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Abstract

Many attempts have been made in the recent past to model and forecast streamflow

using various techniques with the use of time series techniques proving to be the

most common. Time series analysis plays an important role in hydrological research.

Traditionally, the class of autoregressive moving average techniques models has been

the statistical method most widely used for modelling water discharge, but it has been

shown to be deficient in representing nonlinear dynamics inherent in the transforma-

tion of runoff data. In contrast, the relatively newly improved and efficient soft com-

puting technique artificial neural networks has the capability to approximate virtually

any continuous function up to an arbitrary degree of accuracy, which is not otherwise

true of other conventional hydrological techniques. This technique corresponds to

human neurological system, which consists of a series of basic computing elements

called neurons, which are interconnected together to form networks. The aim of the

study is to compare the artificial neural network and autoregressive integrated mov-

ing average to model River Opeki discharge (1982–2010) and to use the best predic-

tor to forecast the discharge of the river from 2010 to 2020. The performance of the

two models was subjected to statistical test based on correlation coefficient (r) and

the root‐mean‐square error. The result showed that autoregressive integrated moving

average performs better considering the level of root‐mean‐square error and higher

correlation coefficient.
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1 | INTRODUCTION

Surface water is very important, and it is a dominant source of water

in the supply system. It is fundamental to many sectors including

agriculture, power generation, and fisheries. The rate of flow (dis-

charge) of surface water in many cases affects its optimal use either

through the provision of hydropower, pipe‐borne water supply, and

flood design structures. With the increasing demand for water

resources worldwide, uncertainty in estimating water availability,

predicting flood stages and areas of inundation, predicting areas of

low flows, and hydrological drought, prediction of discharge becomes
wileyonlinelibrary.com/jour
extremely important for effective mitigation and management of

floods, droughts, environmental flows, water demand by different

sectors, maintaining reservoir levels, and managing natural disasters

(Maher & Eyre, 2012).

Precipitation, a major factor affecting the discharge characteristics

in a particular catchment area is periodical. As a result of periodicity,

river discharge also becomes periodical in most cases (Livina et al.

2003). Due to the issue of periodicity, many attempts have been made

in the recent past to model and forecast streamflow using various

techniques with the use of time series (TS) proving to be the most

common (Gorman & Toman, 1966; Salas, Deulleur, Yevjevich, & Lane,
© 2018 John Wiley & Sons, Ltd.nal/rra 1
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1980; Galeati, 1990). Forecast of streamflow is defined as the

prediction of the amount of water discharged on a specific waterway

or a river during a certain period of time. A classical methodology for

carrying out this prediction is presented by Bowerman and O'Connell

(1993), whereTS of data was used. A TS is a sequence of observations

of a variable collected, observed, and recorded at regular time

intervals. TS analysis plays an important role in hydrological research

studies, which are handled by mathematical models to predict new

records and identify trends. In recent times, mathematical models

have taken over most of the important tasks in problem solving in

hydrology (Borgonovo, Lu, Plischke, Rakovec, & Hill, 2017; Zhang,

He, Li, Wang, & Wang, 2017; Fonesca, Santos, & Santos, 2018; Martin

& McCutcheon, 2018 and Kavetski, 2018). InTS analysis, it is assumed

that the data consist of a systematic pattern with a set of identifiable

components and random noise (error). The TS patterns can be

described in terms of two basic classes of components: trend and

seasonality. In streamflow forecasting, TS models are used to describe

the stochastic structure of the time sequence of streamflow and

precipitation values measured over time.

The autoregressive integrated moving averages (ARIMA) has been

quite popular for modelling discharge and rainfall data due to the ease

in its development and implementation (Somvanshi et al., 2006), but it

is deficient in representing nonlinear dynamics inherent in the

transformation of runoff data (Chowdhary, Jha, & Chowdary, 2010).

In contrast, the relatively new and efficient computer technique

popularly known as the artificial neural networks (ANNs) has the

capability to approximate virtually any continuous function up to an

arbitrary degree of accuracy, which is not otherwise true of other

conventional hydrological techniques such as ARIMA (Hornik,

Stinchcombe, & White, 1989). The ANN technique is similar to the

human neurological system, which consists of a series of basic

computing elements called neurons, which are interconnected together

to form networks (McClelland, Rumelhart, & Hinton, 1986). The parallel

distributed processing architecture of ANN has proved to be a very

powerful computational tool, which is now being used in several fields

to model dynamic processes including rainfall (Cigizoglu, 2002; Singh &

Chowdhury, 1986; Somvanshi et al., 2006), stream flow (Zealand, Bum,

& Simonovic, 1999; Campolo, Soldati, & Andreuss, 1999; Abrahart &

See, 2000), groundwater management (Rogers & Dowla, 1994), water

quality simulation (Maier & Dandy, 1996; Maier & Dandy, 1999), and

rainfall‐runoff (Hsu, Gupta, & Sorooshian, 1995; Shamseldin, 1997).

More detailed discussion regarding the application of ANN in hydrology

can be referred to in a special technical report (ASCE, 2000). ARIMA

and ANN modelling have been successfully applied in other literatures

(Galeati, 1990,Maier &Dandy, 2000, Mohammadi, Eslami, & Dardashti,

2005, Hung, Babel, Weesakul, & Tripathi, 2008, Rani & Govardhan,

2013, Abdulkadir, Salami, & Kareem, 2012). The aim of this research

was to forecast the discharge of River Opeki from 2010 to 2020. To

achieve this aim, modelling of the River Opeki discharge from 1982 to

2010 was undertaken using ANN and ARIMA techniques and the

better predictor of the two was used to forecast the river discharge.

River discharge forecasting is useful for environmental management

applications especially with regard to the sustainable development of

irrigation practices, hydroelectricity generation, and water supply for

both domestic and industrial uses.
2 | STUDY AREA

2.1 | Location

The River Opeki catchment is located in Oyo State, a major tributary

of River Ogun. It lies between longitudes 3°15′ and 3°30′E and lati-

tudes 7°20′ and 7°54′N (Figure 1). Located on the river is an earth

dam with a capacity of 2.6 million cubic metres. The dam is meant

to act as a source of water supply for Igbo‐Ora and its environs. It lies

entirely within one climatic environment and a consistent geological

environment of the Basement Complex of southwestern Nigeria.

Hence, it can provide insights into the nature of groundwater

recharge. The attraction of the catchment for the study of discharge

is enhanced by the fact that a gauging station exists on the River

channel.
2.2 | Climate

The River Opeki catchment is within the humid tropical climate with

distinct wet and dry seasons. The climate is influenced by the Inter‐

Tropical Convergence Zone (ITCZ) separating the subtropical conti-

nental air mass over the Sahara and the equatorial air mass over the

Atlantic Ocean. The ITCZ moves northward beyond the basin to lati-

tude 20°N in the rainy season and southwards to the Lagos Lagoon

in the dry season. The wet season, which is usually double peaked,

starts in April and lasts till November. February and March are the hot-

test months of the year with temperatures ranging from 32 to 37°C.
2.3 | Vegetation

The area lies within the savanna environment although the southern

half lies within the fringes of the forest zone of southwestern Nigeria.

The two major vegetation zones identified on the watershed are the

high forest vegetation in the north and central parts and the

swamp/mangrove forests that cover the southern coastal and flood-

plains next to the lagoon. Its vegetation consists of tall grasses in addi-

tion to trees with long tap roots, which ensure access to water during

the dry season when the water table drops and the grasses wither and

die. However, along the water course darker and denser vegetation

occur throughout the year. The population is mainly rural, and the

dominant land use is arable agriculture in the wet season. The crops

are mainly maize, cassava, and yams.
2.4 | Physical characteristics

Generally, the channel width of River Opeki is between 60 and 80 m

wide. The drainage pattern of the river is heavily controlled by the

rock types of the Basement complex; the flow is controlled by folia-

tion and joints especially on the more resistant rock resulting into a

dendrite river pattern. The basin geology of the River Opeki is mainly

gneisses and minor occurrence of the Older Granites. In the upper

half of the basin there are migmatized undifferentiated biotites and

biotite‐hornblend gneisses with intercalated amphibolites. In the

lower half of the catchment, the schists, amphibolites, pegmatites,



FIGURE 1 Map of study area [Colour figure can be viewed at wileyonlinelibrary.com]
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and coarse porphyritic biotite and biotite‐muscovite granite occur

(Jones and Hockey, 1964). The catchment rises to an altitude of

about 460 m above sea level in the northern part of the basin around

Awaiye and slopes southwards to about 135 m above sea level at
Abidogun at the mouth of the catchment. The axial length of the

basin is about 73 km, and its form factor and basin circularity ratio

are 0.2 and 0.8, respectively, indicating a long and narrow basin

(Horton, 1932).

http://wileyonlinelibrary.com
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2.5 | Methodology

2.5.1 | Type and data source

The data used in the research comprised monthly discharge of River

Opeki. The data were obtained from the Ogun‐Oshun River basin

Development Authority, Abeokuta, Ogun state (OORBDA) from

1982 to 2010 (28 years). However, there exists missing years within

the period of study; hence, they were not included into the modelling

because they were few and not continuous. Therefore, they would not

affect the expected outcome.
2.6 | Data preparation

2.6.1 | ARIMA model

An ARIMA model is a combination of p,d,q model, AR (p) refers to

order of the autoregressive component, I (d) integrated refers to

degree of differencing involved, and MA (q) refers to the order of

the moving average component. AR is based on the assumption that

each value of the TS depends only on the weighed sum of the prod-

uct of the previous values and the regression coefficient plus residual.

An autoregressive model can be considered as a (p) order

autoregressive model. It refers to previous (lagged) values of the

dependent variable. MA is based on finding the mean for a specified

set of values and then using it to forecast the next periods; MA (mov-

ing average) refers to lagged error terms (i.e., residuals) created by the

model. It is represented by (q). Elements in the series can also be

affected by past errors (or random shock) that cannot be accounted

for by the autoregressive component. The general ARIMA p,d,q model

can be expressed as
1 − φ1 Bð Þ − φ2 Bð Þ2 −…−φp Bð Þp½ �*Xt
¼ cþ 1 − θ1 Bð Þ − θ2 Bð Þ2 −…−θp Bð Þp½ �*et (1)

or in a general form

φ1 Bð ÞXt ¼ cþ θ1 Bð Þet… (2)

where φi refers to ith term autoregressive parameter, θi refers to ith

term moving average parameter, c means constant, e means error at

time t, Bp refers to pth order backward shift operator, and Xt refers

to TS value at time t.

The first step in modelling is to determine if the TS is stationary

(Figure 2) and if there is any significant seasonality in the TS. One of

the assumptions of an ARIMA model is that the TS has to be station-

ary; if there is seasonality, the discharge data have to undergo sea-

sonal differencing to make the series stationary; the data should also

have a constant variance; and to satisfy stationary in variance the data

also have to undergo log transformation to make the variance con-

stant (Figure 2). In the model identification phase, the main tools that

were used are plots of series of correlograms, which are the autocor-

relation function (ACF) and the partial autocorrelation function (PACF;

Baunso, 1998; Box & Jenkins, 1970). The ACF and the PACF are the

most important elements of TS analysis and forecasting. The ACF

measures the amount of linear dependence between observations

in a TS, whereas the PACF plot helps to determine how many

autoregressive terms are necessary to reveal the time lag characteris-

tics. The AIC (Akaike Information Criterion) was used for the purpose

of selecting an optimal model fit to a given data. The model that gives

the minimum AIC was selected as a parsimonious model (Akaike,

1973, 1974; McQuarine & Tsai, 1998; Yaya & Fashae, 2014).
FIGURE 2 Schematic diagram of the
methodology used in autoregressive
integrated moving average modelling of the
river discharge



FIGURE 3 Time graph of original discharge data [Colour figure can
be viewed at wileyonlinelibrary.com]
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2.6.2 | The ANN model

Neural networks emulate the human brain computational capacity by

distributing computations to relatively simple processing units called

neurons. The neurons are grouped in layers, and adjacent layers are

interconnected through synaptic links (weights). Three different layer

types can be distinguished: input layer, which connects the input

information; output layer, which produces the final output; and one

or more hidden layers, acting as intermediate computational layers

between input and output Somvanshi et al. (2006). The input values

are multiplied by the first interconnection weights, then the products

are summed with a neuron‐specific parameter called bias, which is

used to scale the sum of products into a useful range and become

inputs to the hidden layer nodes, which apply a nonlinear activation

function (usually a sigmoid unit) to the above sum producing an hidden

node output. These outputs are processed in the same way through

the subsequent hidden layers (if existing) or through the output layer,

generating the network output.

To model the discharge of River Opeki using ANN, the following

basic steps were considered: collection of the data, data preprocess-

ing, network building, training, and testing the performance of model.

The modelling of the discharge of River Opeki using the ANN involves

the preparation of the discharge data from 1982 to 2010 followed by

training, testing, and lastly, validation. Past studies have proven that a

three‐layer ANN model with one hidden layer is sufficient to handle

any nonlinear data. In this study the multilayer perceptron otherwise

known as feed forward back propagation technique was adopted,

the most widespread neural network structure. This ANN is fed in a

forward direction from the input to the output, then the network

was configured; discharge data from 1982 to 2009 were used for cal-

ibrating the model, whereas discharge data of 2010 were used for val-

idation. The data required for the ANN model calibration are normally

larger than the one required for model validation and forecasting

(Salami, Mohammed, & Olukanni, 2015). In the third procedure, which

is network building, the number of hidden layers, neurons in each

layer, training function, and training algorithm were specified before

applying the model (Salami et al., 2015). The training process involved

the adjustment of the weights in each node using a specified error

value in order to make the actual outputs (predicted) close to the tar-

get (measured) outputs of the network (Salami et al., 2015). The train-

ing period is normally longer than the validation and testing periods

(Chen, Duan, Cai, & Liu, 2011). Discharge data of the River Opeki from

1982 to 2009 were used for training, whereas discharge data for 2010

were used to evaluate the accuracy of the model derived from the

training set. At the forecasting stage, the estimated parameters were

tested for their validity using the root‐mean‐square error (RMSE)

and correlation coefficient (r). Specifically, the monthly discharge data

sets of all the input variables were loaded for the ANN model develop-

ment. The transfer function used was theTangent Sigmoid (tansig) and

the iteration (epoch) was 100. All the data sets were used for training

the algorithm, testing, and validation. The input was 1, hidden neurons

were 10, output was 1, and the lowest AIC value was 243.6. To

choose the best model, the AIC was used as proposed by Akaike

(1974). The model with the lowest AIC value was considered the best

model for forecasting.
2.7 | Data analysis

EView 7 and MATLAB software was used for ARIMA and ANN model-

ling respectively. To achieve the aim of the study, aTS graph was plot-

ted to show the trend in the discharge from 1982 to 2010 from where

it was possible to describe the trend in discharge of the River Opeki.

ARIMA and ANN model were then used to model the discharge of

River Opeki from 1982 to 2010. Finally, ARIMA and ANN were com-

pared with determine the best model.
3 | RESULT AND DISCUSSION

3.1 | Results of the ARIMA model for River Opeki
(1982–2010)

The monthly discharge data show that there is a seasonal cycle within

the series (Figure 3). Plots of ACF and PACF of the original data

(Figure 4) show that the discharge data are not stationary; it also pre-

sents an attenuating sine wave pattern that reflects the random peri-

odicity of the data and possibly indicates the need of seasonal

differencing.

Both the ACF and PACF (Figure 4) input TS for ARIMA is required

to be stationary and should have a constant mean, variance, and auto-

correlation with respect to time, but the monthly dischargeTS exhibits

a yearly periodicity, but it could satisfy stationarity in variance by log

transformation so as to make the variance constant (Figure 5).

The mean of the discharge data was also made stationary by

differencing the original data in order to fit an ARIMA model. How-

ever, if differenced transformation is applied only once to a series, that

means data have been first differenced (D = 1). The monthly discharge

data of River Opeki required having a first seasonal differencing of the

original data in order to have a stationary series. Then, the ACF and

PACF for the differenced series were tested to check stationary

(Figure 6).

To determine the best fitted model of the observed flows, the

ordinate of ACF and PACFs was used at the important lag value of

12, which means that the ACFs have significant values at lags that

are multiples of 12 (Figure 7).

The peak on the graph of the PACF at lag 12 suggests seasonal

MA terms (Mehrdad, Mehrdad, Hossein, Hossein, & Mohammad,

2012). After Bartlett's transformation (α = 0.5) was applied to the data,

http://wileyonlinelibrary.com


FIGURE 5 Log transformation of the discharge data of River Opeki

FIGURE 6 Seasonal differenced series of discharge data [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Autocorrelation and partial autocorrelation functions of monthly discharge [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Autocorrelation and partial autocorrelation functions of
monthly discharge taken after log and differencing
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an ARIMA model of (p,0,q) × (P,1,Q)12 was identified for the seasonally

differenced series. The suitability of the model was tested using AIC

(Salas, Tabios, & Bartolini, 1985). The minimum AIC value (1.73) was

selected. Hence, according to the AIC results, autoregressive moving

average techniques (ARMA; 1, 12) becomes the most appropriate model.
3.2 | Results of the ANN model for River Opeki
(1982–2010)

3.2.1 | Trend of the discharge of River Opeki (1982–
2010)

There has been a discharge fluctuation on the River Opeki over the

study period. For instance, the highest discharge received in the

study area was in November 1987 with a value of 705 m3/s. The
River Opeki also experienced a high level of discharge during

November 1990 with a discharge value of 403 m3/s, since this time

the river has never experienced such a high volume of discharge

(Figure 8). August 1998 and 2000 experienced similar discharges

with values of 216 and 262 m3/s, respectively. It was also observed

that in July 2007 there was another rise in the discharge experi-

enced with a value of 290.6 m3/s (Figure 9). The variations in the

discharge experienced by the river are determined by climatic fac-

tors particularly precipitation and the physical characteristics of the

drainage basin. The latter includes land use, type of soil, type of

vegetation, area, shape, elevation slope, orientation, type of drainage

network, extent of indirect drainage, and artificial drainage (Wisler &

Brater, 1959; Fetter, 1988; Ufoegbune, Yusuf, Eniola, & Awomeso,

2011; Olusola & Fashae, 2017; Fashae & Olusola, 2017).

http://wileyonlinelibrary.com
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FIGURE 9 The observed and predicted discharge of autoregressive
integrated moving average model for 2010

FIGURE 10 The observed and predicted discharge of artificial neural
network model for 2010

FIGURE 8 (a) Monthly trend of discharge of River Opeki (1982–
2010). (b) autoregressive integrated moving average (ARIMA) and
artificial neural network (ANN)–predicted discharge (1982–2010).
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Observed and predicted discharge for both models for
2010

Technique RMSE r

ANN (feed forward back propagation) 15.06 0.93

ARIMA (1,12,12) 0.57 0.97

Note. ANN, artificial neural network; ARIMA, autoregressive integrated
moving average.
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The effect of rainfall has great influence on the discharge level of

a river, and the variation in the seasonal distribution of rainfall on the

river is attributed to the ITCZ. According to Livina et al. (2003) the

fluctuations in river flow are high for large river flow and small for

low river flow. The low flows experienced in the river during some

months can also result from groundwater level at that period, and

the flow at a particular time is a function of previous flows during

the period, which may be represented by an autoregressive depen-

dence structure. The high flows during the wet seasons are formed

mainly by heavy rainfall and therefore may be represented by a mov-

ing average scheme (Salas et al. 1985).

3.2.2 | Forecast analysis of the discharge using the
ARIMA and ANN model

The transformed discharge data were used to model the discharge of

the River Opeki. The predicted discharge of ARIMA from 1982 to

2010 was compared with ANN (Figure 8b). The ANN result shows that

during October 1987 the discharge is 473.4 m3/s, whereas the ARIMA
result is 705.7 m3/s (Figure 8b); it was also observed that both ARIMA

and ANN models have the same discharge values in March 1988 and

September 2000 with a discharge value of 260 m3/s. In July 2007

ARIMA predicted the discharge of 298 m3/s, whereas ANN‐predicted

discharge is 250 m3/s.
3.2.3 | Short‐term prediction of ARIMA and ANN
model for 2010 (observed)

The performance of ARIMA and ANN model was assessed by using

the models to predict the discharge of 2010 and comparing the pre-

dicted discharge with the observed discharge. The graph of ARIMA

and the observed data was plotted (Figure 9).

ANN and the observed data for 2010 were plotted on the same

graph (Figure 10). The performance of the two models (ARIMA and

ANN) was subjected to statistical test, the correlation coefficient (r),

and the RMSE of the actual; and the forecasted data were used for

comparison. The correlation coefficient (r) for ARIMA is 0.97 with a

RMSE of 0.57, whereas ANN revealed a correlation coefficient of

0.93 and a RMSE of 15.06 (Table 1).

The result indicates that the ARIMA model appeared to display

better performance compared with the ANN model. ARIMA showed

a better performance than the ANN model when the RMSE was com-

pared on a short‐term basis. ANN had a higher RMSE value (15.06)

than the ARIMA model (0.57), making the ARIMA model prediction

better and more reliable.

Although the two models are different in structure and algorithm,

they are essentially using the same information based on the monthly

discharge to forecast future discharge values. The performance of the

ANN model may be better if there were more information such as

meteorological parameters (Hung et al., 2008); some other studies

have also shown that for forecasting of discharge, the ARIMA is

better (Juan et al., 2008), whereas studies involved with reservoir

http://wileyonlinelibrary.com
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and large datasets have indicated ANN models to be better

(Abdulkadir et al., 2012; Mehrdad et al., 2012).
4 | CONCLUSION

This study has shown that river discharges can best modelled using

the ARIMA technique. The result from the study has revealed that

the ARIMA model performs better compared with the ANN model

especially when there is limited information on other parameters (such

as meteorological). The location of the river Opeki has strong implica-

tions on the economic, social, and environment. Therefore, modelling

the river discharge in the light of existing poor infrastructures across

major river basins in Nigeria and other parts of Africa is an added

advantage.

Possibilities in modelling river discharges as presented in this

study include efficient irrigation practice for arable farming, precision

agriculture especially in sub‐Saharan Africa, flood early warning

designs, integrated hydroelectricity generation, effective water supply

in the light of conjunctive uses, and promotion of healthy river

systems.
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