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Abstract

A methodology is presented for the inversion of two-dimensional (2-D) geoelectrical data for solving hydrogeological 
problems in crystalline basement areas. The initial step entails compiling an earth model using all available geological, 
borehole and geophysical information. This model then served as the input to a 2-D inversion algorithm based on the 
Simultaneous Iterative Reconstruction Technique (SIRT). The algorithm tries to find a model that is as close as possible to 
the starting model. To demonstrate the usefulness of this procedure, two field examples from Nigeria, conducted as part of a 
borehole siting programme, are described. In the first example, borehole information regarding the thickness of the 
weathered zone overlying a gneissic bedrock was used to constrain the 1-D inversion of sounding data and the model thus 
compiled was used as the starting model for 2-D inversion. In the second example, only sounding information was used to 
determine the starting model. If the starting model has incorporated all the available information as constraints, it is 
generally possible to compute a model that not only fits the measured data but is also a good approximation of the 
subsurface geology, more so when several 2-D models can fit the same set of field measurements on account of the 
limitations posed by equivalence.

Keywords: crystalline basement; electrical resistivity; geoelectrical prospection; inversion algorithm; Nigeria; non-unique
ness

1. Introduction

Although the solution to a geophysical in
verse problem is seldom unique, the conven
tional approach to the inversion of direct current 
resistivity data requires no prior information on 
the distribution of resistivity in the subsurface

Corresponding author. Tel.: +49-5323-722233; fax: 
+ 49-5323-722320; e-mail: andreas.weller@ tu- 
clausthal.de.

(Smith and Vozoff, 1984; Tripp et al., 1984; 
Shima, 1990; Loke and Barker, 1995, 1996). 
However, the resulting image, being just one 
out of several probable models, is not necessar
ily free from the interpreter’s bias. Simms and 
Morgan (1990) have shown that in the 1-D 
inversion of sounding data the indirect method, 
in which the geophysicist prescribes the initial 
model parameters, gives better results than an 
automatic inversion which requires no initial 
model. It has been suggested (Ellis and Olden
burg, 1994) that all a priori information should

0926-9851/97/S17.00 © 1997 Elsevier Science B.V. All rights reserved. 
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be used in generating a base model which would 
serve as a constraint for an inversion algorithm.

The application of electrical imaging or elec
trical tomography in geology normally involves 
the deployment of an array of colinear, equidis
tant electrodes. A series of constant separation 
traverses is measured, using a computer-con
trolled system (Griffiths and Turnbull, 1985; 
Griffiths et al., 1990; Griffiths and Barker, 
1993), the electrode separation being increased 
with each successive traverse. The data are clas
sically presented in the form of pseudosections 
(Edwards, 1977). The unit electrode spacing 
affects the length of the profile, depth of inves
tigation and resolution. In field surveys cost 
considerations dictate that a large area be cov
ered in minimal time; hence the unit spacing 
could be very large. This inevitably leads to a 
loss of geoelectrical information about the 
near-surface materials.

In the 2-D interpretation of resistivity pseu
dosection data from crystalline basement areas 
it is often possible to calculate a rather simplis
tic equivalent 2-D model that fits the measured 
data in which the entire overburden is lumped 
together as having a single resistivity (Olayinka, 
1988). This resistivity can be visualized as a 
weighted average of the resistivity of the vari
ous geoelectrical units that make up the over
burden. In the absence of any supplementary 
information this is possibly the best that could 
be done. However, significant lateral and verti
cal variations have been reported in the litho
logic characteristics of the weathered profile 
developed upon the crystalline basement in sev
eral parts of Africa (Chilton and Foster, 1995). 
In these areas, the depth to the fresh bedrock 
varies from 0 to 70 m and the vertical profile 
can be subdivided into three main parts, namely 
the topsoil, the saprolite (saturated regolith), and 
saprock (weathered bedrock). The resistivity of 
the topsoil varies from less than 50 to over 1000 
fl m; that of the saprolite from 10 to 600 O m, 
the saprock 300 to 3000 fl m and the fresh 
bedrock over 3000 11 m (Aina et al., 1996). The 
highly heterogeneous nature of the overburden

implies that situations could arise in which the 
images on pseudosections do not emulate the 
geologic structure.

In this paper, we have examined how the 
inclusion of borehole control and the results 
obtained from the 1-D inversion of vertical 
electrical sounding (VES) data can be used in 
compiling a 2-D geoelectrical model which 
could subsequently serve as the starting model 
for an inversion algorithm. The field measure
ments were acquired as part of hydrogeological 
investigations in crystalline basement areas of 
Nigeria. It is demonstrated that this approach to 
the inversion of 2-D pseudosection data leads to 
an improvement in the resolution of subsurface 
structures than is hitherto possible, especially 
when the unit electrode spacing in the survey is 
very large. Moreover, the solution is achieved 
after a fewer number of iterations than in auto
matic inversion, with a considerable saving in 
computer time.

Since electrical resistivity imaging is aimed 
at a more accurate delineation of subsurface 
structures any technique that could aid in the 
attainment of a realistic earth model is definitely 
welcome. The utilization of all a priori informa
tion including borehole control and sounding 
interpretation in the inversion of pseudosection 
data as described here is one such approach.

2. Inversion procedures

Geoelectrical measurements are performed in 
order to gather information on the subsurface 
resistivity distribution. Since each measured ap
parent resistivity is influenced by both the resis
tivity distribution in a large volume of earth and 
the electrode configuration the pseudosections 
cannot in most cases reflect the real subsurface 
structures. The reconstruction of a possible re
sistivity distribution can only be performed by 
inversion techniques, and the non-uniqueness in 
2-D and 3-D interpretation can be reduced by 
including all available information into the in
version process.
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The objective of inversion consists in finding 
a resistivity model which can approximate the 
measured data within the limits of data errors 
and which is in agreement with all a priori 
information. The inversion can be done manu
ally by forward modelling in which changes in 
the model parameters are made by trial and 
error until a sufficient agreement between mea
sured and synthetic data is achieved (Olayinka, 
1988).

For more complicated geological structures 
where the number of parameters increases auto
matic inversion procedures are applied. Most of 
them work iteratively. The steps involved are as
follows:

(1) The subsurface is subdivided into blocks 
of constant resistivity. The number of blocks N  
is equal to the number of model parameters. All 
parameters may be described by a parameter 
vector x = ( r 1, . . . , r „ ) r. The parameter x = is 
defined as the logarithm of the resistivity of the 
jth block.

(2) The measured data are compiled in a data 
vector y = (yi, ■ ■ ■ ,yMV  where M corresponds 
to the number of measurements. The element y, 
of the data vector y is the logarithm of the 
apparent resistivity of the ith measurement in 
the survey.

(3) A starting model is chosen. The parame
ter vector is initialized x = x(0).

(4) The forward modelling for the model \ (k) 
is performed where k denotes the number of the 
model. The apparent resistivity is calculated for 
all M configurations of electrodes used in the 
field survey. The calculated data are compiled 
in a data vector y (k\  The forward modelling is 
described by an operator S which is applied to 
the parameter vector x1''1:

y  a )  =  S (x ( i ) ) .  (1 )

(5) The residual r(k) between measured and 
computed data is determined:

ra,  =  y - y w  (2)
If a norm of the residual ||r(*)|| is less than a 
predetermined value s  the iteration process can

be stopped. The last model is accepted as a 
solution of the inversion.

(6) If the residual fails the stopping criterium 
the differences are applied to correct the resis
tivity model according to the inversion scheme 
and the next iteration is started with the forward 
modelling in step (4).

The use of the logarithms of resistivities in
stead of resistivities has proved to be more 
appropriate in resistivity inversion because neg
ative resistivities are avoided and relative 
changes are emphasized.

We used two different inversion techniques 
which can be described by the above mentioned 
iteration scheme. The first one is based on the 
Zohdy-Barker algorithm (Barker, 1992), which 
is only applicable to Wenner measurements. 
The discretization grid is designed such that 
each resistivity block is representative for one 
data point in the pseudosection. Thus, the num
ber of data corresponds to the number of resis
tivity blocks M = N. The depth to the centre of 
each block is one-half of the spacing between 
adjacent electrodes. The measured apparent re
sistivity data are used as starting model for a 
2-D inversion (x(0) = y). The forward modelling 
is performed by a finite difference algorithm

Fig. 1. Simplified geological map of Nigeria showing the 
study area ( A = Agbamu; /  = Ira).
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(Dey and Morrison, 1979; Weller, 1986). The 
ratio between measured and computed apparent 
resistivity is used to correct only the resistivity 
in the corresponding block. In logarithmic nota
tion the correction is written as:

x ' f+l) = x (Jk) + o)r(j k\  (3)

where j  is the number of measurement or the 
corresponding resistivity block, and w is a re
laxation factor which was set to unity in the 
original version. From our experience a relax
ation factor of (o= 1.2 accelerates the conver
gence. In our modified version we use also a 
weighting between adjacent resistivity blocks in

the horizontal direction to ensure a better con
vergence.

The second technique is a more general in
version algorithm which is applicable to vari
able electrode configurations including buried 
electrodes. It can be applied to both 2-D and 
3-D inversion. In the 2-D case, the subsurface is 
subdivided in a rectangular grid. The resistivity 
of each grid element is a parameter which should 
be determined during the reconstruction algo
rithm. Since the number of grid elements is 
generally much higher than the number of data, 
a strongly underdetermined system has to be 
solved. The forward modelling uses a finite

▲
VES 36 VES 35/BH 8 BH 9/VES 38

RMS error = 38.5 %

xin m

50 200 1000 5000
pin £lm

Fig. 2. Interpretation of Agbamu Line 4. (a) Measured apparent resistivity pseudosection, (b) Model derived from VES 
interpretation, (c) Pseudosection calculated from the model in (b).
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Interpretation of resistivity sounding
Layered profile
Depth RHO 
in m in Ohm*m

1.0

3.5

42.3

228

619

110

10000

102 10 3

Location: Agbamu 
No: VES38

RHO-S in Ohm*m 
104 105

Fig. 3. Inversion of Agbamu VES 38, constrained by borehole information.

difference algorithm which allows the mod
elling of both resistivity and induced polariza
tion data (Weller et al., 1996a). The inversion is 
based on a Simultaneous Iterative Reconstruc
tion Technique (SIRT), which has been applied 
to several tomographic algorithms to solve lin
ear equation systems (e.g., Dines and Lytle, 
1979: Van der Sluis and Van der Vorst, 1987). 
.Although the forward modelling operator S is 
nonlinear, we tried to use the SIRT for a lin
earization of Eq. (1) in the vicinity of the model 
x(t)
y  = y (k) + S(x — x(i)). (4)
The matrix S is the Jacobian or sensitivity ma
trix
S  =  { 5 | , y } l = l , . . . M  ( 5 )

j — 1 . . . .  AT

with the elements
d >’i

SiJ dxl '
(6)

SIRT determines in each iteration step a correc
tion of all model parameters using the residual 
and the sensitivities according to the following 
general equation

j k + i ) ; + O)- - YI a

(7)

with 0 < a < 2 and 0 < o> < 2. In our inversion 
algorithm, we use Eq. (7) with an exponent 
a = 1 and a relaxation factor co> 1.5. A change 
in the model results also in a change of the 
sensitivities (Weller et al., 1996b). A test has 
shown that an update of the sensitivity matrix in 
each iteration results only in a slight improve
ment of the rate of convergence compared with 
the use of unchanged sensitivities. Since the 
computational effort of a sensitivity update is 
considerable, our experience suggests that it
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should be performed only after every five or ten 
iterations.

3. Data acquisition and choice of starting 
model

Two field examples are described in the fol
lowing section. These field measurements were 
made in the area around Ilorin, southwestern

Nigeria (Fig. 1), as part of a borehole siting 
programme for rural water supply. A micropro
cessor-controlled resistivity traversing system 
(Griffiths and Barker, 1993) was used. The unit 
electrode spacing was 45 m and the maximum 
was 180 m for the fourth level of the Wenner 
pseudosection. The survey should provide infor
mation down to depths of about 90 m (Edwards, 
1977).

Vertical electrical sounding data were ac
quired with the offset Wenner array (Barker,

RMS error = 12.0 %

0 100 200 300 400 500 600 700 800

RMS error = 9.3 %

RMS error = 7.0 %

x in m

50 200 1000 5000
pin n m

Fig. 4. Inversion results of Agbamu Line 4. (a) Zohdy-Barker method, 5 iterations, (b) SIRT, 10 iterations, starting with 
backprojection. (c) SIRT, 10 iterations, starting with model from VES. (d) Pseudosection calculated from (c).
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1981) mainly in the vicinity of low resistivity 
anomalies identified on Wenner pseudosections. 
Such lows are normally thought to be caused by 
conductive fissure/fracture zones within the 
basement, containing water (Palacky et al., 
1981). The orientations of the soundings were 
the same as those of the respective 2-D surveys. 
The soundings were measured up to a spacing 
of a = 64 m. In order to increase the number of 
data points, vertical columns of the pseudosec
tion data beneath the respective electrode posi
tions were added, thus extending the sounding 
cunes. Where steep gradients were suspected, 
from an inspection of the resistivity contour 
pattern, the geometric average of two or three 
laterally adjacent data points was taken.

A 1-D inversion of the sounding data was 
carried out using a curve fitting algorithm based 
on a Marquardt-type least squares optimization 
method (Rosier and Weller, 1983). Soundings 
along a given traverse were correlated and com
mon attributes searched for. Borehole informa

tion, where available, was also incorporated as a 
constraint, especially in respect of the thickness 
of the weathered zone. In this way, the influ
ence of equivalence on the inversion results was 
reduced (Dorn, 1985). A simplified 2-D model 
was then compiled from the sounding interpreta
tion by creating rectangular blocks of homoge
neous resistivities, the depths to the boundary 
planes and layer resistivities being those from 
the plane layer solution. This model was subse
quently used as the input for the 2-D inversion 
algorithm based on the SIRT. If no starting 
model is available a backprojection can be per
formed to initialize the model parameters:

I l sij9i

Only positive sensitivities st . are considered in 
the summation of Eq. (8) while the negative 
sensitivities are set to zero.

Fig. 5. RMS error curves for the 2-D inversion of Agbamu Line 4.
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The results obtained from SIRT with differ
ent initializations (starting model or backprojec- 
tion) have been compared with those from the 
Zohdy-Barker algorithm.

4. Examples

4.1. Agbamu case history

Agbamu village is situated about 53 km 
southeast of Ilorin (see Fig. 1). The area is

underlain by Precambrian to Upper Cambrian 
crystalline basement complex rocks, with the 
dominant rock type being gneiss. There is a 
pervasive presence of weathered materials. Fig. 
2a shows the apparent resistivity pseudosection 
from one of the survey lines at this village. 
There is a fairly broad low resistivity anomaly 
which is about 350 m wide. Towards the deeper 
part of the pseudosection, there are two high 
resistivity structures centered at about the 260-m 
and 580-m marks along the profile.

Soundings were made at three points along

SW NE

VES 11 VES 12 VES 13

RMS error = 20.6 %

x in m

I
180 560 1800 5600

P in Om
Fig. 6. Interpretation of Ira Line 12. (a) Measured apparent resistivity pseudosection, (b) Model derived from VES 
interpretation, (c) Pseudosection calculated from the model in (b).
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the iine: two of these were within the resistivity 
A borehole (BH 9) drilled at the position 

of VES 38 penetrated a very thick (42 m) 
weathered profile, comprising low permeability 
silty material, underlain by partially weathered 
and fractured gneiss (saprock) down to the total 
drilled depth of 93.4 m. With this information, a 
1 -D inversion of the sounding measurement was 

:ed out (Fig. 3) in terms of a four-layer

model. The layer resistivities are 228, 619, 110 
and 10,000 fl m, respectively. The thickness of 
the first layer (topsoil) is 1.0 m, that of the 
second (laterite) 2.5 m and the third (saprolite) 
38.8 m. Similarly, at the position of borehole 
BH 8 the depth to basement is 40 m. This 
suggested that the bedrock topography along 
this traverse is probably fairly flat and the depth 
to bedrock at the three sounding locations was,

RMS error = 9.8 %

RMS error = 15.9 %

RMS error = 6.3 %

180 560 1800 5600
p in  £2m

Fig. 7. Inversion results of Ira Line 12. (a) Zohdy-Barker method, 5 iterations, (b) SIRT, 10 iterations, starting with 
-w>.projection, (c) SIRT, 10 iterations, starting with model from VES. (d) Pseudosection calculated from (c).
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therefore, fixed at 42 m for purpose of the 
resistivity data interpretation. The resistivity of 
the prebasement layer in VES 38 (i.e., 110 
O m) was kept constant in the other two sound
ings. The interpretations of soundings VES 35 
and VES 36 are similar (Fig. 2b), except that 
there is an intermediate layer with a low resis
tivity of 26 f tm  for VES 35; it is probably a 
clayey horizon that gave rise to the low resistiv
ity anomaly on the pseudosection rather than a 
larger depth to bedrock. The apparent resistivity 
pseudosection calculated from this VES-derived 
model is presented in Fig. 2c, with an RMS 
error of 38.5% when compared with the mea
sured pseudosection.

The model in Fig. 2b served as the starting 
model for the 2-D SIRT inversion algorithm. 
There is a large drop in the RMS error within 
the first few iterations (Fig. 5). At the end of the 
tenth iteration, the RMS error had fallen to 
7.0%, and the resulting image is presented in 
Fig. 4c. It is interesting to note that when the

same field data set was inverted with the SIRT 
algorithm, but without a starting model being 
prescribed (rather it was derived from backpro- 
jection), the initial RMS error was 70.2%, drop
ping to 9.3% at the tenth iteration. The resistiv
ity image from the SIRT algorithm, starting 
with backprojection, at the tenth iteration, is 
shown in Fig. 4b and that from the Zohdy- 
Barker algorithm at the fifth iteration is shown 
in Fig. 4a.

It can be observed that slightly different re
sults were obtained from the three inversion 
schemes. It is obvious that the final resistivity 
image is strongly dependent on how the initial 
model was derived. In the Zohdy-Barker algo
rithm, the measured apparent resistivities are 
directly used as the starting model; subsequent 
iterations involve minimizing the error between 
the 2-D data calculated from this model and the 
field data. In this manner, the structures visible 
in the pseudosection are nearly preserved from 
one iteration to the other. The SIRT algorithm,

C
o
u_0

CO

4 6
Number of iterations

Fig. 8. RMS error curve for the 2-D inversion of Ira Line 12.
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r. ;r.e other hand, allows for near-surface varia- 
:;on> in resistivity. Moreover, in the inversion 

::n a -:arting model there are provisions for 
' Aeral variations in the thickness and resistivity 
:f the various geoelectrical units within the 
: erburden and these remain preserved in the 

mage while there are only minor changes 
■  the resistivity distribution within the bedrock. 

Toe pseudosection data calculated from the 
v ry image of the SIRT algorithm with 

~:amng model are shown in Fig. 4d and a 
, rnparison with measured apparent resistivity 

'eetion in Fig. 2a indicates that most of 
me :.-mures in the field data are preserved in the 
—_ reeled pseudosection. These include the high 
r e : p .  zones near the 260-m and 580-m 

as well as the low resistivity anomaly 
~er- een 340 and 700 m.

A ; : mparison between the RMS error curves 
_■ ; r’rrent stages in the inversion of the 2-D 
.7.--a - rresented in Fig. 5. The superiority of 
•_*.e r/. er-ion with the VES-derived initial model 
- - :: u>. It may be noted that the curves for

me Zody-Barker method and the SIRT (with 
-:mung model) are quite close for all the itera- 
tkjn steps.

-  2. Ira case history

The second field example is from Ira which 
a '• illage situated about 45 km south of Ilorin. 

T k  basement rock type comprises biotite gneiss 
... / This is overlain by a predomi-

_r: _■ overburden. As shown in Fig. 6b, 
.r.iir.g data were acquired at three points 

. - ?'7..iosection traverse in this village.
In 77e absence of borehole control, it was still 

7' -AAe to have a consistent interpretation of 
Ac sounding data, with the following parame- 

7 common: depth to bedrock 29 m; pre- 
ra-emeni layer resistivity 300 If m; and bedrock 
77 :oei resistivity 6000 1) m. Two of the sound

s ' namely VES 11 and VES 13, were inter- 
rretec by three-layer models while the third 

ES 12* was interpreted with four layers. The

sounding interpretation results in the resistivity 
model shown in Fig. 6b.

The pseudosection data calculated from this 
model are shown in Fig. 6c, with an RMS error 
of 20.6% when compared to the measured ap
parent resistivity pseudosection (Fig. 6a). This 
is a relatively good fit and this model derived 
from VES was used as the starting model for 
the SIRT inversion algorithm; a considerable 
improvement in the fit to the field data was 
observed, with the RMS error dropping to 6.3% 
at the tenth iteration. The image of true resistivi
ties for this model is shown in Fig. 7c, and 
displays widespread lateral variations in the 
geoelectrical character of the overburden which 
are in agreement with the starting model. The 
pseudosection calculated from this image is pre
sented in Fig. 7d, and indicates that the features 
in the measured apparent resistivity are accu
rately reproduced by the model, including the 
high resistivity structure at about the 680-m 
mark.

By comparison, inversion of the same data 
set by SIRT using backproj eetion gave the im
age shown in Fig. 7b, with a much higher RMS 
error of 15.9% after ten iterations. The results 
with the Zohdy-Barker algorithm are shown in 
Fig. 7a, with an RMS error of 9.8% at the end 
of the fifth iteration. The SIRT algorithm shows 
only a slight drop in the RMS error after the 
fifth iteration, while the errors are lower in the 
version employing a starting model (Fig. 8).

5. Discussion and conclusion

An algorithm based on the SIRT was used 
for the inversion of 2-D resistivity pseudosec
tion data (Wenner array) from a crystalline 
basement area of Nigeria. It has been shown 
that the resistivity image obtained when the 
prescribed starting model incorporated all avail
able information is a better approximation of the 
subsurface geology than is otherwise the case 
for a fully automatic inversion, when the start
ing model is derived from backprojection. While

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



114 A.I. Olayinka, A. Weller /  Journal o f Applied Geophysics 37 (1997) 103-115

it is desirable to attain a low RMS error be
tween the field and calculated data, a geophysi
cal interpretation along the lines described here 
which takes into account all available evi
dences, is a greater priority in view of the 
non-uniqueness of the interpretation of any given 
data set due to 2-D equivalence.

It should be noted that the presented algo
rithm provides no information on the possible 
existence of other solutions also consistent with 
both the data and the a priori information. Gold
man et al. (1994) suggest in the case of 1-D 
interpretation of transient electromagnetic 
soundings to apply first a global inversion algo
rithm to find all possible solutions and then to 
use independent information in trying to fix the 
true solution. If more than one solution is con
sistent with the information the interpreter is 
still motivated to resolve non-uniqueness by 
either obtaining more information or applying 
other techniques or improving parameters of the 
method used. In the case of 2-D interpretation 
this approach would also be advisable. But re
garding the large number of resistivity blocks 
and the computer time needed for a single in
version, a global search for all possible solu
tions with a lot of statistically distributed start
ing models is still not practical.

The application of the SIRT algorithm has 
shown that not much reduction in the RMS 
error is attained after five iterations. Hence, five 
iterations should be adequate for the inversion 
of 2-D data from similar geological settings.

A comparison between the Zohdy-Barker, 
SIRT with backprojection and SIRT with start
ing model algorithms suggests that the resistiv
ity model is strongly dependent on how the 
initial model was found; hence if the starting 
model is well constrained a more realistic geo
logical picture will likely result.
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