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Abstract
This paper reviews a recursive Bayesian methodology for optimal data cleaning and filtering of
economic time series data with the aim of using the Kalman filter to estimate the parameters of a
specified state space model which describes an economic phenomena under study. The Kalman
filter, being a recursive algorithm, is ideal for usage on time-dependent data. As an example, the
yearly measurements of eight key economic time series data of the Nigerian economy is used to
demonstrate that the integrated random walk model is suitable for modeling time series with no
clear trend or seasonal variation. We find that the Kalman filter is both predictive and adaptive, as it
looks forward with an estimate of the variance and mean of the time series one step into the future
and it does not require stationarity of the time series data considered.
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Mathematics Subject Classification: 53C25; 83C05; 57N16

1 Introduction
State space models originated in engineering in the early sixties [1, 2]. Their use have since been

extended to a large number of applied fields such as econometrics, time series analysis, genetics,
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spatio-temporal analysis, hydrology, climatology, speech recognition, signal processing, population
dynamics etc. A state space model allows the researcher to model an observed (multiple) time series
yt, t = 1, 2, ..., T which is driven by a stochastic process. Many econometric models (time series
models, in particular) can be written in state space form [3, 4, 5]. The obvious flexibility of the state
space approach has contributed to their immense popularity in econometric time series analysis in
recent years [6, 7]. Dynamic linear models (DLMs) are a particular class of state space models that
allow many of the relevant inferences to be carried out exactly using the Kalman

filter, especially in the case of a completely specified model like the one considered in this paper.
They provide a very rich class of models for the analysis and forecasting of time series data [5].

Economic indicators are usually complex high frequency data that can be easily analyzed using
state space models [8]. In this paper, we specify an integrated random walk state space model with
application to some economic time series data of the Nigerian economy to see how well filtered the
series will be.Basically, the objectives of this paper is twofold: (i)To investigate the performance of
the Kalman filter technique on a specified local level state space model (ii)To detect the suitability of
Integrated Random Walk (IRW) in describing Nigerian economic time series data. The rest of the
paper is organized as follows: In section 2, we present a brief review of literature on application of
state space models to time series and econometric analysis. Section 3 is on the model and Kalman
filter method used in this paper,while section 4 borders on an application to the Nigerian economy,
and section 5 concludes the paper.

2 Application of State Space Models in Time Series Econo-
metrics

In recent years, there has been an increasing interest in the application of state- space model and
its variants in econometrics and time series analysis, partly because of its flexibility and widely be-
cause of the development of modern Monte Carlo methods. Economic theory and practice is often
concerned with latent or unobserved dynamic processes,hence the state space form of a dynamic
system with unobserved components is a very powerful and flexible instrument because it builds on
the dependence structure of a Markov chain to define more complex models for the dynamic obser-
vations [5].

A state space model is in principle, any model that includes an observation process yt and a state
process ✓t. It consists of a state equation and an observation equation which can be used for mod-
eling univariate and multivariate time series in the presence of non-stationarity, structural changes,
irregular patterns.The linear econometric state space model encompasses two models which are
widely used in time series analysis and economics. First, the observation equation resembles a
linear regression model with the distinction that the coefficients are stochastic dynamic processes
rather than fixed parameters. Second, the state vector follows a first order vector autoregressive
model, which in turn is a generalisation of the scalar Autoregressive Moving Average (ARMA) mod-
els. All univariate ARMA models can be written as a linear state space model [9]. We are motivated
to apply this method to modeling economic indicators because, in many real real life applications,
the driving force behind the evolution of economic variables are not always observable. Usually, it is
assumed that there is an unobservable Markov chain ✓t called the ’state’ and that yt is an imprecise
measurement of ✓t.
In econometric applications, we think of the state ✓t as an auxilliary time series that is assumed to
follow a markov process which facilitates the task of specifying the probability distribution of the ob-
servable time series yt. State-space models consider a time series as the output of a dynamic system
perturbed by random disturbances. They have an elegant and powerful probabilistic structure, offer-
ing a flexible framework for a very wide range of applications. Computations can be implemented
by recursive algorithms [10, 11]. While the state equation formulates the dynamics of the state vari-
ables, the observation equation relates the observed variables to the unobserved state vector. The
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state vector can contain trend, seasonal, cycle and regression components plus an error term, and
has to be estimated from the data,hence the maximum likelihood estimates of the parameters can be
obtained by applying the Kalman filter.

In the Box and Jenkins methodology, observations are first made stationary [12, 7]. This is ac-
complished by using various data transformations like taking logarithms and time differences before
fitting ARMA models to the transformed data. Wide availability of computer software and a well de-
veloped mathematical theory has contributed to the enduring popularity of this approach.The state
space methodology, however, offers a number of important advantages over the popular class of
ARMA models in so many ways. First is the fact that the state space method does not require the
data to be stationary, which eliminates a problem which the Box-Jenkins theory offers minimum guid-
ance. Another fact is that state space methods can accommodate a multivariate framework and they
are able to deal with irregular patterns, interventions, sudden jumps and regime shifts in data. The
problems of estimation and forecasting in state space models are solved by recursively computing
the conditional distribution of the quantities of interest, given the available information [13, 14], in this
sense, they are quite naturally treated from a Bayesian approach [15]. The series data re well filtered
if the filtered forcasts are close to the real data. This paper tends to contribute to the theoretical and
empirical literature on the topic by demonstrating the use of Kalman filter for estimating a completely
specified random walk model .

3 Model Specification and Methodology

3.1 Linear- Gaussian State Space Model

Consider a linear-Gaussian state space model for an m⇥ 1-dimensional time series yt consisting of
a measurement equation relating the observed time series to a p ⇥ 1-dimensional unobserved state
vector ✓t and a Markovian transition equation that describes the evolution of the state vector over time
[16]. The model takes the following general form.

yt = Xt✓t + vt vt ⇠ N(0, Vt) (3.1)
✓t = Gt✓t�1 + wt wt ⇠ Np(0,Wt) (3.2)
✓0 ⇠ Np(m0, C0) (3.3)

where yt is a vector of dimension m⇥ 1

Equation (1) is known as the observation equation while equation (2) is a first order Markov process
called the evolution equation. Gt, Xt, are known matrices of order p⇥ p and m⇥ p respectively that
determine how the observation and state equations evolve in time [17].
The matrices Ft, Vt, Gt and Wt are known as the system matrices and contain non-random elements.
If they do not depend deterministically on t, the state space system is time invariant, otherwise they
are time varying.
vt and wt are assumed to be independent both within and between, and independent of ✓0 The initial
state vector ✓0 is assumed to be normally distributed with parameters m0 and C0 as shown in (3)
where E(vt✓

0
0) = 0, and E(wt✓

0
0) = 0 for t = 1, ..., T . If some or all the elements of ✓t are assumed to

be covariance stationary, the corresponding elements of m0 and C0 can be solved analytically from
the elements of the system matrices. However, for non- stationary elements of ✓t, it is customary to
set the corresponding elements of C0 to a very large positive number [17].
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3.2 Optimal State Estimation and Prediction with Kalman Filter

In a state space model, the unobserved state vector ✓ is the signal and the measurement error wt is
the noise. The objective of filtering is to track the dynamic evolution of unobservable state variables
using (typically) noisy measurements of observables [18]. This requires the computation of integrals
over the unobserved states, which in general must be approximated numerically. Given observed
data y1, ..., y2, the goals of state space estimation using the Kalman filter is twofold:
(1) Optimal signal extraction (estimation) and
(2) Optimal h-step ahead prediction of states and data.
Basically, there are two types of state estimation, namely (a)Filtering and
(b)Smoothing. Filtering implies getting optimal estimates of ✓t given information available at time
t, Dt =

�
y1, ..., yt

�
, so that E(✓t|Dt) is the filtered estimate of ✓. On the other hand, smoothing

implies getting optimal estimates of ✓t given information available at time T, Dt = (y1, ..., yT ), so that
E(✓t|DT ) is the smoothed estimate of ✓.

A filter is a device which separates entities into their constituting components.The process of
finding the best estimate from noisy data is known as filtering out the noise. It does not just clean up
the data measurements but also projects these measurements into the state estimate.The Kalman
filter was developed in 1960 by Rudolf E. Kalman [1] as an algorithm used for aerospace guidance
applications and to solve state space models in the linear case. It is an optimal estimator which infers
parameters of interest from indirect, and sometimes inaccurate and uncertain observations. It is an
optimal process because if all noise is gaussian, the Kalman filter minimizes the mean square error
of the estimated parameters. The Kalman filter calculates the mean and variance of the unobserved
state ✓t, given the observations. It provides an exact and complete solution to the Bayesian filtering
problem which is very economical in computer calculation and storage requirements. It is a recursive
algorithm i.e the current best estimate is updated whenever a new observation is obtained.It is an
optimal process because if all noise is Gaussian, the Kalman filter minimizes the mean square error
of the estimated parameters. The mean and variance of the measurements needs to be known before
implementing a Kalman filter.

Given the initial state and covariance, we have sufficient information to find the optimal state esti-
mate using the Kalman filter equations. The Kalman filter has originally been applied by engineers
and physicists to estimate the state of a noisy system. The classic Kalman filter application is the ex-
ample of tracking an orbiting satellites whose exact position and speed, which are not directly measur-
able at any point of time, but can be estimated using available data . A discussion of engineering-type
applications applications to non-linear models is provided in [19, 20].

As mentioned earlier, the Kalman filter is a set of recursion equations for determining the optimal
estimates of the state vector ✓t, given information available at time t, Dt. The filter consists of two
sets of equations:
(i)Prediction Equations (ii)Updating Equations
The filter prediction and update steps require a few basic matrix calculations of which only the con-
ditional means and variances of the filtering and prediction density need to be stored in each step of
the iteration. To describe the filtering process, we let

mt = E(✓t|Dt)

be the optimal estimator of ✓t based on Dt and let

Ct = E((✓t �mt)(✓t �mt)
T |Dt)

be the mean square error matrix of mt.
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Prediction Equations
Let ✓t�1|y1:t�1 ⇠ N(mt�1, Ct�1), where y1:t�1 denote all observations up to time t � 1. Then the
one-step-ahead predictive density ✓t|y1:t�1 is Gaussian with parameters:

E(✓t|y1:t�1) = mt�1 ⌘ At

V ar(✓t|y1:t�1) = Ct�1 +Wt ⌘ Rt

The one-step-ahead predictive density of Yt|y1:t�1 is Gaussian with parameters:

ft = E(Yt|y1:t�1) = XtAt

Qt = V ar(Yt|y1:t�1) = XtRtX
0
t + V

The filtering density of ✓t given y1:t is Gaussian with parameters:

mt = E(✓t|y1:t) = At +RtX
0
tQ

�1
t et

Ct = V ar(✓t|y1:t) = Rt �RtX
0
tQ

�1
t XtRt

where et = Yt � ft is the forecast error.

Given mt�1 and Ct�1 at time t� 1, the optimal predictor of ✓t and its associated MSE matrix are

mt/t�1 = E(✓t|Dt�1) = Gtmt�1

Ct/t�1 = E((✓t �mt�1)(✓t �mt�1)
0|Dt�1)

= GtCt�1G
0
t +Wt

.
Basically, in the Kalman recursions for prediction, the linear estimation of ✓t in terms of:

y0..., yt�1 defines the prediction problem,
y0, ..., yt defines the filterring problem, while
y0, ..., yT , T > t, defines the smoothing problem.

Updating Equations
When new observations yt become available, the optimal predictor mt|t�1 and its MSE matrix are
updated using

mt = mt|t�1 + Ct|t�1F
0
tQ

�1
t (yt � Ftmt|t�1)

= mt|t�1 + Ct|t�1F
0
tQ

�1
t vt

Ct = Ct|t�1 � Ct|t�1F
0
tQ

�1
t F 0

tCt|t�1

= Ct|t�1 �Ktvt

where
Qt = FtCt|t�1F

0
t + Vt

and
Kt = Ct|t�1F

0
tQ

�1
t

is the Kalman gain matrix which gives the weight on new information et = yt � Ftmt|t�1 in the
updating equation for mt.

Proofs of this algorithm and detailed procedures can be found in [6, 17], and recent applications
to mixed-measurement time series can be found in [21].
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4 Empirical Illustration

4.1 Dynamic Linear Modeling of Some Nigerian Economic Data
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Figure 1: Annual time-series data on External Reserve (ERES), Money Supply
(MS), Lending Rate (LR), Gross Domestic Product (GDP), Exchange Rate (EXRT),
Capital Expenditure (CE), External Debt (ED) and Treasury bill Rate (TR). These
data were standardized prior to analysis.

By way of illustration, in this section, we fit a linear-Gaussian univariate Dynamic Linear Model
(DLM) to eight economic indicators of the Nigerian economy (shown in Figure 1). The data used in
this research are Nigerian economic indicators sourced from websites of the Central Bank of Nigeria
(CBN)(http://www.cenbank.org/economic-indicators) and World Bank
(http://data.worldbank.org/country/nigeria).

We consider a first order integrated random walk model which is a variant of the DLM presented
in equations (1) and (2) where:

yt = ✓t + vt vt ⇠ N(0,�2
v) (4.1)

✓t = ✓t�1 + wt wt ⇠ N(0,�2
w) (4.2)

where yt is the value of the time series we are trying to model with respect to ✓t and ✓ can be
thought of as a time-varying slope parameter. Due to the Markovian structure of the states ✓t, we
estimate the model by the method of Kalman filter [1, 6, 21] by computing the predictive and filtering
distributions of ✓t inductively starting from ✓0 ⇠ N(m0, C0). The Kalman filter calculates the mean
and variance of the unobserved state ✓t, given the observations. It is a recursive algorithm i.e the
current best estimate is updated whenever a new observation is obtained. This model is fully specified
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with C0 = 1000, m0 = 0, �2
w = 0.2 and �2

v = 3. We compute the filtering and predictive densities
of the eight economic time series using the recursive Kalman filter algorithm, starting from a prior
specification of ✓t as ✓0|D0 ⇠ N(m0, C0), then computing p(✓1|D1) and proceeding recursively to
detect the state of the system with respect to time.The recursive Bayesian estimation is also known
as Bayes filter. Given that the true state of ✓ is assumed to be an unobserved Markov process and
the measurement of time series yt are the observed states of an Integrated Random Walk model
given by equations 4 and 5 above. Due to the Markovian assumption, the probability of the current
true state given the immediate previous one is conditionally independent of the other earlier states.
The following picture represents the specified Markovian state space model.

Ʌ ՜ Ʌଵ ՜ Ʌଶ ՜ ڮ  Ʌ௧ିଵ ՜ Ʌ௧  ՜ Ʌ௧ାଵ՜  ڮ
           ՝        ՝              ՝             ՝        ՝ 
           ଵܻ      ଶܻ            ௧ܻିଵ       ௧ܻ      ௧ܻାଵ 

Figure 2: Markovian Structure of State Space Models.

p(✓t|✓t�1, ✓t�2, ..., ✓0) = p(✓t|✓t�1) (4.3)

Similarly, the observed economic time series measurement at the tth time step is dependent only on
the current state and is conditionally independent of all other states given the current state:

p(yt|✓t, ✓t�1, ..., ✓0) = p(yt|✓t) (4.4)

Hence, we represent the probability distribution over all states of the integrated random walk model
as

p(✓0, ..., ✓t, y1, ..., yt)

= p(✓0)
tY

i=1

p(yi|✓i)p(✓i|✓i�1)

In our Kalman filter estimation of the states ✓, the probability distribution of interest is associated
with the current states conditioned on the economic time series measurements up to the predict
and update steps of the Kalman filter written probabilistically as specified in section 3.3.1 and 3.3.2.
The probability distribution of update is proportional to the product of the time series measurement
likelihood and the predicted state

p(✓t|y1:t) =
p(yt|✓t)p(✓t|y1:t�1)

p(yt|y1:t�1)
(4.5)

/ p(yt|✓t)p(✓t|y1:t�1)

The denominator, p(yt|y1:t�1) is constant relative to ✓ and was ignored. Our analysis of the eight key
economic variables was implemented using the ”dlm” package in the R software presented in [5] .

Figure 2 shows that the series are well filtered and depicts how the integrated random walk model
performs on the economic data under study. Our Kalman filter analysis indicates that the trend and
volatility of the Gross Domestic Product (GDP) and Money Supply (MS) are quite smooth when com-
pared to the more volatile series of lending rate and treasury bill rate which experienced substantial
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Figure 3: Filtered states, & forecasts. Black line represents the data, red line rep-
resents the filtered states, and the blue line represents the one-step-ahead state
forecasts.

changes during the recent economic episode of Nigeria. Note the conspicuous spikes at the tail end
in the forecasts of exchange rate, external debt, and external reserves. The one-step ahead filtered
forcasts of external reserves and external debt suggests that the external reserve increases in the
following year while external debt reduces further. Analyzing causes of different responses across
variables may require a more structural econometric model of the economy [22]. However, the kind
of analysis carried out in this paper could be a starting point for such a project. The case considered
here is when we assume that the initial observation and evolution variance are know apriori, thus
negating the need for Markov chain Monte Carlo (MCMC) method of estimation.

5 Concluding Remarks

In this paper, the Kalman filter methodology has been successfully tested on a typical macroeconomic
dataset. Our method relies solely on recursive Bayesian optimal filtering of the data measurements.
We find that the Kalman filter is both predictive and adaptive to the dynamic linear model specified
for the economic variables considered. It looks forward with an estimate of the variance and mean of
the time series one step into the future without requiring stationarity of the data .Our finding supports
earlier works in literature which noted that the integrated random walk model is intuitively suitable
for time series showing no clear trends or seasonal variation [5,6,17] .As future work, we propose
to use the Kalman filter results (its prediction and corresponding variance) for detection of outliers in
high frequency and more volatile economic data especially when the prior observation and evolution
variances are unknown in higher order dynamic linear models.
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