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We consider maximum likelihood estimation logarithmic transformation irrespective of  

mass of density functions. The estimators are assumed to be consistent, convergent and 

existing. They are referred to as asymptotically minimum-variance sufficient unbiased 

estimators (AMVSU). We find that the likelihood function gives accurate result when 

maximized than the log-likelihood. This is because logarithmic transformation has 

potential problems. We consider a uniform case where the parameter 0 cannot be 

estimated by calculus but order-statistics. We fit a truncated Poison distribution into data 

on damaged done after estimating X by a Newton-Raphson Iterative Algorithm.

Resume

Nous considerons l’estimation de la probability maximale de la transformation 

logarithmique independante de masse fonctions de density. Les estimateurs sont assumes 

pour etre logiques, convergent et existant. Ils sont connus sous le nom d’estimateurs 

asymptotiquement impartial suffisant en desaccord minimum (AMVSU). Nous trouvons 

que la fonction de densite de probability donne le resultat exact quand a la probability 

maximisye. C'est parce que la transformation logarithmique a des problemes potentiels. 

Nous considerons un cas constant ou le parametre 6 ne peut pas etre estime par calcul 

mais par ordre - statistique. Nous utilisons une distribution de Poison tronquye dans les 

donnees experimentales endommagees apres avoir estime X par un Algorithme iteratif de 

Newton Raphson.
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1.0 Introduction

The method of maximum Likelihood Estimation is popular with R.A Fisher, who according to 

history published two papers in the early 1920’s. This method yields sufficient estimators 

whenever they exist, and that the estimators are Asymptotically-Minimum-Variance-Unbiased 

Estimators (AMVSU).

The essential feature of the method of maximum likelihood is that we look at the values of a 

random sample and choose as our estimate of the parameter (unknown), the value for which the 

probability of obtaining the observed data is a ‘maximum’.

The method consists of maximizing the likelihood function with respect to 0  (say) and refer to 

the value of 0 which maximizes the likelihood function as the maximum likelihood estimate of 

6.  For both discrete and continuous random variable the procedure is similar but 

/  (x ,, x2 ,...,xn / 0) is the value of the joint probability density at the sample point ( xl, x2,..., xn ).

Harry Van Zanton, in his paper of the Bernoulli (Bernoulli 11(4), 2005, 643-664) present a 

unified approaches to obtaining rates o f convergence for the maximum likelihood estimator 

(MLE) in Brownian semi martingale models o f the form

dX, = (3",e dt + cr”dWt, t < T n (A)

From maximum likelihood estimation, there are results for various models which state that the 

rate of convergence of the maximum likelihood estimator (MLE) is determined by the entropy of 

the (possibly infinitedimensional) parameter space relative to the Hellinger metric. Wong and 

Shen (1995) and Van de Geer (1995) consider independent and identically distributed (i.i.d) 

observations from a density p 0 belonging to a set p  of densities with respect to a dominating 

measure p . Our interest here is on the transformation of the variable by logarithm. We will 

therefore assume convergence, existence and consistency of the (AMVSU) estimators. For 

details of these matters, see Kutoyants (2004), Louikianova and Loukianov (2003a and 

2003b),Van Zanten (2001).
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2.0 Potential problems with transformation

When non-linear transformation is used we encounter problems estimating quantities such as 

means, variance, confidence limits, and regression coefficients in the transformed back into the 

original scale.

It may be difficult to understand or apply results o f statistical analysis expressed in the 

transformed scale. More calculations are required. We may illustrate the bias referred to by 

lognormal distribution. Let x  represent an untransformed lognormal datum, let y=lnx. An 

unbiased estimator of the log-transformed distribution i s y , the Arithmetic Mean of the y’s. If  it 

is transformed back to original scale by computing E j , the geometric mean, we do not obtain an 

unbiased estimate of the mean of the untransformed (lognormal) distribution. A similar problem 

arises when estimating confidence limits for the mean of a lognormal distribution.

Koch and Link (1980, V ol.l, p.233) suggest that transformation may be useful “when the 

conclusions based on the transformed scale can be understood, when biased estimates are 

acceptable, or when the amount of bias can be estimated and removed because the details of the 

distribution are known”.

Hoaglin, Mosteller, and Turkey (1983) point out that we lose some of our initiative 

understanding of data in a transformed scale, and that a judgement must be made as to when the 

benefits justify the “costs” . They indicate that a transformation is likely to be useful when the 

ratio o f the largest datum to the smallest datum in a data set is greater than about 20.

2.1 Limitation of logarithmic formations

Consider the relationship between an index number and a logarithm:

This is also what happens in an exponential index that can also be written as natural logarithm 

that

ex = log* or Inx

We notice that what happens to an index number is not exactly what happens to its logarithmic 

transformation.

Consider the expansion of the exponential series by Taylor’s theorem:
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X'^ x 11
e x  = 1 + x  H------- 1------- b ... + ------b R n ( x , a )

2! 3/ n!

Where R n ( x , a ) =  f — — t-^— e t dt 
J n!
a

The term Rn (x,a)  is known as the remainder. The omission of the remainder makes the

expansion a Taylor’s polynomial approximation to the function, f ( x )  = ex. The remainder is

also known as the error function. The series expansion can only converge to f  ( x ) - e x  if  and 

only if the limiting value of the error disappears. That is:

l i m R n (x >a) = °
X -b o o

It is possible to estimate the remainder, but we do not intend to do that in this paper. However, 

when this remainder fizzles out, then

m=0

Therefore,

® x" X 2 X 3---  = 1 + X+--- + ----+ ...
„=0 n\ 2! 3!

where a = 0

We recall that the resulting value is an approximation. This means too, that the logarithmic 

transformation would also be an approximation. The result above simply means that

jc2 x3lnx = l + xH----- 1------ K.. Since l n x - e x
2! 3!

In another example, In(l + x ) , at a - 0

, ,, . x 2 x 3 x 4 , x”ln(l + x) -  x ------ 1------ 1------ b... + (—1 ) -----b...
2 3 4 n

We can also obtain this by integrating the geometric series for (l + 1) ' from t = 0 to t — x

X  X

J(1 + 0 _1<* = J(1 - t  + t 2 - 13 + ...)dt
a a

= ln(l + 1)
x
0

Now, by Taylor polynomial approximation expansion
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ln(l + *) = * -  —  + —  + —  + ...
2 3 4

The remainder approaches zero, and leaves an approximation. The procedure here is what also 

applies to the log-likelihood of probability functions. An approximation is not, and can never be 

full information.

An important device in many computational methods is reparametnzation. A one-to-one 

transformation produces a new distribution with the Jacobian matrix of derivatives. It is often 

difficult to theorize about an appropriate normalizing transformation p-dimensional parameter 6 

hence the need for transformation of one dimension at a time.

The one-dimensional transformation improves the normal approximation asymptotically over the 

range o f -  oo to oo of the possible values of 61.

If <j)t = log#, removes the restriction, allowing 0j to range over ( —qo, qo). Which in practical 

problems the distribution of a parameter constrained to be positive will be positively skewed? 

The log transformation then gives the benefit o f reducing skewness. If 9i has a log-normal 

distribution the transformation is obviously exact.

2.2 Asymptotically-minimum-Variance-SuMcient Unbiased estimators

(* A) Given y  successes in n trials, the minimum likelihood estimator of the parameter 9 = p  

which is binomial Y □ B (n ,p )  isZ (/> ). Then
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p T l = Z  
p

_> (” ~y)  _ y
( i - p ) p

y
■ AMVSU

Since estimation in logarithmic transformation leads to biased estimates we may have to prefer 

equation (2) as obtained as against In L (p )  when it is transformed. Then we have:

In L(P) = In
UV

+ x  • In P + (n — x). ln(l -  P)

d  (\n L(P)) 
d(P)

x n - x

\ P  l - P .

This yields same result. Then transforming is not necessary. We recall here that when non

linear transformation is used in estimating parameters such as means, variances, confidence 

limits, regression coefficients, we face other problems. It may be difficult to understand or apply 

results of statistical analysis expressed in the transformed scale. We shall also have to calculate 

so many quantities.

(*P) AMVSU

If x l, x 2,...,xn are values of a random sample from an exponential population the maximum

- ' I ;
likelihood estimate of P in this case is L(P) = f ( x x,x 2,...,xn / P), then P(P) = P"e ' 

Solving equation (4) by product rule without transformation

dL(P)

d(P)
= [ - P nf c x ) e ~ p^ X + e ~ p^ X nP" 0

-p " C E * V pL x = - e-p^ x nP n—1

n
( 5)

As we have obtained equation (5), we shall compare (6) below with (5). They give same result. 

Then
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U P )  = x„ / P ) = P ne P̂ X

InL(P) = /tloge P - P £ x , ( l o g e e)

= «logeP - P £ x  =0  

dln(L(P)) n Y s X
d(P) p  1

p  i ^

- 0

We should note here quickly that if  the exponential p . d . f  has been defined as f x (x) = Pe -Px

1 1
which could have been f x(x) = — e .W e could set f x (x) = Ae where A = — . What we have

is the form obtained as a special case o f gamma distribution in (8) with a  -  land J3 = P  as

1 e~x,p
\ P ~ x > 0

0 otherwise

1 Xa-}e-x,fi x > 0

£ II p aT a
0 elsewhere oc,/3 > 0

We need to be careful with the usage of P  as the parameter as it has to do with convenience. P  

is binomial is not same in exponential. It is rather convenient to consider P a s  a parameter 

depending on the distribution and type being considered.

If in (4), we have decided to use directly, the special case o f gamma as — e

L(p ) = n / ( * . , p ) =

We shall see that

I -xIP

f l Y
— -e
PJ

/=!

n Y , X
P P 2
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P = - f l , = I  AMVSZJ estimator (9)
n ,=1

3.0 Some simple cases: If in the exponential case again, we are interested only in a sample 

case, then we have L(P) = Pe~Px

= P ( e - P M  (_ x)) + e ~p(x) (1)
d(P)

-xPe~P(x) +e~p(x) =0

x P - ------ = —-----
e~P(x) e~P{x)

xP=l

P  = - ( AMVSU ) (10)

Also if the random variable is discrete, say Poisson, then Px(x) = X£_
x\

l xe-x 1
L(X) = - A xex —A,

x! x!

= 1  (xAx- ' )] = 0
d(X) x!1 v /J

-A .
-A xe~A + x e 'Ar  = 0

1 = - ,  i  = x{AMVSU  ) 
A

Also in a case where X  □ B{n,p')  and x ,,x2,...,xn is being considered, we have:

Px(x) =
VXy

p x( \ - p y

( i i )

' n 2>  £(»-x) « V
p m (i - p y -1

kx) /'=! A
p^LX! _ p^mn

But if we set m = n and ^ x ,  = i , then we shall have

dL(P)
d(P)

p \ n L - o ( i - p y  -'-x +( \ -py ' - ' t p ' - l )=onL-t ,r>t-1
) -
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■P‘(n2 + { \ ~ P Y ’lP,x

p ‘i  i -  p ) nl-‘(\ -  p y ' { n 2 - 1) = ( 1 - p Y ‘tp ‘p - 1

( " * -> ) -  • 
i - p  p

■ p(n2 - t) = t ( l - P )

=>n2P - P t - t  + Pt = 0 

=>n2P - t

y v
=> P = since m = n ., then 

n
Z x 1

n n

( 12)
n

Clearly without transformation, we have obtained an asymptotically minimum-variance unbiased 

estimator which is faster and better so as to obtain more reliable result.

4.0 Problem case: If x ,,x2,...x„ are values of a random sample from a continuous uniform 

population with a  = 0 and J3 = P  then

L(P) =
( i Y

= P~

® )  =  P - , . = 0
d{P)

Here, we cannot proceed by using calculus to estimate P  for P  > the largest x and otherwise. 

Clearly the value o f this function will increase as P  decreases, P  has to be made as small as 

possible. P -  xn, the nth order statistics can be applied. There can also be an exceptional case 

where we can confirm that the ‘maximum-likelihood-estimation procedure can be carried out 

without transformation (logarithmic). It may useful in probability densities and mass functions 

especially those that contain an exponential component.
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5.0 Numerical illustration: If it is believed that the numbers of breakages in a damaged gene 

y follow a truncated Poisson distribution with probability mass function

n/I7 e~A XT
y  =  '-2- -

The frequency distribution of the number o f breakages in a random sample 30 damaged genes as 

follows

West. Afr. J. Biophy. Biomath. N° 1 (2008)

Number

of

breakage

1 2 3 4 5 6 7 8 9 10 11 12 13 Total

Number 

of genes 9 5 4 5 0 1 0 2 1 0 1 1 1 30

First is the legitimacy of this truncated Poisson distribution

P(Y = y) =
- x

1 - e -x y\
y - 1,2,.

Then ^
y =i

- x

1 — e T!

A + —  + —  + ... 
2! 3!

1-----

1

H

1___
11 1! ' ■ 2!

e ~ A L - *  j l —11 [e

, - x + x

1 -e
1 -e

- X

- x = 1

- 30,1

L ( V  = T > 0
(l — e~A )3° m r

Given that = 9 + 10 + 12 + 20 + 0 + 6 + 16 + 9 + 0 + 11+12 + 13 = 118

42

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



West. Ajr. J. Biophy. Biomath. N° 1 (2008)

In (L(X) = -3 0 A -3 0 1 n (l-e~ /l) + 1 1 8 1 n ^ -^ ln (x i!)

d(\n(X) _  3Q 30 t 118 
d(X) e~X - \  X '

With the usual regularity condition, the maximum likelihood estimator X satisfies °  = o
d(X)

The Newton-Raphson method can be used to find an iterative algorithm for computing the value

of X. We shall obtain the

for finding X

Numerically as Xn+1 =

d 2(ln (l)  d 2(\n(X) _  30e^ 118
d{X) d(X) )2 ~ ^ ~

. Then if we use an algorithm

d(ln(X))

d(A)

~d2(HX))
[ d(X2) J

X0, initial estimate could be found by plotting in (L(A)) against X. We can also use the non-

truncated Poisson, which here would Xn = -----— 3.6
0 30

Carefully let us use X0=3.6 as suggested above. If we combine categories 5 to 13 breakages into 

a single category, we can check the goodness-of-fit o f the truncated Poisson distribution.

6.0 Goodness - o f - fit

y 1 2 3 4 >5 Total

Observed 9 5 4 5 7 30

Expected 3.030 5.456 6.546 5.892 9.078 30

-#2 _ (9 -3 .0 3 0 )2 (5 -5 .454 )2 (7 -9 .0 7 8 )2
XcaI~ 3.030 5.454 " + 9.078

= 13.4011
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If k  is the number of categories and since we have estimate 1  the maximum likelihood 

estimator then the degree of freedom is 5-1 -1=3. Then %23 095 (at 5% level of significance)

^ 23 0 95 -7.8 1 5. Consider the truncated Poisson

H0 : The f i t  is good 
H ] : The f i t  is not good

We see this is significant. There is evidence against the null hypothesis of a truncated Poisson 

distribution.

7.0 Conclusion and recommendation

We have considered both simple and sample cases for different distributions both mass and 

densities. The asymptotically minimum variance sufficient unbiased estimators (AMVSU) can 

also be seen as best linear unbiased estimators (BLUE).

We assume convergence, existence and consistency. We have considered a case where calculus 

cannot even estimate our parameter 6 = P  (say). We see that if some set of data is fitted by the 

truncated Poisson distribution, the goodness-of-fit can be determined, after estimating the 

parameter 6  = 1  (say).
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