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Abstract  

Financial series often displays evidence of leptokurticity and in that case, the empirical distribution often fails normality.  

GARCH models were initially based on normality assumption but estimated model based on this assumption cannot capture 

all the degree of leptokurticity in the return series. In this paper, we applied variants of GARCH models under non-normal 

innovations-t-distribution and Generalized Error Distribution (GED) on selected Nigeria exchange rates. The Berndt, Hall, 

Hall, Hausman (BHHH) numerical derivatives applied in the estimation of models converged faster and the time varied 

significantly across models. Asymmetric GARCH model with t-distribution (GARCH-t) was selected in most of the cases 

whereas for Nigeria-US Dollar exchange rate, GARCH-GED was specified. Both distributions showed evidence of 

leptokurticity in Naira exchange rate return series. The result is of practical importance to practitioners.   

Key Words:  GARCH, Exchange rate, Model specification, Non-Gaussian distribution.  

 

1. INTRODUCTION 

The recent economic crises in the world have awakened economist and financial econometricians towards 

monitoring the financial assets such as stocks and exchange rates, which are characterized by different forms of 

volatility. Researches have been concentrated been on the study and modelling of volatility.  

Due to the fact that conditional distribution of the innovations of financial asset is normal, the unconditional 

distribution has fatter tails than the normal distribution, hence the usual time series models such as Vector 

Autoregressive (VAR) and Autoregressive Integrated Moving Average (ARIMA) that assume normality and 

homoscedasticity cannot be used to model volatility (Pinho and Santos, 2012). However, the magnitude of 

leptokurtosis introduced by the GARCH process does not always capture all the Leptokurtosis that is present in 

the high-frequency financial asset (Xekalaki and Degiannakis, 2010). Thus, there is a fair amount of evidence 

that the conditional distribution of ��  is non-normal as well. 

The problem of non-normality of innovations of these financial assets has been considered lately. Bollerslev 

(1987) proposed the standardized student t distribution; which is symmetric around zero. Nelson (1991) 

introduced Generalized Error Distribution (GED) which accounts for fat tail, which is a symmetric distribution.  

Few articles on Nigerian naira exchange rates employed interpreting and estimating properties of the series in 

different dimension. These few ones include Olowe (2009), Shittu (2009), Awogbemi and Alagbe (2011) and 

Ezike and Amah (2011). The analysis of the Naira exchange rate returns indicate that the empirical distribution 

of returns in the foreign exchange rate market is non-normal and this have very thick tails (Olowe, 2009). Shittu 

(2009) applied the Intervention Analysis Approach (IAA) on the exchange rate and the diagnostic tests were 

satisfied at both points of the intervention. Awogbemi and Alagbe (2011) examined the volatility in the 

Naira-US dollar and Naira-UK pound exchange rates using GARCH model and obtained estimates of volatility 

persistence. Their results further showed evidence of asymmetries in the residual series, and this is an indication 

for asymmetric volatility models. Ezike and Amah (2011) checked for possible long run relationship between 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Journal of Economics and Sustainable Development                                     www.iiste.org             

ISSN 2222-1700 (Paper) ISSN 2222-2855 (Online) 

Vol.4, No.3, 2013 

89 
 

exchange rates, demand and supply of foreign exchange rate in the Dutch Auction Market (DAS) and obtained a 

significant relationship in the variables. All these authors have considered monthly data in their investigation, 

and based on the frequency of the data applied, characteristics of the series were not well captured. Secondly, 

they consider one or two Naira exchange rates out of many. Thirdly, though they have considered different 

analysis approach but their models did not assume different distributional forms different from the normal 

distribution. Fourthly, exchange rates are volatility series and are asymmetric at time, and daily data need to be 

applied to really examine these properties.  

In this work, we consider modelling some Nigeria exchange rate returns series with Generalized Autoregressive 

Conditionally Heteroscedastic (GARCH) models with normal and non-normal distribution innovations.  The 

rest of the paper is structured as: Section 2 deals with the distributional assumptions of GARCH models and log 

likelihood functions; section 3 presents the data as well as the results of the model specification based on the 

model selection criteria and section 4 renders the conclusions remark. 

2. GARCH MODELS AND DISTRIBUTIONAL ASSUMPTIONS 

Following Bollerslev (1986), the Generalized Autoregressive Conditionally Heteroscedastic (GARCH) model of 

order (p, q) is given as: 

2 2 2

1 1

,       
p q

t i t i j t j t t t

i j

w zσ αε β σ ε σ− −
= =

= + + =∑ ∑                                                     (1) 

where tε  are the returns series of the financial asset;  �� is the volatility at time t and �� gives the assumed 

distribution. The parameters � � 0  , ( )1, 2,..., ,
i

i pα =  ( )1, 2,...,
i

i qβ = and for stationarity of the whole 

process, 
1 1

1
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i j
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The model in (1) is symmetric in the sense that the magnitude of the innovations (returns), tε is expected to 

predict the future volatility. The asymmetric specifications allow for the signs of the innovations (returns) to 

have impact on the volatility apart from the magnitude. The first asymmetric GARCH(p,q) model is Exponential 

GARCH (EGARCH) 
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proposed in Nelson (1991). The GJR(p,q) model  

 ( )2 2 2 2

1 1 1

0
p p q

t i t i i t i t i j t j

i i j

dσ ω α ε γ ε ε β σ− − − −
= = =

= + + < +  ∑ ∑ ∑                                                    (3) 

was proposed in Glosten et al.(1993). The APARCH(p,q) model of Ding et al.(1993) is given as, 
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( )
1 1

log
p q

t i t i i t i j t j

i j

δδ δσ ω α ε γ ε β σ− − −
= =

= + − +∑ ∑                                                              (4)             

where, in the three models, �, ( )1,2,..., ,i i pα =  ( )1,2,...,i i qβ =
 

are the parameters. The iγ  
are the 

asymmetric parameter and 0δ >  in APARCH model is the Box and Cox (1964) power transformation. 

The GARCH (p, q) model in (1-4) are specified with normal innovations  ��  distributed as standardized 

normal, 

��~			
	�0,1�                                                                          (5) 

and this suggests approaching the estimation of GARCH (p,q) process via maximum likelihood estimation but in 

most cases, the distribution of the residuals (innovations) presents fatter tail than the normal distribution,    

( ) 21 1
exp

22
t tf z z

π
 = − 
 

                                                           (6)                                                                                     

Thus there is a fair amount of evidence that the conditional distribution of  ��  is a non-normal as well. 

Bollerslev (1987) circumvented the problem of non-normality of innovations of GARCH (p, q) model by 

proposing the standardized student t-distribution with v	� 2	 degree of freedom as, 

 ( )
( )( )

( ) ( )

( )1 2
21 / 2

, 1
2/ 2 2
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t

t

v z
f z v

vv vπ

− +
Γ +
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                                            (7)                                                   

       

 where Γ�. � is the gamma function.  This distribution   is as well symmetric about zero and with   v	� 2. 

At   v	� 4 , its kurtosis becomes 3(v-2)(v-4) which is larger than 3,   the corresponding value for the normal  

distribution. As v → ∞, the distribution converges to the standard normal distribution in (3). 

 

Nelson (1991) proposed another competing distribution with standardized student t-distribution.  This is the 

Generalized Error Distribution (GED) with distribution function, 

( )
( )

( ) ( )
1
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0.5 /
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t
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f z v v
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−+ −

−
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Γ
		                                                           (8) 

                                        

with v	� 0  , where v is the tail fatness parameter and ( ) ( )2/ 1 12 / 3v v vλ − − −≅ Γ Γ . 

At v =2, �� becomes standardized normal and so the distribution reduces to normal distribution in (6). At v < 2, 

the GED distribution of ��  has thicker tails than the normal distribution; it has double exponential or Laplace 
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distribution at v = 1, while at v > 2, the distribution has thinner tails than the normal distribution. As v→ ∞, the 

distribution becomes Uniform on the interval (- √3  ,  √3	�. 

Note that in the EGARCH(p,q) model, the component 
2t i

t i

E
ε
σ π

−

−

=  under normally distributed 

innovations. For the Student t distribution and Generalized Error Distribution (GED), 
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2.1    KURTOSIS OF GARCH MODELS 

For a GARCH(p,q) model, t t tzε σ= , where ( ) 0
t

E z = , ( ) 1
t

Var z =  and ( )4 3t zE z k= +  where zk
 

is the excess kurtosis of the innovation tz . Also, ( ) 0,  
t

E ε =
 

( ) ( ) ( )2

1 1
/ 1

t
Var E wε σ α β= = − −  in a GARCH(1,1) model,
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then follows to write ( ) ( ) ( )4 4 4

t t tE E E zε σ= . Under the assumption of independency, then, 

( ) ( )4 43t z tE kε σ= + . Squaring both sides of GARCH(1,1) model in (9) above leads to  
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Taking the expectation of the resulting expression and using the assumptions stated above, 
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The excess kurtosis of tε  is then given as, 
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When tz  is normally distributed ( 0zk = ), 
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( )
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When tz  is not normally distributed ( 0zk ≠ ), 

 
( )
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In the two cases discussed, the coefficient 1α is important in determining the tail behaviour of 1α , since in 

both, once 1 0,  0kεα = = . Hence, zk kε =  for the non-normally distributed case and it implies the 

similarity of the tail behaviours of both tε  and the standardized tz . In the student t-distribution earlier 

discussed, ( )4 3t zE kε = +  at degree of freedom 4v >  where zk , the excess kurtosis is set at 

( )6 4zk v= − . 

 

2.2     LOG-LIKELIHOOD OF THE DISTRIBUTIONS AND ESTIMATION APPROACH 

The log-likelihood functions of the standardized distributions discussed above are presented here.  

For normally distributed innovations,  ��   the log-likelihood function is 

 

2

2

2

1 1
log log ,

2 22

t

t t

t

l
ε

σ
σπ

= − −
 
 
 

                                       (15) 

where  ��  denotes a k	�1 vector of endogenous and exogenous explanatory variables in the information set  

���� and N is the sample size of the time series. The full log-likelihood function is written as; 

 ( )
2

2

2
1 1

1
log 2 log

2

N N
t

t t

t tt

l N
ε

π σ
σ= =

 
= − + + 

 
∑ ∑                               (16) 

where N is the sample size.` 

In a similar way, the log likelihood function for the standardized t-distribution is  
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and that of  GED is, 
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(18) 

These likelihood functions gives in (7), (8) and (9) are then estimated using the numerical derivatives based on 

the fact that GARCH models lack closed form estimation.  Berndt, Hall, Hall and Hausman (BHHH) algorithm 

of Berndt, et al (1974) is then used.  This algorithm uses only first derivatives of the likelihood function and 

computes a set of parameter values as                                      
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ψ ψ ψ
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+
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= −

∂ ∂ ∂

 
 
 
∑                              (19)          

  

where �� is the likelihood function.  The initial parameter set is given as  
( )0ψ  and the parameter set which 

maximize the likelihood function is denoted as  
( )1iψ +

. 

The estimation of GARCH (p, q) model with t-distribution and GED follow Quasi Maximum Likelihood 

Estimation (QMLE) since normality assumption is violated in both cases. 

The best model is determined for the series by employing necessary criterion. The commonly used criteria 

suggested in Harvey (1989) are the Akaike Information (AIC) and Schwarz Bayesian Information Criterion 

(SBIC) proposed by Akaike 91974) and Schwarz (1978). The AIC and BIC are defined by: 

 ( )2 2
t

AIC l k= − Θ +
                                  (20)

 

and 

 ( ) ( )2 2 ln
t

SBIC l k N= − Θ +
                                (21)

 

where tl  is any of the likelihood function defined above. The Θ  is the parameter set in the AR-GARCH 

model, k is the number of parameters to be jointly estimated and N is the size of the time series. 

3. DATA PRESENTATION, RESULTS AND  DISCUSSION 

The data considered in this work are the trading days Nigeria exchange rate with Euro, British pound, Japanese 

Yen and US dollars.  These data span between 10/12/2001 to 14/12/2011.   The data have been sourced from 

Central Bank of Nigeria website (www.cenbank.org). 

The empirical analysis of these data is given in Yaya, Adepoju and Adeniyi (2012).  Based on the results, the 

Naira-US Dollar exchange rate was the least volatile while Naira- British pound was the most volatile rate. 

In the log return series, autocorrelation is only significant at first lag, therefore autoregressive model of order one 

[AR (1)] is the first estimated as the mean equation. 
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The best GARCH model is determined for each of the exchange rate returns based on the minimum AIC and 

SBIC, maximum log-likelihood estimates and normality of the GARCH residuals. 

Table 1: Nigeria Naira-Euro Exchange Rate 

Model AIC SBIC Log-lik. Skewness Ex. Kurtosis JB Comp. Time(secs) 

AR(1)-GARCH(1,1)-Normal -8.404 -8.392 10249.7 -3.436 80.779 6.68E5 1.373 

AR(1)-GJR(1,1)-Normal -8.388 -8.374 10231.3 -3.182 70.647 5.11E5 2.278 

AR(1)-EGARCH(1,1)-Normal -8.358 -8.342 10196.1 -0.064 9.4796 9130.2 20.374 

AR(1)-APARCH(1,1)-Normal -8.426 -8.410 10278.8 -2.562 58.094 3.46E5 8.673 

AR(1)-GARCH(1,1)-t -8.722 -8.707 10637.8 -3.271 75.319 5.81E5 3.51 

AR(1)-GJR(1,1)-t -8.724 -8.707 10641.7 -3.280 77.109 6.08E5 3.9 

AR(1)-EGARCH(1,1)-t -8.687 -8.668 10597.1 -3.538 84.356 7.28E5 63.585 

AR(1)-APARCH(1,1)-t -8.740 -8.721 10662.6 -0.866 126.87 1.64E6 9.22 

AR(1)-GARCH(1,1)-GED -8.701 -8.687 10612.6 -3.373 79.567 6.48E5 2.995 

AR(1)-GJR(1,1)-GED -8.676 -8.660 10583.6 -2.089 47.190 2.28E5 4.134 

AR(1)-EGARCH(1,1)-GED -8.583 -8.564 10470.8 -4.107 97.602 9.75E5 21.559 

AR(1)-APARCH(1,1)-GED -8.675 -8.656 10583.0 NAN NAN NAN 4.587 

 

In Table 1, APARCH(1,1) model with t-distribution was specified as the best model for Naira-Euro exchange 

rate based on the minimum AIC and SBIC values. This GARCH residuals of this model also presents longest tail 

(kurtosis = 126.87) among the other models.  

 

Table 2: Nigeria Naira-British Pound Exchange Rate 

Model AIC SBIC Log-lik. Skewness Ex. Kurtosis JB Comp. Time(secs) 

AR(1)-GARCH(1,1)-Normal -8.701 -8.689 10611.8 -0.3595 7.379 5583.8 2.465 

AR(1)-GJR(1,1)-Normal -8.695 -8.680 10604.6 -0.3991 7.052 5116.6 2.839 

AR(1)-EGARCH(1,1)-Normal -8.590 -8.574 10478.6 -0.0621 10.805 11860 25.178 

AR(1)-APARCH(1,1)-Normal -8.695 -8.678 10606.8    NAN   NAN  NAN 3.494 

AR(1)-GARCH(1,1)-t -8.892 -8.878 10845.8 -0.3762 7.7926 6226.2 2.325 

AR(1)-GJR(1,1)-t -8.892 -8.875 10845.9 -0.3781 7.8562 6.327.8 2.683 

AR(1)-EGARCH(1,1)-t -8.842 -8.828 10786.1 0.2486 15.200 23496.0 22.839 

AR(1)-APARCH(1,1)-t -8.898 -8.882 10854.9 -0.2562 8.7319 77772.0 9.001 

AR(1)-GARCH(1,1)-GED -8.857 -8.843 10802.6 -0.2584 7.9064 6377.2 2.434 

AR(1)-GJR(1,1)-GED -8.856 -8.840 10802.7 -0.2618 7.9360 6425.6 3.323 

AR(1)-EGARCH(1,1)-GED -8.769 -8.750 10697.8 0.20702 14.353 20944.0 16.068 

AR(1)-APARCH(1,1)-GED -8.837 -8.818 10780.6 NAN NAN NAN 5.226 

 

In Table 2, the best model for Naira-British Pound exchange rate is APARCH(1,1) with t-distribution of 

residuals.  
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Table 3: Nigeria Naira-Japanese Yen Exchange Rate 

Model AIC SBIC Log-lik. Skewness Ex. Kurtosis JB Comp. Time(secs) 

AR(1)-GARCH(1,1)-Normal -8.478 -8.46 10339.4 -0.737 17.580 31614 1.342 

AR(1)-GJR(1,1)-Normal -8.495 -8.481 10361.8 -0.520 13.084 17501 1.748 

AR(1)-EGARCH(1,1)-Normal -8.364 -8.347 10202.4 -0.413 17.640 31640 24.445 

AR(1)-APARCH(1,1)-Normal -8.484 -8.467 10348.7 NAN NAN NAN 4.165 

AR(1)-GARCH(1,1)-t -8.738 -8.724 10657.9 -4.077 102.48 1.07E6 2.309 

AR(1)-GJR(1,1)-t -8.740 -8.724 10661.5 -5.460 147.62 2.23E6 5.116 

AR(1)-EGARCH(1,1)-t -8.703 -8.684 10617.4 -4.626 119.58 1.46E6 33.009 

AR(1)-APARCH(1,1)-t -8.750 -8.731 10674.7 -3.726 162.38 2.68E6 8.986 

AR(1)-GARCH(1,1)-GED -8.716 -8.701 10630.5 -3.327 80.387 6.60E5 3.479 

AR(1)-GJR(1,1)-GED -8.715 -8.798 10630.6 -3.499 85.281 7.41E5 4.227 

AR(1)-EGARCH(1,1)-GED -8.622 -8.603 10518.1 -1.988 50.089 2.64E5 31.403 

AR(1)-APARCH(1,1)-GED -8.714 -8.695 10630.4 -4.042 101.64 1.11E5 7.144 

 

In Table 3, the best model for Naira-Japanese Yen exchange rate is also APARCH (1,1) model with 

t-distribution in the residuals. This model presents kurtosis estimate of 162.38, which is the highest among the 

models estimated. 

 

 

Table 4: Nigeria Naira-US Dollar Exchange Rate 

Model AIC SBIC Log-lik. Skewness Ex. Kurtosis JB Comp. Time(secs) 

AR(1)-GARCH(1,1)-Normal -9.507 -9.495 11593.8 5.462 209.34 4.46E6 1.326 

AR(1)-GJR(1,1)-Normal -9.525 -/9.510 11616.5 5.305 213.86 4.66E6 2.855 

AR(1)-EGARCH(1,1)-Normal -9.430 -9.413 11502.3 -3.462 119.84 1.46E6 60.106 

AR(1)-APARCH(1,1)-Normal -9.507 -9.491 11596.5 NAN NAN NAN 2.839 

AR(1)-GARCH(1,1)-t -15.837 -15.822 19311.0 NAN NAN NAN 19.921 

AR(1)-GJR(1,1)-t -16.131 -16.115 19671.1 NAN NAN NAN 23.540 

AR(1)-EGARCH(1,1)-t -15.343 -15.323 18710.7 NAN NAN NAN 75.722 

AR(1)-APARCH(1,1)-t -9.773 -9.753 11920.7 NAN NAN NAN 22.932 

AR(1)-GARCH(1,1)-GED -27.421 -27.406 33431.6 -6.265 248.13 6.27E6 4.025 

AR(1)-GJR(1,1)-GED -23.323 -23.307 -28438.4 7.005 128.87 1.71E6 3.276 

AR(1)-EGARCH(1,1)-GED -14.951 -14.932 18232.9 2.788 152.00 2.38E6 18.096 

AR(1)-APARCH(1,1)-GED -24.811 -24.792 30252.7 0.931 89.15 8.08E5 7.207 

 

In Table 4, estimation of models for Naira-US dollar exchange rate posed more serious convergence problem 

due to more zeros in the return series as a result of series stability (less volatility). As it is observed in the results 

that normality tests were not computed for models with the t-distributions. Based on the Information Criteria, the 

best model here is GARCH(1,1) with GED. The model also records highest tail measure. 
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4. CONCLUSION 

In this paper, variants of GARCH models for both symmetric and asymmetric types were considered in 

modelling daily Nigeria naira exchange rate returns series under non-normal GARCH distributions. Four 

common naira exchange rates selected were Naira-Euro, Naira-British Pound, Naira-Japanese Yen And Naira 

US Dollars exchange rates. GARCH models were estimated under both normality and non-normality 

assumptions of GARCH models. The t-distribution and Generalized Error Distribution (GED) were considered 

in the non-normally distributed case.  

The complex log-likelihood from the Quasi Maximum Likelihood Estimation (QMLE) was simplified using the 

Berndt, Hall, Hall, Hausman (BHHH) numerical derivative to optimize the estimates of the parameters of the 

models. Computational time varied from model to model, and divergence was hardly experienced except in the 

case of Naira-US dollars exchange rate series in which return series gave more zeros as a result of series stability 

for some time periods.  

Asymmetric GARCH models with t-distribution were specified for the series, except for Naira-US Dollars 

exchange rates, where GARCH model with GED was specified as the optimal model. More zeros in the return 

series of Naira-US dollars exchange rates affected the tail measure the series. Estimates of kurtosis for GARCH 

residuals also showed evidence for specifying GARCH variants with t-distribution. 

This work can be generalized by considering all the available Nigeria naira exchange rates to confirm if the 

return series will always show longer tail in most cases.  
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