{P} 2_{1}{ }^{2} 1_{1}{ }^{2}$. This has four equivalent general positions and hence four asymetrio units in the unit cell.

In determining the densities of crystals in this type of work, it is the practice to use a mixture of two solvents or a solution in which the crystals are insoluble. Sinco the crystals are insoluble in vator, it was considered safe to use a salt solution and zinc sulphate solution was found donse enough to keep the orystals floating. The density was determined as 1.432 ± 0.005 ga. per c.c. by flotation in this solution. The calculated density based on the final structure is 1.422 gra per o.c.

Assuming that the asymmetric unit contained one molecule, an assumption which is usually true for natural products, the molecular weight was calculated to be 693 ± 7.

The coefficient of the linear absorption from the present accepted formula of $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{8}$ CII with molecular weight of 688.4 can be calculated thus:

$$
N=\frac{\sum_{n} U_{g}}{\sum n \cdot W}
$$

where μ is the linear absorption coefficient
P is the density of the iodoacetate
H_{y} is the gram-atomic absorption coefficient for each aton.
n is the number of atoms of atomic weight W in the molecule.

$$
\begin{aligned}
\therefore U= & \frac{1.432(30 \times 66.1+38 \times 0.435+8 \times 203+39900)}{688.4} \\
= & 90.5 \text { per om } \\
& \text { for copper Kalpha radiation. }
\end{aligned}
$$

It was calculated from this value that absorption varied by as much as 28% over the range of θ values 0° is 90°.

The gran-atomic absorption coefficients for carbon, oxygen chlorine and iodine were from the tables of Henry, Lipson and Wooster 19 and that of hydrogen was equated to the mass absorption coefficient obtained from the International Tables (1952). The linear absorption coefficient was
previously calculated based on the molecular weight as known at the time to be $97 \mathrm{~cm}^{-1}$. It was clear then that there would be considerable errors whe structure factors owing to absorption. But as the object of the analysis was to obtain the gross molecular structure rather than accurate bond lengths and angles, and as an absorption correction progranne was not innediately available, anyway, no corrections for absorption were made.

Collection of Intensity Data

The intensities were collected from \#eissenberg photographs taken about both a and baxes. The exposure for each photograph was roughly 50 hours of Copper Kc (radiation. In order to reduce absorption errors to a minimum, attempts were made to obtain smaller crystals of alnost oylindrical shape. To achieve this the crystals were re-grown as described a number of times. A second crystal of dimensions 0.15 by 0.20 by 0.35 mm was mounted about an axis which was found to be b. It is expodient to take photographs of reciprocel layors about the shortest axis i.e. e. Because of its shape it was not reasonable to expect much from remounting this crystal. lind so while a search was going on for an approxinately cubic shaped crystal which could be mounted about any of the three axes, multiple filn equi-inclination Weissenberg photographs of the layers (hol), (h11) and h21) were taken. The (hol) photograph was taken with unfiltered copper radiation. Copper Ka radiation wes used for the other

Intensity Measurement

Of the varying methods of neasuring intensities from single orystal photographs, visual estination ${ }^{20}$ is the least accurate. It has, however proved satisfactory at least for structural purposes and has been employed in the determination of as complex a structure as the hexacarboxylic acid of Vitarnin $B_{12}{ }^{7}$ as well as for Vitamin $B_{12}^{6,7}$ itself. It is the most cormonly used method. This is obviously due to its simplicity and the fact that it is often the only available method in nany laboratories. For a very accurate work, one would require the quantum counter. Diffractometers which use radiation counters for measuring intensities, have been designed for completely automatic operation.

Visual estimation consists of measuring the intensity of the photographically recorded reflection with the aid of a standard comperison intensity strip, prepared by recording the same reflection from a given orystal for different lengths of time. The exposure times represent the relative values of the intensities on the strip. This was the only available method. To increase the range of measurable intensities, the nultiple filn technique ${ }^{21}$ was used. With only four films for each photograph, it was still not possible to estimate the intensities of 020 and 023 which were ainong the strongest reflections.

The following five reflections, having the least $\operatorname{Sin} \theta$ values, were cut off by the bean trap and were not recorded: (011 , $101,110,111$, 120).

There were not as many reilections as was expected with Copper K \mathbb{Q} radiation; there are 3673 reflections within the copper sphere. The recorded (hol) reflections were only 178 in number out of which only four had $\sin \theta$ values above 0.8 ; the maximum $\sin \theta$ value was 0.8507 . Similarly there were 147 (h11) reflections, with only three reflections having $\sin \theta$ values above 0.8; the highest value was 0.83 (71 16). For the (h2l), there were 129 reflections with a naximun $\sin \theta$ value of 0.765 (4 2 17).

From the photographs about the a axis, there were: 217 (okl) reflections with a maximun $\sin Q$ value of 0.788 ; 199 (1 kl) with a maxinum $\sin \theta$ value of $0.73 ; 194$ (2kl) with a naxinum $\sin \theta$ value of $0.788 ; 170$ (3 kl) with $\sin \theta$ of 0.72 . An average of about 140 neximuri reflections, the actual number for each layer decreasing with increasing value of h, were obtained for the other layers. The maxinum $\sin \theta$ value was about 0.70 .

In measuring the intensities, spot extension and contraction were observed. The extended spots reflected from only one quedrent of the reciprocal lattico were estimated. There were no systematio search for the effocts of ancralous scatitoring but cno roflection (4. 4. 2) was osorved to show sane dowerturo fres Priodol's lem. Tro; of itis oquivelent refloctions had aifferent intazsities. the two were estincto.! ne everaged.

Correction of Intensities

Disregarding errors of absorption, extinction and spot-extension ${ }^{22}$, the measured relative intensity is related to the structure amplitude $F(h k I)$ by ${ }^{23}$ the equation. $I(h k i)=k L p F^{2}(h k l)$ where k is a constant
p the polarization correction is given by

$$
\mathrm{p}=\left(1+\cos ^{2} 2 \theta\right) / 2
$$

and L the Lorentz correction by

$$
L=\frac{\sin \theta}{\sin 2 \theta\left(\sin ^{2} \theta-\sin ^{2} \mu^{\frac{1}{2}}\right.}
$$

This is Trunnel's ${ }^{22}$ method of expressing the Lorentz correction, θ is the Bragg angle and the equi-inclination angle. When $\mu=0$, i.e. for equatorial reflections, this reduces to $I=(\sin 2 \theta)^{-1}$. These expressions give

$$
\begin{align*}
(L p)^{-1} & =\frac{2 \sin 2 \theta\left(\sin ^{2} \theta-\sin ^{2} \mu\right)^{\frac{1}{2}}}{\left(1+\cos ^{2} 2 \theta\right) \cdot \sin \theta} \tag{1}\\
& =\frac{2\left[\left(1-\sin ^{2} \theta\right)\left(\sin ^{2} \theta-\sin ^{2} \mu\right)^{t^{\frac{1}{2}}}\right.}{1-2 \sin ^{2} \theta\left(1-\sin ^{2} \theta\right)} \tag{2}\\
& =\frac{2 \sin 2 \theta}{1+\cos ^{2} 2 \theta} \quad \text { when } \mu=\text { zero }
\end{align*}
$$

Values of $\operatorname{Sin} \theta$ were calculated on a FACIT desk calculating machine for all the (hole) reflections and from the values of $\frac{1+\cos ^{2} 2 \theta}{\sin 2 \theta}$ as a
function of $\operatorname{Sin} \theta$, obtained from the International Tables, $L p$ and hence $\left\{F^{2} \mid\right.$ values were derived for all these reflections.

For the general reflections (hkl), the Lorentz Polarization corrections and hence $\left(F^{2}\right)$ were desk calculated using equation (1) above for a few of the (1 kI) reflections.

The results were compered with those computed on the IBMi 1620. Corrected intensities $\left\{\mathrm{FO}^{2}\right\}$ for all the neasured reflections were then calculated on the computer.

Scaling and Temperature Factors

To put the corrected intensities on the same scale, the first approach was to correlate the eight layers about the a axis by the use of common reflections on one of the layers about the \underline{b} axis. The second layer was arbitrarily chosen.

TABLE 1

$\left.\begin{array}{lllll}h \quad k \quad I & I(2 b) & I(2 a) & \frac{\text { Correlation Factor }}{I(2 b) / I(2 a)} \\ 2 & 2 & 1 & 4.13 & 5.16\end{array}\right]$

* Not included in the average value in tables 1 to 3. $I(2 b)$ are the intensities from (h2l) reflections. $I(2 a)$ are the intensities from (2kl) reflections. Average Correlation Factor $=1.02$.

Table 1 shows the range of cormetation factors of each reflection obtained for the sosond layer about a axis. The lowest (0.800) for 21 was fairly accoptable but the highest ones for reflections 222,223 and 2211 were far from the others and were ruled out in calculating an average value.

Table; 2 and 3 show similar calculations for the third and Pourth layers respectively. The reflections 321 and 3211 in Table 2 and 421 , $427,428,429$ and 4210 in Table 3, were ruled out in calculating the average value of the correlation factors.

This was done for the eight layers and as the range of value for the individual reflection correlation factors for each layer was so large as to necessitate cencelling sone of then, the results did not inspire confidence. As a check the eight layers were correlated twice again just as above by comparing intensities of common

TABLE 2

h	k	I	$I(2 b)$	$I(3 a)$	$\frac{\text { Correlation Factor }}{I(2 b) / I(3 a)}$
3	2	1	11.55	14.69	0.786^{*}
3	2	2	18.33	12.52	1.464
3	2	3	5.59	3.52	1.587
3	2	4	13.42	10.8	1.242
3	2	5	6.99	6.36	1.099
3	2	7	4.56	4.01	1.138
3	2	8	5.95	5.12	1.161
3	2	9	10.19	9.83	1.036
3	2	10	3.65	2.52	1.449
3	2	11	2.81	1.43	1.965^{*}

I(3a) are the intensities from (3kl) reflections. Average correlation feotor $=1.235$.

TABLE 3

	k		I (2b)	I (4a)	$\frac{\text { Correlation Factor }}{I(2 b) / I(4 a)}$
4	2	1	4.81	3.67	1.311*
4	2	2	1.36	1.31	1.038
4	2	3	17.54	16.71	1.049
4	2	4	12.58	15.62	0.805
4	2	5	6.73	8.45	0.796
4	2	7	7.36	15.26	0.482*
4	2	8	3.56	7.88	0.452*
4	2	9	1.78	2.60	0.684*
4	2		4.07	6.77	0.601*
4			5.56	6.29	0.884

I(4a) are the intensities from (4kI) reflections.
Average correlation factor $=0.8403$.
reflections on the zero and first layer photographs about the \underline{b} axis with those on photographs about the a axis.

Bearing in mind thet the reciprocal layers (hol) to (h2l) are thenselves to correlated, the ratios obtained are shown in Table 4 for the eight layers.

TABIE 4

RATIO OF AVERAGE CORRELATION FACTORS OBTATNED BY COMPARISON

	hol	h 1 l	h 21
0 kI	1.00	1.00	1.00
1 kl	0.74	0.95	1.15
2 kI	0.88	1.36	1.31
3 kI	1.14	1.63	1.62
4 kI	0.56	0.98	1.10
5 kI	0.92	1.43	1.15
6 kI	1.03	2.60	1.20
7 kI	1.96	3.69	2.69

The figures obtained from hol reflections appear generally lower and it may be better to average the figures from the h1l and h21

TABIE 4A

SCALE FACTORS
obtained by two methods

	Comparison	Wilson Plot
0 kl	1.00	1.000
1 kl	1.15	1.151
2 kI	1.31	1.508
3 kl	1.62	1.861
4 kI	1.10	1.222
5 kI	1.15	1.539

reflections. The depression in the hol figures is rather difficult to explain, but it may be pointed out that the photograph was taken with unfiltered radiation. The variation for the 6kI ratios is the largest and thus any factor, used for this set of reflections, based on this approach is most unreliable. The 7 kl reflections undoubtedly must have the highest factor. These figures seened so unreliable that it was decided to adopt another procedure. This was the statistical method of Wilson's ${ }^{25}$.

Within a narrow range of $\operatorname{Sin}^{2} \theta$

$$
\begin{equation*}
\left.\mathrm{S} \bar{I}_{0}=\bar{I}_{a b s} e^{-2 B\left(\sin ^{2} \theta\right.}\right) / \lambda^{2} \tag{3}
\end{equation*}
$$

where S is the scale factor, $I o, I_{a b s}$, the measured and absolute intensities respectively, λ, the wevelength of the rediation used and B the temperature factor. The equation is used to derive the scale factor (correlation factor) S and the temperature factor B. The absolute intensity is unknown but estimated by using the assumption that within the narrow range of $\sin ^{2} \theta$ (or θ value)

$$
I(h k])=\sum_{n} n^{2} \text {, where } f_{n} \text { the atomic scattering }
$$ curve of $n^{\text {th }}$ atom in the molecule, $\bar{I}(\overline{\mathrm{hkI}})$ is the mean absolute intensity. The theoretical fom of the f curve is assumed. Neglecting hydrogen atoms, the formula of the iodoacetate as presuned at the time was $C_{31} 0_{10}$ I. A graph of $\log \frac{\text { Ioj }}{\text { Iabs }}$ against $\sin ^{2} \theta$ was plotted for each zone of reflections, (see figs. 2 to 12 and tables 5 to 9), (Io is the mean observed intensity for the narrow range of $\operatorname{Sin}^{2} \hat{y}$ and \quad Iabs $=\frac{\sum_{n} f n}{42}$.

TABIE 9-7k7

$\langle\operatorname{Sin} \theta\rangle$	$\sin ^{2} \theta$	$\sum I$	$N(I)$	$\sum \mathrm{f}^{2}$	$\mathrm{R}=\mathrm{I} / \sum^{\mathrm{I}}$	$\log _{e} R$
0.10	0.0100	-	-	100.96	-	-
0.15	0.0225	-	-	90.76	-	-
0.20	0.0400	-	-	80.37	-	-
0.25	0.0625	-	-	70.76	-	-
0.30	0.0900	-	-	62.01	-	-
0.35	0.1225	-		54.53	-	-
0.40	0.1600	-	-	48.18	-	-
0.45	0.2025	-	-	42.67	-	-
0.50	0.2500	18.70	25	38.13	0.020	-3.9313
0.55	0.3025	39.11	48	34.23	0.024	- 3.7378
0.60	0.3600	37.20	4.	30.90	0.027	- 3.5987
0.65	0.4225	30.14	31	28.09	0.035	- 3.3636
0.70	0.4900	13.25	10*	25.63	0.052	- 2.9548
0.75	0.5625	-	--	23.51	-	-
0.80	0.6400	-	-	21.71	-	-

* Not reliablo (tables 5 to 9).
< $\sin \theta$ is the mean value of $\sin \theta$ renge. SI is the sum of measured intensity in the range of $\sin \theta$, and $N(I)$ is the number of reflections summed for the range. $\sum \bar{f}^{2}$ is the estimated absolute intensity for the range. \bar{I} is the mean observed intensity.

Table 5 illustrates the sort of results obtainable for the reciprocal layers about baxis. Table 6 gives the results for one of the two sets of equatorial reflections. Table 7 gives the best results and Tables 8 and 9 give the results for layers 6 and 7 about the a axis. Figures 2 to 10 show the plots of the results from which the scale and temperature factors were derived. Pron the tables, the number of reflections sumned at low values of $\sin ^{2} \theta$ is usually low and as the relationship (3) is a statistical one, depending on the average of large numbers of reflectior the figures for these low angle reflections will be of low reliability. The same applies at high angles of $\sin ^{2} \theta$. The results are reliable only for those ranges of $\sin ^{2} \theta$ values in which the number of reflections is large.

On plotting the points, the best linearity was shom for the (3kl) reflections in fig. 8. Since the expected temperature factor was isotropic, the gradient of this line was assumed as a rough approxinate value in drawing the remaining plots. This procedure was applicable to all but the (6 kl) and (7 kl) reflections. There were only four points on the (5kl) graph that would lie on the straight line of the given gradient; five other points, two with low values and three with high values of $\sin ^{2} \theta$, were ignored.

The gradient of the plots for the (6kl) and (7kl) reflections mould not give a meaningeul terperature factor. Just before the photographs of these layers were taken, a steady change in colour of the crystal had been observed. This could lead to changes in the intensity of reflections. Measurable changes, sometines due to deconposition of the crystal, in relative intensities after an exposure to radiation for a length of tine, are known to occur. Such changes after a ten hour ezposure have been reported by Cullis ${ }^{5}$ and others. Moreover, the number of reflections can hardly stand the test of a statistical law. The calculations could give a better results by incluãing a nean intensity of half the threshold value for those reflections whose intensities were too woak to be estimated. The reflections (6 kl) and (7 kl) wore finally ignored.

Table $10(\mathrm{p} .26)$ gives the scale and temperature Pootors derived from the plots - fig. 2 to 10. The numbers in brackets are in the sane ratio, relative to $\mathrm{S}(\mathrm{okl})$ as 1.00 . The scale factor ratios are not far off those obtained fron the comparison of comion roflections on intersecting layers particularly those based on the h2f layer. (See Table 4A). This atatement is not applicable to the (6 kl) and (7kl) reflections.

Observed Structure Amptitude

Tho corrected intensitios were put on a comon scale by multiplying each zone of reflections by its scale factor-s. The reflections, comrion to reciprocal planes about both a and baxes, ware given average values of the two structure azplitudos. Those operations reduced the total number of independent reflections to 1303, of which 991 were neasurable and the remaining 312 , too weak to be measured.

STRUCTURE ANALYSIS

Location of Iodine Atom

With/assumption that each nolecule constitutes an asymmetric unit and therefore accupies a general position, there should be fous iodine atoms in each unit cell. This is a relatively snail number of heavy atoms ${ }^{27}$ and hence it should be possible to locate then. They occupy a set of four equivalont general positions (fig. 11) with co-ordinates

$$
\text { (i) } \mathrm{x}, \mathrm{y}, \mathrm{z}
$$

$$
\text { (ii) } \frac{1}{2}-x, \bar{y}, \frac{1}{2}+z
$$

$$
\text { (iii) } \frac{1}{2}+x, \frac{1}{2}-y, \bar{z}
$$

$$
\text { (iv) } \bar{x}, \frac{1}{2}+y, \frac{1}{2}-z
$$

Equivalent positions

Origin halfway between three pairs of non-intersecting screw axes. (The symbols arc on the sane convention as in International Tables 1952. vol.1). Vectors between pairs of these positions will be represented essentially by the following points in the Patterson nap:

4. Real Space
B. Vector Space

FiE 13
Origin at the centre of drawing still halfway between throe pairs of nonintersecting screw axes

$$
\begin{aligned}
& \text { (i) } \frac{1}{2}, \frac{1}{2}-2 y, 2 z \\
& \text { (ii) } \frac{1}{2}-2 x, 2 y, \frac{1}{2} \\
& \text { (iii) } 2 x, \frac{1}{2}, \frac{1}{2}-2 z .
\end{aligned}
$$

These points, others related to them by symetry, are show in the vector space diagram of fig. 13B.

Two forms of the Patterson function were used in order to locate the iodine atom.

Two dimensional Patterson
group
The two dimensional Patterson function, $P(u v)$, for any space/ is given by

$$
P(u v)=\frac{1}{\Lambda} \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} F(h k o)^{2} \exp 2 \pi i(h u+k v)
$$

For the space group $P 2,2^{2} 1^{2} y$ in which

$$
\begin{aligned}
\mid\left. F(\text { hko })\right|^{2} & =F(\text { hko })^{2} \\
& =F(\text { hiko })^{2}
\end{aligned}
$$

this reduces to

In practice, this becomes

$$
P(u v)=\frac{A j}{A} \sum_{\frac{H}{0}}^{\frac{H}{S_{0}}} \frac{K}{\frac{s}{0}}|F(h k o)|^{2} \operatorname{coshu} \cos ^{2 \pi}
$$

where H and K are the highest values of h and k.
A Patterson projection on the (100) plane
was computed at intervals of $1 / 50$ of the unit cell side in v and w. The coefficients $|P o|^{2}$ were unsharpened and the highest values of k and I were both 16. $\left\{\left.T(000)\right|^{2}\right.$ was omitted. The results are shown in Pig. 12Λ

The contours are drawn at arbitrary intervals. Comparing this map with the vector space projection show in figure 13, it is possible to locate peaks equivalent to peaks B and C along the lines $w=\frac{1}{2}$ and $\mathrm{V}=\frac{1}{2}$ respectively in projection, but the peak equivalent to A at the position marked A, is blurred. The co-ordinates y and z are, however, obtainable from the two easily recognised peaks. For the a axis projection, the peaks are

Figure 12A

$$
\begin{aligned}
& \left(\frac{1}{2}-2 y, 2 z ;\right) \\
& \left(2 y, \frac{1}{2} ;\right) \\
& \left(\frac{1}{2}, \frac{1}{2}-2 z\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
2 y & =7 \cdot 8 / 50 \\
y & =0.078 \\
\frac{1}{2}-2 z & =28.8 / 100 \\
z & =0.106
\end{aligned}
$$

To test the reliability of the sc parameters, they were used to calculate the structure amplitudes of a few of the (ok) reflections.

The general expression for the structure factor is given by

$$
F(h k l)=\sum_{n=1}^{\mathbb{N}} \text { in } \exp \left\{2 \pi i\left(h x_{n}+k y_{n}+I z_{n}\right)\right\}
$$

where $F(h k l)$ is the structure factor of the reflection (kl).
\mathbb{N} is the number atoms in the unit cell, fin the atomic scattering curve of the nth atom and x_{n}, y_{n}, z_{n}; are the position parameters of the $n^{\text {th }}$ atom.

In two dimensions, this becomes

$$
F(o k l)=\sum_{n=1}^{N} \text { in } \quad \exp \left\{2 \pi i\left(k y_{n}+1 z_{n}\right)\right\}
$$

But

$$
F(o k I)=A+i B
$$

$$
P(v i=1)=A-i B
$$

and

$$
\mathbb{F}(o k l)=F(o k \bar{l}) \text {, by Friedel's law. }
$$

Hence

$$
B=z \theta r o \text { and }
$$

$$
\begin{aligned}
F(o k 1) & =\Lambda \\
& =\sum_{n=1}^{N} \text { in } \cdot \cos 2 \pi\left(k y_{n}+1 z_{n}\right)
\end{aligned}
$$

where $N=4$ for the iodine atons only.
The general equivalent positions for the plane group Pgg are:
(i) y, z;
(ii) \bar{y}, \bar{z};
(iii) $\frac{1}{2}+y, \frac{1}{2}-z$;
(iv) $\frac{1}{2}-y,-\frac{1}{2}+z$;
and $F(o k l)$ simplifies to

$$
F(\mathrm{ok} 1)=4 f \cos 2 \pi\left(k y+\frac{k+1}{4}\right) \cos 2 \pi\left(1 z-\frac{k+1}{4}\right)
$$

IT
$\mathrm{k}+1=2 \mathrm{n}$ (even)
$F(o k l)=4 i \operatorname{Cos} 2 \pi \mathrm{ky} \operatorname{Cos} 2 \pi I z$.
If
$k+1=2 n+1$ (odd),
$F(o k l)=-4 f \sin 2 \pi k y \sin 2 \pi l z$.

Table 11 shows the structure amplitudes calculated on e PACIT desk calculating machine using the tabulated sine and cosine values from the international tables. The iodine f-curve was the same as before (page 25). An isotropic temperature factor of $\exp \left(-2 B \sin ^{2} \theta / \lambda^{2}\right)$, where $B=4.40 A^{2}$, was applied.

TABLE 11

0	K	I	$F(C A L C)$	$F(O B S)$
0	1	11	+0.884	1.634
0	6	6	-4.734	4.202
0	6	8	-5.618	2.980
0	6	10	+5.208	6.304
0	9	9	-5.301	5.913
0	9	11	-1.093	1.857
0	12	4	-4.430	4.22
0	12	8	+2.840	1.992
0	14	6	+1.283	2.352
			-5.92	
0	1	8	-5.249	3.884
0	1	10	-5.307	3.816
0	10	13	7	-12.329

The $\mathbb{F}(C A L C$.$) was scaled so that the sum of the calculated F^{\prime} s$ was the sane as that of the observed values. There is a fairly high degree of agreenent. This indicates that the parameters are quite reasonable.
\& Patterson projection (fig. 14) along the b -axis was also calculated and the calculations following the sane arguments as outlined above gave the results

$$
\begin{aligned}
\frac{1}{2}-2 x & =0.26 \\
x & =0.12 \\
2 z & =0.22 \\
z & =0.11
\end{aligned}
$$

In spite of the good agreoment shom between the observed and calculated structure factors as above, it was considered desirable to check the co-ordinates fron a three dinensional Patterson. The co-ordinates from this would be nore reliable in consequence of the less ovorlap of vectors.

Three dimensional Patterson

The three dimensional Patterson function $P(u v w)$, for any space group is given by

$$
P(u v v)=\frac{1}{v} \sum_{h} \sum_{k} \sum_{I}^{\infty}\left|F^{2}(h k I)\right| \exp 2 \pi_{1}(h u+k v+l w) .
$$

By Friedel's law, this simplifies to

$$
P(u v w)=\frac{2}{v} \sum_{h}^{\infty} \sum_{k}^{\infty} \sum_{l}^{\infty}\left|F^{2}(h k l)\right| \cos 2 \pi(h u+k v+l v)
$$

which is real for all values of u, v, and w.
For the space group P_{f} 2f $_{1} 21$

$$
\begin{aligned}
|F(h k l)|^{2} & =|F(\overline{h k l})|^{2} \\
& =\mid F(h \bar{k}])\left.\right|^{2} \\
& =|F(h k \bar{l})|^{2}
\end{aligned}
$$

and the equation simplifies to

$$
P(u v w)=\frac{8}{v} \sum_{\frac{h}{h}}^{\sum_{0}^{\infty}} \frac{\infty}{\frac{\infty}{0}}|s(h k)|^{2} \underset{\substack{2 \pi}}{2 \pi} \underset{\Lambda}{2 \pi} \underset{\Lambda}{2 \pi} \underset{\Lambda}{2 \pi}
$$

A general reflection, hkl has a multiplicity of eight; any reflection with a zero index, e.g. okl, a multiplicity of four and those with two zero indices, a nultiplicity of two. If all the indices are zero, the multiplicity is reduced to ONE. But $|F(000)|^{2}$ cannot be measurod and must be calculated and added to the experimental data.

The three dinensional Patterson sumations were computed using the 991 neasureble reflections at intervals of $1 / 60$ th along u, v, and w, to a naximus of $\frac{1}{2}$ in each direction. The intensities were on an arbitrary scale and $|F(000)|^{2}$ was not included. The figures for the Harker ${ }^{28}$ sections of planes

$$
\begin{aligned}
& \mathrm{u}=\frac{1}{2} \\
& \mathrm{v}=\frac{1}{2} \text { and } \\
& \mathrm{w}=\frac{1}{2}
\end{aligned}
$$

were plotted on tracing paper to obtain the meps shom in figures 15, 16, and 17. The Iodine-Iodine vectors were quite easily distinguished and in agreenent with vector space diagran figure 13. The positions of the peaks in each axial direction were detemined by graphical interpolation of the Haricer peaks oni sosuring that the highost peak on ocah section represents an iodine-iodine vector, the co-ordinates were derived as follows:

Figure 15

Figure 16

For the plane $u=\frac{1}{2}$, the co-ordinates (v, w) of the peak were 40.8/120, 258/1200;

Hence (i) $\frac{1}{2}-2 y=40.8 / 120$

$$
y=0.080
$$

$$
\text { (ii) } \quad 2 z=258 / 1200
$$

$$
z=0.108
$$

For the plane $w=\frac{1}{2}$
(i) $\mathrm{v}=189 / 1200$
$\therefore \quad 2 y=189 / 1200$

$$
y=0.079
$$

(ii) $u=3035 / 12000$

$$
\begin{aligned}
\frac{1}{2}-2 x & =3035 / 12000 \\
x & =0.124
\end{aligned}
$$

For the plane $\mathrm{v}=\frac{1}{2}$
(i) $\mathrm{u}=3015 / 12000$

$$
2 x=3015 / 12000
$$

$\therefore x=0.126$
(ii) $\mathrm{w}=34,4 / 1200$

$$
\therefore \frac{1}{2}-2 z=34 / 4 / 1200
$$

$$
z=0.107
$$

The following average values mere obtained

$$
\begin{aligned}
& x=0.125(0.12) \\
& y=0.079(0.078) \\
& z=0.107(0.106) .
\end{aligned}
$$

These compare vory fevourably witia the values obtained in the two dimensional Patterson syntheses shown in parenthesis and were erployed as the iodine parancters in the next celculation.

First Phasins Calculation

The heavy atom method ${ }^{27}$ is most successful when $\sum f_{H}^{29}=\sum f_{\mathrm{L}}^{2}$
where f_{H} and f_{L} are the atonic scattering factors for the heavy atom and any other atoms respectively in the unit cell; the sumation is over the total content of the unit cell.

In order to better estinate the degree of success that attended the first phasing calculation, it is reasonable to assume the accepted formula (see page 112) $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{ClI}$ instead of $\mathrm{C}_{31} \mathrm{H}_{\mathrm{x}} \mathrm{O}_{10} \mathrm{I}$ which was thought to be the formula (x was unkown).

At $\operatorname{Sin} \theta=$ zero
$\begin{array}{ll}\sum f_{I}^{2} & =11236 \\ \sum f_{I}^{2} & =7676 .\end{array}$
The excessive oontribution of the iodine atom beyond what equation (a) requires, would make the diffraction effects arising fron the "finite series" errors fairly sorious. This necessarily nakes difficult the location of atons close to iodine. At low angles, the phasing is just dominated by the contributions fron the heavy atons. But at higher angles of diffraction, the phasing is entirely dominated by theso contributions because the scattering factor for the heavy atom deoreases much more slowly than the f-curves for the light elements present. Hence a good degree of agreement
for the structure factors of reflections at high glancing angles may be expected with phasing based on iodine aton only.

The structure factor is given by

$$
\begin{aligned}
F(h k l) & =\sum_{n=1}^{N} f_{n} \exp \left\{2 \pi i\left(h x_{n}+k y_{n}+l z_{n}\right)\right\} \\
& =A+i B \\
A & =\sum_{n=1}^{N} f_{n} \cos \left\{2 \pi\left(h x_{n}+k y_{n}+l z_{n}\right)\right\} \\
B & =\sum_{n=1}^{N} f_{n} \sin \left\{2 \pi\left(h x_{n}+k y_{n}+l z_{n}\right)\right\}
\end{aligned}
$$

where
the summation being taken over all N atoms in the unit cell

$$
\tan X(h k I)=\frac{B(h k I)}{A(h k I)}
$$

The substitution of the co-ordinates of the equivalent general positions gives

$$
\begin{aligned}
& A(h k I)=\sum_{n=1}^{N / 4} A^{\prime}(h k l) f_{n} \exp \left(-2 B \sin ^{2} \theta / \lambda^{2}\right) \\
& B(h k l)=\sum_{n=1}^{N / 4} B^{\prime}(h k l) \quad f_{n} \exp \left(-2 B \sin ^{2} \theta / \lambda^{2}\right)
\end{aligned}
$$

where $A^{\prime}(h k I)=4 \operatorname{Cos} 2 \pi\left(h x_{n}-\frac{h-k}{4}\right) \cos 2 \pi\left(k y_{n}-\frac{1 k-1}{4}\right) \cdot \cos 2 \pi\left(1 z_{n}-\frac{1-h}{4}\right)$

$$
B^{z}(h k l)=-4 \sin 2 \pi\left(h x_{n},-\frac{h-k}{4}\right) \sin 2 \pi\left(k y_{n}-\frac{k-1}{4}\right) \sin 2 \pi\left(1 z_{n}-\frac{1-h}{4}\right)
$$

the atoms

the summation being over $N / 4$ in the asymetrio unit only. Further simplification occurs when the reflection are divided into classes. Here, the expressions used for A^{\prime} and B^{\prime} become:

In addition to the results show in Table 12, the structure factor program types out the coordinates of the given atom or atoms, the total number of reflections, R or Reliability factor, the sum of $F(O B S)$ and $|F(C A L C)|$ and the sum of DELTA.

DELTA is the absolute value of the difference between $\begin{aligned} &|F(O B S)| \text { and }|F(C A L C)| \\ & R \left.\frac{\text { and R-factor is given by }}{\sum|F(O B S)|-|F(C A L C)|} \right\rvert\, \\ & \sum|F(O B S)|\end{aligned}$
$A(O B S)=F(O B S) \cos X$
$B(O B S)=F(O B S) \sin X$

SCALE FACTOR $=1.360$.

TABTE 12

H	K	I	FOBS $A C A L C$	BCLIC	FCALC	DELTA	AOBS	BOBS	
0	1	11	2.5	0.0	2.1	2.1	0.4	$0 . C$	2.5
0	6	6	5.7	7.5	0.0	7.5	2.2	5.7	0.0
0	6	8	4.0	-6.5	0.0	6.5	2.5	4.0	0.0
0	6	10	8.7	-8.0	0.0	8.0	0.7	-8.7	0.0
0	9	9	8.0	0.0	-7.0	7.0	1.0	0.0	-8.0
0	9	11	2.5	0.0	-2.6	2.6	-0.1	0.0	-2.5
0	12	4	5.7	-5.8	0.0	5.8	-0.1	-5.7	0.0
0	12	8	2.7	3.3	0.0	3.3	-0.6	2.7	0.0
0	14	6	3.2	-2.2	0.0	2.2	1.0	-3.2	0.0
0	1	8	10.6	0.0	-9.3	9.3	1.3	0.0	-10.6
0	1	10	5.6	0.0	4.3	4.3	1.4	0.0	5.6
0	1	12	7.3	0.0	7.8	7.8	-0.5	0.0	7.3
0	10	7	5.2	-7.3	0.0	7.3	-2.1	-5.2	0.0
0	10	13	3.1	2.7	0.0	2.7	0.4	3.1	0.0
0	2.7	-3.0	0.0	3.0	-0.3	-2.7	0.0		

The rosults of table 12, showing a considerable degree of agreenent
indicated fairly good position paraneters for iodine. The reflections given in this table are the same as those used in testing the paraneters obtained from the two dinensional syntheses. The reliability factor of 0.373 was considered satisfactory. As expected, the low angle reflections showed the highest disagreenent.

First Three Dinonsional Fourier Sumption
The electron density at any point (x, y, z) is given by

$$
\begin{array}{r}
P(x y z)=\frac{1}{v} \sum_{h} \sum_{k} \frac{\infty}{I} F(h k I) \exp \{-2 \pi i(h x+k y+l z)\} \\
=\frac{1}{v} \frac{\sum_{h}^{\infty}}{h} \sum_{h}^{\infty} \frac{\ln }{e} F(h k I) \quad \cos \{2 \pi(h x+k y+1 z\}-\bar{n}(h k I)\} \\
\ldots \ldots \ldots(F \cdot 1)
\end{array}
$$

For space group $\mathrm{P}_{1} 2_{1} 21$

$$
\begin{aligned}
F(h k I) & =F(\overline{h k} \bar{k}) \\
& =F(\bar{h} \bar{k}) \\
& =F(h \bar{k} I) \\
& =F(h k \bar{l})
\end{aligned}
$$

And the phase angles are related thus for the following classes of reflections

$$
\begin{aligned}
\text { (1) for } h+k & =2 n \\
k+I & =2 n \\
X(h k I) & =-X(\overline{h k I}) \\
& =-X(\overline{h k I}) \\
& =-X(h \bar{k} I) \\
& =-X(h k I) \\
\text { (2) for } h+k & =2 n \\
k+I & =2 n+I \\
X(h k I) & =-X(\overline{h k I}) \\
& =-X(\overline{h k I}) \\
& =\pi-X(h \overline{\mathrm{k}} \text { I }) \\
& =\bar{\Lambda}-X(h k I)
\end{aligned}
$$

(3) for $h+k=2 n+1$

$$
\begin{aligned}
k+1 & =2 \mathrm{n} \\
\chi(h k I) & =-X(\overline{h k I}) \\
& =\pi-X(\overline{h k I}) \\
& =-X(h \bar{k}) \\
& =\pi-X(h k \bar{I})
\end{aligned}
$$

(4) for $h+k=2 n+1$

$$
\begin{aligned}
k+1 & =2 n+1 \\
\chi(h k I) & =-\alpha(\overline{h k I}) \\
& =\pi-\lambda(\overline{h k I}) \\
& =\pi-\chi(h \bar{k} I) \\
& =-\chi(h k I) .
\end{aligned}
$$

For this space group equation (F.1) becomes

$$
\begin{align*}
& P(x y z)=\frac{8}{v}[\operatorname{cccsss}-\operatorname{cssscc} \\
&-\operatorname{scscsc}-\operatorname{sscccs}] \tag{F.2}
\end{align*}
$$

where CCCSSS

$$
\begin{aligned}
& =\sum \sum_{0}^{\infty}|F(h k l)|[\operatorname{Cos} 2 \pi h x \cos 2 \pi k y \cos 2 \pi l z \cos \chi(h k l) \\
& -\sin 2 \pi h x \sin \pi k y \sin 2 \pi z \sin \alpha(h k l)]
\end{aligned}
$$

for reflections with $h+k=2 n, k+l=2 n$,
$\operatorname{csssc} C$
$=\sum_{0}^{\infty} \sum_{j} F(h k l)[\cos 2 \pi h x \sin 2 \pi k y \sin 2 \pi l z \cos \alpha(h k I)$
$-\operatorname{Sin} 2 \pi h x \cos 2 \pi k y \cos 2 \pi l z \operatorname{Sin} X(h k l)]$
for reflections with $h+k=2 n, k+1=2 n+1$,
scscsc
$=\sum \frac{\sum_{0}^{\infty}}{\frac{\infty}{0}}[F(h k l) \mid[\operatorname{Sin} 2 \pi h x \cos 2 \pi k y \sin 2 \pi l z \cos \alpha(h k l)$
$-\operatorname{Cos} 2 \pi h x \operatorname{Sin} 2 \pi k y \cos 2 \pi l z \operatorname{Sin} \chi(h k l)]$
for reflections with $h+k=2 n+1, k+1=2 n$,
SSCCCS

$$
\begin{aligned}
= & \sum_{0}^{\infty} \sum|F(h k l)|[\sin 2 \pi h x \sin 2 \pi k y \cos 2 \pi l z \cos X(h k l) \\
& -\cos 2 \pi h x \cos 2 \pi k y \sin 2 \pi l z \sin \chi(h k l)]
\end{aligned}
$$

The approxinate electron density disbritution $\rho(x y z)$ of equation (F.2) was computed at intervals of $1 / 60$ allowing for the lower multiplicities of reflections with zero indices and leaving out the $F(000)$ term. The results were on an arbitrary scale but were satisfiactory for the purposes of locating atonic centres. They were plotted on tracing paper in sheets of constant (z) on a scale of 4 cm to $1 \hat{\mathrm{~A}}$ at intervals of $1 / 60$ from zero to $z=\frac{1}{2}$.

There were a number of peaks one of which was the highest, around the iodine atom. This high peak starred in fig. 18 was $2.1 \Lambda^{\circ}$ from iodine and it was considered the carbon bonded to the iodine. The second highest peak starred in fig. 19 was also far above the others but rather isolated and difficult to inagine linked to any nearby aton.

Fig. 20 illustrates the random distribution of electron density with two starred points representing peaks on this plane whilst the positions marked with a cross are shadows of atomic peaks slightly distont fron this plane.

In all, the comordinates of 34 peaks shown in fig. 21 were detemined. Out of these, the hichest 15 moro treatec as oarbag atoms ofsi included in the next structure factor oalculation. The final results show thet

Figure 19

$$
z=1 / 15 \quad \ell_{1}
$$

Figure 20
$z=\%_{1} \rho$

Peak centres from the seeend Fo Fourier

(Inserted under $0.1 \AA$ from correct position.
\times Inserted 0.1 to $0.4 \AA$ from correct position.
(2) More than $0.4 \AA$ away or spurious peaks inserted. 0 the peaks (other peaks from not inserted)
(Figures 21-23.

$$
\sqrt[3]{5+5}
$$

as coefficients combined with the appropriato phase angles. The unobserved reflections nay be included in the calculations and their co-efficients may be treated in one of the following ways:
(1) They nay be completely ignored. In this instance, only the differences for the 991 neasurable reflections are used. The remaining three involves including approximate values - usually half the threshold, for these reflections. They can be given a scale factor in three ways.
(2) The structure factors of these unobserved reflections are given the sane scale factor as for the 991 neasurable reflections and their difference coefficients are included in the calculations.
(3) The structure factors are given a scale factor based on equalizing the sums of their own $F(O B S)$ and $T(C A L C)$, and adding their differonce coefficients to thosc 991 above.
(4) These structure factors are scaled together with the 991 observed structure factors so that $\sum F O=\sum \mathrm{F} c$.

The first "differonce synthesis" was calculated with nothod (1)
using the results of the second phasing involving iodine and 15 supposed carbon atons.

The "difference synthosis" was originally put forward as a neans of attaining further refinenent where the structure was partially known. A variation of this, named the "error synthesis" was used by Bunn to look for atons wrongly placed and where they should rightly be placed, in the
structure determination of sodium benzyl penicillin ${ }^{31}$. Later, Cochran giving it the name "Difference Synthesis" showed that it could be used also to find the correction Δx_{n} for the x-coordinate of the $n{ }^{\text {th }}$ aton

$$
\begin{equation*}
\left.x_{n}=-\left(\frac{\partial D}{\partial{ }^{x}}\right)_{n} / \frac{\partial^{2} Q_{c}}{\partial x^{2}}\right)_{n} \tag{i}
\end{equation*}
$$

where $\frac{\partial D}{\partial x}$ is the slope of the electron density at the point x in the difference synthesis.

Assuming ${ }^{32}$ that $\rho_{0}=\rho_{0} ; \quad\left(\frac{\partial^{2} \partial_{0}}{\partial x^{2}}\right)_{n}$
can be replaced by

$$
\left(\frac{\partial^{2} Q o}{\partial x^{2}}\right)_{n}
$$

which can be detomined from the $\mathrm{F}(O B S)$ synthesis. Using the approximations of Contain 33 and Booing 34 that

$$
?=z\left(\frac{\mathrm{p}}{\mathrm{~A}}\right)^{3 / 2} \cdot \exp \left(-\mathrm{pr}{ }^{2}\right)
$$

is the electron density near the centre of an atom where Z is the atomic number of the aton, r the distance to the centre of the aton and p is a constant, eq (i) above simplifies to

$$
\begin{equation*}
\Delta x_{n}=\left(\frac{\partial D}{\partial x}\right)_{n} / 2 P\left(Q_{0}\right)_{n} \tag{ii}
\end{equation*}
$$

P has been reported $32,34,35$ constant for sone light atoms and is usually given the value of about 5.0 in practice ${ }^{35}$. It can however, be obtained. from a graph of \log against r^{2} and it depends on the temperature factor of the atom concerned, its value is also affected by the point at which the Fourier series for Q_{0} is temainated.

In this analysis, the difference syntheses are used to find
(i) changes in atomic and temperature parameters for correctly placed atoms
(ii) wrongly placed atoms indicated by relatively high negative poaks at supposed atomic positions and
(iii) atomic positions not yot knom, indicated by highly positive peaks. Two of the atons inserted marked (41) and (42) in fig. 21 had strongly negative peaks of $4.3 \mathrm{e} / \AA^{3}$ and $4.32 \mathrm{e} / \mathbb{R}^{3}$ respectively and were eliminated as spurious. The rather isolated peak - in Q_{1} (fig. 19), starred in table 13, which had the highest density, boside iodine, of $8.5 \mathrm{e} / \mathrm{R}^{3}$ in the second P Fourier sumation, had a positive density of $2.3 \mathrm{e} / \mathrm{A}^{3}$ in this difference synthesis. Its temperature factor was decreased to $4.0 \mathrm{~h}^{2}$. The iodine peak had - $5.8 \mathrm{e} / \mathrm{A}^{3}$ suggesting a higher temperature factor than thet given. Its temperature factor was increased from 4.0 to $4.2 \mathrm{~A}^{2}$. The renaining 14 atoms were shifted according to
 in the Fourier in equation (ii) above. For example, iodine had $\Delta x=0.0004, \Delta y=0.0002, \Delta z=0.0$ Their tomperature factors were also adjusted in such a way as to nake tho peak densities in the difference synthesis approach zero. Trueblood ${ }^{7}$ recomends the introduction of difference synthesis into structure determination as early as possible. This is mainly to guide against using positions of diffraction ripples and local density nexina in the phasing and Fourier calculations. Lipson and Cochran ${ }^{36}$ hold the view that while the difference synthesis is not free fron errors inherent in the Fo synthesis, it gives a greater accuracy in the sense that the point of aaximum electron density is precisely located without recourse to interpolation.

On the assumption of a greater accuracy from difference synthosis, paraneters of peaks corresponding to those previously sorted out fron the two Fo syntheses were detemined. There werc 17 such pocks, the highest being $2.3 \mathrm{e} / \mathrm{A}^{3}$ and the lowest $1.1 \mathrm{c} / \mathrm{A}^{3}$. If all these were atoms, then all other peaks above $1.1 \mathrm{e} / \AA^{3}$ could also be atons. There were 17 new peaks with densities higher then $1.1 \mathrm{e} / \mathrm{A}^{3}$, the highest being $2.0 \mathrm{e} / \mathrm{h}^{3}$. The eleven highest of these were selected. The totel number of atons at this stage was 42. The lowest of the latest peaks was $1.27 \mathrm{e} / \mathrm{A}^{3}$. The main use of the second Po Fourier sumation was reduced to finding the P_{0} value to be used in calculating Δx_{n} etc. as above.

In preference to the atomic co-ordinates obtained fron this second Fo 'Pourier', those obtained from the 'Difference' were used in the next phase calculation. Final paraneters show (fig. 22) that five of these atoms were well placed, being less than $0.1 \AA$ fron their correct positions; eleven others were 0.1 to 0.4 from their correct positions whilst 18 were 0.4 to 1.0 in off the mark. Others were spurious peaks. Third Phasing and First Model
Another set of structure factors was calculated with iodine and 41 other atons winich were assuned to be carbon. 411 the nowly inserted atons were givon a tenperature factor of $4.5 \mathrm{~A}^{2}$. For some reason, the structure factor programe would not work for reflection, (4 (3 12) and so the calculations were done for only 990 of the neasurable reflections. The scale factor was 1.620 and the Reliability factor becane 0.257. The reflections having differences between FOBS and FCALC of 3.0 and above
reduced to 87 out of which 25 wero above 5.0. The highest difforonce of 14.5 was for $(0,6,0)$.

The Reliability factor of 0.257 was low enough to try the construction of a model to see what features of the structure could be got out of the present position paraneters for the 42 atoms. The first modol was nade up of small wooden balls hanging on threads suspended fron a cork mat. The x and y axes wore in the plane of the nat and the z axis was perpendicular to this plane. Thus the x and y co-ordinates of an aton were fixed by the point of attachnent of the thread to the nat and the z co-ordinate was determined by the length of the thread. The scale of the model was 4 cm to 1 A .

The most noticeable and disappointing feature in this model was the presence of three "atons" around the iodine atom all within a distance of about 2.0 to 2.5 . From all considerations, this is an impossible situation and some of the supposed atoms must be due to diffraction ripples around the iodine. One of them "aton 43", table 13, had a peak height of only $1.23 \mathrm{\sigma} / \mathrm{A}^{3}$ in the difference map and it seemed most probable that it was due to the diffraction ripples around the iodine. It was eliminated. A second, "atom 44 " had a peak height of $2.03 \mathrm{e} / \%$, and was about 2.01 A from the iodine. This is only slightly less than the normal carbon iodine bond aistanca ${ }^{37}$, (2.08). But considering that the carbon atom bonded to the iodine must also be bonded to $C(27)$, the $C(27)-C(44)-I$ bond angle would be acute. The third ator, 28 ,

42 peak centres got from the first difference synthesis

had been sited in the first and second Fo Fourier sumnations. There was no definite indication in the difference mep that it had been wrongly placed. The corresponding $C(27)-C(28)-I$ angle was much nore acceptable. A movement of this atom in the airection of the other peak ("atan" 44) would nake for a still better bond angle. On these grounds, it was considered reasonable to eliminatc "atom" 44 and move aton 28 in the direction of "aton" 4 . The bond distence between iodine and "aton" 28 wes about $2.1 \AA$ and this was kept constant when the bond angle changed. Having got an iodine-carbon link, the stereochenical implioations of the neighbouring atons were carefully considered. Assuming an approxinate bond length of between 1.3 to $1.5 \AA$ for all other bonds, a tetrahearal angle of 109° or trigonal angle of 120° around carbon atons, it was possible to make out an iodoacetyl radical. This meant the conversion of two of the supposed carbon atoms (32 and 33) to oxygen.

The peak height of atom 39 was persistently above the others, excepting iodine, suggesting that it was very probably oxygen. It was rather isolated and did not make sense stereochemically. It was therefore left on as oarbon for the time being.

The lowest density of $1.27 \mathrm{e} / \mathrm{A}^{3}$ ("aton" 45) was within a distance of 1 f fron two othor atoms (ghend 46). The three atons wero considered for an epoxide ring which was suggested from the assumed sinilerity to gedunin, (Page 3). They wore rather isolated and to some degree it seened plausible to connect the ring with the rest of the molecule
through a peak of $1.2 \mathrm{~d} / \mathrm{A}^{3}$ at about 2.0 f from "atom" 45. But a decrease of the distance between this peak and "atom" 45 inplied a decrease of the distance between "atom" 45 and atoms 24and 46. Since the peak height of "atom" 45 was the lowest, it was suspected to be spurious and elininated. Another peak, 47, of height $1.9 \mathrm{e} / \mathrm{h}^{3}, 0.9 \AA$ from aton 23 , was eliminated on the grounds that it was part of the gradient through atoin 23, which indicated the direction in which this atou was to be nuved.

It was difficult to make atomic shifts in space with this'mat and string' nodel and another model was constructed with the remaining 38 atoms. This was made by the method of Carlisle and Crowfoot ${ }^{38}$. It consists of metal spokes stuck into the cork mat at the appropriate yz positions with short lengths of sleeving at the height of the x coordinate. The scale was reduced to 2 am to $I \&$ and it represented the section of the unit cell from $x=0$ to $1, y=0$ to $\frac{1}{2}$ and $z=0$ to $\frac{1}{2}$. This gave small sections of the molecule from which it was possible to recognise the iodoacetyl radical, (fig. 22) a six-nenberea ring, 4 connected atons which presumably constituted part of the rolecule containing the enolic - OMe. An enolic - OMe had been suggested ${ }^{39}$ for one of the throe nethoxy groups. Atom 39, the presence of which was never in doubt, was still isoleted, The model gave bund distences between atoms $4-20,20-34,36-48$, 48-39, 39-49, 36-50, of the order of 2.0 凡. Apart from this, the distribution of atons around atoms 34, 7, 1 and 20 did not reflect the tetrahedral nature of carbon. It was therefore strongly folt that
many of these atoms should be removed and only those that heve shown fairly sensible linkages with other atoms should be left. Inplenenting this decision would affect atom 39. This atom had show fairly spherical electron density and had given a positive electron density oven in the difference synthesis. The model was adjusted to make it possible to try all equivalent positions for each atorn. Aton 39 and a fov others which had been selected from the iodine phased Fourier, could not be satisfactorily placed. It was therefore decided to plot another difforence nep jasol on the phosing with all the foncining 38 atoms.

Fourth Phasing and Second Difference Synthosis
As a result of defficiencies that are inevitably present in any Fourier synthesis, it is sometimes difficult to decide which atoms are least well represented. It is therefore not easy to decide what changes to nake as regards real and spurious peaks. To overcome this difficulty, Bunn suggested the difference synthesis which nakes particular use of of the reflections that are of negligible observed intensities and fairly high calculated structure arpzetuces (Error Synthesis ${ }^{34}$). Bunn also showed by calculation that for a centro-symetric structure, it is advisable to ouit those reflections with strong observed structure amplituces and weak calculated structure anplitudes. This applies even for non-centrosymetric structures because of the uncertainty in the phase angle.

To calculate tho diremenco synthesis by method (1) (page 51) above without including the 312 unobserved reflections, inplies negleoting aany of the finer features of the structure which this synthesis is designed to bring out. While the result would not be entirely wrong, it is not quite correct, as assuned, that atonic centres brought out in such a synthesis would be nore accurate than those obtained from a similar Fo synthesis. Besides at this stage of the phasing when many phase angles were likely to be incorrect, more accurate atonic centres from the difference synthesis is not probable. The synthesis at this stage and with measurable reflections only, hes been quite useful in detecting spurious peaks as advocated by Irueblood ${ }^{7}$. The final position paraneters show thet most atomic centres obtained from this synthesis are 0.4 to 1.0 I from the correct positions. Subsequont difference syntheses included contributions fron the unobsorved reflections.

The structure factors were calculated for the fourth tine with the parameters for iodine, two oxygen atoms and 35 other atoms all assumed to be carbon. Iwo of the atons inserted in the first dirforence sumation had been eliminated and the remaining fourteen had different temperature factors derived from the sirst aifforenco. All other atons had a tomporeture paraneter of $4.5 \mathrm{~A}^{2}$. It was possible to calculate for reflection (4312) this time and so there were 991 noasurable reflections. The scale factor wes 1.600 and the reliobility index reduced very little to 0.251 . Like the last structure factor calculation, there were 87 differences of $F(O B S)$
and $F(C A L C)$ fron 3.0 and above. Out of this, 24 were above 5.0. The highest difference of 10.8 was for (060).

The phase angles and structure factors were then separately calculated for the 312 unobserved refloctions. They were mistakenly assumed to have zero observed structure arplitudes and together with the 991 measurable reflections, they were used in calculating a difference synthesis. The results show greater negative densities than before. The iodine had a height of $-7.38 \mathrm{e} / \mathrm{I}^{3}$ and there were twelve other atuns with negative densities of $1.0 \mathrm{e} / \Omega^{3}$ and above. They were all eliminated in the next calculations, but four of then cane out again later as atons, (table 13). One of the elininated atoms wes the one (atom 28) supposed to be connected to iodine. It was at the peak of a negative density of $2.49 \mathrm{e} / \mathrm{h}$. The final position of this atom is about 0.6 凡ron this position. Atom 39 cane out with the highest positive density of $2.90 \mathrm{e} / \AA^{3}$ and in spite of a lack oi understanding of the stereochemical implication of itis position, it was decided to regard it as an oxygen aton.

One of the two oxygen atons (33) put in, canc out at a height of $-1.81 \mathrm{e} / \AA^{3}$ and was eliminetod. It ceme out later at a distence of $0.5 \AA$ away. Thus the 38 atons were roduced to 26 in nuabor, one oxygon aton and 11 carbons being elininated. But atom 39 nov regarded as oxygen still kept the number oif oxygen atons at 2.

Among the highest positive peeks, fincoe, 1, 5, and 17 were found to have come out in the second Fo Fourier (table 13) at heights of 2.67, 2.7 and $2.2 \mathrm{e} / \mathrm{A}^{3}$. The last peak height was not recorded anong the highest 33.
and $F(C A L C)$ fron 3.0 and above. Out of this, 24 were above 5.0. The highest difference of 10.8 was for (060).

The phase angles and structure factors were then separately calculated for the 312 unobserved reflections. They were mistakenly assumed to have zero observed structure amplitudes and together with the 991 measurable reflections, they were used in calculating a difference synthesis. The results show greater negative densitios than before. The iodine had a height of $-7.38 \mathrm{e} / \mathrm{l}_{2}^{3}$ and there were twelve other atuns with negative densities of $1.0 \mathrm{e} / \Omega^{3}$ and above. They were all eliminated in the next calculations, but four of then cane out again later as atons, (table 13). One of the eliminated atoms wes the one (atom 28) supposed to be connected to iodine. It was at the peak of a negative density of $2.49 \mathrm{e} / \mathrm{h}^{3}$. The final position of this atom is about 0.6 凡ron this position. Atom 39 cane out with the highest positive density of $2.90 \mathrm{e} / \AA^{3}$ and in spite of a lack oi understanding of the stereochemical implication of itis position, it was decicled to regard it as an oxygen aton.

One of the two oxygen atoms (33) put in, cane out at a height of $-1.81 \mathrm{e} / \mathrm{A}^{3}$ and was eliminetod. It come out later at a distence of $0.5 \AA$ away. Thus the 38 atons were roduced to 26 in nuabor, one oxygon aton and 11 cerbons being elininated. But atom 39 nov regarded as oxygen still kept the number of oxygen atoms at 2.

Among the highest positive peeks, throe, 1, 5, and 17 were found to have come out in the second Fo Fourier (table 13) at heights of 2.67 , 2.7 and 2.2 e A^{3}. The lest peak height was not recorded anong the highest 33.

They here had poaks of $2.8,2.2$ and $1.84 \mathrm{e} / \mathrm{A}^{3}$ respectively, and were found in space at good bonding distances and angles with noarby atons. The last of them provided a link between atom 39 and the rest of the molecule. The other two connected atorns 51 and 31, and atons 51 and 8 respectively, (fig. 23). There were in addition three other peaks of height $1.81,1.7$ and 1.73 e/ ${ }^{3}$ that were stereochemically well placed and these were added to make a total of 32 atoms. The co-ordinates and temperature constants of the first 26 atons were adjustod according to their density gradients and peak heights bearing in mind the greater negative peaks resulting from zero $F(O B S)$ values mistakenly assigned to 312 plan

Fifth Phasing

With the latest paraneters for iodine two oxygen atons and 29 carbon atoms, a set of structure fectors was colculated. The scale factor was 1.424. The reflections having differences between $|F(O B S)|$ and $\mid F($ CAIS $) \mid$ groater than 3.0 decreased from 87 to 69, out of which only 18 were above 5.0. The reflection 060 , which had constantly showed the highest difference, improved, the difference being reduced to 6.3. But others had worsened and the hichest difference of 9.6 was for 400 . The relicbility index rose from 0.251 to 0.253 .

Althouth no appreciable fall in this factor had been expected, a rise, as small as it was, constituted a disappointaent. Every atom had been carefully selected, with some justification for including it in the calculation. The highest negative density at atomic sites in

32 peak centres used in the 5th Phasing with the atom numbers of the last six added from the second difference synthesis in parentheses.

$\theta_{18.9}(30)_{2}$
(83.0 (54)
$\times 35.8^{\circ}$
${ }^{\times} \times 1 \cdot 3$ (18)
$x_{22.6}$
1
$\begin{aligned} &(17) \\ &-29.1=-x_{34.9} \\ & 23.6\end{aligned}$
$\underset{39.7}{x} /{ }^{(2533}$
$16 \cdot 6$

Figure 23
the difference, apart from iodine, was $0.79 \mathrm{e} / \AA^{3}$. Since the density eradients of wrongly placedatoms affect the densities at the sites of well placed atoms, this negative density is not too high for a real atom bearin in mind the possible effects of temperature. At the end of the analysis, the atom with this peak height was in fact found to be rightly placed. However, two of these peaks were shown to be spurious.

A suggestion ${ }^{40}$ that the second Fo synthesis had more in it than had been used, led to the construction of a plausible model with iodine and 31 other atoms. This model showed a six-membered ring but no other distinotive chemical entity. The position parameters in this model were used in a phase calculation. Tro atoms, 32 and 39 , were assumed to be oxygen atoms. There were varying temperature faotors all in the neighbourhood of $4.5 \AA^{2}$. The resulting reliability index was 0.253 . This was not bettor than the latesi R-factor and it was decided to continue the analysis with the parameters used for the fifth phasing.

Third Fo Synthesis

The third approximate distribution of electron density was calculated with the scaledobserved structure factors and oalculated phase angles from the fifth phasing. The results were plotted on maps of constant z at intervals of $1 / 60$ up to $z=\frac{1}{2}$. A new model was built to show the distribution of peaks in this synthesis.

It has been suggested ${ }^{36}$ that if an atomic co-ordinate is teken as (x_{n}, y_{n}, z_{n}) in calculating phase angles, but the point of maximum electron density occurs at ($\mathrm{Xn}+\mathrm{AXn}$, etc.) in the subsequent electron density map, the process of refinement would be considerably spoeded up by taking the cen re of this atorn to be at ($\mathrm{Xn}+2 \Delta \mathrm{Xn}_{n}$, etc.) when phase angles are recelculated. A shift of about four times that suggested by the change of $p \in a k$ centre has also been put ${ }^{7}$ forward. In deciding new atomic co-ordir ates from the contour maps, there is no definite rulut The shape of the cintours around an incorrectly placed aton is often a guide to the nagritude of the shift required. These contours show a greater or lesse: departure from spherical symetry depending on the anount of displacesent. In additional oriterion for deciding the magnitude of the shift is the stereochemicol considerations. Thile using the naps to decid; the direction and probable nagnitude of tho shift of atomic centre: the model served to indicate whether such ε novenent would improve th: bond distances and angles. Until there was certainty about the cheric il nature of the atom and the type of bonding surrounding it, the bond di; tances except for the one involving iodine, were assuned to be about 1.5 .

For the ioine (atom 40), (fig. 24), the peak height of $44.0 \mathrm{e} / \mathrm{R}^{3}$, left no doubs at out the singular nature of the atom. The contours were, however, not sufficiently spherically symetrical. This departure from spherical symetry of the contours for an evidently correctly placed atom is due to the anisotropy of its temperature vibration. Further,

The oontours around the iodine are at intervals of $5 \mathrm{e} / \mathrm{A}^{3}$.

thero were, on opposite sides, parallel to the y-axis, spurious peaks of as high a density as $3.8 \mathrm{e} / \mathrm{h}^{3}$. One of these, starred in fig. 24, had the highest density apert from the iodine, in the 'Iodine phesed' Fourier (fig. 18). It was shown to be false in the first differonce synthesis. Parallel to the x-axis and on opposite sides of the iodine peak were two other spurious peaks of height 2.0 and 2.4 e/ \AA^{3}. The contours can only suggest a higher degree of vibration in the y-axial direction. These spurious peaks nust be due to a combination of the effects of the diffraction ripples and the anisotropic terperature vibrations 41,42 . The iodine co-ordinates were therefore left unaltered.

Atom 39 (fig. 25A) now assumed to be oxygen still gave a distinctly higher peak of $8.9 \mathrm{e} / 8^{3}$ than all other atoms beside iodine. The second atom assumed oxygen, 32, marked XI in fig. 25B, had a peak height of $5.9 \mathrm{e} / \mathrm{A}^{3}$. Only a very small shift in position was indicated along the x direction. In the model, aton 22 (fig. 25c) wo.s seen to be much too close to "atom" $53 /$ and farther than required from aton 8 . fig30 There was no indication of a y or z directional chenge. Fron the shape of the contours, however, a shift in the x direction was a possibility. The x co-ordinate was therefore changed from 0.1246 to 0.1000 in order to inprove the bond distences to 'atons' 8 and 53. The final x-coordinate of aton 22 cane out to be 0.1209 . The misfortune of this particular shift is that 'atom' 53 was spurious and nerely served to deceive at this stage.

Figure 25

The shape of the contours arcund atom 36 , marked XI in Fig. 26A was not easy to explain. A close examination suggested very slight movements in the x and z directions only. Tho innemost contour line wes symetrical about the y direction but the outer lines were not. The deviation fron spherical distribution was attributed to the anisotropy of the temperature vibration.

The lowest peak heights were those of atons 18 (fig. 26B), $2.9 \mathrm{~d} \mathrm{~A}^{3}$ 30 (fig. 25c) $2.9 / A^{3}$ and 54 (narked $X 2$ in fig. 26A) $2.6 \mathrm{e} / \mathrm{A}^{.3}$. They vere the last three just selected from the second difference synthesis. Since it is possible to introduco peaks, quite comparable in height with true atomic peaks, into the elootron density distribution, by phesing with spurious "atons", peak height by itself cannot be used as a criterion of the correctness or otherwise of a chosen site. Such peaks have been observed to have come out, however, lower than most true atomic peaks. These three peaks were therefore strongly suspected to be false. The contours of atom 18 (fig. 26B) were only slightly distortad and it could. bo an atom neecing a shift. It was at a distance of 1.85 X fron another atom (13). In this position it would provide a fourth angular methyl group. Moreover, it was found to have come up as a peak in each of the previous Fourier calculations, being $0.83 / \Omega^{3}$ in the first Fo synthesis, $1.3 \mathrm{e} / \mathrm{R}^{3}$ in the second (Table 13). It was therefore included as a real atom with slightly changed coordinates and noted for further sorutiny.

(omes,

Figure 26

The contours for atom 30 (Fig. 26C) could be that of a roal aton under the influence of anisotropic temperaturo vibration or that of an atom nooding shift or just that of a locel electron density maxinum wrongly assumed to be an aton in phasing. It was difficult to take it for a fictitious peak because the model showed that it was only 1.6 I from aton 36 but the bond englo so formed wes slightly difforent fron what was expectod. In the provious calculations, it was a peak in each Fourier with $1.7 \mathrm{e} / R^{3}$ in the second difference, $1.15 \mathrm{e} / R^{3}$ in the first difference, $1.6 \mathrm{e} / R^{3}$ in the second F o synthesis and $1.0 \mathrm{~d} / R^{3}$ in the first Fo synthesis. (Table 13). It was also zarked down for scrutiny and included as a real aton with adjusted coordinates in the next calculation.
'Aton' 54, marked X2 in Fig. 26 A, though not for below atoms 18 and 30, had the lowest peak height. Its co-ordinates showed no signs of change and the contcurs were reasonably spherically symmetrioal. In the rodel, it was about 2.1 A from the nearest atom, 5 , and the bond angles at atom 5 involving atom 54, were quite good for sp^{3} hybridization around carbon. In the previous calculations, it showed up as a peak in all but the first difference, where it was on a gradient. It had heights of $1.73,0.65,0.60$ and $0.55 \mathrm{e} / \mathrm{\Lambda}^{3}$ in the second difference, first difference, second Fo IJurier, and first Fo Fourier respectively. This range of densities was rather low and it was therefore decided to leave it out. It is possible to celculate ${ }^{43}$ the peak heights to be expected both for the atoms used in phasing and for those omitted at each stage. The results of such calculations predicts a gradual increase in peak heights
for real atoms as the phasing improves from stage to stago. The results of most experimental work also give a gradual improvement in the relative peak heights of the omitted atoms as the phasing inproves. Simultanoously, therefore, the relative heights of the spurious peaks are expected to decrease. However, there are sometimes departures from these generalisations. Some spurious peaks have been reported ${ }^{7}$ to have improved their heights at the early stages and sone real atomic peaks have showm little or no improvement at the later stages. Such atomic peaks, however, usually persist throughout the course of the structure analysis.

With these guiding principles nore peaks were sorted out as atomio sites. The first, aton 2, marked X in fig. 27A, had a peak height oi 1. $7 \mathrm{e} / \mathrm{A}^{3}$ and the oontours suggested linkage to atoms 22, (narked 1 in fig. 27A), 1 (marked 2 in fig. 27A) and 3, (marked 3 in fig. 27A). But the distance from 3 was of the order of $2.0 \AA$ and so it was not connected. to this atom in the molel. In the previous Fourier calculations, it had peaks of $1.1,1.1,1.5,0.9 \mathrm{e} / \mathrm{A}^{3}$ in the second difference, first difference, second Fo Fourier and first Fo Fourier respectively. In the model, it was stereochomically well placed, although the distance to atom 3 was rather long.

The next two peaks, selected, 25 and 26 , were in the region of an unresolved density that later resolved into the atoms of the furan ring. By superposing the contour maps for $Z=\frac{21}{60}, \frac{22}{60}, \frac{23}{60}, \frac{24}{60}$, and $\frac{25}{60}$, one could immediately make out a ring as seen in fig. 27 .

Figure 27

Figure 27

The possibilities of this being a four-, five or six-momberod ring were examined. Three points starred in fig. $27 B$, had been selected and included in the lest calculation as atoms 23, 24 and 38 on the basis of points of nexinum electron density previously observed in this region. In the nodel they were too far off from one another to make chenical sonse. The contours around each of them were all distortocl. There was nothing to suggest that any of the three atons was spurious. 23 and 38 had been sighted in the first Fo Fourier, and the two difference syntheses did not suggest the removal of any of thon. Ltom 24 sighted in the first difference, retained its identity in second difference. Fron the positions of these three atoms, and the distribution of the density within the ring, it was not possible to select a fourth point to make a good four-membered ring. Also fron the available chemical evidence, there was no fournembered ring. It was therefore considered reasonable to discard this idea.

In favour of a five nembered ring, there was the chemical evidence for a furan ring which was reported ${ }^{39}$ probably affected during the introduction of the chloroacetyl group. A new peak-25, of height $2.0 \mathrm{c} / \mathrm{A}^{3}$, marked XI in fig. 27B, was recognised about $1.1 \AA$ away from both atorns 38 and 24. Since the contours of these two atons make roon for shiftinc the atomio centros, they wore both novea away from position 25, to inprove the bond distances. Another hitherto, unrecognised poek-26, marked $: 2$ in fig. 27B, of height $2.5 \mathrm{e} / \mathrm{h}^{3}$, was immediately obvious. It was at a

$$
=-69-
$$

distance of 1.25 A from atos 38 and $1.1 \AA$ from atom 23. Atom 23 itself wes only 1.5 A awey frun atom 24 and its co-ordinetes were therefore left unaltered. In the previous Fourior calculations aton 25 had heights of 1.1, 1.3, 2.4, $0.9 \mathrm{e} / \mathrm{R}^{3}$ in the second difference, first difference, second Fo Fourier, and first Fo Fourier respectively. These heights mere on density gradients. Sinilarly atom 26 had heights of $1.65,1.0,3.0$ and $1.5 \mathrm{~d} / \AA^{3}$ as above, (Table 13). The distribution of these peaks, 23, 24, 25,26 and 38 was consistent with the presence of a IURMN RING.

The peak height of atom $38,4.7 \mathrm{e} / \mathrm{A}^{3}$ was nuch higher than those of atoms 23 and 24 , which were both $3.0 \mathrm{e} / \mathrm{A}^{3}$. It was suggested as the oxygen atom. Besides, neither aton 23 nor 24 could be the oxygen aton because 23 was seen in the model to be bonded to atom 24 and two other atons (17 and 26), (Fig. 28).

Figure 28.
Thus only atom 25 could be considered as the alternative to atom 38 as the possible oxygen aton of the furan ring. Atom 38 had been observed in the first Fo Synthesis and had been a nore prominent peak than any other in the ring. It was therefore decided to regard atom 38 as oxygon in the next, oalculation.

The next atom selected, (6) marked X in fig. 28A was roodily reoognised on the section $Z=24 / 60$. It had a comparatively good peak height of $2.1 \mathrm{e} / \mathrm{A}^{3}$. It previously had heights of $0.5,1.4,2.4$ and $1.4 \mathrm{e} / \mathrm{A}^{3}$ in the second difference, first difference, second Fo Fourier and first

Fo Fourier respective 1 y . In spage, it seemed to connect atoms 7

and 34 to the rest of the molecule. Atom 21 (marked X in fig. 28B), with a peak heint of $1.7 \mathrm{~d} / \mathrm{R}^{3}$ wasis included meninly beonse of its stereochemioal significance. The shape of the contours around this point was not encouracing. Its previous heights were $0.8,0.95,1.8,0.7 \mathrm{e} / \mathrm{A}^{3}$ in the samo order as above. The increase in density from the first to the second Fo Pourier suGested reality for this penk. The next peak (55) marked X2 in fig. 27A and also chosen because of its location in the model had been assuaed an atom in the second Fo Fourier. In the present Fourier, it had only a peak height of $1.1 \mathrm{e} / \mathrm{A}^{3}$ and it was about 1.8 A from both atoms 21 and 1 . It was decided to test its reality in the next difference Fourier calculation.

Around the iodine atom, it was still quite difficult to decide the positions of the atomic centres. A peak (28), marked 28 in fig. 24 , of height $1.2 \mathrm{e} / \mathrm{R}^{3}$ was recognised at 2.1 K away from the iodine and this was assumed to be the carbon bonded to the iodine. At a distance of about $1.5 \AA$ from this atom was a peak of $1.7 \mathrm{e} / \mathrm{A}^{3}$, marked 27 in fig. 24 , but not in the same Z plane. This peak was also about $1.5 \AA$ from atom 32, an aton already assumed oxygen. It was observed that peak 33, narked 33 in fig. 24, was roughly in the same plane as 28,27 and 32 . If atom 27 were real, it must be the carbon of the carbonyl group of the iodoacetate. It must then be trigonally bonded to three other atons. The angles made at atom 27 by the "Bonds" to these other tams were not too far off 120°. The general variation of the peak heights of these atons close to the iodine in the previous calculations were not considered beoause it was very probable that peaks chosen were a combination of
diffraction ripples around the iodine and its anisotropy of vibration. They were selected only for trial.

At this stage, it was possible from the model to recognise the ester group - COOM as part of a sidechain $-\mathrm{CH}_{2} \mathrm{COOMe}$. There were three rings in addition to the furan. There was another sidechain which was considered to be $-\mathrm{CH}_{2}$ MMe attached to ring A. This would then account for two of the three methoxy groups expected in the structure from chemical evidence. Thus the structure was written out as shown in fig. 30.

Fig. 30

Atom 53 was made oxygen on the basis of the assumed similarity of the structure to gedunin (page 3).

In the model, there were still a number of dubious points which could alter some parts of the structure. The first was that atom 3 was
only about 2.0 \& fron 2, suggesting a possible linkage betwoen then. To determine this and ther di.stancos moro eccurately, it was decided. to calculate all the bond lengths in the molecule. The socond was that the pronounced departure from spherical symatry of the contaurs around aton 7 (starred in fig. 29) had not been explained. It could be explained in terns of an aton needing some drastic shift or one that is seriously affected by a hich anisotropic temperature effect. If either of this is true, the peak height would be lower than for most others inserted into the previous calculation. But its peak height of $3.8 \mathrm{e} / \mathrm{R}^{3}$, was about the average height for the atons included in the oalculation. It was therefore considered to be two unresolved peaks probebly representing two dissinilar atoms. A point (dottod in fig. 29) of donsity $2.4 \mathrm{e}^{\circ} \mathrm{R}^{3}$ was chosen on the lowest density gradient as the position of the omitted. atom (35). Ator 7 was therefore noved to a point roughly $1.2 \AA$ from atom 35. In the nodel it was inmediately reoognised thet these new positions with two other atoas, 6 and 34, were all plenar, with the bond angles around atom 7 about 120°. This suggested a trigonal systen with a probeble double bond between the atoms in the unresolved peak (7 and 35). If the new peak (35) is assured to be an oxygen atorn, then the spatial arrangement suggests the presence of a carbonyl group or if aton 6 is also an oxygen an acetate group. There was no evidence to support the presence of an acetate group. However it had been established from chemical evidence that there were three methoxy eroups in COB (II). Assuning that the converstion of $\operatorname{COB}($ II $)$ to the iodoacetate of the reduction product COB (III)

did not affect these methoxy groups, the structure so far arrived at leaves two of them unaccounted for. If the group of atoms ($6,7,34,35$) was part of an ester group another methoxy group would have been accounted for. It was shown later that this, in feot, was the oase.

A meticulous search of the maps showed a peak (29) of height 1.7 o/ R^{3} at a point $1.6 \AA$ from aton 34 . The bond angle so formed was about 109°. Thus a second ester grouping for which there had been no chomicel evidence was suggested.

The last dubious point was the problen of aton 39. It had consistently come up with a peak height about twice that expected for oxygen, and the distance from the necrest aton (17) wes about $1.9 \AA$.

All the bond lengths were calculated and the results suggested bonding between atoms 2 and 3. They trore $1.82 \AA$ apart. The structure was therefore rewritten as in fig. 31.

Atom 39 was at first considered the oxygen atom of the third methoxy group but there was no peak nearby that could be the oarbon of the nethyl group bonded to it. Besides this, with slight error in the number of hydrogen atons, the formula of $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O} 9$ I for the present structure would give a molecular weight of 697. This is slightly above the experinental value. If aton 39 is the oxygen of a third methoxy group, the addition of a methyl group to this fomula would increase the nolecular weight even further. Also, if aton 39 were not oxygen but a heavier aton, the nolecular weight would again be much greater than the experimental value. In either case, it was obvious thai the structure es known at this time must include one or two fictitious atons.

Sixth Phasing

With 42 etons, 9 of which were woightod as oxygen and 32 as carbon and the last as iodine, the latest co-ordinates were used in another phase calculation. The new atoms were all given a temperature constant of $4.5 \mathrm{~h}^{2}$. The progranme would not work for reflection (1 $\left.\begin{array}{lll}1 & 9 & 4\end{array}\right)$ and this was omitted. The scale factor for the remaining 990 reflections was 1.459. The reliability factor roducod only slightly to 0.231. But the agreenent between the individual experimental and calculated structure factors irproved considerably. The reflections with differences greater than 3.0 reduced from 69 to 41 out of which 11 were still above 5.0. In spite of this general improvenent, a few had worsened and the highest difference of 11.5 was for reflection 02 3. This was not surprising because the intensity of this reflection was too strong to be monsurod and the given experinental value was known to be low.

The structure factor calculations were then repeated for the 312 unobserved reflections each having half the minimum measurable intensity. The Lorentz and polarization corrections were applied and the same scale factors for the different zones, as used for the measurable reflections, were applied.

Review of Chemical Evidence

Since COB occurs alongside COA (fig. 2), it was assumed to be similar in general structure. The nuclear magnetic resonance spectrum of COB (II) suggested ${ }^{39}$ that the three methoxy groups were present as
(a) - COMe
(b) an enol MMe

(c) a questionable ordinary

There was a furan ring and most probably a lactone. This meant a ring D probably similar to that of COA (fig. 2) but without the epoxide ring. It was not clear what happened in the formation of the chloroacetyl derivative from the analytical results. It seemed that it was not a simple chloroacetylation. There was some evidence from the spectra that the furan was affected. There was, however no certainty on any of these suggestions.

With an ester grouping of the type $-\mathrm{CH}_{2}$ COOLe found on ring C (fig. 30), the second side-chain on ring A, was considered to be of the enol type

$$
\bar{C}=c^{\mathrm{OMe}}
$$

Hence the structure of fig. 30 was first put forwerd and sent to Dr. Powell for his eoments in the light of more up to late chomical evidence. The oxygen of atom 39 was also considered to be that of the third methoxy group, but there was no peak stereochenically well placed to be considered bonded to this aton.

A discussion ${ }^{4} 4$ of the structure of Si . 30 led to the following suggestions ${ }^{40}$:
(1) That the side chain in position marked (1) Iig. 31A) should be as shown (i.e. a methyl ester).
(2) That there should be a ring in position marked (2).
(3) That the iodoacetate group would prove to be attached as at (3) with a probable hydrogen bonding connection with the furan ring.
(4) That ring A is without doubt not nomal.
(5) That the possible existence of an epoxide ring should not be ruled out.
(6) Thet the atom narked OZ should be an oxygen.

These suggestions were considered as follows:

Suggestion 1

From the second Fo Fourier model, there were four atoms in tho circled resion. They were not well pleced and hence difficult to interprete.
$76 A$

fig 31 A.

They could be regarded as

of the $-\mathrm{CH}_{2}-\mathrm{COOMc}$
but the peak corresponding to atom $6\left(-\mathrm{CH}_{2}-\right)$ had not then been observed. Hence the connection of these four atoms with the rest of the nolecule was missing. The situation was further complicated by the fact that the peaks representing the carbon and oxygen atoms of the carbonyl in this group were only about $1^{\circ} \mathrm{A}$ apart. They were however quite well resolved, unlike the situation in the third Fo Fourier.

In the third Fo Fourier, two of these atoms (7 and 34) were included in the calculation. The result wes that atons 7 and 35 were unresolved (fig. 29). As already stated aton 35 was postulated only after a close exarination of the shape of the contours around atom 7. The presence of an ester group $-\mathrm{CH}_{2} \mathrm{COOMe}$, in this region, had been arrived at independently before the suggestion from Dr. Powell. But there were now two such ester groups in the structure. This was in conflict with the N.M.R. evidence.

Suggestion 2
A ring hed been inserted in the position marked (2) in the second Fo Fourior. This was arrived at by supposing that "atom" 53 was bonded to atons 16 and 22 (fice 30). Tho distance from 16 hod beon shom to be well above 2.0 A in the third Fo Fourier and hence the ring was opened. It
was however suggested ${ }^{40}$ that tho increase in this distanco wes accidental and the ring should be closod. It was difficult to nake a docision on this especially at this stage when the side chain was being regarded as a second ester group of the type $-\mathrm{CH}_{2} \mathrm{COOMe}$. A convincing arnuent in favour of opening the ring was the planar configuration of atoms 15, 37, 16 and 36. The bond distanco between 16 and 37 of about 1.3 I , and the relatively large peak height of aton 37 suggested that it was the carb, nyl oxygen of an ester group. It could not therefore be bonded to another aton. As already stated "atan" 53 was only about 2.0 In fron aton 16 , and it was not clear whether it was linked to the ester group or not. It was decided to leave it for the timo boing.

Suggestion 3
That the iodoacetate should be close to the furan as shown was considered possible because there was some uncertainty around the iodine and it was difficult to locate the atons close to it. The iodine atou was at a distance of 4.5 to 5.0 \& away from aton 39 or 0 X , which is close to the furan ring. Since the positions of the atoms around iodine wore uncertain, the proxinity of the iodoacetate to the furen rine could not be ruled out. This suggestion was left as an open question. Sugrestion 4

Thet ring A is not nomal was a happy confimation of the resulits obtained at this stage, nomely, that ring A was part of a bi-cyclo octane system as shown in fig. 31.

Suggestion 5

The idea of an epoxide had arisen mainly from the assumed similarity of $C O B$ to COA (fig.2). From the first nodel, a spurious peak of height $1.27 \mathrm{e} / \AA^{3}$ ("atom" 45) taken together with atoms 24 and 25 geve the impression of a three -nenbered ring. This had beon considered for an opoxide ring and rejected (page 56). The three peaks were in the region of the furan ring and two of them at present constitute members of the ring. From another model constructed with the parameters obtained fron the second Fo Fourier another set of three atoms (7,4.8 and 34) were supposed to make an epoxide ring. They were about 1.2 I fron one another but rather isolated. Aton 6, bonded to atons 5 and 7 wes then not recognized. Fience atom 7 together with the others connected with it did not nake any chemical sense. Later on, "aton" 48 gave e negative peak of 3 -2 183 in the second difference synthesis and was discarded. The othor two now constitute members of the ester group attached to ring A. There was therefore no evidence in favour of en epoxide ring. Suggestion 6

The last suggestion that $O Z$ or aton 31 should be an oxygon, seened reasonable from the point of view of the peak height of this atom in all the colculntions. But the structure at this stage could only admit a single bond between this atom and the carbon atom, $C(1)$, to which it was bonded. This was already bonded to three other atons (10, 55 and 2) (fig. 31). Such an oxygen atom could only be in the form of hydroxyl group. Since there was no evidence of such a group, the atom was left
on as carbon. In fact aton 31 or $O Z$ is an oxygen. Hed it boon realisod that "aton" 55 was spurious, this suggestion might have been nore easily acceptable at this stage.

Further correspondence on the structure of fig. 30 led to the following suggestions ${ }^{39}$:
(a) That assuming that $\operatorname{COB}(I I)$ has the partial structure,

the rings $C-D$ part of the iodoacetate nolecule could be

This would agree with the hypothesis that on reduction of the 7-keto, followed by treatment with acid (present in the acetylating agont) the carbo-methoxyl was hydrolysed and recyclised. This was put forward because the N.M.R. had show loss of one methoxy group on fomation of the chloroacetyl derivative. However the lost band was more what would
be expected for a $-\underset{1}{c}-$ ORle group. Aongsido this, it wis suggested that the hydroxyl that was chloroacetylated was around Ring Λ.

The arguments for and against Ring D have already been stated (page 77.). Only two methoxy group had appeared in the structure so far; if the third one was to be ruled out, then the idea of atom 39 being the possible oxygen of the third methoxy group would have to be ruled out. That the iodoacetyl group is attached to Ring A would agree with the present structure.
(b) That the carbon skeleton in the Ring A / B region could be of the type:

This would be analogous to that in Strietenine ${ }^{45}$. There was also a definite statement that CO 3 and derivatives contain the ester grouping in the form $-\mathrm{CH}_{2}$. Cooke. This carbon skeleton agreed with whet was on hand except for the presence of a bi-cyclo octan o system formed by including "aton" 55 (fig. 31). This "aton" was included only to test its reality and its removal would immediately give the above carbon skeleton with the gen-di-methyl Groups.

That COB and derivatives contain a $-\mathrm{CH}_{2} \mathrm{COOM}$ Group was a satisfactory confirmation of the interpretation of the map in fig. 29 (page 72). The second ester group was not know to be present in COB. It was formed by
nethylating $C O B$ to give $\operatorname{COB}($ II) containing two more nethoxy groups. (c) That from the chemical point of view, it would seem more likely that the iodoacetate is attached to C(3), rather than one of the gem-dimethyl groups.

That is, (Λ) is more likely then (B):

(B) was the structure proposed from X-ray results before it was realised that atoms 2 and 3 were bonded as in (C). This was not ensily perceptible from the model and the conclusion was made only after calculating the bond distances. Suggestion (c) is therefore in agreement with the x-ray results.

The suggestions which could not be dealt with unambiguously at this stage were borne in mind as possible aids in the interpretation of the next electron density map. There was still no chemical evidence about the nature of aton 39; the X-ray evidence suggested it was heavier than oxygen. It was therefore considered desirable to reanalyse $C O B$ and devivatieves chemically. At this stage, when the chemical nature of most of the atoms were known with a fair amount of confidence, it should be possible to correlate the peak heights with chemical nature.

Third Difference Synthesis

The sat of phaso angles just calculated for all the 1303 indopendent, measurable and estimated reflections, were used in salouleting a difference synthesis. By far the most outstanding feature of the results was the elinination of "atom" 53. The peak starred in fig. 32, hed one out fairly spherically symatrical in the previous F_{o} Synthesis oeloulation at a height of $3.9 \mathrm{e} / \mathrm{R}^{3}$ when weighted as carbon with a temperature factor of 4.7 Λ^{2}. In this colculation, it was weighted as oxygen with the saze temperature factor. It cane out, starred in fig. 33, olose to a negative peok density of - $2.2 \mathrm{e} / R^{3}$ and was therefore eliminated.

With the elimination of this aton, the absence of a ring D (fig. 31H) which hed been ruled out on other Grounds was finally confirmed.

The atoms of the ester group in this region indicated the need for small adjustments of the co-ordinates. Atom 36 (fig. 31) had a poak of $-1.3 \mathrm{o} / \mathrm{h}^{03}$ with a tenperature constant of $5.0 \mathrm{~A}^{2}$. It was also weighted as oxygen. There was no doubt about its reality and this nogative peak was attributed to a probably wrong chemical icentity. In tho third Fo synthesis where it was weighted as carbon, it had a peak height of 4.6 $\mathrm{e} / \mathrm{R}^{3}$. In other celculations, it had peak heights of $0.61 \mathrm{e} / \mathrm{i}^{3}$ with B value of $4.5 \mathrm{~A}^{2}$ in the second 'differenoe', $1.41 \mathrm{e} / \mathrm{A}^{3}$ in the first 'difference ${ }^{\mathrm{t}}, 3.1 \mathrm{e} / \mathrm{R}^{3}$ in the second Fo synthesis and $1.80 \mathrm{e} / \Lambda^{3}$ in the first Fo synthesis. It was therefore chenged to carbon. Unlike this abora, atom 15 which was weighted as carbon had a positive peak or

$0.3 \mathrm{e} / \mathrm{C}^{3}$ with a temperature constant of $4.3 \mathrm{X}^{2}$. In the third Fo synthesis, it had a peak density of $4.5 \mathrm{e} / \mathrm{R}^{3}$ which was only slightly less than that of atom 36. In other calculations, it had peak heifgts of $0.31 \mathrm{e} / \Omega^{3}$ with a temperature constant of $4.5 \AA^{2}$ in the second 'difference', $0.18 \mathrm{e} / \mathrm{A}^{3}$ with $B=2.5 \mathrm{~A}^{2}$ in the first 'difference', $5.4 \mathrm{e} / \mathrm{R}^{3}$ in the second Fo sunthesis, and $2.4 \mathrm{e} / \mathrm{R}^{3}$ in the first Fo synthesis. The early poak heights were higher than tiosc of atom 36 and so atom 15 was changed to oxygen. It was noted howevor, that the peak heicht of atom 36 was higher than that of atom 15 in the third Fo synthesis where the phasing should be better than in the first two. This change of the chemical identity of two atoms would then brine in a propionate side chain.

The negative peak of iodine decreased from - 7.38 to $-3.82 \mathrm{~d} / \AA^{3}$ with $B=6.0 \AA^{2}$. B was therefore increased to $6.7 \AA^{2}$. The imneliate neighbourhood of iodine was marked out with ripples of positive and ne gative densities. Atom 28, marked X in fic. 34 to which the iodine atom was attached, was a* the centre of a trough 2.37 electrons $/ R^{3}$ deep. This might sufgest increasing the temperature factor but B was so generally high that the peak heights whether positive or negative were rather low. A negative density of value 2.0 electrons/ 9^{3} was therefore very likely to mean a wrongly located atom. At a aistence of about 0.8 A from this position was a positive density, $1.83 \mathrm{e} / h^{3}$, marked X in fig. 35. It was also 2.1 I away from the iodine atom. It was therefore considered to be the correct yosition of this atom. Atom 27, ($C(27)$), seemed to have x and y co-ordinates correct but showed a high density gradiont in the z direction. It was shifted accordingly on the jasis of a qualitative judgnent.

But the new position wes only 1.27 i from aton 28. This was worse than the previous distance of 1.58 K . Honce, these new positions of the two atoms were questionable. They were however left alone for the tine being. Aton 33, narked x in fig. 36, was on a high density gradient the peak of which was -2.70 e/ R^{3}. Appropriate changes in co-ordinates were nede. The new position was distant 1.28 i fron aton 27 . The co-orainates of these three atoms, close to the iodine were rather unsatisfactory but they were included in the next structure factor and bond length oelculations. Atons 30 and 2, which in the previous Fo Fourier had the lowest peak heights, and were included only because of their stereochemioal inplicetions, showed only slight negative densities. Ator 2, narked X in fig. 37, was in a trough of depth $0.85 \mathrm{e} / \mathrm{R}^{3}$ and its temperature factor 13 wes increased. from 4.5 to $4.8 \AA^{2}$. There were two positive peaks of about $0.9 \mathrm{~d} / \mathrm{R}^{3}$ on opposite sides of it and its co-ordinates were not altered.

Aton 30 was on a low negative density gradient and its temperature factor B was increased from 4.5 to $4.6 \mathrm{~N}^{2}$. Its comordinates were also slightly adjusted.
"ftom" 55, marked X in fig. 32, which had the lowest density of tine atcris inserted in the last phasing, was in a trough, narked X in fig. 33, of depth $1.71 \mathrm{e} / \mathrm{R}^{3}$. Since the previous peak heicht was only $1.1 \mathrm{e} / \mathrm{R}^{3}$, increasing the temperature factor would be inadequate to account for this trough. Elimination of this atom would rule out the bi-cyclo octane formed within ring Λ. The structure would chenge fron (A) to (B) in fig. 38.

$\longrightarrow X$

In this form, aton 31 could be mede oxygen, as suggested by chemical evidence, and the bond distance between atoms 1 and $31,(1.1 \mathrm{~N})$ would be acceptable for a double bond. In adjustment of the position of atom 31, marked X in fig. 39, indicated by its density gradient in the x direction, brought it back to its former position. In this position, it was coplanar with atoms 1, 2 and 10, suggesting a double bond between atoms 1 and 31.

Various shifts were mede for the atoms constituting the furan ring. None of them was at the peak of a negative density but two atoms, 26 and 8 , were on negative gradients and their temperature factors were increased from 4.0 to $5.0 \mathscr{H}^{2}$ and 4.5 to $5.4 \AA^{2}$ respectively.

The last feature of this difference synthesis was the peak height of aton 39, necked XI in fig. 40A. It was $1.69 \mathrm{e} / \mathrm{A}^{3}$ even when the tempemature factor B of $4.0 \mathrm{~L}_{2}^{2}$ was among the lowest for all the atone. At a distance of 2.1 I away from it was another peek, marked X2 in fig. 40i, of height $1.39 \mathrm{e} / \mathrm{h}^{3}$. This was a position in which on aton had been inserted in the first and second po syntheses ("aton" 42) and had proved spurious in the first difference synthesis with a trough of $-4.32 \mathrm{e} / \mathrm{A}^{3}$. It had.

therefore been eliminated. But it was egein included in the next calculaition as a probable carbon to which aton 39 was attached to make a nethoxy rroup. This was to decide if aton 39 was part of a nethoxy group as suggested ${ }^{39}$. Assuming that such an aton was slightly displaced fron its real atomic centre, or that the value of temperature factor was accountable for the negative peak, then inserting it in the colculation should lood to some improvement of the reliability index.

With the adjustment of the co-ordinates in the model, it was very easy to note the planarity of atons $8,9,22,14,13$ and 15. This established the existence of a double bond betweer atoms 8 and 14. Hence the structure at this stage was as seen in fig. 41 with molecular formula $\mathrm{C}_{31} 0{ }_{9}$ I.

Figure 41

Figure 40

The structure as written with formula $\mathrm{C}_{31} \mathrm{H}_{40} 0_{9} \mathrm{I}$, has a molecular weight of 683. This is about one carbon atom, short of the experimental value of 693 ± 7. Besides one of these atons (42) was still suspectel to be spurious.

The nops were re-exanined and it was noted that there were 13 other peeks with heights greater than $1.0 \mathrm{e} / \mathrm{R}^{3}$. L nuriber of the se were peaks towards which atomic centres should be moved. Others whose spherical nature suggested then to be atoms were exanined in space with the aid of the nodel. One such poak marked X in fig. 40B, of height $1.07 \% R^{3}$, seened to join $C(18)$ and $C(15)$. But it was only 1.1 i from $C(18)$ and about 2.1 i from $\mathrm{c}(15)$. It was probably a hydrogen atom attached to $\mathrm{C}(18)$. Some of the other peaks were positions of local electron density maxine. For example the point narked. X in fig. $42 \Lambda_{2}$ hed a peak height of $1.35 \mathrm{e} / \Omega^{3}$ but the contours do not suggest an atomic peak.

Soventh Phasing

Structure factor caloulations

(i) With the latest oo-orainatos for 41 atoms and varying isotropic temperature factors, structure fectors were colculatod cocin. The senle factor was 1.398. The highest difference between the structure fectors, observed and calculated was 9.8 and for reflection 023. The intensity for this reflection was too high to be ostinated and this result was not surprising. The roliability index R reduced to 0.223.

(ii) "Liton" 42, supposed bonded to atom 39, was removed toguchur with $C(28), C(27)$ and atorn 33 , these three constituting the $\mathrm{CH}_{2} \mathrm{CO}$ group to which the iodinc aton was supposed to be bonded. The remaining position and temperature peraneters were used in caloulating all the structure factors as above. The soale factor was 1.372 and the highest difference betweon the structure factors was 8.7 and for reelection 4 Q 0. The reliability index R reduced to 0.216 . This showed that some or all of these four atoms were probably incorrocizy located. "Atorn" 42, was strongly suspected to be spurious. To test, this suspicion, this aton alone was removed and the calculations, oarried out for the (okl) reflections alone, showed a marked improvenent of the reliability index, $(0.225 \longrightarrow 0.21)$. The possibility of atom 39 being the oxygen of a nethoxy group was then ruled out.
(iii) Another possibility was that aton 39 was heavior then oxygen and was an aton which needed to be bonded to only one other atom. Chlorine was such an atom. At leest, in pert to satisfy the need to put more electrons in its position as required by the difference syntheses, it was decided to test this possibility by inserting two oxygen atoms with the sarse tomperature constant $B=4.0 \AA^{2}$ in its position. Ind with permeters for ${ }^{C} 28^{\circ} \Theta^{I}$, the resulting calculation reduced the reliability index R to 0.204 . The soale factor was 1.405 and the highest difference of structure factors, 8.1, was still for refleotion $\div 00$.

Chlorine Ator

Table 13 shows the peak censitios of the atoms for all the Pourier oalculations. Though they were generally low due to the high tomperature constants, the figures for aton 39 hed been consistently and romekably higher than those for carbon and oxygen. It was on the basis of this 'far above the average' argument that its identity was changed fron carbon to oxygen after the second difference synthesis. It still persisted as the highest peak apart fron the iodine in the Fo syntheses and showed a high positive density in the difference syntheses. The inprovenent in the reliability factor, R, for the set of structure factors just calculetod supported the suggestion that it was chlorine. A chlorine atom in this compound should show a chlorine-chlorine vector peak in the Patterson synthesis. This should be higher than all others but the iodino-iodine and aklurine-iodine veotor peaks. With the known co-ordinates of the iodine and supposed chlorine, the co-ordinates of the corresponding veotor peak positions were calculated. Some or the se are starred in the Patterson - Harker maps of figs. 15, 16 and 17.

Those peaks on the Patterson, higher than those starred are tails of the iodine-iouine or iodino-chlorine vectors. Thus the Patterson synthesis indicated the prosence of an element heavier than either oxygen or cerbon but lichter than iodine.

The cherical analysis of $C O B$ had show 39 beyond doubt that the compound contains only the elements, oarbon, hydrogen and oxygen.

Its aocurate mass speoturn agroes 39 with the formula $\mathrm{C}_{27} \mathrm{H}_{32}{ }^{\mathrm{O}} 7^{\text {. }}$. The methylation product $C O B$ (II) contains ${ }^{39}$ the same elements. But the chloroacetyl derivative of $\operatorname{COB}(I I)$ was not, until this stage, analysed to find the chlorine content. This was due to the poor yield of the reduction product of $\operatorname{COB}(I I)$. The yield of the chloroacetyl derivative was itself poor. With the indication in the infra-red spectrum of the introduction of the chlorine aton, it was supposed to be present only in the form of the chloroacetyl radjeal.

A quantitative analysis of the chloroacetyl derivative was carried out at this stage. The results indicated two chlorine atons per molecule. This provided chemical confimation of the suggostion that aton 39 was a chlorine aton. It was later established ${ }^{16}$ that the nethoxy grouip attached to aton 17 in $\mathrm{COB}(I I)$ is labile and easily repleoed by chlorine on treatins, $\mathrm{COB}(I I)$ with HCl .

Fur ther Structuro Factor Calculations

A chlorine atom was inserted into the position of aton 39 in the model and with the same position and temperature paraneters, the structure factor for the 991 refleotions were calculated for formular $\mathrm{C}_{28} 0_{7} \mathrm{ClI}$. The scale factor was 1.416 and the reliability index R remained as in the last calculation 0.204. The highest difference botween the structure factors, 8.0, was still for reflection 400 Though there was no improvenent in the R-factor, thore was a slight improvenent in the degree of agreement of the independent values of the structure factors as indicated, for instance, by that of 400

It was at this stage suggested ${ }^{39}$ that the introduction of two methoxy groups on methyleting $C O B$ involved a break down of the lactone ring by acid hydrolysis followed by methylation with the resultant addition of the elements of dinethylether.

But a propionate group had been introducted into the structure by the interchange of the chenical identity of atons 15 and 36 as a result of the previous difference synthesis. In the licht of the now evidence, this change was revorsed produoing a $-\mathrm{CH}_{2} \mathrm{COOMe}$ ester. The temperature constant of atom 36 was increased from $5.0 \AA^{2}$ to $5.7 \AA^{2}$ beoause of its negative density in the "difference". That of atom 15 renained unaltered. The structure beoane as seen in rig 42.

Figure 42.

Without including the paraneters of atoms 27, 28 and 33, circled with a broken line in Pig. 42 , close to the iodine aton, the structure factors were calculated for the 991 independent neasurable reflections. The scale factor was $1,4,16$ and the reliability index roduced to 0.198 . This decrease could be attributed to the change in chenical identity of atons 15 and 36 and perhaps to the unsati.sfactory parameters of some or all of atons 27, 28 and 33 .

There were now 29 reflections with difference in structure factors above 3.0 of this number, 10 hed differences above 5.0 and the hishest difference of 7.9 wes for reflection $2 \quad 1 \quad 11$

Fourth Fo and Difference Syntheses

The phasing was now based on 37 atons, $\mathrm{C}_{28} 8_{7}$ ClI. But there were three other atoms around the iodine atom which were known to be there but were not included in the calculation. Assuming the presence of these atoms, a structure written in fig. 42, has the formula $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{ClI}$. This Eiver a nolecular weight of 688.4 which agrees well with the experinental value. This was further evidence in support of the correctness of the present structure, but there were still a few points to be clarified.

From the stereochemioal point of view, there were fairly large deviations fron the accepted bond lengths and angles. The worst was the bond length of $1.85 \AA$ between $C(13)$ and $C(18)$. Fron the crystallographic point of view, there were:
(a) the propriety of elininating ator 53 ($p .73$)
(b) the reality or otherwise of a peak of $1.06 \mathrm{o} / \mathrm{h}^{3}$ thet soened to link atoms 15 and 18
(c) the problen of accounting for those peaks with heights above $1.0 \mathrm{e} / \mathrm{R}^{3}$.
(d) the detemination of more correct co-ordinetes for the atoms around iodine.
From the chenical point of view, it was suggested ${ }^{46}$ that the present structure was entirely acceptable except for the probable migration of $C(18)$ from attachnent at $C(13)$ to $C(17)$. In the X-rey analysis, there had been nothing to suggest such an attachment so far but it was rather disturbing that $\mathrm{C}(18)$ was so distant fron $\mathrm{C}(13)$.

A difference synthesis would serve to resine the structure and an Fo synthesis combined with this would clarify those points that were still in doubt.

The approxirate oleotron density distribution were calculated with the observed structure factors and phese angles in the seventh phasing. The assumed values of the structure factors of the 312 unobservel reflections were also scaled by 1.416 - the same es used for the 991 observed reflec ions. All the 1303 reflections were used in calculating a difference synthesis.

The results show that "ator" 53 could at best be considered a hydrogen atori. In the Fo synthesis, it had a height oif $1.0 \% \mathbb{R}^{3}$, markod X in fig. 43 A . In the 'difforence', there was nothing remarkable about its onission. It had a donsity of $0.65 \mathrm{e} / \mathrm{R}^{3}$, marked X in fig. 43B. These proved unequivocally that this "aton" should be omitted and completely ruled out a possible ring D as proposed in fig. 31 A. ($P \cdot 7 \in A$)

On the sane maps could bo soon, stamed, the site of "atom" 55, the existence of which led to the Pomation of a bicyclo octeno systen. In the Fo synthesis, the peak height becanc $0.4 \mathrm{~d} / \Omega^{3}$ and in the difference it was $0.26 \mathrm{e} / \mathbb{R}^{3}$. Thus its elimination was proper. The peak that was regarded as "atom" 42 , marked X in figs. $44 A$ and $4 / B$, decreasec from $1.70 / R^{3}$ in the provious Fo synthesis to $1.4 \mathrm{~d} / \mathrm{h}^{3}$ in the present. In the 'difference ' it decreased from $1.39 \mathrm{e} / \mathrm{R}^{3}$ in the third to $1.16 \mathrm{~d} \mathrm{R}^{3}$ in the fourth. It also noved farther away from atom 39. With aton 39, as ohlorine and bonded to $C(17)$, a bond distence of 2.2 K between 'atom' 42 to 'atom' 39 was inconceivable. "Aton" 42, peak 18 in Table 14, zust be a product of errors. Starred on the sane maps, fig. 4, is the peak that seemed to Jink atoms 15 and 18. In the Fo synthesis, it decreased from 1.0 e/ A^{3} in the third to $0.9 \mathrm{e} / \mathrm{R}^{3}$ in the fourth. In the difference, it deoreased fron $1.07 \mathrm{e} / \mathrm{R}^{3}$ in the third to $1.02 \mathrm{~d} / \mathrm{R}^{3}$ in the Pourth. It previously had peak heights of $0.4,1.60,0.65$, and $1.02 \mathrm{e} / \mathrm{h}^{3}$ in the first and second Fo syntheses, first and second difference syntheses respectively. It was still the same distance of 1.1 i Pron $C(18)$ and 2.1 in ircu $C(15)$. The distance of $1.1 \AA$ would indicate a carion-hydrogen bone. The fall in peak heicht fran? 2 to $Q 4$ dues not sugeest a real carbon aton. Besides, a Consity of $1.1 \mathrm{e} / \mathrm{R}^{3}$ inserted as "atom" 55 in $P 3$ was showm to be spurious. To insert a lowor density which does not show any tondency to increase with improved phesing is not reasonable. It was therefore concluded that this peak, number 19 in Table 14, was probably a hydrogor. atori.

$$
-96-
$$

TABIE 14

	Co-ordinates in 60th			Peak Heights	Peak Hoichts
	x	y	z	in 24 in $d \mathrm{R}^{3}$	in 4th Diff.
1	40	30	4	1.0	1.1-
2	44	5	5	1.1*	-0.03
3	48	9	6	1.3*	0.47
4	8	11	6	3.1*	0.41
5	22	5	7	2.2*	0.03
6	16	10	7	1.1*	0.32
7	16	1	7	1.5*	0.21
8	4	15	7	1.1*	0.40
9	38	9	7	1.0	0.0
10	25	5	10	1.2	1.11
11	34	2	12	1.1	0.77
12	48	8	13	1.2	0.32
13	2	23	18	1.0	0.65
14.	40		21	1.2	0.67
15	52	25	23	1.0*	0.28
16		29	24	3.3*	0.41
17	32	24	27	1.2	0.57
18	34	5	8	1.40	1.16
19	48	20	8	0.9	1.02
20	24	21	29	0.8	1.0

In the Fo synthosis, apart fron those peaks obviously representing the three atons close to the iodine atom, there were 18 others, still greater then $1.0 \mathrm{~d} \mathrm{~A}^{3}$ and not regardod as atoras. These are shown in Table 14. Nine of then were easily seen, by symetry to be iodine satelites. The seventeenth was most probably a ripple produced by the anisotropic teripe-rature vibration of the chlorine aton. The densities of the remaining ten but nurbers 1, 10 and 18, fall below $1.0 \mathrm{e} / \mathbb{R}^{3}$ in the "difference". Less significance was therefore attached to these. The difference synthesis shored five peaks of heights $1.0 \mathrm{e} \AA^{3}$ and above. Two of these, nurbbered 19 and 20 in Table 14, had densities below $1.0 \mathrm{~d} / R^{3}$ in the F_{0} synthesis. The nineteenth or "aton" 55 hed been discussed and shom to be spurious (p. 95) while the twentieth had a donsity of only $0.5 \mathrm{e} / \AA^{3}$ in the third Fo synthesis. It was very probably therefore of no simnificance.

Of the remaining three, the eighteenth or "aton" 42 had been considered and shown to be spurious ($p, 25$). The first was at a distance or 1.95 i from $\mathrm{C}(17)$. In the Fourier calculations, this position had densitios of 1.13, $0.84,0.38,1.12,1.15$ and $0.8 \mathrm{e} / \mathrm{R}^{3}$ in the third, second and Pirst difference syntheses and third, second and first Fo syntheses respectively. The tenth was quite isolated and its contours were irregular. It was decided to leave these out.

The peaks around the iodine were meny, as can be seen fron Table 14. In the Fo synthesis, the real atomic peaks were not significently higher than the spurious ones. But with the aid of the difference synthesis, the real atomic peaks were readily discernod. However, the peak centres in both syntheses were not the same. For $C(28)$ and $C(27)$, nerked XI and X 2 in fig. 45 A , the peak centres in the two syntheses were not significantly

different. But the

Apeak centre of atom 33, starred in fig. 45B, came out in two different positions, about $1.0 \mathrm{~A}^{\text {apart }}$ in the two syntheses. The centre in the Fo synthesis was about $2.8 \AA$ away fron the iodine atom. Such iodine-oxygen distance in the acetate group was given as 5.7 A by Pridrichsons and Mathieson ${ }^{47}$ and as 4.02 I by Robertson ${ }^{14}$ and others. The peak centre in the difference was about 4.0 . But in the Fo synthesis, this aton had fairly spherically symnetrical contours and the oontours in the "difference" were rather distorted. Also the peak centre in the "difference" was more consistent with a trigonal configuration about the carbonyl carbon. In fig. 45, the "difference" contours, at intervals or $0.5 \mathrm{e} / \mathrm{C}^{3}$ are superposed on the Fo Fourier contours at intervals of $1.0 \mathrm{e} / \mathrm{R}^{3}$.

Table 15 shows the peak densities of these three atoms in the fourth Fo and difference syntheses.

TABLE 15

c(27)
C(28)
i.tom 33

$$
\frac{\text { Densities in 4th }}{\frac{\text { Fo Synthesis }}{\text { Syis }}} \begin{gathered}
2.1 \mathrm{e} / R^{3} \\
1.7 \mathrm{e} / R^{3}
\end{gathered}
$$

$$
\frac{\text { Densities in } 4 \text { th }}{\text { DDifference }}
$$

$$
2.14 \mathrm{e} / \mathrm{h}^{3}
$$

The peak heicht of atom 33 was about average in the F_{0} synthesis but it was the lomest in the "difference". However spurious peaks of density as high as $1.3 \mathrm{e} / \mathrm{h}^{3}$ exist in this neighbourhood (around the iodine atom) in the Fo synthesis. It was therefore decided to make use of the position parameters obtained from the difference synthesis.

Eighth Phasing

This consists of a series of trial calculations of structure factors.
(i) In order to test the reliability of the new co-ordinates of atoms 27, 28 and 33, around the iodine aton, their pareneters wers added to those of the 37 atoms used in the previous phasing and the structure factors were caculated. They were given a temperature constant of $4.5 \mathrm{R}^{2}$ each. The scale factor was 1.437 and the reliability index reduced from 0.198 to 0.190 . This decroase indicated that a fairly good judgnent of the locetion of the atons had been nade.
(ii) In the difference synthesis, it wes noticed that the iodine aton was still in a trough of depth $-3.61 \mathrm{e} / \mathrm{A}^{3}$. Its temperature factor was consequently increased fron 6.70 to $7.50 \mathrm{~A}^{2}$. The position of the chlorine aton had a density of $-2.46 \mathrm{~d} / \mathrm{R}^{3}$. Its temperature foctor was increased from 4.0 to $5.5 \mathrm{~A}^{2}$. Fith these two changes, the position and temperature parameters of the previous 40 atons $\mathrm{C}_{30} \mathrm{O}_{8}{ }^{\mathrm{C}}$ II, were used in calculating the structure factors. The scale factor was 1.358 and the roliability index rose to 0.205 . (iii) The parameters of the three atoms $(27,28,33)$ around the iodine were ronoved and the romining parameters with inoreased B for iodine and chlorine wore used in calculating the structuro factors. The scoie factor was 1.340 and the reliability index increased to 0.212 . This result confirms that to a fairly good degree the input co-ordinates for these three atoms were roasonable and that there was not enough justification for increasing the tomperoture constants for jodine and chlorine.

If iodine is present in all its sites then the percentale of iodine in the sample should be 18.4. With the possible interference of the chlorine atom during the analysis, the sample analysis ${ }^{18,48}$, showed the following percentages for iodine.
$(a)^{18} \quad 17.62$
17.04
(b) ${ }^{4.8} \quad 14.75$

In (b), no duplicate determination was performed and the result is very much lower than the others. Even so the more reliable figures are appreciably less than the calculated 18.4%.

A possible explanation for this lower percentage is that the iodine sites might not all be occupied by iodine in all the molecules. The chlorine could be left unsubstituted in a few molecules. This would then reduce the effective scattering contribution of the heavy atom by a "Site Occupation Factor" ${ }^{5}$. In this circumstance, it would not be correct to account for the valley in which the iodine was found in terms of thermal vibration alone. It was therefore decided to leave B at $6.7 \AA^{2}$ for iodine.
(iv) After a close study of the maps of both the Fo and difference synthesis appropriate shifts of atomic co-ordinates were made, based on a qualitative judgment only for all but ONE of the 37 atoms used in the
seventh phasing calculation. The co-ordinates of the ronaining aton was changed altogethor. Aton $30, C(30)$ had the lowest peak density of $2.6 \mathrm{e} / \mathrm{A}^{3}$ in the fourth Fo synthesis. In the difference, it was at the centre of a valley of $-1.25 \mathrm{e} \mathrm{A}^{3}$ with a tomporature constant of $4.8 \mathrm{~A}^{2}$. A further increase in B to account for this negative density would decrease the peal: in the Fo synthesis further. This was considered rather undesirable. In the previous fourier calculations, this position had peak densities of $2.9 \mathrm{e} / \mathrm{A}^{3}$ with $B=4.5 \mathrm{~A}^{2}$ in the thirc $F O,-0.85 \mathrm{e} / \Omega^{3}$ with $B=4.5 \mathrm{~A}^{2}$ in the third difference, $1.7 \mathrm{e} / \mathrm{A}^{3}$ in the second difference, $1.15 \mathrm{e} / \mathrm{N}^{3}$ in the first difference, $1.6 \mathrm{e} / \mathrm{R}^{3}$ in the second $F O$ and $1.0 \mathrm{e} \mathrm{R}^{3}$ in tho first Fo. It had been suspected to be a spurious peak or an aton which was not well located. There was at a distance of 0.8 A to this position another peak of height $1.5 \mathrm{e} \mathrm{A}^{3}$ and $1.0 \mathrm{e} \mathrm{A}^{3}$ in the Fourth Fo and difference synthoses respectively. Previously, this new position hed densities of 1.12, 1.3, $1.33,0.80,1.5$ and $0.90 \mathrm{c} / \mathrm{R}^{3}$ in the third difference, third Fo , second difference, first difference, second Fo and first Fo syntheses respectively. The peak height in the Fo Fourier sumations, had been ciove $1.3 \mathrm{c} / \mathrm{A}^{3}$ fron the second one and this wes considered a favourable foctor to make this site the atomic position. The co-ordinates of $C(30)$ were therefore changed and it was given 2 tomperature constant of 4.5%. The tomperature constant of chlorine was also decreased to $5.0 \AA^{2}$ and the structure iactors were calculated again. The scale factor was 1.427 and the reliebility index reduced to 0.183 . Tho number of differences in structure factors
above 3.0 decreased to 21 of which only 6 were above 5.0. Tho hignest difforence of 9.9, was for reflection 020 The intensity of this reflection was originally too lorge to be estimated accurately and so this great difference was not surprising.

The nain features of the structure were fairly evident at this stage. A satisfoctory structural formula could be written. The refinement by difference syntheses was therefore teminated.

FURTHER REFMEMENT

Apart from the difference synthesis, methods of refinement consist of mininizing a function (Rf) of Fo and Fc. The least squares ${ }^{49}$ method makes use of a principle first enunciated by Legendre in 1806 and later subjected to rigorous nathematical proof by Laplace (1811) and Gauss (1821). It gives Rf as follows:

$$
\mathrm{Rf}=\sum_{i \pi} \mathrm{~W}(|\mathrm{FO}|-|\mathrm{FO}|)^{2} \text { where }
$$

w is a weighting factor, and the sur is talen for all the observed structure factors. The nethod of steepest descent ${ }^{50}$, based on the sane principle 49 gives Rf as foliows:

$$
R i=\sum \pi\left(F O^{2}-F 0^{2}\right)^{2} .
$$

To carry out a least square refinonent, the structure factors nust be roughly on the absolute socle and the phasing must be approxinately correct. These conditions wore roughly satisfied at this stage when the structure was already known. In addition it is essentiol that an appropriate weighting scheme is used.

The process of refinement involves the detemination of the changes in position and tomporature paraneters necessary to bring about the minimization of Rf. These paraneters deternine the calculated structure factors and so each reflection provides an observational equation of the form
where

$$
\begin{aligned}
& \sqrt{W} \mathrm{Fo}(h k 1)-\sqrt{T \mathrm{Tr}}(\mathrm{hkl})=\sqrt{W \mathrm{E}} \\
& \mathrm{Rf}=\sum_{W E} .
\end{aligned}
$$

The weight w is introduced to account for the degree of reliability of each equation. This is considered proportional to the accuracy with which the observed structure factor is known. The accuracy with which each intensity is known depends on the magnitude of the intensity, the background intensity, spot shape and other factors depending on experimental efficiency. Another rough indication of this accuracy is the degree of agreement of the observed and calculated structure factors when the phasing is fairly correct. A range or point of highest degree of agreement is then selected and the refloxions are weighted according to one or the following schemes ${ }^{51}$:

$$
\text { (i) } \begin{aligned}
\sqrt{\mathrm{w}} & =\left|\mathrm{F}_{0}\right| / F_{1} \text { if Fo }\left\langle F_{1}\right. \\
\sqrt{\mathrm{w}} & =F_{1} /\left|F_{0}\right| \text { Otherwise, where } F_{1} \text { is the point }
\end{aligned}
$$

of highest degree of agreement.

$$
\begin{aligned}
\text { (ii) } \sqrt{w} & =I \text { if } \mid \text { Fo } \mid<F_{1} \\
\sqrt{w} & =F_{1} / \mid \text { Fo } \mid \text { otherwise, where } \mid \text { Fo } \mid=0 \text { to } F_{1}
\end{aligned}
$$

is the range of highest degree of agreement.

$$
\text { (iii) } w=1 /\left(a+|F 0|+c\left|F_{0}\right|^{2}\right) \text { where a and } c \text { are }
$$ constants of the order of 2 Fin and $2 /$ max respectively. This scheme essentially puts less weight on very large and very small \mid Fo \mid. Besides this expression for w, there are 52 a few others, all functions of $\left|F_{0}\right|$ designed to reduce w for very large and very small Fo. It has been suggested ${ }^{51,52}$ that the weight w may also depend on $\sin \theta / \lambda$, but no weighting scheme has yet been designed which is a function of both $\{$ Fo) and $\sin \theta / \lambda$ 。

A modified form of Hughes ${ }^{53}$ weighting schene (Scheme 2) was considered suitable for the 991 observed reflections. F_{1} was 12.0 which is approximately 8 Fmin. For the first cycle of refinement, 161 paranetors inade up of x, y and z co-ordinates and temperature constants for the 40 atoms together with the absolute scale factor were reirined. The reliability index decreased fron 0.183 to 0.156 . The greatest shifts were the absolute scale factor (from 1.427 to 1.200) and the temperature paraneters for atons 2 , (from 4.6 to -0.12), 8 , (fron 3.6 to -1.6), 30 , (fron 4.5 to 8.99) and 33, (froil 4.5 to 9.01).

That atoms 30 and 33 should develop such high temperature factors suggested that they were not well located. Atom 30 was put in one of two possible sites, both being under 1.0 A apart and about 1.5 g distant from adjoining atom 36. The peak centre of aton 33 was uncertain. Two difforent peak centres were observed in the fourth Fo and difference syntheses. The site from the difference synthesis was geometrically more reasonable and had been inserted for refinement.

Considering the positions of $C(2)$ and $C(8)$ in the structure, a change of cherical identity, as a possible explanation for the nogative temperature factors was not foasible. It was therefore decided to keep the previous ternporature factors constent and refine the occupation nuzbers. After another two cycles, the reliability index decreased to 0.138. The occupation numbers of $C(2)$ and $C(8)$ becane 1.195 and 1.362 respectively. Assuming sone nesonerisn within the nolecule, resulting in $C(2)$ and $C(3)$
becming negative oentres, one would still not expect the pocupation number of either of these atons to be as high as 1.362. The occupation numbers were therefore recluced to 1 and thermal paraneters of $4.5 \mathrm{~A}^{2}$ refined. The temperaturo constants of the carbun atom (aton 30) in the methoxy group of the ester attrehed to ring C and atom 33 (carbonyl oxygen of the iodoacetate) rose to $9.04 \AA^{2}$ and $15.2 \AA^{2}$ respectively. During the course of the analysis, atom 30 had alternated between two positions each about 1.55 I away fron the adjacent oxygen aton and about 0.7 X away from each other. It was suggested ${ }^{54}$ that aton 30 could partly occupy the two positions. A partial occupation of the two positions would induce serious vibrations in the adjacent oxygen aton, resulting in a low electron density at the atomic centre. This had been found true to the extent that the oxygen aton was at one stage temporarily assumed carbon. In the following cycles of refinenent, aton 30 was given an occupation number of 0.5 in the two positions. Its thermal parameter was kept constant at $4.5 \mathrm{~A}^{2}$ and the occupation numbers were refined.

The temperature constents of the other two atons around the iodine, atoms 27 (carbonyl carbon in the iodoacetate group) and 28 (caribun bonded to iodine) had als increased from $4.5 \mathrm{~K}^{2}$ to $6.88 \mathrm{~K}^{2}$ and $4.64 \AA^{2}$ respectively. These values sugges't that the two atoms were approxinately correctly located. Their positions together with that of aton 32 (the oxygen aton in the iodoacetate bonded to ring A) necessarily fix the position of aton 33 since the four atoms must be in the same plane. However, the location of aton 33 in this plane was adopted with reservation as two well defined peak
contres were observed in the fourth Fo and difference syntheses (fig. 45). Its high temperature factor was indicative of the unsatisfactory nature of the present position. However, with the sane position parancters and the temperature constant chenged to $4.5 \AA^{2}$, another three cycles of refinenent resulted in a B of $24.2 \mathrm{~A}^{2}$ for ator 33. It then becane obvious that the process of refinement had completely renoved aton 33 fron its location in the fourth 'difference' synthesis.

A partial occupation of two positions by an aton should show considerable densities in the two types of synthesis. This was nut true for atom 33. However, in favour of the idea of partial occupation was the hifh thernal paraneter of the adjacent oarbonyl carbon (aton 27). A double bond between atons 27 and 33 would incuce serious vibrations in aton 27 if aton 33 were to partially occupy two positions. Also the direction of vibration of atom 27 should also be the direction of the vector between the two partially occupied positions. However, the second position was considered too close to the iodine atom and would further increase the $0-C-0$ angle (32, 27, 33). The initial position and thernal paraneters were therefore insorted again for aton 33 in the next cycle of rofinenent. Its tomperature constant was left unrefined and the occupation number was refined. The reliability index before this was 0.1292 and the refined occupation numbers of atom 30 were 0.584 and 0.416 .

The last cycle of refinement gave a reliebility index of 0.1298 and oocupation numbers of atom 30 becanic 0.574 and 0.426 . It also reduced the occupation number of aton 33 to 0.586 .

The deficiencies shown by the results of this refinement nust be due to the degree of accuracy of the experinental data. Apart fron the fact that there was no absorption correction, the scaling of the intensities obtained fron the different layer photographs was merely an approxinate one. This could be improved by correlating the Fo and $F C$ for each layer separately.

With the lest set of position and themal paraneters(table 17) structure factor bond angles and bond distances were calculated. These are shown in tables 16 and 18 and figures 46 a and b. Λ last set of $F O$ and difference syntheses were calculated. Table 13 shows the peak densities obtained in theso syntheses These are discussed later, (page112).

Figure 46B

DISCUSSION

The structure of iodoacotate derivative of Substance B (Cerrela Odorata)

Molecular Structure

The structure derived fron the X-ray analysis is defined by the set of position paraneters listed in table 17. Atoms 1 to 30 are carbon and atoms 31 to 38 are the oxygen atons. Atom 39 is chlorine and aton 40 is the iodine Others given in table 13 are the fictitious atoms that came up during the course of the analysis. The resulting interatonic distances and valency angles are not considered to be individually accurate, but table 16 , gives the ranges and nean values, which are comparable with accepted values.

The molecule is folded into two leyers, seen in projection in fig. 470 , one layer being aistinctly marked out by the double bond between $C(8)$ and $C(14)$ togethe with rings B and C. Ring B, in tho chair conformiation, is fused to ring A in the boat conformation at $C(2)$ and $C(10)$. The molecule folds over at ring A to which the iodoacetate group is attached. This substituent foms part of the second layer.

TABLE 16

$\frac{\text { Region of }}{\text { Molecule }}$	Type of bond	No.	Range	Mean Volue
	or anglos			
Rings	$C-C$	15	1.39-1.75	1.56
	$C=C$	3	1.23-1.50	1.36
	C-0	2	1.32-1.47	1.40
Side Chains	C-I	1	2.10	2.10
	$\mathrm{C}-\mathrm{Cl}$	1	1.89	1.89
	C-0	7	1.23-1.75	1.49
	$C=0$	4	1.20-1.35	1.29
	C - C	11	1.50-1.73	1.54
Molecule with out furan ring	Trigonal	18 33	$\begin{aligned} & 111.4-132^{\circ} \\ & 102.4-114.1^{\circ} \end{aligned}$	$\begin{aligned} & 121.2 \\ & 108.3 \end{aligned}$

The ester group attached to $\mathrm{C}(5)$ and the furan ring aro also in the second layer. The carbo methoxyl group attached to C(14) lies approximately in the same plane as rings B and C projecting out of this plane with its oarbonyl oxygen to the opposite side of the furan ring. Each nolecule has the conformation

The stereochenical configuration of the molecule largely coniorms with the staggered transponcept, accepted 55 for complex organio structures but for the linitations imposed by the distortion produced by the double bond and the peculiar linkage of rings A and B. Ring A perhaps has to adopt the boat conformation in order to reduce possible intra nolecular
repulsive forces between the substituents on $C(3), C(4)$ and $C(5)$. Moreover, a chair conformation for ring 1 , wuld so distribute the gen dimethyl groups in space that the present cis-conformation of the iodoacetate group to $C(22)$ would not be feasible. The trans-confomation, on the other hand, would result in creating a vast volume of empty space, which could possibly be filled by a change of space group for the exystal. Suoh spece-filling consideration would not arise in solution and ring Λ could then have the chair conformation.

Arrangement of Molecules in the Crystal

The packing is illustrated by the projection diagrans of fig. 47 (a) and (b). There is no possibility of intemolecular hydrogen bonding, since none of the highly electro-negative atoms in the nolecule is bonded to hydrogen. The nolecules are in fact, held together by Van der Waals forces and orionted to give naximum packing efficiency. Since nolecule rouchly occupies a rectangular box (of dimension one by half by half of those of the unit cell) with an empty space between ring A, conneoting the two layers of the nolecule and ring B in one layer, the packing seemed, to some extent, dependent on the attempt to fill this space. This seons best achieved by arranging the molecules around sets of two-fold screw axes such that the side chain in one nolecule projects into the ompty space in the rectangular box containing the adjacent molecule. The intermolecular distances are in all cases above 3.0 f . The closest contact of 3.5 I and 3.51 are (1). between carbon $C(30)$ of the methoxy roup of the ester attached to ring G at C (14) and oxygen (aton 35) of the carbonyl eroup of the ester attached to ring A at C5, shown with dotted lines in fig. 47(a) and (2) between $C(29)$ (carbon of the methoxy group of ester attached at $C(5)$) and $0(1)$ (atome31) shown in dotted lines in fig. 47 b respectively.

Figure 47A

Figure 47B

The low melting point of $220^{\circ} \mathrm{C}$ for a structure of nolocular weight 690 is consistent with Van der Waals bonding for the molecules.

Relinbility of Structure

Tho enclysis began with very little knowledge of the actual staruoture but uppermost in the assurption that was employed for the analysis was the idea that each nolecule contains an iodine aton. There was no chemical detemination of the nolecular weicht. The orystallographic measurements gave it as 693.0 ± 7. The final calculation from the nolecular formula of $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{ClI}$, corresponding to a molecular weight of 688.4 , is reasonable when compared with the experinental value. This means that there is very little probability of having left out an eton or that a fictitious aton had been included.

Moreover, the final Fourier calculations (fifth Fo and Difference syntheses) confima the accuracy of the number of atons. In the Fo synthesis, there were still a few density peaks above $1.0 \mathrm{e} / \AA^{3}$, produced no doubt by the specific diffraction effects ${ }^{27}$ resulting fron tho presence of the iodine aton. In the difforence synthesis, the highest density, apart from iodine, was $0.67 \mathrm{~d} / \mathrm{A}^{3}$. There is therefore no density peak that could ooceirably be an atom.

The chenical identity of the atons were all along correlated with chenical evidence. In two instances, one involving the chlorine atom and the other a trial exchange of the identities of atoms 15 and 36 (Oxygen of the methoxy group in the estor attached to ring C) mistakes had been made in the course of the analysis, and these have been corrected.

One feature of the intensity phitograph was the general weakness of the reflections from planes with snall spacings. Consequently the resolution of the electron density peaks is linited. The position paraneters of the atons are therefore of limited roliability. The rather low nunbor of observed reflections indicates some disorder in the orystal structure. Correlating this with the complexity of the nolecule it has boen suggestod ${ }^{38}$ that where, as in this case, complicated nolecules are held in the crystal by comparatively weak intermolecular forces, it is unlikely thet the atons will be so precisely ordered throughout space as they are in simpler crystal structures. Lis a result of this effect together with specific diffraction rings around the iodine aton, it had not been possible to determine the position parametors of aton 33 (carbonyl oxygen in the iodoacetate) at least to the sane degree of accuracy as the other atomic positions. Its final position is 3.36 \& from the iodine atom.

Thus aocurote neasurements of inter-atomic distances and valency angles oould not be obtained from the experimental data, but the X-ray analysis has revealed the most essential geometrical features of the molecule.

The Structure of Cedrela Oclorata Substance B
On the basis of the crystallographic evidence for tho iodoccotate 56 and chemical ovidence ${ }^{12}$, it has been suggested ${ }^{56}$ that $C O B$ has the structure (II) on page113A. It was broken down to (III) during the process of methylation. The methylation product (III) was further reduced to (IV) which roacted with chloroacetyl chloride to give a chloroacetate. In the same step, the methoxy group on $C(17)$ was replaced by a chlorine aton. The chloroacetate was then converted into the iodoacetate.

- 113A -

Flow Sheet

Patterson

1st Phase Calculation with I. only; $R=0.37$ \downarrow

1st Fo Fourier giving 15 atoms regarded as carbon
and Phase Calculation with $\mathrm{C}_{15} \mathrm{I}$; $\mathrm{R}=0.322$
end Fo Fourier giving $I+3 \%$ atoms all carbon
Phase Calculation, $R=0.253$
Hst Difference giving I +41 atoms all carbon
Ord Phase Calculation with $\mathrm{C}_{41} I, \mathrm{R}=0.257$
4th Phase Calculation with $\mathrm{C}_{35} \mathrm{O}_{2} \mathrm{I} ; \mathrm{R}=0.251$
and Difference giving $\mathrm{C}_{29} \mathrm{O}_{2} \mathrm{I}$
5th Phase Calculation with $\mathrm{C}_{29} \mathrm{O}_{2} \mathrm{I} ; \mathrm{R}=0.253$
[Phase Calculation from nd Fo, $R=0.253$]
Ord Fo Fourier giving $\mathrm{C}_{32} \mathrm{O}_{9} \mathrm{I}$
6th Phase Calculation with $\mathrm{C}_{32} \mathrm{O}_{9} \mathrm{I} ; \mathrm{R}=0.23$
3rd Difference giving $\mathrm{C}_{3} 5_{9} 9^{I}$
7 th Phase Calculation with $\mathrm{C}_{31} \mathrm{O}_{9} \mathrm{I} ; \mathrm{R}=0.223$
with $\mathrm{C}_{28} \mathrm{O}_{8} \mathrm{I} ; \mathrm{R}_{2}=0.216$
with $\mathrm{C}_{28} \mathrm{O}_{9} \mathrm{I} ; \mathrm{R}_{3}=0.204$
with $\mathrm{C}_{28} \mathrm{O}_{7} \mathrm{C} I I ; ~ \mathrm{R}_{4}=0.204$
with $\mathrm{C}_{28} \mathrm{O}_{7} \mathrm{CII} ; \mathrm{R}_{5}=0.198$
8th Phasing with $\mathrm{C}_{30} \mathrm{O}_{8} \mathrm{ClI} ; \dot{\mathrm{R}}=0.183$
Least Squares Refinement

$$
R=0.129
$$

TLBLE 13

Aton No.	Itom Type	Densities in $/ \mathrm{R}^{3}$									
		$Q 1$	P2	D_{1}	D_{2}	83	D_{3}	4	D_{4}	$f 5$	D_{5}
1	Carbon		2.67	0.65	2.2	3.3	0.40	3.5	0.51	4.9	0.31
2	"	0.9	1.5	1.1	1.1	1.4	0.20	3.6	0.076	5.1	0.16
3	"		3.15	1.41	0.27	3.6	0.39	4.2	0.05	5.5	$0 . \overline{4} 1$
4	"	2.84	5.5	0.12	0.54	4.0	0.55	3.8	0.28	4.5	0.94
5	"		2.7	0.10	2.8	4.4	0.05	4.5	0.05	4.9	0, 79
6	"	1.4	2.4	1.4	0.5	2.0	1.076	3.9	0.34	4.6	0.39
7	"		2.83	2.28	0.075	3.60	0.37	3.7	$0 . \overline{2} 9$	4.1	0.55
8	"	2.89	5.5	1.07	0.06	4.4	0.25	4.8	0.40	6.1	0.37
9	"		3.73	1.97	0.333	4.5	0.30	4.4	0.20	4.67	0.32
10	"	3.18	5.8	0.40	0.87	4.0	0.47	4.3	0.07	4.9	0.14
11	"		2.7	1.84	0.32	3.4	0.25	3.5	$0 . \overline{3} 6$	3.5	0.38
12	"			1.41	0.24	3.5	0.02	3.8	0.05	4.10	0.2
13	"	2.80	5.5	0.05	0.08	4.0	0.05	4.0	0.15	4.3	0.28
14	"			1.50	0.75	3.9	0.30	3.7	$0 . \overline{3} 1$	4.5	0.23
15	"	3.18		0.18	0.31	4.2	0.30	4.1	0.02	4.9	0.32
16	"		3.86	1.46	0.75	4.4	0.10	4.3	$0 . \overline{40}$	4.6	0.31
17	"		2.2		1.84	3.7	0.30	4.0	0.52	4.3	0.30
18.	"				1.81	2.9	0.20	3.7	0.19	4.2	0.11
19	"		2.84	1.70	0.99	3.6	0.32	3.3	0.50	3.55	0.22
20	"	2.80	5.06	0.4 .8	0.39	4.3	0.10	4.4	0.10	5.2	0.43
21	"	0.7	1.8	0.95	0.80	1.60	0.5	3.9	0.16	4.2	0.23
22	"		2,87	1.52	0.32	4.2	0.52	4.2	0.02	5.3	0.75
23	"	3.25	3.8	0.59	0.27	3.0	0.70	3.3	0.55	4.2	0.4 .2
24	"	1.14	2.87	1.06	0.79	3.0	0.54	3.4	0.39	4.1	0.37

(Table 13 Conta.)

Aton	Atom	Densities in e/ R^{3}									
No.	Type	Q1	$\ell 2$	D_{1}	D_{2}	Q3	D_{3}	84		P_{5}	D_{5}
25	Carbon	0.9	2.4	1.3	1.1	1.9	1.20	3.2	0.56	5.6	0.31
26	"	1.5	3.0	1.0	1.65	2.3	0.44	3.8	0.23	4.5	$0.0{ }_{4}$
27	"							1.6	2.05	2.67	0.51
28	"							1.7	1.94	2.98	0.37
29	"					1.6	0.80	3.1	0.90	3.7	0.56
30	"	1.0	1.6	1.15	1.70	2.9	0.85	2.6	1.02	2. $9 / 2.1$	0.63
31	Oxygen	2.8	4.4	0.17	0.15	3.9	0.15	5.1	1.30	6.2	0.24
32	"		3.56	1.83	0.14	5.8	0.30	6.0	0.26	7.12	0.16
33	"							2.1	1.35	2.6	0.60
34	"		2.67	2.28	0.25	4.9	0.25	5.8	0.43	7.2	0.21
35	"					2.3	1.23	4.8	1.032	5.2	0.53
36			2.80	1.89	0.61	4.3	1.30	5.5	$0 . \overline{3} 5$	7.0	0.56
37	"	2.97	5.2	0.48	0.15	4.8	0.76	5.5	0.96	6.0	0.42
38	"	2.86	5.5	0.14	0.63	4.4	1.072	5.2	0.66	5.7	0.40
39	Chlorine	4.3 *	8.5*	2.3	2.90	8.6	1.69	12.6	2.46	13.7	0.25
40	Iodine	29.8	48.1	5.8	7.38	43.4	4.35	41.3	3.7	49.1	1.18
$\begin{aligned} & 41 \\ & 42 \end{aligned}$	Spurious	$\begin{aligned} & 4.63^{*} \\ & 2.92 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4 \cdot 3 \\ & 4.32 \end{aligned}$							
43	"			1.28							
44	"			2.03							
45	"			1.27							
46	"			1.30	1.50						
47				1.90							
48	"			1.36	3.2						
49	"			1.40	1.76						
50	"			1.41	2.55						
51	"	3.10	4.0	0.61	1.33						
52	"	2.84	4.4	1.75	2.49						
53 54	"		2.74	1.41	0.35	3.6	2.21				
54 55	"	0.55	0.60	0.65	1.73	2.6					
55			1.60			1.1					

TABLE 17

Position and Tomperature Paraneters

Atom Type and No.	x / a	F/b	\%/0	B
C(1)	0.3454	0.3476	0.2421	4.46
C(2)	0.2704	0.3887	0.2974	0.35
C(3)	0.3116	0.4897	0.2995	2.18
c(4)	0.5980	0.0074	0.2735	2.14
$C(5)$	0.3506	0.4668	0.1642	4.63
c(6)	0.4372	0.4977	0.0910	2.81
c(7)	0.6112	0.0843	0.4441	4.10
c(8)	0.1066	0.3708	0.1899	0.24
c(9)	0.2265	0.3376	0.1380	1.44
c(10)	0.3415	0.3669	0.1594	3.00
C(11)	0.1975	0.3480	0.0629	6.38
$c(12)$	0.0598	0.3283	0.0398	1.66
C(13)	0.9747	0.3906	0.0755	3.50
C(14)	0.0099	0.3959	0.1604	2.32
c(15)	0.8871	0.4215	0.2090	2.10
C(16)	0.8462	0.3472	0.2584	3.37
C(17)	0.9908	0.4833	0.0487	3.80
C(18)	0.8244	0.3644	0.0564	2.82
c(19)	0.4508	0.3211	0.1087	4.86
$c(20)$	0.6089	0.1137	0.2789	1.71
C(21)	0.5266	0.4798	0.2523	5.25
C(22)	0.1209	0.3687	0.2660	2.10
C(23)	0.0867	0.0536	0.4166	1.70
c(24)	0.2136	0.0755	0.4211	3.86

(Table 17 Conta.)

Atom Type and No.	x / a	y / b	z/0	B
C(25)	0.2318	0.1477	0.3693	4.58
C(26)	0.0348	0.1094	0.3746	3.21
C(27)	0.8537	0.0747	0.1578	5.8
C(28)	0.9747	0.1262	0.1690	4.50
C(29)	0.0555	0.2983	0.4805	4.59
$\mathrm{C}(30)_{1}$	0.7457	0.3074	0.3792	4.48
$\mathrm{C}(30)_{2}$	0.6923	0.3271	0.3579	4.48
$0_{1}(31)$	0.4148	0.2823	0.2659	5.05
O_{2} (32)	0.8107	0.0320	0.2150	2.20
$0_{3}(33)$	0.8136	0.0568	0.0938	9.06
$\mathrm{O}_{4}(34)$	0.5257	0.1242	0.4735	2.65
$0_{5}(35)$	0.7325	0.1002	0.4411	5.91
$0_{6}(36)$	0.7853	0.3788	0.3103	2.88
0 (37)	0.8336	0.2774	0.2397	5.26
$0_{8}(38)$	0.1109	0.1604	0.3397	4.47
CI(39)	0.4498	0.0129	0.0536	4.94
$\mathrm{Br}(40)$	0.1241	0.0801	0.1077	5.06

TLABLE 18

Comparison of Fo and Fc

(Table 18 Conta.)

*	H	K	*		K		*		H	K
I	Fo	Fo	L	Fo		Fc		I	Po	E'0
			* 0		9			3	17	13
*	0	6	1	31		28		4	31	38
0	38	43	3	64		59		5	24	20
1	26	39	4	22		23		6	46	40
2	25	31	5	86		75	*	0	0	14.
3	25	25	6	26		28		0	36	40
4	114	128	7	23		25		3	33	30
6	70	69	8	23		20		6	39	36
8	49	45	9	99		108	*	0	0	15
9	75	77	11	31		28		1	36	4
10	107	114	13	33		34		6	31	22
14	28	33	* 0		10		*		0	16
*	0	7	0	59		51		4	35	2
1	32	33	1	82		84	*			0
2	144	150	2	26		23		2	148	152
3	49	36	3	50		46		3	158	146
4	39	45	7	64		64		4	95	93
5	67	55	13	38		44		5	121	111
6	115	115	0		11			6	94	92
7	42	45	1	36		41		7	79	65
8	40	31	2	55		48		8	68	1
9	24	18	3	28		31		9	60	40
10	44	54	4	31		27		10	29	15
11	45	54	5	32		18		11	57	53
12	59	62	6	40		40		12	56	54
14	20	16	9	73		77		13	55	40
* 0	0	8	12	36		39		14	38	17
0	55	35	15	32		6		15	16	19
1	44	43	* 0		12			16	63	56
2	55	56	0	63		50	*	1	1	1
3	118	114	2	47		41		2	135	126
4	94	113	3	46		39		3	121	114
6	40	39	4	71		72		4	136	$13 i$
7	68	70	5	51		42		5	100	90
8	75	74	6	52		52		6	83	73
9	28	7	8	33		33		7	57	55
10	53	51	* 0		13			8	80	72
11	27	28	1	39		32		9	137	$13 i$
14	33	19	2	39		38		10	56	52

(Table 18 Contc.)

(Table 18 Conta.)

(metlo 18 (1)nci.)

* Omission (see page 127).

(Table 18 Contd.)

* H		K		H		K				H		K	
L	Fo	Fc	*		Fo		Fc		L		Fo		Fc
7	62	72		3		7				3		11	
8	81	88	0		80		74		0		48		52
9	59	37	1		74		67		1		38		42
10	57	39	3		37		36		2		30		36
11	48	40	4		57		64		5		40		34
12	51	48	5		76		81		7		4.1		28
13	50	35	6		55		47			3		12	
14	41	41	7		43		39		0		28		15
* 3		4	8		42		36		1		28		22
0	149	159	9		39		31		2		28		43
1	73	77	10		69		73		3		52		43
3	48	49	13		42		40		4		45		53
4	79	88	14		30		35		5		4.2		32
5	67	68	*	3		8			7		30		37
6	70	79	0		15		12		9		42		19
7	39	27	1		61		60	*		3		13	
8	50	33	3		38		48		0		4.4		44
9	53	45	4		69		62		3		42		33
10	$4{ }_{4}$	55	5		54		57		5		26		28
11	46	50	6		54		63	*		3		14	
12	49	44	7		43		47		0		27		31
* 3		5	8		4		37		1		38		38
0	80	76	9		42		47	*		4		0	
1	67	65	11		31		34		0		122		138
2	74	86		3		9			1		62		65
3	115	110	0		33		38		2		103		88
4	66	72	1		34		23		4		51		59
5	75	81	2		84		76		6		103		9.
6	79	62	3		65		60		7		21		17
	72	66	6		52		51		8		94		87
8	68	78	7		64		66		9		23		6
9	62	61	9		18		30		10		69		68
10	69	71	10		22		29		11		29		10
* 3		6	11		42		42		12		31		14
0	58	73		3		10			13		34		19
	38	47	0		46		46		14		53		52
2	57	60	1		38		32		15		27		17
3	34.	43	2		28		33		16		16		22
5	47	28	3		28		40		17		16		2
6	82	95	4		39		4.		18		37		40
7	61	62	5		48		55	*		4		1	
8	53	40	6		39		36		0		123		66
11	59	56	8		48		40		1		65		69
12	42	45	11		19		34		2		104		112

(Table 18 Conta.)

(Table 18 Conta.)

*	H		K		*	H		K		*	H		K	
I		Fo		Fc	I		Fo		Fc	I		To		Fo
5		14		46	7		19		9	10		41		34
6		37		39	8		78		69	14		47		43
- 9		24		30	9		47		54.		5		5	
*	4		12		10		64		64	0		54		57
0		53		49	12		45		34	1		44		41
3		39		38	14		37		35	2		55		56
4		39		40			38		17	3		40		51
5		23		16	*	5		2		4		44		42
6		23		20	0	,	69		71	5		79		74
7		24		14	1		53		56	6		4.1		42
12		36		15	2		68		68	7		43		42
*	4		13		3		40		54	11		35		30
2		43		53	4		62		79	12		42		24
4		18		10	5		78		87	*	5		6	
6		24		29	6		64		68	1		28		32
*	4		14		7		51		49	2		95		9%
0		48		57	9		64.		60	3		60		5.
3		33		26	10		28		17	4		58		55
*	4		15		11		30		23	6		48		3%
1		23		18	12		31		32	7		54		60
4		23		9	13		46		38	8		50		43
*	5		0		14		28		32	9		25		18
1		11		12	* 0		80		82	10		26		20
2		54		44	1		55		55	11		42		49
3		52		57	2		55		74	*	5		7	
4.		33		22	3		41		50	0		73		80
5		35		50	4		34		41	1		48		43
6		97		92	5		45		32	2		45		48
7		4.6		43	6		64		61	3		54		61
8		59		55	7		56		52	5		48		45
9		23		10	8		65		55	8		54		39
10		16		14	10		53		${ }_{4}$	9		18		14
11		66		65	11		33		34	11		51		39
12		48		47	12		55		50		5		8	
13		4.3		43	13		42		48	0		42		47
19		14		17	*	5		4		1		57		46
*	5		1		2		78		78	2		23		33
1		65		74	4		74		78	3		50		48
2		29		30	5		59		48	4		56		43
3		34		39	6		38		25	5		45		28
4		54		50	7		21		26	6		32		26
5		87		95	8		41		55	7		37		3.1
6		29		32	9		61		57	10		19		27

(Table 18 Conta.)

TURRAEANTHTN

Introduction

Turreeanthin was isolated ${ }^{57}$ from Turraeanthus afrioanus and its structure has been put forward ${ }^{58}$ as (I) below. A few mg. of the p-bromo benzoate derivative of its hydrochloride

(I)
(II)
supposed ${ }^{58}$ to have the structure (II) was supplied for X-ray examination by T.G. Walsall and P. Toft of Oxford University. The purpose of the X-ray crystallographic study is to confirm this structure and to determine the configuration at $C(21), C(23)$ and $C(24)$.

The preliminary investigation of the material was performed by R.D. Gordon of the Department of Chemistry, University of Ibadan. This included orystallisation of the original powder and the determination of cell dimensions, space group and molecular weight. The cell dimensions were determined from rotation and Weissenberg photograph calibrated with copper, aluminiun and sodiun chloride powder lines.

Some of the later work, in the collection of intonsity data, was also performed independently by R.D. Gordon. The set of intensities that was finally used included some of the (hhl) and (hk6) data colleated by him. The cell dimensions and space group determinations were repeated in order to oheck the results of R.D. Gordon. No significant differences were observed.

Crystallisation and Crystal Data

Small colourless lath-shaped crystals grew from the powder supplied from a benzene/methanol mixture. It was not possible to recrystallise mete
many times in order to obtain suitable crystal for sincle crystal photoeraphs.

From rotation and Weissenberg photographs, taken about the unique monoclinic o axis, and the molecular formula of the compound given as
$\mathrm{C}_{39} \mathrm{H}_{54}{ }_{6}{ }_{6} \mathrm{Br} \mathrm{Cl}$, the folloring orystal data wore deduced:

$$
\begin{aligned}
a & =16.743 \pm 0.06 \AA \\
b & =16.473 \pm 0.06 \mathrm{~A} \\
c & =7.589 \pm 0.03 \AA \\
\beta & =118.95 \pm 0.2^{\circ} \\
V & =a b c \sin B \\
& =1831.0 \mathrm{~A}^{3} \\
M & =734.2 \\
\mu(\operatorname{cuK} \alpha) & =37 \mathrm{cn}^{-1} \\
F(000) & =776
\end{aligned}
$$

Space Group Determination

The only systenatic absences were 001 with $1 \neq 2 n$. Thus the spacc group could be P_{1} (No.4) or $\mathrm{P}_{1} / \mathrm{n}$ (No.11). Spase Group $\mathrm{P} 2_{1}$ has $\mathrm{Z}=2 \mathrm{~m}$. $\mathrm{P} 2_{1} / \mathrm{m}$ has $\mathrm{Z}=4$. The density of $1.34 \pm 0.05 \mathrm{~g} / \mathrm{ml}$ noasured by flotation in aqueous KI solution, agrees with a celculated value of $1.331 \mathrm{~g} / \mathrm{nl}$ for two molecules per unit cell. Since the nolecule as a natural product ioes not have a plane or centre of symetry, the space froup was unenbiguously decided as ${ }^{\text {P2 }} 1_{1}$.

Kieasurenont of intensitios

Froi Meissongerg photographs taken with the best two crystils, of
 were recorded and estinetod visually as before. Anothor 200 were observable but too weak to be estinated. This total nurber of observed reflections (952) represents less then 20 per cent of the total number of accessible reflection (5037) with Cuko radiation. Very few reflections were observed
beyond $\sin \theta$ value or 0.7 . The repetition of the hko layer photograph rovealed that the quality of photograiphs deteriorated with exposure to X-rays. The intensities were corrocted for Lorentz and Polarization effects as before and put on a comon scale with the aid of a Wilson plot. ${ }^{25}$ temperature factor of 7.5 i was determined. This high temperature factor partially accounts for the small number of observed reflections. A complex structure such as this, usually held together in the crystal by Van der Waals forces, is prone to oscilate and thus increaseg the effect of atonic vibretions.

The scale factors for the highest layers, hk5 and hk6 were rather unreliable but because of tho rathor small maner of available reflections they were included all the same. The number of availeble data is considered small for the complexity of the structure but the problem can be lessened by improving the accurecy of the data. To this end, the data obtrined from each layer photograph would be correlated fron stage to stage.

There was no absorption correction.
Determination of the Bromine and Chlorine Positions
3-D Patterson: A three dimensional summation using the observed $|F(0 B S)|$ " as co-efficients gave the map of fig. 48 as the Harker section of $w=\frac{1}{2}$. The bromine-ibromine vetor was quite prominont and fron its u and v values, the x and y co-ordinates for bromine were calculated as

$$
x=0.4817 \text { and } y=0.1367
$$

Figure 48

There were three othor poaks A, B, and C, all havin ${ }^{\text {approxinately the }}$ same weight on this section. Onc of this muct be the chlorine-chlorine vector. In order to decido the actual Cl - Cl vector peak, the x and y co-ordinates derived from the three positions were separately combined with those for the bromine atorn and structure factors were calculated for all the hko reflections. The reliability index obtained are as rollows:

Br and $\mathrm{Cl}(A) ;$	$R=55.16 \%$
Br and $\mathrm{Cl}(\mathrm{B}) ;$	$R=52.03 \%$
Br and $\mathrm{CI}(\mathrm{C}) ;$	$R=52.53 \%$
Br only;	$R=49.6 \%$

The remerkable feature of this result was that the isertion of a chlorine aton in each of the three possible positions increased the reliability index.

2-D Patterson: A two-dinensional Patterson summation was next calculated and the rosults shor the bromine-bromine vector peak becoming much less prominent. In fact, position A (fig. 43) of the probable chlorinc-chlorine vectors beaane most prominont. Position C had approxinately the sane weight as tho Br - Br vector peak and position B was much smallor than in the Hexker section. Structure fectors were calculatod for tho iko reflections with the brorine position paraneters derived fron vector peak \boldsymbol{A}. The R-factor was 48.2%. This is smaller than that calculated from the bromine position which was deduced from the Harker section. Chlorino wes then inserted in turn in the other two positions and in the fomer bronine position,
together with bromine in its new position (A). The resulting structure factor calculations gave R-factors which were higher than 4.8.2\%.

Bromine was then inserted in turn in the positions deduced fron vector peaks B and C. Tho structure factors caculated for the hko reflections gave R-factors of 56.6 and 54.8% respoctively. Sinilar calculetions for bromine in each of these positions and chlorine in one of the other three positions showed a worsening of the R-factor. It thorefore appears that whilst bromine could be in the position (1) deduced fron the prominent Patterson - Herker peok or (2) deduced from the vector peak Λ, it is uncertain that chlorinc could be located from any of the vector peaks A, B and C.

2-D Fourier Surnations: To locate the chlorine aton otherwise, two two. dimentional Fo Fourier sumnations were calculated. The phases were thoss calculated with bromine in tho two alternative positions. The first sumation with bromine in (1) showed two prominont peaks apart from that of bromine. Structure factors calculated for hko reflections with the bromine (1), and chlorine in one of the two positions gave on R-fector of 48.2%; with chlorine in the othor position the R-factor was 51.3%. The second chlorine position wes therefore rejected.

The socind sumation with bromine in (2) had four proninont peaks apart fron that of brominc. Structure fectors for the hko reflections with bromine (2) and each of the four probable positions for chlorinc nere calculated. The R-factors were: 47.0, 50.3, 51.3 and 50.6 per cent. Three of these positions were acoordingly rejeeted. There were therefore two sets of x and y co-ordinates
for the bromine and chlorino given by

Br

$$
\begin{aligned}
\text { (i) } x & =0.4825 \\
y & =0.1362 \\
\text { (ii) } x & =0.1041 \\
y & =0.1291
\end{aligned}
$$

CI

$$
\begin{aligned}
& x=0.2717 \\
& y=0.8750 \\
& x=0.4750 \\
& y=0.3617
\end{aligned}
$$

Neither of the two positions for chlorine corcesponded with any of those derived fron the Patterson. To decide which set of paraneters should be used for further calculations, the three-dinensional Patters on was reexarined. Since the z (unique axis) parancter of the bromine atons in the structure nay be assigned arbitrarily, it was chosen as 0.000 . Thet of chlorine could be decidod by finding the vector peak for the correspondins brominewchlorine positions. In each case, such a peak should lio on a lioc parallel to the unique axis. There was no such peak for the second set of parameters and the first set was therefore employed for furthor celculations with z-parameter for chlorine equal to 0.3550 . The structure fector calculation for the hkl reflections gave a reliability index of 42.55 f , with bromine alone and 43.48% with bromine and chlorine.

Structure Analysis

A three dimensional Fouricr sumation with Fo coerficionts phased on the bromine and chlorine positions, was colculated. The two atoms were given a terperature factor of $7.5 \mathrm{~h}^{2}$. The resulting densities were generally low. Apart fron the two atons inserted the highest density was $1.9 \mathrm{~d} / \mathrm{A}^{3}$. Twenty-four peaks of densities $1.0 \mathrm{e} / \AA^{3}$ and above were selected
as carbon atoas. These together with the bromine and the chlorine were used in calculating another set of structure factors. The R-factor was 40.5%. The second Fo Fourier sumation gave six new peaks which did not make much chemical sense and therefore a "differernce" synthesis in which the 200 unobserverd reflections had Fo values of half the threshold, based on the previous 26 atoms was calculated.

This led to the ronovel of ton atomic centres with negative densities of 1.0 \& R^{3} and the addition of seven now centres which were stereocherically sonsible. No definito foature of the molecule was still recornisable. The previous posjition and tenperature paranters were acijusted and the third structure factor calculations gave a reliability incex of 37.06%

This was followed by anothor difference synthesis. Fron this it was observed that a peak canc out persistently highly positive in the diffocence syntheses being $1.4 \mathrm{e} / \mathrm{A}^{3}$ in the first one with a temperature foctor of $7.5 \AA^{2}$ and $1.0 \mathrm{e} / \mathrm{R}^{3}$ in the second one with $B=8.0 \AA^{2}$. It was about 1.9 I from the present chlorine position. All other atoms inserted had densities of value between 0.5 to $-0.5 \mathrm{~d} / \mathrm{A}^{3}$. Their temperature and position parameters were adjusted. There were ten new peaks which wore stereochemically acceptable as atomic positions. With these 33 atons, the model shows a six-mombered ring attachoc to a fivemembered ring. This is probably the section of rings C and D in the suggested structure.

The fourth structure factor celculation lased on these 33 atons made up bromine, chlorine and 31 carbon atoms gave a reliability indox of $340 \% \%$ The calculated structure factors are compared with observed ones in Teble 20 and the co-ordinates of the 33 atoms are shown in Table 19.

No further work was done on this structure.

Discussion

The solution of the crystal structure is beset by the quality and quantity of the available data. The relative intensities obtained from each layer photograph are within experinental error reliable but the method of scaling the different layers together (Wilson's method) depends on a statistical law. Since this requires a large number of date, (which were not available particularly from hk5 and hk6 layers), the soale factors initially used are not altogether trustworthy and must be adjusted from stage to stage. In addition, there was no correction for absorption.

The quantity of the data would make the resolution of peaks rather iow. In a three-dimensional synthesis, however, distences of 1.1 to 1.2 N shiuld be resolved.

An isotropic temperature factor of $7.5 \mathrm{~A}^{2}$ is not likely to represent thermal vibrations alone. There is probably a certain amount of disorder. The high value may also be partly due to compensation for the uncorrected absorption effects. The diminisining values of the R-factor is an indication that the correct structure is being approached. The small adount of data is likely, however, to require many more cycles of difference syntheses before the final structure is arrived at. Carlisle and Ladd ${ }^{59}$ rocently found that, nuber of working with a slightly better reflections to 解ons ratio (947 ; 35) in the same space group, several difference syntheses were required to bring the R-factor from 50% to 37% (Least square refinement reducing R-factor to 25%).

Int the moment, all atoms, other than bromine and chlorine, are being treated as carbon. The only chemical feature recognisable is a cyclohexano ring, formed by atoms 15, 16, 17, 32, 4 and 30 of table 19. The ring is fused to a five-membered ring formed by atoms 17, 32, 5, 31 and 13. ifter a few more cycles, it should be possible to recognize the whole molecule and hence replace supposed carbon atoms by oxygen at the appropriate positions. This should lead to a more drestic fall in the R-factor than has been fond so far.

Flow Chart

1st Phase Calculation with $\mathrm{Br}+\mathrm{Cl} ; \mathrm{R}=43.5 \%$

1st Fo Fourier giving 24 atoms regarded as carbon

nd Phase Calculation with $\mathrm{C}_{24}{ }^{\mathrm{ClBr}} ; \mathrm{R}=40.5 \%$
\downarrow and Fo Fourier
1st Difference giving $\mathrm{C}_{24} \mathrm{ClBr}-10 \mathrm{C}+7 \mathrm{C}$
\downarrow
3rd Phase Calculation with $\mathrm{C}_{21} \mathrm{ClBr} ; \mathrm{R}=37.1 \%$ \downarrow
2nả Difference giving $\mathrm{C}_{31} \mathrm{ClBr}$
\downarrow
4th Phase Calculation with $\mathrm{C}_{31} \mathrm{ClBr} ; \mathrm{R}=34.3 \%$

TABLE 19

	z/a	y / b	z / c	B	
1.	0.4867	0.1383	0.000	8.50	Br
2.	0.2750	0.8817	0.3634	7.50	Cl
3.	0.1700	0.8033	0.0100	8.50	C
4.	0.8100	0.6517	0.1500	7.50	C
5.	0.2700	0.2100	0.4767	7.00	C
6.	0.2283	0.4350	0.3733	7.50	C
7.	0.4150	0.3300	0.3267	7.40	C
8.	0.5100	0.3283	0.3400	7.00	C
9.	0.5950	0.3717	0.4900	7.80	C
10.	0.5983	0.5100	0.0067	8.80	C
11.	0.9717	0.6783	0.1633	7.30	C
12.	0.9467	0.3550	0.0600	7.30	C
13.	0.8700	0.8533	0.1333	7.50	C
14.	0.0650	0.6317	0.2600	7.00	C
15.	0.0417	0.3300	0.3533	7.10	C
16.	0.0467	0.2250	0.2833	8.00	C
17.	0.1300	0.1717	0.3500	8.00	C
18.	0.5083	0.1383	0.4867	8.30	C
19.	0.4350	0.0933	0.1117	7.50	C
20.	0.1307	0.0741	0.2000	7.50	C
21.	0.2117	0.5750	0.1367	7.80	C
22.	0.7117	0.1517	0.2767	7.70	C
23.	0.7067	0.3567	0.3217	7.10	C
24.	0.0233	0.2650	0.0367	7.50	C
25.	0.6400	0.7583	0.0133	7.50	C
26.	0.8500	0.3966	0.0133	7.50	C
27.	0.3242	0.9783	0.0683	7.50	C
28.	0.1050	0.7383	0.2867	7.50	C
29.	0.6633	0.0050	0.3500	7.50	C
30.	0.1283	0.3850	0.4900	7.50	C
31.	0.7800	0.8417	0.1467	7.50	C
32.	0.7867	0.7217	0.0500	7.50	C
33.	0.6700	0.2633	0.3433	7.50	C

TABIE
Comparison of Fo and Fo

H	K	L	Fo	Fc	H	K	L	Fo	Fc
0	-11	0	108	103	1	-11	0	118	59
0	-10	0	134	179	1	-10	0	123	22
0	-8	0	251	436	1	-10	1	134	141
0	-8	2	190	258	1	-9	0	101	187
0	-8	4	188	163	1	-9	1	113	157
0	-7	0	180	317	1	-9	2	142	165
0	-7	1	235	333	1	-9	3	113	169
0	-7	2	210	228	1	-8	0	273	335
0	-7	3	166	173	1	-8	1	253	86
0	-6	0	71	343	1	-3	2	256	203
0	-6	1	307	479	1	-8	4	144	110
0	-6	2	164	77	1	-7	0	84	180
0	-6	3	215	221	1	-7	2	310	332
0	-5	0	117	165	1	-7	3	119	77
0	-5	1	321	311	1	-7	4	221	286
0	-5	2	290	55	1	-6	0	521	275
0	-5	3	400	408	1	-6	1	465	474
0	-4	0	944	1020	1	-6	2	175	285
0	-4	1	139	109	1	-6	3	136	51
0	-4	2	245	261	1	-6	4	132	270
0	-4	5	110	73	1	-5	0	525	443
0	-3	0	510	283	1	-5	1	500	451
0	-3	1	570	476	1	-5	2	224	361
0	-3	2	645	504	1	-5	3	255	324
0	-3	3	227	117	1	-5	4	214	208
0	-3	4	263	251	1	-5	5	80	171
0	-2	0	657	810	1	-4	0	527	343
0	-2	1	839	852	1	-4	1	139	132
0	-2	2	84	128	1	-4	2	411	337
0	-2	3	249	273	1	-4	3	185	309
0	-2	4	93	185	1	-4	4	137	288
0	-2	5	109	172	1	-4	6	114	79
0	-1	1	256	346	1	-3	0	778	362
0	-1	2	251	184	1	-3	1	822	586
0	-1	3	507	450	1	-3	2	357	454
0	-1	4	210	39	1	-3	3	213	129
0	-1	5	51	41	1	-3	4	149	336
0	1	6	54	46	1	-3	5	111	966
0	2	6	100	70	1	-3	6	81	60
0	3	6	73	75	1	-2	0	461	310
0	4	6	113	126	1	-2	1	699	10888
0	6	6	102	69	1	-2	2	282	278

H	K	L	Fo	Fc	H	K	L	Fo	Fc
1	-2.	3	312	383	1	7	,	130	24
1	-2	4	122	177	1	8	1	134	173
1	-2	5	119	161	1	8	2	223	208
1	-2	6	109	73	1	9	1	104	94
1	-1	1	499	604	1	10	1	117	125
1	-1	2	509	337	1	11	0	152	203
1	-1	3	71	280	2	-12	1	122	34
1	-1	4	285	199	2	-11	0	163	189
1	-1	5	59	121	2	-10	0	283	206
1	-1	6	42	39	2	-10	1	160	141
1	0	1	427	513	2	-10	3	162	208
1	0	2	517	796	2	-9	0	268	50
1	0	4	111	231	2	-9	1	24.2	147
1	0	6	79	132	2	-8	0	80	269
1	1	1	284	216	2	-8	1	314	281
1	1	2	733	746	2	-8	2	308	389
1	1	3	255	166	2	-8	4	113	195
1	1	4	86	173	2	-7	1	365	107
1	1	5	56	67	2	-7	2	374	364
1	1	6	78	65	2	-7	3	127	75
1	2	0	757	334	2	-7	4	201	237
1	2	1	376	670	2	-6	0	546	342
1	2	2	311	430	2	-6	1	126	49
1	2	3	212	357	2	-6	2	203	272
1	2	4	206	66	2	-6	3	265	386
1	2	5	103	156	2	-6	4	149	84
1	3	0	805	859	2	-5	0	510	617
1	3	1	251	195	2	-5	1	311	269
1	3	2	592	643	2	-5	2	174	286
1	3	3	279	321	2	-5	3	146	343
1	3	4	295	282	2	-5	4	141	59
1	4	0	191	422	2	-5	6	143	121
1	4		263	428	2	-4	0	434	277
1	4	2	541	451	2	-4	1	573	791
1	4	3	336	201	2	-4.	2	206	453
1	4.	4	96	173	2	-4	3	140	220
	5	0	125	246	2	-4	4	168	251
1	5	1	293	507	2	-4	5	131	163
1	5	4	120	12	2	-4	,	106	57
1	5	6	98	77	2	-3	0	758	186
1	6	0	187	242	2	-3	1	481	414
1	6	1	363	388	2	-3	2	547	585
1	6	2	370	250	2	-3	4	316	266
1	6	3	251	268	2	-3	5	85	84
1	6	4	132	99	2	-3	6	88	43
1	7	0	497	474	2	-2		186	179

H	K	L	Fo	Fc	H	K	L	Fo	Fc
2	-2	1	167	550	2	6	0	167	230
2	-2	2	409	280	2	6	1	295	269
2	-2	3	381	612	2	6	3	159	139
2	-2	4	173	55	2	7	1	169	124
2	-2	5	70	180	2	7	2	249	291
2	-2	6	120	52	2	8	0	118	37
2	-1		348	298	2	8	1	82	84
2	-1	1	693	777	2	9	0	102	43
2	-1	2	190	200	2	9	1	139	189
2	-1	3	266	520	2	10	0	122	90
2	-1	4	166	105	3	-12	1	120	218
2	-1	5	96	106	3	-10	0	204	306
2	-1	6	70	81	3	-10	1	152	165
2	0	0	503	264	3	-10	2	152	54
2	0	1	595	636	3	-9	0	237	194
2	0	2	134	498	3	-9	1	236	362
2	0	3	201	279	3	-9	2	91	169
2	0	4	215	431	3	-8	0	162	42
2	0	5	63	31	3	-8	1	198	212
2	0	6	84	77	3	-8	2	246	138
2	1	0	609	158	3	-8	3	167	99
2	1	1	642	668	3	-7	0	247	434
2	1	2	569	605	3	-7	1	309	174
2	1	3	430	481	0	-9	0	117	100
2	1	4	380	357	0	-9	1	196	163
2	1	6	61	62	3	-7	2	303	4.15
2	2	0	44.3	423	3	-7	4	140	122
2	2	1	547	373	3	-7	5	115	87
2	2	2	333	362	3	-6	0	501	508
2	2	3	142	216	3	-6	1	180	317
2	2	4	100	148	3	-6	2	340	343
2	2	5	75	235	3	-6	3	198	118
2	3	0	332	139	3	-6	4	219	81
2	3	2	380	434	3	-6	6	96	38
2	3	3	177	110	3	-5	0	291	138
2	3	4	196	288	3	-5	1	636	294
2	4	0	494	42	3	-5	2	240	393
2	4	1	103	261	3	-5	3	241	258
2	4	2	496	616	3	-5	6	61	61
2	4	3	321	331	3	-4	0	930	1107
2	4	4	222	306	3	-4	1	422	270
2	5	0	14.8	180	3	-4	2	226	576
2	5	1	230	224	3	-4	3	394	240
2	5	2	205	223	3	-4	4	212	147
2	5	3	212	220	3	-4	5	100	79
2	5	4	102	120	3	-4	6	130	155
					3	-3	0	1074	1220
					3	-3	1	480	439
					3	-3	2	165	462

H	K	L	Fo	Fc	H	K	L	Fo	Fic
3	-3	2	165	462	3	5	2	151	188
3	-3	3	262	415	3	5	3	178	280
3	$\therefore 3$	4	159	80	3	6	1	117	87
3	-?	0	558	695	3	6	2	130	56
3	-2	1	278	368	3	7	0	236	181
3	-2	2	379	211	3	8	1	86	36
3	-2	3	115	150	3	8	2	151	191
3	-2	4	272	107	4	-12	1	145	145
3	-2	5	80	148	4	-11	0	197	211
3	-1	0	228	161	4	-11	2	165	118
3	-1	1	748	634	4	-10	0	152	151
3	-1	2	482	488	4	-10	2	154	256
3	-1	3	314	155	4	-10	4	172	98
3	-1	4	248	333	4	-9	0	165	47
3	-1	5	125	210	4	-9	1	397	520
3	-1	6	81	42	4	-9	2	124	136
3	0	0	122	514	4	-9	5	105	88
3	0	1	166	360	4	-8	0	147	53
3	0	2	512	641	4	-8	1	293	213
3	0	3	352	287	4	-?	2	104	91
3	0	4	229	292	4	-8	3	166	120
3	0	6	79	121	4	-7	0	282	603
3	1	0	263	553	4	-7	1	309	301
3	1	1	343	249	4	-7	2	256	316
3	1	2	350	152	4	-7	4	171	130
3	1	3	601	237	4	-7	6	103	96
3	1	4	216	105	4	-6	0	397	559
3	1	5	72	128	4	-6	1	449	316
3	1	6	101	110	4	-6	2	281	275
3	2	0	455	521	4	-6	3	205	86
3	2	1	531	527	4	-6	4	139	214
3	2	2	254	82	4	-6	5	123	61
3	2	3	360	534	4	-6	6	106	99
3	2	4	218	29	4	-5	0	577	64
3	2	5	61	132	4	-5	1	542	493
3	3	0	263	349	4	-5	2	245	353
3	3	1	311	344	4	-5	3	212	115
3	3	2	357	327	4	-5	4	75	51
3	3	4	213	166	4	-4	0	807	1009
3	3	5	100	103	4	-4	1	682	585
3	5	0	272	560	4	-4	2	382	298
3	4	1	230	143	4	-4	3	105	115
3	4	2	547	486	4	-4	4	162	167
3	4	4	138	243	4	-4	5	111	134
3	4	6	129	86	4	-4	6	76	94
3	5	0	101	198	4	-3	0	883	1019

H	K	L	Fo	Fc	H	K	L	Fo	Fc
4	-3	1	326	164	4	7	1	85	78
4	-3	2	608	454	4	8	0	176	104
4	-3	3	309	75	4	9	0	123	247
4	-3	4	321	250	5	-12	1	105	85
4	-3	5	89	75	5	-11	0	221	173
4	-2	0	788	591	5	-11	2	225	272
4	-2	1	624	444	5	-10	0	309	235
4	-2	2	4,44	357	5	-10	2	154	83
4	-2	3	97	104	5	--9	1	126	133
4	-2	4	130	69	5	-9	3	256	219
4	-2	5	106	98	5	-8	0	288	334
4	-1	0	227	68	5	.. 8	1	304	305
4	-1	1	680	613	5	-8	2	218	135
4	-1	2	390	617	5	-7	0	183	297
4	-1	3	454	412	5	-7	1	179	224
4	-1	4	483	337	5	-7	2	229	293
4	-1	5	83	157	5	-7	4	153	197
4	0	0	693	596	5	-6	0	176	322
4	0	1	194	198	5	-6	1	434	498
4	0	2	171	321	5	-6	2	152	289
4	0	3	370	133	5	-6	3	97	162
4	0	6	113	80	5	-6	5	51	88
4	1	0	550	698	5	-5	θ	741	348
4	1	1	161	237	5	-5	1	438	392
4	1	2	321	339	5	-5	2	332	250
4	1	3	321	218	5	-5	3	412	341
4	1	4	193	190	5	-5	5	67	82
4	2		480	644	5	-4	0	598	587
4	2	2	118	71	5	-4	1	411	405
4	2	2	118	71	5	-4	2	158	340
4	2	3	130	96	5	-4	3	197	251
4	3	1	242	400	5	-4	4	128	147
4	3	2	279	254	5	-4	5	101	87
4	3	3	174	121	5	-3		492	220
4	3	4	195	172	5	-3	1	309	80
4	4	0	24.2	291	5	-3	2	456	494
4	4	1	187	185	5	-3	3	246	229
4	4	2	95	238	5	-3	4	219	177
4	4	3	164	54	5	-3	5	66	10
4	5	0	238	454	5	-2	5	187	128
4.	5	1	115	193	5	-2	1	275	277
4	5	2	129	146	5	-2	2	98	225
4	5	3	118	173	5	-2	3	267	218
4	5	4	169	79	5	-2	4	214	234
4	6	0	79	12	5	-2	5	109	127
4	6	1	199	169	5	-1		166	537

H	K	L	Fo	Fc	H	K	L	Fo	Fc
5	-1	1	4.4	405	6	-6	3	124	211
5	-1	2	155	143	6	-5	1	441	495
5	-1	3	230	202	6	-5	2	339	305
5	-1	4	60	19	6	-5	3	167	330
5	-1	5	63	100	6	-5	4	97	178
5	0	0	493	64,4	6	-5	5	102	173
5	0	:	111	264	6	-4.	0	206	141
5	0	2	187	398	6	-4	1	362	277
5	0	3	354	337	6	-4	2	380	261
5	0	4	208	186	6	-4	3	104	111
5	0	5	91	98	6	-4	4	104	313
5	1	0	547	807	6	-3	0	480	472
5	1	1	189	357	6	-3	1	189	200
5	1	2	366	377	6	-3	2	559	481
5	1	3	143	67					
5	1	6	107	103					
5	2	1	251	250					
5	2	2	432	364					
5	2	3	153	220					
5	3	0	275	479					
5	3	1	342	325					
5	3	2	119	111					
5	3	4	94	70					
5	4	0	287	391					
5	4	1	133	64					
5	4	2	252	301					
5	4	4	266	196					
5	5	1	101	182					
5	5	2	138	85					
5	6	1	188	165					
5	6	2	175	71					
5	8	0	150	198					
6	-13	1	150	87					
6	-11	0	150	166					
6	-11	2	210	140					
6	-10	1	159	137					
6	-10	2	145	274					
6	-9	1	24:7	206					
6	-9	2	79	14.4					
6	-8	0	156	68					
6	-8	1	281	231					
6	-8	2	117	249					
6	-7	0	206	425					
6	-7	1	176	139					
6	-7	2	159	340					
6	-7	3	264.	145					
6	-7	4	133	204					
6	-6	0	152	86					
6	-6	1	297	115					

APPENDIX: COMPUTITNG

Apart from the use of a FACIT desk calculating machine for minor work, computers
calculations were carried out on IBM $1620{ }^{\text {at }}$ the Universities of Ghana, Lagos and Ibadan and a KDF 9 at the University of Oxford.

Fourier Synthesis: This was calculated on the IBM 1620 with progranmes obtained from Laboratorium fur Organische Chemie, Ridg. Technische Hochschule, Zurich through Dr. Max Dobler. There were two programmes, "ESI.D" and "2DFOU", both written in the Symbolic Programing System.

Because of the limited memory capacity of the 1620 , 3-dimensional syntheses had to be periormed in two phases:
(1) Summation over the first dimension using programme 'TSI.D' (Fourier Synthesis 1st Dimension) is carried out along the Z-direction. The programme is applicable to the following systems with the limitations stated:
(a) Triclinic. No limitations
(b) Monoclinic. The unique axis must be o-
(c) Orthorhombic. Orthorhombic space groups must not contain any glide planes.

The programme may be used for other space groups with some modifications.
(2) Sumation over the second and third dimensions using programme '2DFOU' uses the output from the FSI.D to calculate in x and y directions at a given z value. The product (Hrax +1) X (the number of y values for whice the density is to be calculated) should not exceed the value 1260.

Hmax is the maximum value of h. Since Hmax from the two crystallographio analyses was 20 , the programme was applicable to as much as 60 y values. In all calculations, y had a maxinum value of 31 .

The programme has no other limitations.
A 2-dimensional syntheses would use programme 2DFOU. alone with some adjustment of the INPUP data when used for the 3-dimensional summation.

A programme in FORTRAN, written by Professor D.A. Bekoe was also used. for the two dimensional Patterson summations to locate the iodine in Cedrela Odorata Substance B derivative.

The last three-dimensional Fo and difference summations were also carried out on the KDF9 with a programme written in ALGOI by Dr. J.S. Rollett. Structure Factor Calculation: A general structure factor programme also obtained from the Zurich Laboratory was used to calculate structure factors on the IBM 1620. The calculation is in two steps
(1) Preparation of Input Cards for the Structure Factor programme.
(2) The Structure Faotor prograrme.

The "preparation" cards (output from first step) contain h, k, 1, Fo, $\sin \theta / \lambda, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, \sin ^{2} \theta / \lambda{ }^{2}$. The $f^{t} s$ are the soattering faotors for a maximum of 6 atoms at the $\sin \theta / \lambda$ value corresponding to h, k, l, θ is the Bragg angle and λ, the wave length. $\sin ^{2} \theta / \lambda{ }^{2}$ was calculated from the formula

$$
\sin ^{2} \theta / \lambda{ }^{2}=R_{11} \cdot h^{2}+R_{12} \cdot h k+R_{13} \cdot h l+R_{22} \cdot k^{2}+R_{23} \cdot k l+R_{33} \cdot I^{2}
$$

where $R_{11}, R_{12}, R_{13}, R_{22}, R_{23}$ and R_{33} are the reciprocal cell constants.
A and B value, as previously expressed, are then caculated for each reflection by the structure factor progranme.

The least Squares progranme used was that written by J.S. Rollett in ALGOL for the KDF9.

Other Progranmes:

Programmes for Weissenberg Lp corrections, Wilson Plot, and Bond Angles and Distances were written for the IBM 1620 by Professor D.A. Bekoe.

Final bond distances and angles were calculated on KDF9 with a progranme written by D_{x}. J.S. Rollett.

REFFERENCES

1. W.C. Rontgen; Ann Physik, 64, (1898), 1.
(Reprint of earlier paper).
2. W.H. Brage and V.I. Bragf:

Proc. Roy. Soc. (Iondon), (A), 83, (1213), 428.
3. M. V. Lane. Physik Z. 14, (1913), 1075.
4. W.I. Bragg. Proc. Roy. Soc. (Iondon) (A) 89, (1913), 248.
5. A.F. Cullis, H. Muirhead, M.F. Peritz, M.G. Rossmann and A.C.T. North;

Proc. Roy. Soc. (Ionion) (A) 265, (1962), p. 15 and 161.
6. D.C. Hodgkin, J. Pickworth, J.H. Robertson, A.J. Prosen, R.A. Sparks and K.N. Trueblood.

Proc. Roy Soo. (London) (A), 242, (1957), 228.
7. D.C. Hodgkin, J. Pickworth, J.H. Robertson, A.J. Prosen, R.A. Sparks and K.N. Trueblood.

Proc. Roy. Soc. (Iondon), $\cdot(\Lambda)$, 251, (1959), 306.
8. C.W.I. Beyan, J.W. Porrell and D.i.H. Taylor.
J. Chen. Soc. 1963, 980.
9. J.D. Connolly, R. MoCrindle and K.H. Overton. Chem. Comin., 8, 1965, 162.
10. A. Akisanya Ph.D. Thesis, University of London, 1963.
11. S.A. Sutherland, G.A. Sin and J.li. Robertson.

Proc. Chen. Soc. 1962, 222.
12. C.T.I. Bevan, J.W. Powell and D.A.H. Taylor.

Cherl. Corm. 1965, 281.
13. I.J. Grant, J.A. Hexililton, T.A. Hanor, J.M. Robertson and G.A. Sin, J. Chen. Soc. 1963, 2506.
14. S. Arnott, A.W. Devie, JoH. Robertson, G.A. Sin and D.G. Watson. J. Chem. Soc. 1961, 4183.
15. J.W. Powell: The Kenist - Student Chenical Society Magazine,

University of Ivadan, Vol. 1, No. 3, p. 43 .
16. E.K. Adesogan and J.W. Powell - Private Comunication.
17. D.H.R. Barton, S.K. Prachan, S. Sternhell and J.F. Templeton. J. Cher. Soc., 1961, 255.
18. P.I. Mowete: Private Conmunication,
19. Henry, Lipson and Wooster.

The Inter-proparation of X-ray Diffraction Photograph, 1961.
20. J.S. Lukesh. J. Chem. Phys. 2, (1941), 659.
21. J.M. Robertson. J. Soi. Instri. 20, (1943), 175.
22. D.C. Phillips, Acta Cryst. I, (1954), 748.
23. W. Gochran: Sci. Instri. 25, (1948), 253.
24. Go Tunnell: Arer. Min. 24, (1939), 448.
25. A.J.C. Wilison. Nature, 150, (1942), 152.
26. International Tables (1952).
27. Joif. Robertson and I. Woodrara. J. Cher. Soc. (1940), 36.
28. D. Harker. J. Cher1. Phys. 4, (1936), 381.
29. D.A. Bekoe D.Phil. Thesis, Oxford University, (1957), p. 147.
30. W. Cochren. Liota Cryst., 4, (1951), 408.
31. D. $\mathrm{K}_{\text {. Crowfoot, C.T. Bunn, B.W. Rogers-Low and A. Turner-Jones. }}$ The Chemistry of Penicillin, Chapter 11, 1942) (Princeton University Press).
32. W. Cochren, Acta Cryst. 4, (1951), 81.
33. T. Costain, Ph.D. Thesis, Univorsity of Birminghan (1941).
34. A.D. Booth. Proc. Roy. Soc. (A) 188, (1946), 77.
35. Lipson and Cochren. 'Crystalline State', Vol. III, p. 279 and 301.
36. Lipson and Cochran. 'Crystalline State', Vol. III, p. 280.
37. Interatomic Distances: Special Publication No. 11.
38. C.H. Carlisie and D.M. Crowfoot.

Proc. Roy. Soo. (A), (1945), 184, 64.
39. J.R. Powell. Private Comunications.
40. D.C. Hodgkin. Privete Comunications.
4.1. W. Cochran. Acta Cryst. I, (1954), 503.
42. D.W.J. Cruickshauk. Acta Cryst., 2, (1956), 74.7 .
43. V. Luzzati. Acta Cryst. 6, (1953, 142.
44. D.C. Hodglin, J... Powoll and D.A.H. Taylor. Privato Comnunications.
45. HePhail and G.i.Sin. Tet. Letters, 37, (1964), 2599.
46. D.A.H. Taylor. Private Comunications.
47. J. Fridrichsons and A.M. Mathieson. J. Chern. Soc. 1953, 2159.
48. G. Weilor and F.B. Strauss. Privato Comunication.
49. Whittaker and Robinson: Calculus of Observation (1929), Chapter IX.
50. A.D. Booth. Nature, 160, (1947), 196.
51. J.S. Rollett. Computine Iethods (1960)
ed. by Ray Pepiusky and Others.
52. D.W.J. Cruickshauk and J.S. Rollett. Computing Mothods (1965)
53. E.F. Hughes. J. Aner. Chen. Soc. 63, (1941), 1737.
54. J.S. Rollett. Private Cormunications.
55. C.I.I. Bunn. Proc. Roy. Soc. (Iondion) (A), 180, (1942), 67.
56. S.A. Adeoye and D.A. Bokoe. Chen. Corm. 14, (1965), p. 301.
57. C.I.L. Bevan, D.E.U. Ekong and D.A.H. Taylor. Nature, 206, (1965), 1323.
58. C.N.L. Bevan, D.E.U. Ekong, T.G. Halsall and P. Tort.

Cher. Conn. (1965), 24, 636.
59. C.H. Carlisle and M.T.C. Ladd. Acta Cryst., 21, (1966), 689.

