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ABSTRACT 
 
It has been observed over the years that real life data are usually non-conforming 
to the classical linear regression assumptions. One of the stringent assumptions 
that is unlikely to hold in many applied settings is that of homoscedasticity. When 
homogenous variance in a normal regression model is not appropriate, invalid 
standard inference procedure may result from the improper estimation of 
standard error when the disturbance process in a regression model present 
heteroscedasticity. When both outliers and heteroscedasticity exist, the inflation of 
the scale estimate can deteriorate. This study identifies outliers under 
heteroscedastic errors and seeks to study the performance of four methods; 
ordinary least squares (OLS), weighted least squares (WLS), robust weighted least 
squares (RWLS) and logarithmic transformation (Log Transform) methods to 
estimate the parameters of the regression model in the presence of 
heteroscedasticity and outliers. Real life data obtained from the Central Bank of 
Nigeria Bulletin and Monte Carlo simulation were carried out to investigate the 
performances of these four estimators. The results obtained show that the 
transformed logarithmic model proved to be the best estimator with minimum 
standard error followed by the robust weighted least squares. The performance of 
OLS is the least in this order. 
 
Keywords: Heteroscedasticity, outliers, iteratively reweighted least square, 
robust weighted least squares, Monte Carlo Simulation. 

 
 
INTRODUCTION 
 
Heteroscedasticity may arise as a result of the presence of 
outliers, the inclusion or exclusion of such an observation, 
especially where the sample size in small, can radically 
alter the results of the regression analysis. In linear 
regression analysis the ordinary least squares (OLS) 
technique is widely used to fit the model mainly because of 
tradition and ease of computation. Under certain 
assumptions the OLS estimators possess some very nice 
and desirable properties. Among the assumptions of the 
OLS regression model, homoscedasticity is a rather 
stringent one that is unlikely to hold in many applied 
settings. Researchers often encounter situations in which 
the variance of the dependent variable is related to the 
values of one or more explanatory variables, resulting in 
heteroscedasticity (Midi et al., 2009; Chatterjee and Hadi, 
2006). In such a situation, a variance model based on the 
explanatory variables can produce weights for the 

weighted least squares estimator. Weighted least squares, 
which is a special case of the generalized least square 
estimator is optimal if the covariance structure of the 
errors is known, but usually, the error covariance 
structure is not known in advance. In that case, 
researchers can use estimated generalized least squares 
instead. 

In the presence of heteroscedasticity, the OLS estimators 
are still unbiased. However, the most damaging 
consequence of heteroscedasticity is that the OLS 
estimator of the parameter covariance matrix (OLSCM), 
whose diagonal elements are used to estimate the 
standard errors of the regression coefficients, becomes 
biased and inconsistent. As a consequence, the t-tests for 
individual coefficients are either too liberal or 
conservative, depending on the form of heteroscedasticity. 
White   (1980)   proposed  a   heteroscedasticity consistent  
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covariance matrix (HCCM) to solve the consistency 
problem of the estimator. Theoretically, the use of HCCM 
allows a researcher to avoid the adverse effect of 
heteroscedasticity on hypothesis testing even when 
nothing is known about the form of heteroscedasticity. 
This powerful method introduced by White (1980) in his 
classic paper can be traced to the work of Eicker (1963, 
1937), Huber (1967), Hartley et al. (1969), Hinkley (1977) 
and Horn et al. (1975). White’s (1980) paper presented the 
asymptotically justified form of the HCCM later referred to 
as HC0. In a later paper, MacKinnon and White (1985) 
raised concerns about the performance of HC0 in small 
samples and presented three alternative estimators known 
as HC1, HC2 and HC3. While these estimators are 
asymptotically equivalent to HC0, they were expected to 
have superior properties in finite samples, but there is 
evidence that a few atypical observations (outliers) can 
make all the estimation and procedures meaningless. In 
the presence of outliers we have some robust techniques 
for the detection of heteroscedasticity. Unfortunately, we 
do not have much robust techniques available in the 
literature for the estimation of parameters in the presence 
of heteroscedasticity and outliers. Although 
heteroscedasticity does not cause any biasness problem to 
the OLS estimators, the OLS can easily be affected by the 
presence of outliers. The weighted least squares also suffer 
the same problem in the presence of outliers and can make 
a huge interpretive problem in the estimation technique. 
Generally speaking, none of the estimation techniques 
work well unless the effect of outliers is eliminated or 
reduced in a heteroscedastic regression model. Therefore, 
this problem motivates us to examine the performance of 
four estimation techniques when heteroscedasticity and 
outliers occur at the same time in a regression model. 
 
 
DETECTION OF HETEROSCEASTICITY 
 
Plot the residuals (Gujarati, 2004) 
 
If there is no a priori or empirical information about the 
nature of heteroscedasticity in practice, a regression 
analysis can be carried out on the assumption that there is 
no heteroscedasticity and then post-mortem examination 
of the residuals is done to see if they exhibit in any 
systematic pattern. 

The residual for the tth observation t̂ is an unbiased 

estimate of the unknown and unobservable error for that 

observation, t . Thus, the squared residuals, 
2ˆ
t can be 

used as an estimate of the unknown and unobservable 

error variance,  22

tt E  . The squared residuals can be 

calculated and then plotted against an explanatory 
variable that is believed to be related to the error variance. 
If the error variance is believed to be related to more than 

one of the explanatory variables, the squared residuals 
may be plot against each one of the variables. 
Alternatively, the squared residuals may be plot against 
the fitted value of the dependent variable obtained from 
the OLS estimates. Most statistical programs have a 
command to do these residual plots. It must be 
emphasized that this is not a formal test for 
heteroscedasticity. It will only suggest whether 
heteroscedasticity exist and should therefore not be 
substituted for a formal test. 
 
 
Breusch-Pagan/Harvey-Godfrey Test (Breusch and 
Pagan, 1979; Godfrey, 1978) 
 
Suppose the usual linear relation is given by: 
  

ttt uxy  1
                                      (1) 

nt  , ,2 ,1for   

 
Where: 

 

 ktttt xxxx 321  

 
We postulate that all of the assumptions of classical linear 
regression model are satisfied, except for the assumption 
of constant error variance, that is, the error variance is 
non-constant. It is thus assumed that heteroscedasticity 
takes the form: 

 

  0tuE , tall for  

    ttt zhE  22
u                      (2) 

 

Where  ptttt zzzz 321  is a vector of known 

variables,  p 21  is a vector of 

unknown coefficients,  h  is some unspecified function 

that must take on only positive values. 
 
The null-hypothesis of constant error variance (no 
heteroscedasticity) can then be expressed as:  
 

0  : 320  pH    

 
 
White’s test (White, 1980) 
 
Suppose that the regression model is given by: 
 

tttt uXXY  33221 
                                             

 

(3) 
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nt  , ,2 ,1for            

 
Then, postulating that all of the assumptions of classical 
linear regression model are satisfied, except for the 
assumption of constant error variance. For the White’s 
test, assume the error variance has the following general 
structure: 
 

tttttttt vXXXXXXu  326

2

35

2

2433221

2ˆ 

  (4) 

nt  , ,2 ,1for   

 
Note that all of the explanatory variables are included in 
the function that describes the error variance and a 
general functional form is used to describe the structure of 
the heteroscedasticity, if it exists. The null-hypothesis of 
constant error variance (no heteroscedasticity) can be 
expressed as the following restriction on the parameters of 
the heteroscedasticity equations: 
 

0  : 320  pH   H0:  = = = =  

= 0  
 
To test the null-hypothesis of constant error variance (no 
heteroscedasticity), a Lagrange multiplier test is used. 
 
 
Park test (Park, 1966) 
 
Park (1966) formalises the graphical method by 

suggesting that 
2

t
 
is some function of the explanatory 

variable tX . The functional form suggested was: 

 
tv

tt eX  22   

ttt vX  lnlnln 22      

 (5) 
 

Where tv  is the stochastic disturbance term. Since 
2

t
 
is 

generally not known, Park (1966) suggests using 
2ˆ
tu

 
as a 

proxy and running the following regression: 
 

tt

ttt

vX

vXu





ln        

lnlnˆln 22




    

  (6) 
 

If   turns out to be statistically significant, it would 

suggest that heteroscedasticity is present in data. If it turns 
out to be insignificant, the assumption of homoscedasticity 
is accepted. 

ESTIMATION TECHNIQUES 
 
Weighted Least Squares (WLS) Estimator 
 
The GLS estimator is the same as a weighted least squares 
estimator. The WLS estimator is the OLS estimator applied 
to a transformed model that is obtained by multiplying 
each term on both sides of the regression equation by a 

weight denoted tw . 

For the given model: 
 

 
 

Where 
21 ttw  .  

 
Thus, each observation on each variable is given a weight 

tw  that is inversely proportional to the standard deviation 

of the error for that observation. This means that 
observations with a large error variance are given less 
weight and observations with a smaller error variance are 
given more weight in the GLS regression. Therefore, OLS 
estimation was used for the model earlier mentioned: 
 

 
 
 
Procedure for WLS 
 
The procedure for WLS is given as: 
 
*Regress Y against predictor variable(s) using OLS and 
obtain error and fitted values of Y; 
*Regress absolute value of the error against the predictors 
or fitted values of Y; 
 *let s be the fitted values for the regression; 

*Define  for i= l… n; 

*Use  as estimated 

coefficients. 
 
 
Robust regression 
 
The Robust Weighted Least Squares (RWLS) method is 
based on the Iteratively Reweighted Least Squares. 
Iteratively Reweighted Least Squares (IRLS) robust 
regression uses the weighted least squares procedures to 
dampen the influence of outlying observations. Instead of 
weight based on the error variances, IRLS robust 
regression uses weights based on how far outlying a case 
is, as measured by the residual for that case. The weights 
are revised with each iteration until a robust fit was 
obtained.  
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Iteratively Reweighted Least Square (IRLS) 
 
The IRLS estimation is computed using the following steps: 
 
1) Choose a weight function for weighting the cases; 
2) Obtain a starting weight for all cases; 
3) Use the starting weights in weighted least squares and 
obtain the residuals from the fitted regression function; 
4) Use the residuals in step3 to obtain revised weights; 
5) Use the iterations until convergence is obtained. 
 
 
The Transformed Logarithmic Model (LogTransform) 
 
Data do not always come in a form that is immediately 
suitable for analysis. We often transformed the variables 
before carrying out the analysis. Transformations are 
applied to accomplish certain objectives such as to ensure 
linearity, achieve normality or stabilize the variance. It 
often becomes necessary to fit a linear regression model to 
the transformed rather than the original variables. The 
necessity for transforming the data arises because the 
original variables or the model in terms of the original 
variables violates one or more of the standard regression 
assumptions. The most commonly violated assumptions 
are those concerning the linearity of the model and the 
constancy of the error variance. The response variable Y 
which is analysed may have a probability distribution 
whose variance is related to the mean. If the mean is 
related to the value of the predictor variable x, then, the 
variance of Y will change with X and will not be constant. 
The distribution of Y will usually also be non-normal under 
these conditions. Non-normality invalidates the standard 
tests of significance (although not in a major way with 
large samples) since they are based on the normality 
assumptions. The unequal variance of the error terms will 
produce estimates that are unbiased, but are no longer 
best in the sense of having the smallest variance. In these 
situations data are often transformed so as to ensure 
normality and constancy of error variance. In practice, the 
transformations are chosen to ensure the constancy of 
variance. It is a fortunate coincidence that the variance 
stabilizing transformations are also good normalizing 
transforms. 
 
 
DATA ANALYSIS AND SIMULATION STUDY 
 
In order to compare the preceding methods, data obtained 
from the Central Bank of Nigeria using the three-variable 
regression model; government expenditure on economic 
growth disaggregated into recurrent and capital 
expenditure from 1981 to 2011 were used. Figure 1 and 
Table 1 shows that the CBN data contain outliers which 
make it appropriate for this study. The OLS, WLS, Robust 
regression and Logarithmic transformation were applied 

to the data. Some results are not presented here due to 
space limitations. The OLS residual plots of the original 
data against the fitted values clearly indicate a violation of 
the constant variance assumption. This signifies that the 
OLS fit is inappropriate here, as there is a clear indication 
of heterogeneous error variances. The WLS, Robust 
regression and Logarithmic transformation methods were 
applied to this data in order to reduce the effect of the 
problem of heteroscedasticity. Since the data also contain 
outliers in addition to the problem of non-constant errors, 
the study thus examined the behaviours of the estimators 
to varying degrees of outliers. 

The transformed logarithmic model proved to be the 
best estimator with the minimum standard error followed 
by the robust weighted least squares. The performance of 
OLS is the least in this order as expected. The inclusion of 
the OLS in this study is simply for comparison purpose and 
to determine whether the OLS can be said to be completely 
inferior to the other methods to warrant its exclusion from 
the analysis. Incidentally, the performance of OLS is not 
different from WLS and RWLS estimators.  
 
 
Simulation study 
 
Here, a simulation study is presented to assess the 
performance of these methods. We reuse a model 
proposed by Lipsitz et al. (1999) and Midi et al. (2009) 
based on a fixed design matrix. Fifty (50) observations 
were generated according to linear relation: 
 

= 3+ 2  +  

 

Where  is uniformly distributed. The first 10 random 

samples were generated from: 
 
Uniform (10, 1, 9), the second 10 from; 
Uniform (10, 10, 19), the third 10 from; 
Uniform (10, 20, 29), the fourth 10 from; 
Uniform (10, 30, 39) and the fifth 10 from; 
Uniform (10, 40, 49).  
 
The error terms were generated such that they will induce 

heteroscedasticity. In this respect,  is generated 

according to this relation,  where  were 

drawn from standard normal distribution with mean zero 
and variance. For n = 100, we doubled the fix X sample 
size. We increase the sample size four times to produce 
sample of size 200. To create outliers in the simulated 
data, we take the values which are well outside the 3σ 
distance of the standard normal distribution. For this 
particular study, we considered the 12σ distance. In this 
situation, it is more likely that these points would produce 
big  residuals  indicating  outliers  in  the data set. The OLS,  
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Figure 1: Scatter plots of the CBN data. 

 
 
WLS, Robust regression and Logarithmic transformation 
are then applied to the simulated data. 

Table 2 presents the average measures of the regression 
coefficients and their corresponding standard errors, t-
statistics and mean square errors for different percentage 
of outliers and different sample sizes. Several interesting 
points emerge from this table. The results of WLS suggest 
that the estimates are not affected by the presence of both 
heteroscedasticity and outliers and the estimates remain 
the same at various percent outliers. The presence of 
heteroscedasticity is expected to retain the unbiased 

property of the OLS estimates, however, the problem of 
outliers distort the performance of OLS. As earlier 
mentioned, our prime interest is to investigate the effect of 
both outliers and heteroscedasticity on the regression 
coefficients, standard errors and the t-values. 

As the percentage of outliers increases, the log-
transform regression estimates increase steadily but not 
close to the true values and the robust regression 
estimates are better at 10% outliers. The results also show 
that the standard errors of the OLS and WLS estimates are 
larger than for RWLS and log-transform and their t-values  
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Table 1: Summary statistics for the CBN data on government expenditure. 
 

Methods Parameters  Estimates SE t-value sig 

OLS 

0  -143121 3629420 -0.3943 0.6963 

1  10.8087 0.924850 14.91 0.000 

2  1.54765 1.93406 0.8002 0.4303 

 

WLS 

0  -71324 126999 -0.56 0.5788 

1  10.28198 0.80274 -12.81 0.0001 

2  2.15029 1.57585 1.36 0.1833 

 

RWLS 

0  -85886 97498 -0.88 0.3859 

1  10.02969 0.78988 12.7 0.001 

2  2.72219 1.65295 1.65 0.1108 

 

Log linear 

0  1.43816 0.259353 5.545 0.0000 

1  0.706881 0.0831846 8.498 0.0000 

2  0.381481 0.0928359 4.109 0.0003 

 
 

Table 2: Simulated summary statistics for coefficient β (True value = 2). 
 

Methods          Sample Size Measures 
 Percentage of Outliers 

0% 5% 10% 20% 

OLS 

N= 20 

Estimates 1.538 1.05328 1.9923 0.008971 

SE 0.5373 0.000102 0.1143 0.1215 

t-value 2.862 10324.8 17.429 0.074 

MSE 1.031735 0.896273 0.013124 3.978959 

 

N= 50 

Estimates  1.8959 1.7124 2.0178 0.7684 

SE 0.3263 0.1453 0.1966 0.1405 

t-value 5.81 11.787 10.263 5.468 

MSE 0.117309 0.103826 0.038968 0.038968 

 

N= 100 

Estimates  1.8517 1.2657 2.0015 0.77085 

SE 0.2273 0.1167 0.1368 0.09891 

t-value 8.145 10.846 14.626 7.793 

MSE 0.073658 0.552815 0.018716 1.520593 

 

 

WLS 

N= 20 

Estimates  2.0872 2.0872 2.0872 2.0872 

SE  0.3738 0.3738 0.3738 0.3738 

t-value  5.584 5.584 5.584 5.584 

MSE  0.007604 0.007604 0.007604 0.007604 

 

N= 50 
Estimates  1.9105 1.9105 1.9105 1.9105 

SE 0.2042 0.2042 0.2042 0.2042 
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Table 2: Conts. Simulated summary statistics for coefficient β (True value = 2). 

 

 

 
t-value  9.357 9.357 9.357 9.357 
MSE 0.049708 0.049708 0.049708 0.049708 

 

N= 100 

Estimates  1.9682 1.9682 1.9682 1.9682 
SE 0.1307 0.1307 0.1307 0.1307 
t-value 15.056 15.056 15.056 15.056 
MSE 0.018094 0.018094 0.018094 0.018094 

 

 
RWLS 

N= 20 

Estimates  1.5576 1.0533 2.2112 0.2113 
SE 0.4379 0.0001 0 0.0001 
t-value 3.5566 13231.35 58928.26 3153.548 
MSE 0.195718 0.909305 0.027306 3.199448 

 

N= 50 

Estimates  1.8439 1.7094 2.2195 0.8691 
SE 0.2235 0.1027 0.0829 0.0371 
t-value 8.2511 16.6377 23.455 26.7879 
MSE 0.074319 0.094996 0.055053 1.280311 

 

N= 100 
 

Estimates  1.6839 1.6007 2.1654 0.8841 
SE 0.1614 0.0738 0.0596 0.0232 
t-value 10.4311 21.6791 36.3633 38.1198 
MSE 0.125969 0.164887 0.030909 1.245771 

 

Log 
Transform 
 

N= 20 

Estimates  0.609 0.8928 0.94876 0.94061 
SE 0.2366 0.1231 0.5554 0.09395 
t-value 2.574 10.012 11.915 17.084 
MSE 1.9909 1.4136 1.404457 1.1311 

 

N= 50 
 

Estimates  0.882 0.9409 1.055 1.08343 
SE 0.1214 0.07493 0.1139 0.09334 
t-value 7.262 7.646 9.261 11.607 
MSE 1.264662 1.2315 0.905998 0.848813 

 

N= 100 
 

Estimates  0.7671 0.81663 0.90372 0.93914 
SE 0.0632 0.06397 0.05804 0.04663 
t-value 12.137 12.766 15.57 20.142 
MSE 0.003994 1.136846 0.230669 0.118874 

 
 
 
are relatively small. We also observed that the HCCM 
estimators suffer the same problem but the results are not 
presented for brevity. 

It is interesting to note that, the RWLS produces 
unbiased estimates, smaller standard errors and larger t 
values when compared to the OLS and WLS estimates 
irrespective of sample sizes and the percentage of outliers 
in the data. The SE and MSE of the log-transform decrease 
consistently as sample size increases for all the percentage 
of outliers considered. The t-values of RWLS and log-
transform increase as the percentage outlier increases. 
 
 
CONCLUSION 
 
The main focus of this paper was to investigate the 
performances of four estimation techniques when both 
heteroscedastic errors and outliers are present in the data 

available for analysis. The empirical study reveals that the 
OLS estimates are easily affected by the presence of 
outliers and non-constant errors; the WLS has the worst 
outing because the estimates are the same at all the 
percentage of outliers considered. Hence, their estimates 
are not reliable. On the other hand, the log transform 
estimates emerges to be conspicuously more efficient and 
more reliable as it is less affected by the effect of outliers 
and non-constant errors. The results seem to suggest that 
the log transform method offers a substantial 
improvement over the other existing methods for handling 
the problems of outliers and heteroscedastic errors. 
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