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ABSTRACT 
 
A Monte Carlo simulation is employed to 
investigate the sensitivity of simultaneous 
equation techniques under different levels of 
correlation between random deviates. Three 
arbitrary levels of correlation between pairs of 
random deviates were assumed. Three small 
sample sizes were used in this experiment, N = 
15, N=25 and N = 40 each replicated 100 times. 
A number of factors should be taken into account 
in choosing an estimation method. Although 
system methods are asymptotically most efficient 
in the absence of violation of mutual 
independence of random errors, system methods 
are more sensitive to any kind of error than single 
equation methods. 
 
In practice, models are never perfectly specified 
nor are they completely free of correlated random 
deviates. It is a matter of judgment whether the 
correlation is strong enough to warrant avoidance 
of system methods. 
 
As sample size increases, the TAB for all the 
estimators decreased consistently except for 
FIML. OLS, 2SLS, LIML and FIML are remarkably 
insensitive to the choice of triangular matrices (P1 
and P2) when using TAB to judge their 
performances. Best RSS estimates of 2SLS, 
LIML, and 3SLS are found in the feebly correlated 
region. 

 
 (Keywords: limited-information estimators, full-

information estimators, sensitivity, finite-sample, Monte 
Carlo experiment, correlation coefficient) 

 
 
INTRODUCTION 
 
Beginning with the method developed by [15] for 
solving the problem of single equation bias, 
econometricians have devoted considerable effort 
to developing additional methods for estimating 

the structural parameters of simultaneous 
equation models [28], [16], [25], and [27]. While it 
has been fairly easy to develop the asymptotic 
properties of these estimators, a distinguishing 
characteristic of econometric models is that they 
are invariably based upon small samples of data 
and thus, the asymptotic properties of the various 
estimators are not necessarily the best guide in 
selecting the appropriate estimating procedure. 
One approach to this problem has been the 
derivation of the exact finite-sample properties of 
some estimators by [30], [31], [32], and [19].  
 
Relatively little is known about the finite sample 
distributions of the various estimators. The exact 
finite sample distributions of limited-information 
maximum likelihood estimates and two-stage 
least squares estimates have been derived by 
Basmann in certain special cases ([30] and [32]). 
He found that these distributions do not always 
possess finite moments of low order; in certain 
cases even the mean does not exist.  An 
alternative approach to uncovering the small 
sample properties of various structural equation 
estimators has been to conduct sampling 
experiments with the aid of more or less artificial 
models. The most notable among these have 
been studies by [11], [19], and [29]. Several small 
models are examined in these studies from 
various points of view; the general conclusions 
emerging from them are excellently summarized 
by [9].  
 
Another approach, which is generally applicable 
to all estimators, has been to conduct sampling 
experiments with different simultaneous equation 
models using small samples of data which have 
been artificially generated [34], [30], [6], [33], [20], 
[23], [10], and [11]. More recent work has been 
done by ([1]; [2]; [4]), [5], [8], and [7]. The net 
result of all of these studies has been to show 
that there exist no clear guide-lines for the choice 
of an estimator for econometric models.  
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The general consensus of opinion, however, is 
that, thus far, two-stage least squares is the 
cheapest, easiest, and most efficient estimator in 
most situations [24]. A different approach to the 
simultaneous equation bias problem is the full 
information maximum likelihood (FIML) estimation 
method [3].  
 
It has been shown by [13] that the full-information 
maximum likelihood method of estimating the 
coefficients of structural equations is a 
generalization of the least squares principles. 
These estimates are consistent and efficient. 
Nevertheless, the properties of other types of 
estimator continue to be of interest because of 
the computational difficulty of obtaining full-
information estimates ([12] and [14]).  
 
Noteworthy among alternative methods are 
limited-information maximum likelihood, indirect 
least squares, two-stage least squares, direct 
least squares (the last two being special cases of 
the general k-class of estimators), three-stage 
least squares, linearized  and several others ([17], 
[18], [21], and [26]). With the exception of direct 
least squares these methods also possess the 
properties of consistency although they yield 
biased estimates in finite samples [22].  
 
Compared to the instrumental variables methods 
(2SLS and 3SLS), the FIML method has these 
advantages and disadvantages:  
 
1. FIML does not require instrumental variables. 

  
2. FIML requires that the model include the full 

equation system, with as many equations as 
there are endogenous variables. With 2SLS 
or 3SLS you can estimate some of the 
equations without specifying the complete 
system.  
 

3. FIML assumes that the equations errors have 
a multivariate normal distribution. If the errors 
are not normally distributed, the FIML method 
may produce poor results. 2SLS and 3SLS 
do not assume a specific distribution for the 
errors.  
 

4. The FIML method is computationally 
expensive.  

 
The random deviates on which the selection of 
error terms in Monte Carlo studies is based are 
usually assumed to be pair wise uncorrelated. 
This is not always true although the correlation 

coefficients are usually small. Since random 
deviates will lose the quality of randomness if 
they are forced to be orthogonal, the objective of 
this paper is focused on investigating the 
sensitivity of estimators of a two-equation model 
in the presence of three levels of unintended 
correlation between pairs of normal deviates used 
in the Monte Carlo experiment. 
 
 
THE MODEL 
 
Numerous methods have been developed for 
estimating the coefficients of a system of 
simultaneous linear structural equation of the 
form: 
 

uzBy     (1) 
 
It is assumed that z is a vector of exogenous 
variables (assumed to be identical in repeated 
samples and not to contain lagged values of 
endogenous variables), u is a vector of jointly 
normally distributed error terms with mean zero 
and covariance matrix , y is a vector of 
endogenous variables, and B  (nonsingular) and 

are matrices of coefficients.  
 
Assume the following two-equation model:  
 

tttt UXYY 11112121  
 

tttttt UXXYY 2323222122  (2) 
  
where the Y‟s are the endogenous variables, X‟s 
are the predetermined variables and U‟s are the 

random disturbance terms, s' and s'  are the 
parameters.  
 
The first equation is over-identified while the 
second equation is a just identified equation. The 
error terms were not independent ([2] and [4]). 
 
The reduced form equation of the above equation 
(2) is given as:  
 

uxBy     (3) 

uBxBy 11  
   vx  
 
where, 
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This can be written as: 
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The reduced form of Equations (4) and (5) are: 
 

VXXXy ttttt 13132121111

 

     (6) 
 
 

VXXXy ttttt 23232221212

 

     (7) 
 

DESIGN OF EXPERIMENTS 
 
Three arbitrary levels of correlation between pairs 
of random deviates are assumed. These three 
scenarios of correlation are then used to generate 
pairs of normal deviates of sizes N = 15, 25, and 
40, with 100 replications.  Each set of normal 
deviates with the different sample sizes are then 
transformed using the upper ( 1P ) triangular 
matrix.  The procedure was repeated using the 
lower triangular matrix ( 1P ), such that in each 

case,  = 11PP . 
 
To generate the data, the structural Equations (2) 
were transformed to the reduced form, error 
terms for sample sizes of fifteen, twenty-five and 
forty were produced by a random normal deviate 
generator and values for the endogenous 
variables were calculated. For each sample size, 
hundred sets of data were generated, with the 
vectors of exogenous variables remaining the 
same for each set of data.  
 
Five estimators are used in this experiment; they 
are Ordinary Least Squares (OLS), Two Stage 
Least Squares (2SLS), Limited Information 
Maximum Likelihood (LIML), Three Stage Least 
Squares (3SLS) and Full Information Maximum 
Likelihood (FIML). 
 
In assessing the performance for the various 
estimators, an examination of the means and 
standard deviations of the estimates of structural 
parameters was made and from this some 
summary statistics were prepared. These 
permitted evaluations on the basis of two criteria, 
smallest bias and smallest standard deviation.  
 
A combined or scalar measure of these two 
criteria could be Root Mean Square Error (MSE) 
or Mean Absolute Error (MAE). One investigator 
has stated that on a priori grounds it is hard to 
choose between these measures [10, p12]; 
therefore, a summary statistics using two 
measures; total absolute bias and sum of squared 
residuals are included for this study. 
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SIMULATION RESULTS 
 

Table 1: Summary of Total Absolute Bias R=100, P1 
 Level of 

correlation 
OLS 2SLS LIML 

N=15 N=25 N=40 N=15 N=25 N=40 N=15 N=25 N=40 

r<-0.05 4.967447 4.948403 4.874522 4.902149 3.897816 3.881116 4.384517 4.600761 3.574813 
-

0.05<r<0.05 
4.884578 4.88579 4.733118 4.635532 3.492337 3.616084 3.393374 3.043991 2.933429 

r>0.05 4.84921 4.828668 4.423479 5.10576 4.186388 3.698753 4.947764 3.40555 3.146334 
   

Level of 
correlation 

3SLS FIML 

N=15 N=25 N=40 N=15 N=25 N=40 

r<-0.05 3.996025 2.280115 2.760661 11.514893 23.234947 9.408441 
-

0.05<r<0.05 
4.027558 2.899392 2.803212 12.582233 16.593795 12.561232 

r>0.05 4.996303 4.00182 3.257218 14.484919 11.052439 9.298833 
 
 

Table 2: Summary of Total Absolute Bias R=100, P2 
 Level of 

correlation 
OLS 2SLS LIML 

N=15 N=25 N=40 N=15 N=25 N=40 N=15 N=25 N=40 

r<-0.05 4.888746 4.890336 5.044038 4.096107 4.339463 4.412196 3.785076 4.293223 4.867604 
-

0.05<r<0.05 
4.85784 4.865581 5.015919 4.715642 3.671604 3.555401 5.078825 3.403852 2.982053 

r>0.05 4.851891 4.877528 4.933268 3.947009 4.117722 3.6645 4.066545 3.736673 3.103178 
 

Level of 
correlation 

3SLS FIML 

N=15 N=25 N=40 N=15 N=25 N=40 

r<-0.05 2.761579 3.095991 4.088159 15.690135 18.081122 11.662543 
-

0.05<r<0.05 
3.142008 1.725094 2.910107 21.060479 27.288149 11.39745 

r>0.05 4.554659 3.070647 3.73892 23.081417 11.108718 9.666032 
 
 
 
Tables 1 and 2 contain summaries of the 
performance of estimators using total absolute 
bias (TAB) of estimates. To reduce the dimension 
of the results displayed in Tables 1 and 2, the 
total absolute biases are summed across 
correlation levels for each estimator; this will 
facilitate a study of the asymptotic behavior of 
TAB for each estimator, computation of the 
average bias for each estimator and its dispersion 
over sample sizes, all of which will also help in 
ranking the estimators under P1 and P2 in 
increasing order of average of total absolute bias. 
Tables 1 and 2 are used to generate Table 3. 
 
The entries in the rows of Table 3 for P1 show 
that the sums of total absolute bias decrease as 
the sample size increases for OLS, 2SLS, LIML, 
and 3SLS, the sums do not reveal any such 
asymptotic behavior for FIML where the sample 
size 25 appears to be a turning point (maximum 

bias for FIML). For P2 the row entries reveal 
asymptotic behavior for 2SLS, LIML and FIML 
while 3SLS has sample size 25 as a convex 
turning point and the sums increase as the 
sample size increases for OLS. 
 
This result shows that estimates of absolute bias 
are sensitive to changes in the sample sizes. It is 
also of interest to rank the estimators on the basis 
of the magnitude of total absolute bias and to 
examine the dispersion of the estimates using the 
coefficient of variation. These averages and the 
coefficients of variation of the 3 estimates for 
each estimator are displayed in table 4 for P1 and 
P2. 
 
Using the Average Total Absolute Bias (ATAB) 
and its Coefficient of Variation (CV) presented in 
Table 4, the five estimators are ranked as shown 
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in Table 5 in increasing order of bias and 
coefficient of variation under P1 and P2. 

 
It is noteworthy in respect of average absolute 
bias that the five estimators rank uniformly under 
P1 and P2. This finding clearly shows that the 
ranking of the estimators in terms of the 
magnitude of the average total absolute bias is 
invariant to the choice of the upper (P1) or lower 
(P2) triangular matrix. 
 
It is also remarkable that whereas the average 
absolute biases of the other four estimators range 
between 9 and 15, those of FIML maintain a very 
distant fifth position with 40 and about 50 for P1 
and P2, respectively.   
 
The poor ranking of FIML in this situation of 
correlated disturbances and over-identified 
equation may be attributed to the fact that it uses 
more information as an estimator than any of the 
other four estimators. The only remarkable 
uniformity in the ranking of estimators on the 

dispersion of the total absolute bias is the fact 
that the 3SLS and FIML are in the fourth and fifth 
positions, respectively, under P1 and P2.   
 
Finally, a decision on the best estimator for this 
model cannot be taken on the basis of our 
findings on total absolute bias alone. This is 
because the yardstick is the total absolute bias of 
two equations, which differ in their identifiability 
status. In estimating multi-equation models, the 
choice of estimator is equation specific. Hence, 
the findings here will have to be reconciled with 
findings elsewhere before a prescription of best 
estimator of each equation can be suggested. 
 
To further study the asymptotic behavior as well 
as the sensitivity of each estimator to changes in 
TAB of estimates over replication, Tables 1 and 2 
are used to chart the behavior of estimators over 
correlation coefficients and sample sizes and 
these are presented in Table 6 for both P1 and P2, 
respectively.  

 
 
Table 3: Sums of Total Absolute Bias over Correlation Levels, Replication Numbers or Sample Sizes. 

Triang
ular 

Matrix 

Repli
-

catio
ns 

OLS 2SLS LIML 3SLS FIML 

SAMPLE SIZES 

15 25 40 15 25 40 15 25 40 15 25 40 15 25 40 

P1 100 14.7
0 

14.6
6 

14.0
3 

14.6
4 

11.5
8 

11.1
9 

12.7
2 

11.0
5 

9.65 13.0
2 

9.1
8 

8.82 38.5
8 

50.8
8 

31.2
7 

P2 100 14.6
0 

14.6
3 

14.9
9 

12.7
6 

12.1
3 

11.6
3 

12.9
3 

11.4
3 

10.9
5 

10.4
6 

7.8
9 

10.7
4 

59.8
3 

56.4
8 

32.7
3 

 
 

Table 4: Average Total Absolute Bias and their Coefficient of Variation (P1 and P2). 
Triangular 
Matrix 

 OLS 2SLS LIML 3SLS FIML 

P1 Mean 14.46 12.47 11.14 10.34 40.24 
C.V 0.0260 0.1515 0.1380 0.2251 0.2463 

P2 Mean 14.74 12.17 11.77 9.70 49.68 
C.V 0.0147 0.0465 0.0878 0.1620 0.2974 

 
 

Table 5: Ranking of Estimators under P1 and P2 on ATAB and CV. 
ATAB CV 

P1 P2 P1 P2 

3SLS 3SLS OLS OLS  
LIML LIML 2SLS 2SLS 
2SLS 2SLS LIML LIML 
OLS OLS 3SLS 3SLS 
FIML FIML FIML FIML 
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Table 6: Trends of Total Absolute Bias as Error Correlation changes from High Negative through Small 
(negative and positive) to High Positive Values, R=100. 

 
Estimator P1 P2 

Sample size (N) Sample size (N) 

15 25 40 15 25 40 

OLS \ \ \ \ \ \ 
2SLS V V V  V V 
LIML V V V  V V 
3SLS / / / / V V 
FIML /  \ /  \ 

 
 
The entries show that under P1, for OLS, the 
model absolute bias decreased consistently as 
correlation changes over the three ranges rose 
consistently for 3SLS and attained a minimum (V) 
as correlation changes from high negative value 
through low negative or positive values to high 
positive values for 2SLS and LIML. The behavior 
is inconclusive FIML. Under P2, the findings are 
generally less conclusive, however, model 
absolute bias is downward sloping for OLS 
(similar to behavior in P1) and has a convex 
behavior with the turning point at the middle 

interval for 2SLS, LIML and 3SLS at N=25 and 
N=40, respectively.  
 
Theoretically, one expects the “V” trend to be the 
most frequent since that would imply that total 
absolute bias is a minimum when correlation of 
the error term is smallest (negative or positive). 
This is reflected to a large extent by estimates of 
2SLS and LIML based on P1 and 2SLS, LIML, 
and 3SLS based on P2. The sum of squared 
residuals of each equation for all the five 
estimators are displayed in Tables 7 and 9.  
 

These tables are arranged to facilitate the study 
of the asymptotic distribution of the sum of 
squared residuals. They reveal changes in the 
estimates of RSS as N increases at different 
levels of error correlation. 
 
For OLS, LIML and FIML, the RSS obtained in 
equation two, the just identified equation, are 
smaller at all levels of error correlation than those 
obtained in equation one, the over-identified 
equation. For 2SLS and 3SLS, the estimates 
obtained in equation one are smaller than those 
obtained in two.  
 
An overview of these tables reveals that RSS for 
OLS follow a consistent pattern column-wise, i.e. 
for the two equations and at all levels of 
correlation coefficient, RSS increase as sample 
size increases for both P1 and P2. 
 
As expected the RSS displayed in these tables (7 
and 9) for P1 and P2 are fairly uniform row-wise 
for all estimators except the FIML where 
estimated RSS vary sample sizes. Also the RSS 
for FIML are remarkably higher than for the other 
four estimators. 
 
As before, to gain some insight into the behavior 
of the estimated RSS as correlation of the error 

term changes from r<-0.05, through -0.05<r<0.05 
to r>0.05; the relevant charts are displayed in 
Tables 8 and 10 (using the results of the sum of 
squared residuals of estimates displayed in 
Tables 7 and 9) for the three sample sizes given 
100 replications for P1 and P2. For example, in 
Table 7 for EQ1, N=15 RSS fell from 8.469256 to 
7.697955 and fell further to 7. 222594 across the 
three levels of correlation coefficient, this is 
represented by the trend “\”.  
 
At N=25, for the same equation RSS maintained 
the downward trend “\”. This is repeated for each 
parameter to obtain the different trends shown in 
Tables 8 and 10. 
 
In Tables 8 and 10 for the two equations under 
P1, the downward sloping trend is most frequent 
for OLS, which implies that, the RSS decrease 
consistently as correlation coefficient changes 
from highly negative, through feeble to highly 
positive range. For FIML, identical results are 
obtained for the two equations and triangular 
matrices. 
 
It is also worth mentioning that, the trends under 
2SLS, LIML and 3SLS are similar for the two 
equations when both P1 and P2 are considered. 
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Table 7: Summary of Sum of Squared Residuals for Three Correlation Levels R=100, P1. 

 
 
Table 8: Charts of the Behavior of RSS of Estimators over Correlation Coefficients for each Sample Size 

R=100; P1. 
Estimator EQ1 EQ2 

Sample size Sample size 

15 25 40 15 25 40 

OLS \ \ \ \ \ \ 
2SLS V V  / V V 
LIML V V  / V V 
3SLS V V  / V V 
FIML / \  / \  

 
 

Table 9:  Summary of Sum of Squared Residuals for Three Correlation Levels R=100, P2. 

 
 

Estimato
r 

Level of 
correlation 

EQ1 EQ2 

N=15 N=25 N=40 N=15 N=25 N=40 

OLS r<-0.05 8.469256 14.53042 23.15642 5.633654 9.655884 16.66429 
-0.05<r<0.05 7.697955 13.86687 21.90421 5.196804 9.082502 15.82505 

r>0.05 7.222594 11.99807 18.88565 4.765228 7.69349 14.32214 
2SLS r<-0.05 52.04317 90.07682 109.1199 45.97432 115.9413 201.2111 

-0.05<r<0.05 26.93059 81.35832 140.1711 51.94936 76.6478 115.6186 
r>0.05 37.66998 85.28595 99.51579 73.40602 192.3063 151.4921 

LIML r<-0.05 184.874 1105.567 458.6458 45.97432 115.9413 201.2111 
-0.05<r<0.05 134.3037 483.5175 758.5876 51.94936 76.6478 115.6186 

r>0.05 1121.227 1104.505 542.7323 73.40602 192.3063 151.4921 
3SLS 

 
r<-0.05 52.04317 90.07682 109.1199 83.76712 909.1305 600.1468 

-0.05<r<0.05 26.93059 81.35832 140.1711 276.3245 106.6174 248.7424 
r>0.05 37.66998 85.28595 99.51579 485.2463 458.2371 2334.198 

FIML r<-0.05 1399.557 17482.48 1659.51 882.1201 11472.43 841.4681 
-0.05<r<0.05 3899.056 11258.74 8061.006 3494.945 7905.957 5532.736 

r>0.05 5747.848 3371.886 2351.284 4886.049 2625.551 1729.908 

Estimato
r 

Level of 
correlation 

EQ1 EQ2 

N=15 N=25 N=40 N=15 N=25 N=40 

OLS r<-0.05 8.025363 14.39986 22.30994 5.93094 10.02278 17.42814 
-0.05<r<0.05 7.672212 13.98346 22.12155 5.257079 9.217827 16.65403 

r>0.05 7.518787 11.88107 19.20711 4.756709 7.553808 13.31428 
2SLS r<-0.05 61.16581 69.22513 268.809 88.53055 231.2958 125.553 

-0.05<r<0.05 36.15682 84.48975 108.098 195.3029 105.2122 107.1845 
r>0.05 94.27346 108.824 112.8809 226.2144 334.4002 221.0916 

LIML r<-0.05 247.6202 349.9958 10355.51 88.53055 231.2958 125.553 
-0.05<r<0.05 1165.518 417.5886 361.349 195.3029 105.2122 107.1845 

r>0.05 2263.259 604.6652 436.645 226.2144 334.4002 221.0916 
3SLS 

 
r<-0.05 61.16581 69.22513 268.809 632.2091 1106.055 182.4555 

-0.05<r<0.05 36.15682 84.48975 108.098 274.0143 259.8756 127.3117 
r>0.05 94.27346 108.824 112.8809 3144.892 1141.369 402.9815 

FIML r<-0.05 3810.179 13611.22 5834.852 2999.988 9414.314 3631.625 
-0.05<r<0.05 16084.06 37128.56 4677.572 12926.5 28985.17 2890.633 

r>0.05 20454.36 2092.687 3030.157 15550.94 1522.433 2260.823 
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Table 10: Charts of the Behavior of RSS of Estimators over Correlation Coefficients for each Sample Size 
R=100; P2. 

 
Estimator EQ1 EQ2 

Sample size Sample size 

15 25 40 15 25 40 

OLS \ \ \ \ \ \ 
2SLS V V \ V V V 
LIML V V \ V V V 
3SLS V V \ V V V 
FIML /  \ /  \ 

 
 

Table 11: Summary of Frequencies of Correlation-based Charts of Behavior of TAB and RSS. 
 

Attribute Table \ /  V 

P1 P2 P1 P2 P1 P2 P1 P2 

TAB 6 27 27 27 13 7 20 40 40 
RSS 8 &10 27 37 17 7 17 7 40 50 

 
 
 
 
The most popular chart in respect of the two 
equations under both P1 and P2 is „V’ followed by 
the downward trend “\”. These tables also reveal 
that the results obtained for OLS under P1 are 
similar to those obtained under P2.  
 
On the behavior of RSS as correlation 
coefficient changes through the three cardinal 
levels, OLS estimator shows the most stable 
pattern of declining RSS i.e. the downward 
sloping (“\”) trend (6/6 for both equations P1 and 
P2). The 2SLS, LIML and 3SLS estimators also 
have a concave (“V”) trend predominantly for 
sample sizes 15 and 25 for equation 1, 25 and 
40 for equation 2 under P1. This pattern is 
repeated for these estimators under P2 except 
for sample size 40 of the first equation. 
 
The frequencies of the four trends (\, /, and V) 
are relatively more uniform under P1 than under 
P2. This suggests that the identifiability status of 
the two equations affects the behavior of RSS 
under P1 than P2 in some respects. 
 
The marginal totals of three tables (6, 8 and 10) 
of frequencies of four correlation-based charts (\, 
/, , V) of behavior of the two attributes are 
displayed in Table 10. These percentages show 
the frequencies of these charts for both 
equations. 
 

There is a remarkable uniformity in the column-
wise comparison of the entries in Table 10 for 
both criteria of P1 where the frequencies are 
similar for the two charts (\, V). The upward 
sloping chart (representing increasing values of 
TAS or RSS across the three correlation levels) 
and the convex chart (representing maximum 
values of TAS or RSS at the middle interval) are 
less frequent than the other two charts (\, V) 
which have relatively high frequencies for both 
equations in P1 and P2.   
 
 
CONCLUSION 
 
The sensitivity of the simultaneous equation 
techniques to violation of mutual independence 
of random deviates in a two-equation model has 
been investigated. 
 
Based on TAB, it can be concluded that since 
the 3SLS estimator has the minimum ATAB for 
both P1 and P2 is the best followed by LIML 
which is also closely followed by 2SLS. The OLS 
is however, on top of the group when comparing 
the performances of the estimators using 
coefficient of Variation followed by 2SLS and 
LIML.  
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To further examine the sensitivity of each 
estimator to changes in TAB of estimates over 
100 replications, a detailed table presentation of 
the behavior of estimators over correlation 
coefficients and sample sizes are charted and 
presented in table 6 for both P1 and P2. The 
model absolute bias for 2SLS and LIML attained 
a minimum at the feebly correlated region while 
OLS performed poorly with an increasing TAB 
as the correlation changes over the three 
cardinal points. The behavior of FIML revealed 
no reasonable pattern.  
 
Using the RSS, the performances of 2SLS, LIML 
and 3SLS are similar for both equations and 
triangular matrices.  
 
Best RSS estimates of 2SLS, LIML, and 3SLS 
are found in the feebly correlated region which is 
consistent with the theory. That is, the “V” trend 
is expected to be the most frequent since that 
would imply that residual sum of squares is a 
minimum when correlation of the error term is 
smallest (negative or positive). 
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