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Abstract  
In practice, data collected in a broad range of applications frequently contain one or more 
atypical observations called outlier. A single outlier can have a large distorting influence on a 
classical statistical method that is optimal under the assumption of normality or linearity.  
Many estimation procedures proposed by researchers to handle simultaneous equation 
models are based on the assumptions that give little consideration to atypical data, thus the 
need to investigate the distorting effects of outliers in simultaneous equations estimation 
methods.  
In this study, we compare the performance of five estimators (OLS, 2SLS, 3SLS, GMM and 
W2SLS) of simultaneous equations model parameters at small sample sizes (n) 15, 20 and 
25; first order autocorrelation levels (ρ) 0.3, 0.6 and 0.9 of the error terms, when the series 
are perturbed (polluted) at zero, one and two times. The estimators are adjudged using the 
minimum criteria of Bias, Variance and RMSE criteria on the 135 scenarios, each replicated 
10,000 times.   
Identical results were obtained for the 2SLS and W2SLS methods since there are no 
restrictions on the parameters. The system methods clearly performed better than the 
single equation counterparts. Generally, the estimates obtained for the just identified 
equation are better than those of the over identified counterpart. Surprisingly, the ranking 
of the various techniques on the basis of their small sample properties does not reveal any 
distinguishable feature according to whether there is outlier(s) in the data or not and at the 
different level of correlation.  On the BIAS criterion, the best method is OLS in the just 
identified equation, followed by 3SLS in most cases especially where the pollution level is 
zero for all the three autocorrelation levels considered. The GMM and 2WSLS are struggled 
for the third and last positions. However, in the over identified case, 3SLS is leading closely 
followed by GMM in most cases (when rho is 0.9 for all sample sizes considered) and OLS in 
few other cases (especially at rho = 0.3 and 0.6 and for N = 20 and 25 with single/double 
pollution levels), it is expected that we would be able to identify or suggest the best method 
to use when we have the scenario depicted above.   
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Introduction 
In practice, data collected in a broad range of applications frequently contain one or more 
atypical observations called outliers; that is, observations that are well separated from the 
majority or “bulk” of the data, or in some way deviate from the general pattern of the data. 
A single outlier can have a large distorting influence on a classical statistical method that is 
optimal under the assumption of normality or linearity.  The presence of outlier in a data set 
can lead to inflated error rates and substantial distortions of parameter and statistic 
estimates when using parametric or nonparametric test (Zimmerman 1998). As a matter of 
fact, the effects of outliers will pervade through all the equations and the estimated 
structural parameters in them. These effects are so intricately pervasive that it is very 
difficult to assess the influence of outliers on the estimated structural parameters (Mishra, 
2008). Osborne et al (2001) confirmed empirically that researchers rarely report checking 
for outliers of any sort, by reporting that authors reported testing assumptions of the 
statistical procedure(s) used in their studies, including checking for the presence of outliers, 
only 8% of the time.  
 
Many estimation procedures have been proposed by researchers to handle simultaneous 
equation models. These procedures are based on the assumptions that stochastic terms be 
normally distributed and existence of zero correlation between pairs of random deviates. 
These assumptions give little consideration to atypical data, thus there is the need to 
investigate the distorting effects of outliers on each of the methods and determine the best 
estimation procedure under the influence of outliers and when the errors are not well 
behaved.  Any relationship of econometric theory will almost certainly belong to a system of 
simultaneous equations whose parameters may be estimated by various simultaneous 
equation estimation techniques. The problem frequently faced is the choice of the best 
estimation technique. 

To assess the quality and appropriateness of estimators, we are always interested in their 
statistical properties.  For most estimators, these can only be derived in a "large sample" 
context, (asymptotic properties).  One estimation procedure may, for example, be selected 
over another because it is known to provide consistent and asymptotically efficient 
parameter estimates under certain stochastic environments. Such a heavy reliance on 
asymptotic theory can and does lead to serious problems of bias (in estimation) and low 
levels of inferential accuracy when sample sizes are small and asymptotic formulae poorly 
represent sampling behaviour. This has been acknowledged in mathematical statistics since 
the seminar work of R. A. Fisher (1925), who recognised very early the limitations of 
asymptotic machinery, when he wrote; “Little experience is sufficient to show that the 
traditional machinery of statistical processes is wholly unsuited to the needs of practical 
research. Not only does it take cannon to shoot a sparrow, but it misses the sparrow!  The 
elaborate mechanism built on the theory of infinitely large samples is not accurate enough 
for simple laboratory data.  Only by systematically tackling small sample problems on their 
merits does it seem possible to apply accurate tests to practical data”   (Olaomi and 
Shangodoyin, 2010) 
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2.0 The Model 

Simultaneous equations models have the form 

  iii exy , ni ,,1      (1) 

where p

i Rx are the vectors of exogenous variables, q

i Ry are the endogenous 

variables, and the disturbances q

i Re are i.i.d random vectors with mean 0 and covariance 

matrix . The matrices 22R , 32R  and 22R  are the unknown parameters of the 
system. 

We can write the structural form of the model (1) more compactly as 

  EXY        (2) 

where Y , X  and E  are the matrices with rows 
iy ,

ix  and 
ie , respectively. The vectors 

ix s 

are fixed and uncorrelated with the 
ie s. 

Hence, 
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Model specification includes restrictions on and such that some coefficients must be 0 
or 1 without which they would not be identifiable. 

The reduced form of the model iii exBy  which is equivalent to iii exy BB
11  

is given by     iii uxy         (4) 

where  1  and ii eu 1  

The matrix  can be consistently estimated from (4) by applying the least squares 
estimator (LSE) to each coordinate, but one cannot in general get  and from it, except in 
certain circumstances ("exact identifiability").  
 

For our study, we chose the model: 

 

         (5) 

where y1 and y2 are endogenous, x1, x2 and x3, standard normally distributed, exogenous  
and u1, u2 autoregressive of order one, with varying parameters 0.3, 0.6 and 0.9.  The initial 

parameters were arbitrarily chosen as a = 0.5, b = 0.8, c = d = e = 1.  The first and second 

equations are just identified and over identified respectively. 
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2.1 Estimation Methods 
The parameters of a structural equations of a system of simultaneous equations can be 
estimated either by single equation methods where one equation of the system is solved at 
a time, or by complete systems techniques where the solution of all equations in the system 
is done simultaneously and the estimation of the parameters of all the coefficients of the 
system are solved for at the same time.  

Simultaneous equations models are an important tool in Econometrics. They are an 
extension of the multivariate linear model (MLM). While their correctness in specific 
situations may be open to criticisms, there is no doubt that they constitute an interesting 
field of research for statisticians. In particular, research on the effects of outliers on 
estimation procedures, and on methods robust with respect to outliers, seems to be scanty 
(Maronna and Yohai, 1994). 

The choice of estimation technique is somewhat dependent on many factors ranging from 
the identifiability status of the equations of the model, the available information concerning 
the other equations of the system, various statistical properties of the parameters 
estimates, the computational complexity of the technique, the magnitude of the 
perturbations or outliers present in the data and several other factors Koutsoyiannis (2001). 

Another factor that is useful in the ranking of the various techniques, namely the general 
rule that estimators which are obtained from methods using more information are more 
efficient. The single equation estimation methods lead to estimates that are consistent but 
generally not asymptotically efficient. The reason for the lack of asymptotic efficiency is the 
disregard of the correlation of the disturbances across equations. Another explanation for 
the lack of asymptotic efficiency is that single equation estimators do not take into account 
prior restrictions on other equations in the model (Kmenta, 1971). In general, it is intuitively 
clear that the more information we use in estimating a structural parameter, the more 
efficient the estimate will be, that is the closer they are to the true parameter 
(Koutsoyiannis 2001).  

All simultaneous equation estimation methods have some desirable asymptotic properties. 
These properties become effective in large samples, but since samples are mostly small in 
practice (Kmenta, 1971 and Johnston, 1972), we would be more interested in knowing the 
small sample properties of these estimators. 

Theoretical ranking of the various econometric techniques on the basis of the asymptotic 
properties is important when the sample size is sufficiently large. However, as mentioned 
earlier, researchers seldom get large samples hence they usually work with small samples, 
the asymptotic properties of the estimates are of little assistance in their choice of 
technique. 

Traditionally, the ranking has been based on some ‘small-sample properties’ which are 
considered as ‘desirable’ or ‘optimal’ for the estimate to possess (Adepoju and Olaomi, 
2009). These properties are unbiasedness, minimum variance, minimum mean square error 
and the proportion of wrong inferences about the significance of the parameters by using a 
particular econometric method (Koutsoyiannis 2001). The problem of choice of estimation 
technique is by no means a simple task. This problem has been discussed to a great extent in 
econometric literature, yet no conclusive evidence as to the ranking of the various 
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econometric techniques has been achieved (Adepoju and Olaomi; 2009) especially when the 
available data is plagued with the problem of influential observations or outliers.   
We give a brief explanation of each of the methods used in the estimation process of our 
model. 
 
2.1.1 Ordinary Least Squares 
This technique minimizes the sum-of-squared residuals for each equation, accounting for any 

cross-equation restrictions on the parameters of the system. If there are no such restrictions, 

this method is identical to estimating each equation using single-equation ordinary least 

squares. It is not consistent, for the regressors are not uncorrelated with the disturbances.  
   
2.1.2 Two-Stage Least Squares 
The two-stage least squares (2SLS) is an appropriate technique when some of the right-hand 

side variables are correlated with the error terms, and there is neither heteroskedasticity, nor 

contemporaneous correlation in the residuals. The method of two-stage least squares (2SLS) 
avoids this pitfall of the OLS by first regressing the y's on the x's (first stage) and then 
estimating the parameters by applying OLS (with the restrictions) to (3), but with the y's on 

the right-hand side replaced by the fitted values 
1

Y X X X Y (second stage). This 

method is consistent. However, it is in general not asymptotically efficient, for the 
estimation for equation j does not take into account the information contained in the other 
equations.  
 

2.1.3 Weighted Two-Stage Least Squares 
The weighted two-stage least squares (WTSLS) estimator is an appropriate technique when 
some of the right-hand side variables are correlated with the error terms, and there is 
heteroskedasticity, but no contemporaneous correlation in the residuals. 
TSLS is first applies to the unweighted system. The results from this estimation are used to 
form the equation weights, based upon the estimated equation variances. If there are no 
cross-equation restrictions, these first-stage results will be identical to unweighted single-
equation 2SLS. 
 
2.1.4 Three-Stage Least Squares 
Three-stage least squares (3SLS) is the two-stage least squares version of the Seemingly 
Unrelated Regression method. It is an appropriate technique when right-hand side variables 
are correlated with the error terms, and there is both heteroskedasticity, and 
contemporaneous correlation in the residuals. 
2SLS is applies to the unweighted system, enforcing any cross-equation parameter 
restrictions. These estimates are used to form an estimate of the full cross-equation 
covariance matrix which, in turn, is used to transform the equations to eliminate the cross-
equation correlation. 2SLS is applied to the transformed model. 
 
2.1.5 Generalized Method of Moments (GMM) 
The GMM estimator belongs to a class of estimators known as M-estimators that are 
defined by minimizing some criterion function. GMM is a robust estimator in that it does not 
require information of the exact distribution of the disturbances.  
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GMM estimation is based upon the assumption that the disturbances in the equations are 
uncorrelated with a set of instrumental variables. The GMM estimator selects parameter 
estimates so that the correlations between the instruments and disturbances are as close to 
zero as possible, as defined by a criterion function. By choosing the weighting matrix in the 
criterion function appropriately, GMM can be made robust to heteroskedasticity and/or 
autocorrelation of unknown form. 
Many standard estimators can be set up as special cases of GMM. For example, the ordinary 
least squares estimator can be viewed as a GMM estimator, based upon the conditions that 
each of the right-hand side variables is uncorrelated with the residual. 

 
 
2.2 Experimental Framework 
The small sample properties of the various econometric techniques have been studied from 
simulated data in what are known as Monte Carlo Studies, and not with direct application of 
the techniques to actual observations. We use Monte-Carlo approach for the investigation 

due to the fact that when the covariance between the independent variable and the 

autocorrelated error terms is non-zero, the problem is near intractable by analytical 

procedure. Also the properties of FGLS estimators vary depending on the form of the 

variance – covariance matrix, and often the quality of this variance – covariance matrix 

cannot be neatly summarized. (See Fair [9, 10]).   

This study is thus conducted using a Monte Carlo Experiments using a two-equation model 
of a just identified and an over identified equations. The degree of autocorrelation affects the 

efficiency of the estimators (Kmenta, 1971 and Johnston, 1972).  Consequently, we 

investigate the sensitivity of the estimators to the degree of autocorrelation by varying rho 

 from 0.3, to 0.6 and 0.9.  We also found out the effect of the outliers using three 

scenarios of no outlier, single and double outliers injected into the endogenous variable. 
correlation of the independent variable and the error terms at significant level 1%, 2% and 

5% on the estimators.  The effect of sample size was also investigated by varying the sample 

size (N) from 15, 20 and 25 each replicated 10,000 times.  Evaluation of the estimators was 

done using the Bias, Variance and the RMSE criteria.  

 
Using model (5), a value Uo (for specified sample size) was generated by drawing a random 

value o from N(0,1) and dividing by ).1( 2
 Successive values of t  drawn from N(0,1) 

were used to calculate an autoregressive Ut. Each Xt was generated as N(0,1) variates and 

fixed while the initial values for y1 and y2 were arbitrarily chosen to be N(0,1) random values. 

The initial parameters were arbitrarily chosen as a = 0.5, b = 0.8, c = d = e = 1. This 

procedure is repeated for all , n and pollution levels.   Yts. are thus computed using the 

model (5). A total of 10,000 replications were performed for each sample size. The data 

generations and estimations were done via the E-Views package. 

 

3.0  Simulation Results   

 
The results are presented in three tables.  Table 3.1 to 3.3 shows the table of average biases, 

sum of variances and sum of RMSE of estimates for n = 15, n = 20 and n = 60 respectively.  

We present the ranking of the various estimation techniques when the data are 
contaminated with various magnitudes of outliers. 
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The preliminary result, using the univariate GLM, revealed that, using the Bias, variance and 
the RMSE criteria on both equations, the estimates differ significantly from each other. The 
estimates from 3SLS and GMM are not significantly different but each significantly different 
from the other methods; estimates from OLS, 2SLS and W2SLS are not significantly different 
from each other using both Variance and RMSE criteria while OLS estimates are significantly 
different from those of the other methods using the Bias criterion.   On the sample size n, in 
the Bias criterion, the estimates are significantly different from each other by sample size 
while estimates at n=15 and n = 25 are significantly different from each other but each not 
significantly different with those at n= 20 in the Variance and RMSE criteria.  The estimates 
also differ by pollution levels (Pol_Lev) as there is significant difference in the level of 
pollution. We observe a surprise result in the estimates by autocorrelation level, at all 
criteria types, Bias, Variance and RMSE, the estimates are not significantly different. 
 
Looking at Equation 2, the variance of the estimates by all classifications is not significantly 
different, while in the RMSE, the 3SLS estimates are significantly different from others but 
GMM. The estimates Biases show 3SLS significantly different from others while GMM and 
OLS do not differ significantly but GMM differ significantly from W2SLS and 2SLS. Pollution 
level significantly different from each other and estimates at n=15 differ significantly from 
those at n=20 and n=25, both the later insignificantly different. 
 

Using the minimum criteria of Bias, Variance and RMSE, It could be seen that identical 
results were obtained for the 2SLS and W2SLS methods, hence in summarizing the results, 
both methods were combined using the abbreviation 2WSLS (that is, 2SLS and W2SLS). 

Comparing the system methods with the single equation methods, we observed that the 
latter clearly performed better than the former. Generally, the estimates obtained for 
equation one (just identified equation) are better than those of equation two, the over 
identified equation. 

Surprisingly, the ranking of the various techniques on the basis of their small sample 
properties does not reveal any distinguishable feature according to whether there is 
outlier(s) in the data or not and at the different level of correlation.   

On the criterion of the BIAS the best method is OLS in the first equation, followed by 3SLS in 
most cases especially where the pollution level is zero for all the three autocorrelation levels 
considered. The GMM and 2WSLS struggle for the third and last positions. However, in the 
over identified case, 3SLS is leading closely followed by GMM in most cases (when rho = 0.9 
for all sample sizes considered) and OLS in few other cases (especially at rho = 0.3 and 0.6 
and for N = 20 and 25 with single/double pollution levels).   

OLS also ranks highest on the criterion of variance for both equations, but this has little 
merit since the variance is measured around a “wrong” biased mean. In both equations, OLS 
is conspicuously followed by 2WSLS with GMM and 3SLS interchangeably assuming the third 
and last positions. 

Using RMSE as the basis for ranking the performance of these methods, OLS is clearly ranks 
first followed by 2WSLS in most cases.  

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Conclusion 

We have investigated the effects of outliers on a two-equation simultaneous model, where 
one equation is just identified and the other is over identified.  Surprisingly, the ranking of 
the various techniques on the basis of their small sample properties does not reveal any 
distinguishable feature according to whether there is outlier(s) in the data or not and at the 
different level of correlation.  This corroborates (Mishra, 2008) that these effects are so 
intricately pervasive that it is very difficult to assess the influence of outliers on the 
estimated structural parameters.   It is expected that we would be able to identify or 
suggest the best method to use when we have the scenario depicted above.  From the 
experiment, we recommend system equation method for estimation and if possible, models 
should be made to be just identified. 
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Table 3.1:      PERFORMANCES OF ESTIMATORS BASED ON BIAS CRITERION 
  

    n  -->  15 20 25 

Eqn Method Rho\Pol_Lev 0 1 2 0 1 2 0 1 2 

1 

OLS 

0.3 -2.388 -2.357 -2.627 -2.408 -2.388 -2.615 -2.297 -2.262 -2.525 

0.6 -2.381 -2.330 -2.612 -2.397 -2.356 -2.594 -2.300 -2.242 -2.500 

0.9 -2.362 -2.247 -2.571 -2.360 -2.251 -2.520 -2.311 -2.182 -2.444 

2SLS 

0.3 -2.265 -2.045 -2.618 -2.286 -2.105 -2.684 -2.172 -1.949 -2.418 

0.6 -2.274 -2.023 -2.593 -2.288 -2.085 -2.651 -2.203 -1.961 -2.403 

0.9 -2.285 -1.963 -2.507 -2.281 -1.997 -2.545 -2.290 -2.038 -2.431 

3SLS 

0.3 -2.283 -2.005 -2.352 -2.301 -2.142 -2.554 -2.192 -1.990 -2.219 

0.6 -2.307 -2.027 -2.408 -2.322 -2.158 -2.520 -2.243 -2.057 -2.312 

0.9 -2.330 -2.111 -2.533 -2.364 -2.220 -2.487 -2.390 -2.354 -2.609 

GMM 

0.3 -2.258 -2.049 -2.433 -2.291 -2.143 -2.539 -2.179 -2.149 -2.358 

0.6 -2.270 -2.036 -2.413 -2.297 -2.130 -2.492 -2.215 -2.132 -2.396 

0.9 -2.282 -1.994 -2.411 -2.303 -2.070 -2.378 -2.324 -2.138 -2.568 

W2SLS 

0.3 -2.265 -2.045 -2.618 -2.286 -2.105 -2.684 -2.172 -1.949 -2.418 

0.6 -2.274 -2.023 -2.593 -2.288 -2.085 -2.651 -2.203 -1.961 -2.403 

0.9 -2.285 -1.963 -2.507 -2.281 -1.997 -2.545 -2.290 -2.038 -2.431 

            

2 

OLS 

0.3 -0.014 -0.967 -1.024 0.006 -0.784 -0.773 -0.001 -0.634 -0.962 

0.6 -0.029 -0.973 -1.029 0.054 -0.715 -0.692 0.001 -0.601 -0.937 

0.9 0.056 -0.834 -0.891 0.494 -0.121 -0.074 0.036 -0.135 -0.435 

2SLS 

0.3 -0.021 -0.896 -1.148 -0.011 -0.608 0.180 -0.004 -0.229 -0.712 

0.6 -0.040 -0.910 -1.192 0.036 -0.554 0.297 0.001 -0.186 -0.718 

0.9 -0.016 -0.857 -1.127 0.413 -0.085 1.120 0.034 0.334 0.576 

3SLS 

0.3 -0.157 -1.303 -1.836 -0.238 -1.188 -0.220 -0.150 -0.836 -1.351 

0.6 -0.692 -1.326 -1.885 -0.257 -1.152 -1.006 -0.279 -0.768 -1.536 

0.9 -0.473 -1.299 -2.060 -0.292 -0.885 -2.628 -0.859 -1.236 -1.858 

GMM 

0.3 0.011 -0.874 -1.406 -0.090 -0.593 -2.205 -0.057 -0.239 -0.719 

0.6 -0.193 -0.939 -1.451 -0.050 -0.588 -0.414 -0.089 -0.146 -0.870 

0.9 -0.223 -0.932 -1.611 0.193 -0.252 -2.361 -0.321 -0.061 -0.981 

W2SLS 

0.3 -0.021 -0.896 -1.148 -0.011 -0.608 0.180 -0.004 -0.229 -0.712 

0.6 -0.040 -0.910 -1.192 0.036 -0.554 0.297 0.001 -0.186 -0.718 

0.9 -0.016 -0.857 -1.127 0.413 -0.085 1.120 0.034 0.334 0.576 

 

 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Table 3.2:      PERFORMANCES OF ESTIMATORS BASED ON VARIANCE CRITERION 
  

    n  -->  15 20 25 

Eqn Method Rho\Pol_Lev 0 1 2 0 1 2 0 1 2 

1 

OLS 

0.3 0.031 0.087 0.128 0.021 0.056 0.090 0.015 0.028 0.050 

0.6 0.032 0.079 0.119 0.024 0.052 0.084 0.016 0.028 0.050 

0.9 0.053 0.088 0.103 0.046 0.062 0.068 0.027 0.034 0.046 

2SLS 

0.3 0.444 0.452 0.527 0.366 0.465 0.757 0.330 0.841 0.547 

0.6 0.341 0.414 0.654 0.321 0.442 0.726 0.274 0.745 0.619 

0.9 0.464 0.577 0.765 0.396 0.645 0.766 0.203 0.287 0.304 

3SLS 

0.3 0.531 0.575 1.428 2.152 0.450 1.021 0.632 0.879 1.081 

0.6 0.458 0.550 3.683 0.700 0.382 1.307 0.415 0.918 1.059 

0.9 11.225 1.280 1.984 1.204 2.138 1.297 0.666 0.446 0.510 

GMM 

0.3 0.783 1.062 1.392 1.495 0.645 2.270 0.631 0.791 1.067 

0.6 0.681 1.422 1.980 0.605 0.499 1.690 0.398 0.678 0.895 

0.9 3.994 1.121 3.563 0.691 1.120 0.771 0.445 0.451 0.365 

W2SLS 

0.3 0.444 0.452 0.527 0.366 0.465 0.757 0.330 0.841 0.547 

0.6 0.341 0.414 0.654 0.321 0.442 0.726 0.274 0.745 0.619 

0.9 0.464 0.577 0.765 0.396 0.645 0.766 0.203 0.287 0.304 

                        

2 

OLS 

0.3 0.201 0.680 0.752 0.143 0.398 0.414 0.116 0.284 0.388 

0.6 0.270 0.771 0.867 0.207 0.467 0.447 0.159 0.323 0.429 

0.9 0.647 1.292 1.419 0.536 0.775 0.724 0.404 0.512 0.655 

2SLS 

0.3 0.744 0.661 1.891 0.476 0.384 8.451 0.329 0.396 0.844 

0.6 6.164 0.795 2.172 0.787 0.477 10.790 0.777 0.851 1.910 

0.9 2.962 1.449 9.736 2.668 1.162 19.272 2.430 2.070 12.251 

3SLS 

0.3 4.774 0.913 169.147 4.945 0.704 2768.421 0.744 19.334 5.694 

0.6 40182.668 1.207 8.249 5.481 0.866 7583.066 4.154 16.364 14.484 

0.9 21.971 1.808 88.460 38.779 2.149 1317.523 17.383 56.396 752.206 

GMM 

0.3 17.698 0.825 16.998 3.359 0.656 8131.088 0.856 3.000 6.258 

0.6 987.136 0.977 7.324 2.645 0.717 5689.112 1.512 28.388 16.494 

0.9 9.426 1.730 193.525 11.074 1.682 1590.237 9.304 75.199 1296.711 

W2SLS 

0.3 0.744 0.661 1.891 0.476 0.384 8.451 0.329 0.396 0.844 

0.6 6.164 0.795 2.172 0.787 0.477 10.790 0.777 0.851 1.910 

0.9 2.962 1.449 9.736 2.668 1.162 19.272 2.430 2.070 12.251 
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Table 3.3:      PERFORMANCES OF ESTIMATORS BASED ON RMSE CRITERION 

    n  -->  15 20 25 

Eqn Method Rho\Pol_Lev 0 1 2 0 1 2 0 1 2 

1 

OLS 

0.3 2.406 2.398 2.672 2.421 2.414 2.648 2.307 2.278 2.545 

0.6 2.399 2.368 2.655 2.411 2.382 2.625 2.311 2.258 2.521 

0.9 2.394 2.295 2.611 2.387 2.287 2.549 2.328 2.204 2.465 

2SLS 

0.3 2.559 2.369 2.810 2.523 2.423 2.935 2.436 2.621 2.672 

0.6 2.499 2.334 2.835 2.497 2.401 2.901 2.408 2.568 2.701 

0.9 2.567 2.406 2.818 2.533 2.500 2.839 2.407 2.275 2.586 

3SLS 

0.3 2.614 2.414 2.917 3.249 2.428 2.906 2.622 2.626 2.767 

0.6 2.583 2.409 3.611 2.701 2.404 2.989 2.520 2.654 2.820 

0.9 5.203 2.794 3.258 2.954 3.196 2.979 2.718 2.581 2.824 

GMM 

0.3 2.732 2.719 2.962 3.016 2.555 3.278 2.620 2.655 2.849 

0.6 2.679 2.854 3.150 2.647 2.473 3.086 2.493 2.582 2.821 

0.9 3.778 2.701 3.650 2.692 2.775 2.701 2.563 2.426 2.730 

W2SLS 

0.3 2.559 2.369 2.810 2.523 2.423 2.935 2.436 2.621 2.672 

0.6 2.499 2.334 2.835 2.497 2.401 2.901 2.408 2.568 2.701 

0.9 2.567 2.406 2.818 2.533 2.500 2.839 2.407 2.275 2.586 

                        

2 

OLS 

0.3 0.730 1.977 2.104 0.619 1.667 1.729 0.551 1.354 1.654 

0.6 0.847 2.044 2.188 0.747 1.733 1.765 0.640 1.367 1.679 

0.9 1.345 2.348 2.507 1.345 2.033 2.072 1.019 1.405 1.817 

2SLS 

0.3 1.475 1.835 2.907 1.183 1.512 4.820 0.977 1.301 1.863 

0.6 4.217 1.945 3.077 1.519 1.610 5.285 1.492 1.688 2.543 

0.9 2.937 2.365 5.642 2.835 2.189 7.226 2.650 2.542 5.994 

3SLS 

0.3 3.599 2.141 22.468 3.667 1.901 83.784 1.436 7.473 4.366 

0.6 338.595 2.349 5.443 3.949 2.009 131.260 3.316 5.931 6.766 

0.9 7.480 2.690 16.206 10.490 2.714 56.760 7.000 12.600 45.690 

GMM 

0.3 6.867 1.917 7.341 3.061 1.661 145.580 1.521 2.977 4.380 

0.6 53.033 2.060 5.082 2.692 1.734 114.023 2.058 7.608 6.974 

0.9 5.150 2.551 23.878 5.574 2.451 64.437 5.201 13.958 61.316 

W2SLS 

0.3 1.475 1.835 2.907 1.183 1.512 4.820 0.977 1.301 1.863 

0.6 4.217 1.945 3.077 1.519 1.610 5.285 1.492 1.688 2.543 

0.9 2.937 2.365 5.642 2.835 2.189 7.226 2.650 2.542 5.994 
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