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ABSTRACT

Evapotranspiration (ET) is one of the main components of the hydrological 
cycle as it accounts for more than two-thirds of the precipitation losses at 
the global scale. Reliable estimates of actual Evapotranspiration are crucial 
for effective watershed modelling and water resource management, yet direct 
measurements of the Evapotranspiration losses are difficult and expensive.
The major objective of this study was to investigate the potential of the 
classical linear regression and neural network (NN) technique to estimate 
evapotranspiration, and to examine if a trained neurcil network with limited 
input variables can estimate ET efficiently. The study utilized daily 
climatic data of temperature, relative humidity, sunshine hours, wind speed, 
and rainfall for ten years collected from the International Institute of 
Tropical Agriculture. (IITA) Ibadan, Nigeria. Linear regression models in
terms of the climatic parameters influencing the regions and, optimal neural 
network architectures considering these climatic parameters as inputs were 
developed. The linear regression models showed a satisfactory performance in 
the monthly estimation in the region selected for the present study. The NN 
models, however, consistently showed a slightly improved performance over 
linear regression models. The results also indicated that even with limited 
climatic variables an ANN can estimate ET accurately.
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INTRODUCTION

Climate models have predicted that global mean prec_pitation will increase 
with surface air temperature at a rate of about 1% to 3% per degree Kelvin 
(Boer, 1993; Allen and Ingram, 2002; Allan and Soden> 2007). This change in 
precipitation is substantially smaller than the change in atmospheric water 
vapour, which increases at the Clausius-Clapeyron (CC) rate of 6% to 7% per 
Kelvin (Boer, 1993; Allen and Ingram, 2002; Held and Soden, 2006). Wentz et
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al. (2007) have also reported trends in "observed” precipitation that are 
about three times larger than the climate models and more in line with the CC 
rate. The reason why models predict an increase in precipitation that is 
substantially below the CC rate appears to be the dominant role that the 
hydrologic cycle plays in the global energy budget (Boer, 1993; Allen and 
Ingram, 2002; Pierrehumbert, 2002; Lambert and Allen, 2009).

In a recent study, Lorentz et al (2010) examined the change in 
evaporation over the oceans in climate models and analysed from the 
perspective of air-sea turbulent fluxes of water and energy. Their results 
challenged the view that the change in evaporation is predominantly 
constrained by the change in the net radiation at the surface. This reduction 
of evaporation is associated with corresponding changes in the sensible heat 
flux. Further, Lorentz et al (2010) also suggested that it might be more 
physical to view the evaporation change as a function of relative humidity 
change rather than net radiation. In this view, the relative humidity 
controls the net surface shortwave radiation through changes in low-level 
cloudiness and the temperature controls the net surface radiation through the 
changes in longwave radiation. In addition, their results demonstrated the 
dominant role of both the air-sea temperature difference and relative
humidity over, for example, wind speed in reducing the evaporation change in 
climate models below the Ciausius-Clapeyron rate.

The issues of land evaporation changes in a changing climate is far
from settled (Ohmura and Wild, 2002; Liu et al., 2004; Troch, 2008). 
Although, Budyko (1963) suggested that a warmer atmosphere may not 
necessarily produce more evaporation, data reported by the IPCC TAR (2001), 
show that the observed increase in average surface temperature is followed by 
a corresponding marked increase in the vapour pressure (Troch, 2008).
Generally, the question as to how the hydrological cycle will change as the 
climate changes is complicated, hence, improved ' understanding on how 
evaporation plays out may be important. Furthermore, the growing number of 
stakeholders demanding water owing to the decreasing volume of good quality 
water and the scarcity of land and water due to climate change induced
drought, call for accurate and often small scale water management which 
largely depends on accurate estimations of all terms in the water balance 
(Moors, 2008).

However, when meteorological models are run to predict changes in 
climate, the correct representation of the water vapour input to the 
atmosphere by evaporation becomes critical, this paper aims to help resolve 
the numerical problems involved in the parameterization of evapotranspiration 
in climate modelling by investigating the potential of the classical linear 
regression and statistical neural network (SNN) technique in the estimation 
of evapotranspiration. The paper also examines the capabilities of a trained 
neural network with limited input variables in accurately estimating 
evapotranspiration. The study was carried out using data from the 
International Institute of Tropical Agriculture (IITA’i Ibadan (lat. 7° 00’ N 
to 7° 50J N and long. 3° 40J E to 4° 10’ E), Oyo State of Nigeria.

Models of Evapotranspiration
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The importance of evapotranspiration (ET) in the water cycle and hydrological 
management, in addition to expensive and sensitive measuring equipment, led 
to extensive efforts for modeling the ET mechanism. Many methods have been 
developed, revised, and proposed for the estimation of ET in different 
climatic conditions using different predictor variables. Densen and Allen 
(2000) reviewed the evolution of different types of ET estimation methods. 
Conventional ET models are basically categorized into physically based and 
empirical models. Some examples of the physically based ET models include the 
equations developed by Penman (1948), Monteith (1965, 1973), Shuttleworth and 
Wallace (1985), and Granger and Gray (1989).

Empirical models were developed with the aim of proposing simpler ET 
equations, which require fewer input variables that are also routinely 
available. Attempts for empirical modeling of evapotranspiration resulted in 
various methods: temperature-based Thornthwaite, 1948; Blaney and Criddle, 
1950; Hargreaves and Samani, 1985), radiation (and temperature)-based 
(Priestley and Taylor, 1972; Makkink, 1957; Densen and Haise, 1963; Stephens 
and Stewart, 1963), water budget-based (Guitjens, 1982), and mass-transfer- 
based (Harbeck, 1962; Rohwer, 1931). The empirical models have the advantages 
of being simple and using a small number of meteorological variables; 
however, reasonable estimation of model parameters is required for local 
applications. This is considered to be a limitation for the empirical ET 
prediction models.

Evaporation losses are often estimated as the residue of the water 
balance, causing all the estimation errors of the other water balance 
components to accumulate in the estimated evaporation. Studies have shown 
that the best methods to estimate evaporation more or less independently of 
the other components of the water balance are based on micro-meteorological 
techniques. The best known and probably most successful example is the 
Penman-Monteith equation (Monteith, 1981):

AE = s A + p cp D/ras + y (1 + rs/ra) (1)

where A is the latent heat of vaporization of water, s is the slope of the 
saturation specific humidity versus temperature curve', A is available energy 
(i.e. Q* - G, when Q* is net radiation and G is soil heat flux density), p is 
the air density, cp is the specific heat of air at constant pressure, D is 
saturation (specific humidity) deficit (i.e. qs(T) - q, when qs(T) is the 
saturation specific humidity at temperature T and q is specific humidity), y 
is the psychrometric constant (i.e. cp/A), rs is the canopy or surface 
resistance and ra is the aerodynamic resistance for transport of heat and 
water vapour of the air layer between the surface and reference height.

Over longer time periods there is a balance between radiation, latent 
heat flux, and sensible heat flux, at the surface of the earth. The 
terrestrial water balance, which in turn is affected by the Earth's 
atmosphere energy balance, is driven by the Earth's surface energy balance:
Rn = H + AE + G (2)

where Rn is the net radiation, H is the sensible heat flux, AE is the latent 
heat flux (A is latent heat of vaporization), and G is ground heat flux. The 
latter term however becomes small compared to other terms over long periods 
of time, and can be safely neglected in the balance equation. Based on the
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energy balance and when land-surface moisture is in ample supply (as it is in 
the study area), evaporation rates are consistent with the observed rates of 
solar radiation at the land surface.

The basic obstacle to widely using the Penman-Monteith (FAO-56 PM) 
method which the Food and Agriculture Organization of the United Nations 
(FAO) has proposed as the standard method for estimating reference 
evapotranspiration, and for evaluating other methods, is the numerous 
required data that are not available at many weather stations (Trajkovic, 
2005). Evapotranspiration requires two essential components: a source of 
energy and a vapour transport mechanism. Energy is needed to provide the 
latent heat of vaporization required to bring about a phase change from 
liquid to vapour. The vapour transport mechanism is necessary to continuously 
move the water vapour away from the surface and thus maintain a vapour 
pressure gradient between the evaporating surface and the surrounding air 
(Kirnak and Short, 2001).

However, numerous empirical models exist to determine potential 
evapotranspiration for data limited regions. There are three methods that 
apply solar radiation directly, although they also require some measures of 
mean daily air temperature. These methods are the Makkink method, the Turc 
method and the Hargreaves method. The Makkink radiation method (Makkink, 
1957) is merely a simplification of the Priestly-Taylor equation that assumes 
that the daily ground heat flux is small and the net radiation is a function 
of solar radiation to a large extent (de Bruin, 1987) such that:

where LE is the latent heat flux (Wm"2), CM is the ratio of net radiation to 
solar radiation, the mean value of which is determined from measured data to 
be 0.63 for the study area, A is the slope of the saturation vapour pressure 
temperature relationship, ^ is the psychometric constant (approximately 
0.67), and Rs is the solar radiation (Wrrf2).

Meanwhile, the Turc radiation method (Turc, 1961) was developed in 
Western Europe for regions which have relative humidity greater than 50% and 
the model equation is expressed as:

where LE is the mean daily latent heat flux (Wm'2), Rs is the daily solar
radiation (Wm"2), and Ta is the mean daily air temperature (°C).

Finally, the Hargreaves method (Hargreaves and Samani, 1985) is an 
empirical approach that can be used to compute daily potential 
evapotranspiration particularly in locations where the availability of 
weather data is limited. The Hargreaves equation calculates potential 
evapotranspiration from solar radiation and temperature as:

LE = 0.01354Rs (Ta+17.8) (5)

where LE is the mean daily latent heat flux (Wm'2), Rs is the daily solar
radiation (Wm"2), and Ta is the mean daily air temperature (°C).

A

(3)

LE = 0.369 T«+l5 (2.06Rs + 56) (4)
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METHODOLOGY

The MLR model

We recall the linear regression model (L R M ) given as:

Ji = f(xPP) + i = 1, 2, ...,n (6)

which is made up of the predicted part and the residual part. The residual 
is the difference between the observed and the predicted values which is 
ascribed to unknown sources, n is the number of observations, y* is the zth 
observation, = lxu ,xMl...,xki) is the predictor variable vector related to y,-., 
= ifia,ft, — tPp) is the parameter vector, and et is the error associated with

zth observation.

In matrix form , equation (6) can be written as

Y = Xli + z (7)

The least squares estimate of the parameter fi is given as

p ^ i X ' X ^ X ’Y (8)

While, the predicted model becomes

V = AT? (9)

so that the residual is given as

e = Y - Y  (10)

The SNN model

The statistical neural network (SNN) model structurally is composed of two 
parts: the predictive and the residual, as is in classical regression, given 
as

y = / < X w ) + e  j (11)
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where f(X,w) = aX + E*=i/?h#(E(=oVh’xe)• Thus equation (11) can be written as

y = a X +  'Lk-1fih3{^i=QYhixd + ei (12)

X  — (x0,xlt...,xi) is the vector of the input variable, §{.) is the transfer (or 
activation) function and w  = (a, Q, y) are the weights (or parameters) 
associated with the input vector, hidden neuron and the transfer function 
respectively, while e( is the error associated with the network. We note 
that when there is no hidden neuron, the SNN reduces to the ordinary 
regression model. The weights are estimated using Taylor-’s first order 
approximation,

/ - J ' :-v IBw lw=ws 4- e (13)

where y° = f(x,wQ)

if 8 — w  —  w Uj and z = ' ', then we can write equation (11) as

y* = z9 +  e . (14)

where y* = y — y°

The least squares estimate of the parameter 8 is

8’= (Z’Z)-1?'/ ’ (15)

and the estimated model is

y* = z6

while the network error is given as

e - >’* - f*

In this paper, we used the symmetric saturated linear transfer function,

f'1.
X- < -1

f(x) = x, - 1 < X- < 1

u, X > 1

Data for seven variables were employed in this study. They are
evapotranspiration, humidity, rainfall, solar radiation, sunshine hours, 
temperature, and windspeed. The scope of the data was ten years monthly 
data, providing a 120 data set for each variable. However, the analysis was
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split into two. First, all the seven variables were used in the analysis. 
Secondly, three variables that were not significant were dropped, leaving 
only four in the second analysis. Thus, the variables left in the second 
analysis were evapotranspiration, humidity, solar radiation, and temperature. 
The model formulations therefore becomes 6-2-1, 6-5-1, 6-10-1, 6-50-1, 6-100- 
1, and 4-2-1, 4-5-1, 4-10-1, 4-50-1, 4-100-1.

All input variables were standardized, that is, converting them to the range 
(0, 1) before feeding them into the network. This is to avoid the
application of extremely small weighting factors in the case of large input
values.

Similarly, the output values are "destandardized” to provide meaningful 
results since all values leaving the network are automatically output in a 
standardized format. This is done by simply revers: ig the standardization 
algorithm used on the input nodes.

We used SPSS for the L R M  part of the analysis, while a neural code was 
written for the analysis of the S N N  using MATLAB R2009a, and interesting 
results were obtained.

Model Selection Criteria
In this section we discuss several criteria that have been used to choose 
between the two models. Several criteria were used for this purpose. In 
particular, we discuss these criteria: (i) R z, (ii) adjusted R z (ff2) , (iii) 
Akaike information criterionC/s/C), and (iv) Schwarz Information criterion 
(52C). All these criteria aim at minimizing the residual sum of squares (552?). 
However, except for the first criterion, criteria (ii), (iii), and (iv) 
impose a penalty for including an increasingly large number of predictors. 
Thus there is a tradeoff between goodness of fit of the model and its 
complexity (as judged by the number of predictors).

RESULTS AND DISCUSSIONS

The results of the analysis are discussed in this section. Table 1 is the 
results of the seven variables used in the first analysis. While Table 2 is 
the results of the four variables used in the second analysis.

Table 1: Results of Analyses based on 7 Variables

Par ■fl

M L R M SNN

MSE R 2 R 2 MIC SIC HL M S E R z R2 AIC SIC

7 120 0.60 0.56 0.53 0.67
5

0.79
5

2 0.39 0.00
0.01

0,43
8

0.51
6

S K S f t l 'v  2:01± Vf'OOt&dlvvQS
Page | 53

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



In Tables 1 and 2, the M S E  are less in the S N N  compared to that in the 
MLRM. And it is noticed that while there was no chsnge in the M S E  of the 
M L R M  in the two tables, there is a lot of difference in the SNN. The 
change in the number of variables used in the analysis affected the error 
propagation of the neural network model. As the number of variables used in 
training increases, the M S E  reduces.

Table 2: Results of Analyses based on 4 Variables

Far n

M L R M SNN

MSE R2 R 2 AIC SIC HL MSE R 2 52 AIC SIC

4 120 0.60 055 0.53 0.64 0.70 2 0.56 0.02 0.01 0.59 0.65
0 3 9 7

5 0.54 0.04 0.03 0.57 0.63
1 6 7 3

10 0.53 0.07 0.06 0.56 0.62
2 7 7 2

50 0.36 0.37 0.36 0.38 0.42
7 5 2

100 0.23 0.59 0.58 0.24 0.27
• 7 6 0

However, generally, as the hidden neuron increases, the MSE for the S N N  
becomes reduced. This is explained by the sensitivity of the neural network 
to data. Discrepancies not captured in the traditional method affects the 
network at very low hidden neurons. Increasing the number of hidden neuron 
reduces the biases in the weights. This explains ‘:he reason for the low 
values of the M S E  in higher neurons.
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Table 3: Model Selection based on R2 and R2

No. of 
Variables

Model Selected

ff2 R2

7 6-160-1 6-100-1

4 3-100-1 3-100-1

In Table 3, the fit of the S N M  model occurs at a high hidden neuron of 100. 
On the contrary, the AIC and SIC show that the S N N  model is very adequate 
compared to the traditional MLRM.

Table 4: Model Selection based on AIC and SIC

No. of 
Variables

Model Selected

AIC SIC

7 6 -2-1 6-2-1

6-5-1 6-5-1

6-16-1 6-10-1

6-50-1 6-50-1

6-100-1 6-100-1

4 3 -2-1 3-2-1

3-5-1 3-5-1

3-10-1 3-10-1

3-50-1 3-50-1

3-100-1 3-100-1
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The model performances of the two models (LRM and SNN) is compared using 
the adjusted R 2 (j?2) , Akaike information criterion(A/C), and Schwarz
Information criterion (SIC). The R2 shows the performances of the individual 
models. We therefore notice that at higher neurons, the better the SNN
model. The AIC and SIC results show that the SNN is a better model in
comparison to the traditional MLRM.

Conclusion
We have compared the ordinary least squares regression and the statistical 
neural network to estimate evapotranspiration in Ibadan, Nigeria from 1995 to 
2004. Both methods attempt to minimize the error sum of squares between 
observations and predicted values. Regression requires an explicit function 
to be defined before the least squares parameter estimates could be computed, 
while a neural network depends more on training data and the learning 
algorithm.

We have restricted the variables for the models to evapotranspiration, 
humidity, rainfall, solar radiation, sunshine hours, temperature, and 
windspeed as measured by the International Institute for Tropical Agriculture 
(TITA) in Ibadan. Comparing model prediction in both cases show that the 
statistical neural network performs better than the regression model.

It therefore follows that the statistical neural network may be 
suggested as a proxy in the correct capturing of evapotranspiration rates in 
Climate modelling particularly at local spatial context over short time span. 
On-golng studies would further establish these capabilities and at the same 
time explore the modelling of water vapour changes in relation to the 
moisture and heat fluxes in hydrological cycle.
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