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Abstract — The estimation of the parameters of 

simultaneous equation problem is usually affected by the 

existence of mutual correlation between pairs of random 

deviates, which is a violation of the assumption of no 

autocorrelation between the error terms. In practice the form 

of correlation between the pairs of random deviates is not 

known. This study therefore examined a two-equation model 

in which the correlation between the random deviates is 

assumed to follow a first-order Autoregressive [AR (1)] 

process. Data was simulated using Monte Carlo approach 

with varying sample sizes each replicated 1000 times. The 

behaviour of OLS, 2SLS, LIML and 3SLS were evaluated 

using Variance, Root Mean Square Error (RMSE) and 

Absolute Bias (AB). The absolute bias estimates decrease in 

most cases as the sample size increases. The variances 

obtained by all the estimators reduced consistently as the 

sample size increases.  There was no clear pattern in the 

behaviour of the RMSE across sample sizes. The results for  

= 0.3 were better than when  = 0.0 with respect to each 

criterion but retained the same pattern. This work 

established that when  was different from zero, the 

estimators performed better, hence the choice of should be 

carefully made as this may significantly affect the 

performances of the estimators. 
 

Keywords: Autocorrelation, Estimators, First-order Autoregressive 

[AR (1)] process, Monte Carlo, Simultaneous equation model. 

1. INTRODUCTION 

In simultaneous equation model, the dependent variable is 

determined by the simultaneous interaction of several 

relationships. If all of the relationships involved are needed 

for determining the value of at least one of the endogenous 

variables, then we have a simultaneous equation(s) problem. 

The unique feature of the simultaneous equations is the fact 

that the dependent variable in one equation may be an 

explanatory variable in another. The problem then is that the 

dependent variable is now stochastic and may be correlated 

with the disturbances in that equation. Economic theories are 

usually based on sets or systems of relationships; they are 

expressed in terms of multiple equations. One of the main 

advantages of expressing economic theory in a system of 

equations is to show the interdependency that characterizes 

some of these theories (Kmenta, 1971).   

The possibility of nonzero covariance between error terms of 

different equations of the model was first visualized by 

Zellner ( 1962) that reflect the fact that equations which are 

apparently not connected or related structurally are, in fact, 

related to each other statistically. On one hand, simultaneous 

estimation of the non-apparently related regression equations 

of the model improves the precision of the estimation of 

regression parameters over the situations in which the 

individual equations are estimated independently of each 

other. Kmenta and Gilbert (1970) examined the small- 

sample efficiency of four different methods of estimation of 

regression with autocorrelated coefficients by conducting a 

Monte Carlo experiment and found that the Joint Nonlinear 

Estimation (JNE) method performed better for small samples 

in their setup. 

 Klein (1974) considered single equation methods in the 

context of a simultaneous system which may be less sensitive 

to specification error in the sense that those parts of the 

system that are correctly specified may not be affected 

appreciably by errors in specification in another part. Sawa 

(1968) and Richardson (1968) derived the exact distribution 

of the OLS and 2SLS estimators in an equation with two 

endogenous variables. Mariano and McDonald (1979) 

considered the 2SLS and LIML estimators in the just 

identified case, while Holly and Phillips (1973) used an 

asymptotic expansion to approximate the distribution of 

2SLS estimator. Anderson and Sawa (1973) derived an 

alternative form of the exact distribution of OLS and 2SLS 

and presented approximations as well. However, research by 

Nagar (1959) provided some evidence that 2SLS may have 

advantage over LIML in small samples. 

Ray C. Fair (1970) discussed various methods for the 

estimation of simultaneous equation models with lagged 

endogenous variables and first order serially correlated 

errors. The methods differ in the number of instrumental 

variables used. The asymptotic and small sample properties 

of the various methods are compared, and the variables 

which must be included as instruments to insure consistent 

estimates are derived. Sargan (1961)  proposed various 

maximum likelihood estimators for the estimation of 

simultaneous -equation models with serially correlated 

errors, and Amemiya (1966) considered the two-stage least 

squares analogue to one of Sargan’s estimators and  proposed 

a modified version of this analogue.  
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Brundy and Jorgenson (1971) criticized  the two- and three- 

estimators, namely that the first stage involves estimating 

reduced-form equations with a very large number of 

variables included in them, holds even for models with auto-

regressive errors. For these models, the reduced- form 

equations included not only all of the predetermined 

variables in the system but also all the lagged endogenous 

and lagged predetermined variables. The ranking of the 

various simultaneous equation models considered based on 

their small sample properties differed according to the 

correlation status of the error term (Adepoju and Olaomi, 

2009).   

This paper examined a two-equation model in which the 

correlation between the random deviates is assumed to follow 

a first-order Autoregressive [AR (1)] process. The evaluation 

and comparisons of the techniques are carried out using 

Variance, Root Mean Square Error (RMSE) and Absolute 

Bias (AB). The estimators were ranked based on the order of 

precision.   

    
2. MATERIALS AND METHODS 

A two-equation structural model considered is given by; 

 

      2.1 

The disturbance terms in (2.1) are assumed to be generated 

by a stationary, first- order autoregressive AR (10 process as 

follows: 

   

      2.2  

which can be written in matrix form as 

 =  +   

where itV  are independently and identically distributed 

random variables with   0itVE  and covariance matrix 

    




 

tt VVE  

With AR(1), the model in 2.1 becomes 

      2.3 

Where,     

Y’s   = Endogenous variables                                               

X’s    = Exogenous variables  

 U’s =   Disturbance terms 

 The structural parameters 

 is the correlation coefficient. 

2.1 Structural Framework 

In a model of M simultaneous equations, in other for an 

equation to be identified, it must exclude at least M-1 

variables (endogenous as well as predetermined) appearing 

in the model. If it excluded exactly M-1 variables, the 

equation is just or exact identified. If it excludes more than 

M-1 variables, it is over identified. However, the two-

equation structural model of this study (equation 2.1) was 

tested for identification (order and rank) and found to be 

exactly identification. 

 2.2 A Reduced Functional Form 

 A situation where AR (1) has an impact on the 

simultaneous equation model of equation 2.3, the reduced 

functional forms of the equation becomes; 

 + + 

 +  +  +                                      

   

 =  +  + + 

 +  

= +

 

 

   

 =  +  + + 

+  

3.  SIMULATION STUDIES 

The data used in the study are generated using Monte Carlo 

approach. The exogenous variables are obtained from 

uniform distribution with mean zero and variance one using 

the standard random number generator. The random 
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disturbances were generated  (t=1, 2, 3...T) with mean 

zero and covariance matrix  . As noted above, the 

disturbance vector  was generated by a stationary, first- 

order autoregressive process  

 =  +   

Where,  

E ) =  =  

That is,  

E ) = 0 

E ) =  for t=s and 0 otherwise. 

 Independent series of uncorrelated standard normal random 

deviates (i = 1,2) of required sample size n are 

generated. These generated random deviates are transformed 

to be distributed as N(0, ), using the predetermined 

covariance matrix  =  = . 

Where  is covariance ) the non- singular upper 

triangular matrix is decomposed as P1 and non- singular 

lower triangular matrix is decomposed as P2. 

Where P1 =  is the upper triangular matrix and 

P2=  the lower triangular matrix.  

This study uses sample size, N = 10, 20, 30 replicated 1000 

times each. The following values are arbitrarily assigned to 

the structural parameters; 8.112  , 5.121  , 

5.111  , 5.012  , 5.021  , 0.223   and the 

correlation coefficients set at  = 0.3. 

4.  RESULTS AND DISCUSSION  

The results obtained from the Monte Carlo experiment are 

compared using the criteria of Absolute Bias (AB), variance 

and Root Mean Square Error (RMSE). The two cases 

considered are represented as Q1 and Q2, where Q1 stands 

for the model with  = 0.3 and Q2 stands for the model with 

 = 0.0. 

OLS produced the least estimates throughout based on the 

above criteria followed closely by 23SLS while LIML 

consistently gave the worst estimates. The following are the 

major findings of the criteria mentioned above. 

The following tables show the ranking of the estimators for 

Q1 (i.e.,   = 0.3) and Q2 (i.e.,   = 0.0), the patterns 

exhibited for both cases are generally similar.  

Note that the tables for both cases of Q1 and Q2 are 

combined because the rankings produced by the two 

cases are exactly the same for all the criteria considered. 

Tables 1 – 3 were generated from Tables 4.1 – 4.3 in 

Appendix. 

TABLE 1 

Ranking of Estimators Using Variance (Q1, Q2) 

  

Equation 1 Equation 2 

10 20 30 10 20 30 

P1 

OLS OLS OLS OLS OLS OLS 

2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 

LIML LIML LIML LIML LIML LIML 

P2 

OLS OLS OLS OLS OLS OLS 

2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 

LIML LIML LIML LIML LIML LIML 

 
The result of the estimators using variance of the estimates 

with the specified sample sizes and 1000 replications 

revealed that OLS produced the least variances across the 

upper and lower triangular matrices followed by 2,3SLS and 

LIML. Estimators that have the minimum variances are 

considered to be the best using the efficiency property of a 

good estimator.  
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TABLE 2 

 Ranking of Estimators Using Absolute Bias (Q1, Q2) 

  

Equation 1 Equation 2 

10 20 30 10 20 30 

P1 

OLS OLS OLS OLS OLS OLS 

2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 

LIML LIML LIML LIML LIML LIML 

P2 

OLS OLS OLS OLS OLS OLS 

2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 

LIML LIML LIML LIML LIML LIML 

 
It is interesting to note that the tables for variance and 

absolute bias of the estimates are similar. The absolute bias 

of estimates showed that OLS gave the least bias at the 

different sample sizes considered which made it the best 

estimator in terms of biasness. 

TABLE 3: Ranking of Estimators Using Root Mean Squares 

(Q1, Q2) 

  

Equation 1 Equation 2 

10 20 30 10 20 30 

P1 

OLS OLS OLS OLS OLS OLS 

2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 

LIML LIML LIML LIML LIML LIML 

P2 

OLS OLS OLS OLS OLS OLS 

2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 2,3SLS 

LIML LIML LIML LIML LIML LIML 

 

The smaller the RMSE the better the performance of the 

estimators. “The property of minimum variance by itself is 

not enough to suggest that an estimator is superior to others 

(Koutosoyianins, 2003)” An estimate from an estimator with 

smallest variance may have that small variance around the 

wrong parameter. Similarly, the property of unbiasedness by 

itself is not particularly desirable, unless coupled with a 

small variance. Thus, it is necessary to consider a property 

that combines both measures. 

 It is noteworthy to mention that the three tables (1,2,3) 

generated when the different criteria was used for evaluating 

the performances of the estimators gave exactly the same 

ranking of the estimators with OLS consistently the best 

estimators followed closely by 2,3SLS and LIML. 

5.  CONCLUSION 

The identification condition of the equations of the model 

was examined and just identified model was established 

which led to the estimation of the parameters with 0.3 

correlation level. The choice of the estimators that will give 

a desirable estimate has to be based on the statistical 

properties possessed by the estimates of various methods. 

The performances of the estimation techniques [Ordinary 

Least Squares (OLS), Two-Stage Least Squares (2SLS), 

Limited Information Maximum Likelihood (LIML) and 

Three-Stage Least Squares (3SLS)] were ranked based on 

the criteria; variance, root mean square error and absolute 

bias of the small sample properties (10, 20, and 30). Based 

on all the criteria considered, OLS yielded least values while 

limited information maximum likelihood yielded the 

greatest as the sample size changes. Hence, the choice of 

should be carefully made as this may significantly affect 

the performances of the estimators.  
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APPENDIX 
TABLE 4.1 PERFORMANCE EVALUATIONS OF ESTIMATORS TO CHANGES IN SAMPLE SIZE INCREASES USING VARIANCE OF PARAMETER ESTIMATES 

 
  Equation 1 Equation 2 

Estimators 

  

  N = 10 N = 20 N =30 N = 10 N = 20 N =30 

  =1.8 =1.5 =1.0 =1.8 =1.5 =1.0 =1.8 =1.5 =1.0 =1.5 =2.0 =0.5 =1.5 =0.5 =2.0 =1.5 =0.5 =2.0 

OLS 

Q1/P1 0.0027 0.0019 0.0019 0.0944 0.1435 0.1462 0.1158 0.1696 0.1701 0.00 0.0018 0.0018 0.0764 0.0769 0.0978 0.0600 0.1053 0.1350 

Q1/P2 0.0035 0.0097 0.0083 0.0957 0.1807 0.3575 0.1143 0.2031 0.1902 0.00 0.0032 0.0040 0.0613 0.1145 0.3044 0.0578 0.1218 0.2576 

Q2/P1 0.0012 0.0019 0.0100 0.1221 0.1462 0.2877 0.1446 0.1701 0.1473 0.00 0.0018 0.0061 0.0651 0.0978 0.2139 0.0583 0.1350 0.1407 

Q2/P2 0.0018 0.0031 0.0094 0.1208 0.1562 0.2497 0.1469 0.1770 0.1287 0.00 0.0011 0.0051 0.0649 0.1033 0.2691 0.0578 0.1367 0.2432 

23SLS 

Q1/P1 27.6008 0.6284 4.3540 119.4017 3.6772 2.1877 143.0093 6.4613 1.2809 135.49 0.5047 1.8601 0.3863 0.1758 2.4916 0.4397 0.2122 16.7791 

Q1/P2 146.1532 4.6111 2.1400 916.1953 5.4965 5.7514 226.7692 7.2851 1.0932 676.49 3.2128 9.7210 141.5380 8.9749 5.0963 558.3122 2.1423 24.4012 

Q2/P1 505.8932 0.8404 4.4036 124.6622 7.4943 2.4943 253.1021 42.0618 1.0618 29.02 1.3823 1.3845 0.3893 0.2893 7.2892 0.5071 5.0586 26.5861 

Q2/P2 166.2875 33.8751 3.9936 383.8143 8.5062 2.9246 621.0492 50.6822 4.8983 552.87 17.9564 1.1325 489.5555 6.2489 6.3374 892.6595 1.2108 18.1444 

LIML 

Q1/P1 27.6108 0.6294 4.3640 119.4027 3.6872 2.1897 143.0193 6.4623 1.2819 135.56 0.5057 1.8641 0.2701 0.1768 2.4926 0.3753 0.2122 16.7891 

Q1/P2 146.1632 4.6121 2.1500 916.1963 5.4565 5.7544 226.7792 7.2861 1.0942 678.67 3.2728 9.7220 142.6243 8.9739 5.0953 597.2840 2.1443 24.4212 

Q2/P1 505.8942 0.8444 4.4236 124.6632 7.4983 2.4953 253.1221 42.0648 1.0628 29.56 1.3803 1.3835 0.4791 0.2895 7.2882 0.0347 5.0486 26.5961 

Q2/P2 166.2865 33.8851 3.9946 383.8243 8.5462 2.9256 621.0592 50.6832 4.8973 553.75 17.9574 1.1335 490.2943 6.2459 6.3375 893.4266 1.2128 18.1344 

 

TABLE 4.2 PERFORMANCE EVALUATIONS OF ESTIMATORS TO CHANGES IN SAMPLE SIZE INCREASES USING ABSOLUTE BIAS OF PARAMETER ESTIMATES 

 

  Equation 1 Equation 2 

Estimators 

  

  N = 10 N = 20 N =30 N = 10 N = 20 N =30 

  =1.8 =1.5 =1.0 =1.8 =1.5 =1.0 =1.8 =1.5 =1.0 =1.5 =2.0 =0.5 =1.5 =0.5 =2.0 =1.5 =0.5 =2.0 

OLS 

Q1/P1 
0.7785 0.7560 0.7336 0.0423 0.6454 0.2103 0.2704 0.4869 0.9173 0.6192 0.5714 0.5789 0.6712 0.0308 0.0512 0.2158 0.2376 0.2971 

Q1/P2 
0.7841 0.8092 0.7842 0.8072 0.3950 0.3230 0.5797 0.9132 0.8799 0.5620 0.6450 0.5518 0.4508 0.9463 0.0378 0.7286 0.0216 0.2991 

Q2/P1 
0.7578 0.7578 0.7371 0.6512 0.6512 0.1779 0.4855 0.4855 0.9541 0.5711 0.5711 0.5795 0.0275 0.0275 0.0576 0.2418 0.2418 0.2924 

Q2/P2 
0.7673 0.7673 0.7869 0.6682 0.6681 0.3213 0.4884 0.4884 0.8885 0.5595 0.5595 0.5510 0.0002 0.0001 0.0360 0.2269 0.2269 0.2926 

23SLS 

Q1/P1 
524.587 1.4932 0.4866 112.3090 0.4252 1.9079 1194.370 1.3622 0.8489 0.2556 0.6706 0.9288 1.3725 0.4615 0.0324 1.7134 1.2595 2.8369 

Q1/P2 
1.0336 2.3403 0.8496 .3488 2.0151 2.0011 2.0051 1.2824 1.2341 1.4765 0.0436 0.6980 1.4443 1.6463 0.7579 3.4601 1.5727 1.1596 

Q2/P1 
0.2598 0.2598 1.5873 .6602 0.6602 2.4718 0.5511 0.5510 3.0119 1.2628 1.2628 0.5037 0.3187 0.3187 0.5493 3.7912 3.7912 1.4674 

Q2/P2 
1.1215 1.1215 1.1854 0.6546 1.6546 2.3520 0.4450 0.4450 1.7553 0.3859 0.3859 0.0505 0.0397 0.0397 0.9495 0.5629 0.5629 0.8957 

LIML 

Q1/P1 
524.577 1.4942 0.4867 112.3290 0.4262 1.9077 1194.340 0.3722 0.8419 0.2558 0.6606 0.9388 1.3745 0.4617 0.0424 1.7234 1.2596 2.8569 

Q1/P2 
1.0338 2.3423 0.8494 0.3489 2.0161 2.0013 2.0051 0.2834 0.2341 1.4765 0.0536 0.6990 1.4444 1.6423 0.7679 3.4621 1.5737 1.1696 

Q2/P1 
0.2597 0.2599 1.5874 0.6604 0.6622 2.4715 0.5521 0.5610 0.0219 1.2628 1.2828 0.5047 0.3187 0.3137 0.5483 3.7932 3.7932 1.4684 
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Q2/P2 
1.1217 1.1225 1.1855 0.6556 1.6346 2.3513 0.4452 0.4550 0.7553 0.3860 0.3869 0.0641 0.0387 0.0497 0.9425 0.5729 0.5649 0.8924 

 

TABLE 4.3 PERFORMANCE EVALUATIONS OF ESTIMATORS TO CHANGES IN SAMPLE SIZE INCREASES USING ROOT MEAN SQUARE ERROR OF PARAMETER 

ESTIMATES 

 

  Equation 1 Equation 2 

Estimators 

  

  N = 10 N = 20 N =30 N = 10 N = 20 N =30 

  =1.8 =1.5 =1.0 =1.8 =1.5 =1.0 =1.8 =1.5 =1.0 =1.5 =2.0 =0.5 =1.5 =0.5 =2.0 =1.5 =0.5 =2.0 

OLS 

Q1/P1 0.7802 0.7573 0.7578 0.0577 0.672 0.268 0.4346 0.6377 1.129 0.621 0.5730 0.5701 0.7259 0.2789 0.2554 0.2293 0.2794 0.3979 

Q1/P2 0.7863 0.8152 0.7901 0.8335 0.432 0.376 0.6154 0.0183 0.950 0.563 0.6475 0.5565 0.5144 1.0050 0.5201 0.7672 0.0417 0.3896 

Q2/P1 0.7578 0.7591 0.7591 0.2681 0.679 0.679 0.1293 0.6370 0.637 0.570 0.5727 0.5727 0.2554 0.3139 0.3139 0.2979 0.2951 0.2951 

Q2/P2 0.7644 0.7922 0.7922 0.2604 0.397 0.397 0.1504 0.9898 0.990 0.563 0.5546 0.5546 0.2550 0.5529 0.5529 0.2736 0.3887 0.3887 

23SLS 

Q1/P1 5.2536 2.9178 2.2768 10.9329 1.964 1.695 11.9628 1.4287 1.651 11.643 0.9770 1.6015 0.5197 0.6235 1.5745 0.6126 0.5106 0.1863 

Q1/P2 11.2349 2.8440 5.3723 30.2773 73.073 2.599 15.0595 8.7710 1.271 26.051 2.8661 3.0345 11.9425 3.1121 1.9159 24.4394 2.3947 2.1785 

Q2/P1 22.5207 6.9621 9.1145 11.1746 2.752 1.603 15.9288 6.5089 1.169 5.437 1.4051 1.4051 0.6922 0.6279 2.7189 0.1864 2.4424 5.2880 

Q2/P2 12.8953 5.9273 9.3235 19.6643 2.977 1.567 24.9223 7.0851 2.231 23.532 4.2550 1.0651 22.1426 2.5001 2.6905 29.8902 1.2360 4.3527 

LIML 

Q1/P1 5.2535 2.9158 2.2748 10.9328 1.963 1.693 11.9648 1.4227 1.652 11.642 0.9768 1.6035 0.5197 0.6335 1.5725 0.6326 0.5136 0.1843 

Q1/P2 11.2329 2.8450 5.3343 30.2774 73.072 2.597 15.0565 8.7510 1.272 26.051 2.8651 3.0325 11.9435 3.1321 1.9159 24.4494 2.3957 2.1775 

Q2/P1 22.5217 6.9631 9.1125 11.1747 2.751 1.601 15.9258 6.5059 1.164 5.434 1.4021 1.4151 0.6932 0.6279 2.7289 0.1854 2.4524 5.2840 

Q2/P2 12.8963 5.9253 9.3225 19.6644 2.978 1.562 24.9233 7.0821 2.241 23.534 4.2750 1.0751 22.1326 2.5101 2.6505 29.8602 1.2370 4.3547 
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