

ADVANCES MATHEMATICS

Proceedings Of A Memarial Conference In Honour Of LATE PRDFESSDR E. ©. A. SDWUNMI
 Depariment of Mathematics, University of lladan, lladan, Nigeria

Edittors:

E. D. AYBDLA
V. F. PAYNE

Assmeiate Editor:

D. ©. A. A.JAYI

G-Theory of Group Rings for Groups of Elementary Abelian p-Groups

Michael EniOluwafe Department of Mathematics, University of Ibadan, Ibadan, Nigeria

Abstract

The formula for the G - theory of the group ring of a finite group G given by H .

 Lenstra is shown to be valid for groups of elementary abelian p - groups.Keywords: Group rings, G - theory.

Introduction

In [8]. H. Lenstra obtained a fundamental formula for the Grothendieck group $\mathcal{G}_{0}(\mathbb{Z} G)$ for G a finite abelian group and \mathbb{Z} a commutative noetherian ring, in terms of Grothendieck groups of rings of fractions of algebraic integer rings. In [13], D. L. Webb established the formula

$$
\mathcal{G}_{n}(\mathbb{Z} G) \simeq \bigoplus_{\rho \in X(G)} \mathcal{G}_{n}(\mathbb{Z}<\rho>), \quad n \geq 0,
$$

where $\mathbb{Z}<\rho>$ denotes the ring of fractions $\mathbb{Z}(\rho)[1 /|\rho|]$ obtained by inverting $|\rho|$, $\mathbb{Z}(\rho)$ denotes the quotient of the group ring $\mathbb{Z} \rho$ by the $|\rho|^{- \text {th }}$ cyclotomic polynomial $\Phi_{|\rho|}$ evaluated at a generator of ρ (the ideal factored out is independent of the choice of generator for ρ). |.| denotes cardinality and $X(\pi)$ the set of cyclic quotients of π. A natural problem is that of computing $\mathcal{G}_{n}(\mathbb{Z} G)$ as explicitly as possible and from the formula above, when G is substituted as

$$
\underbrace{\mathbb{Z} / p^{n} \oplus \mathbb{Z} / p^{n} \oplus \cdots \oplus \mathbb{Z} / p^{n}}_{r \text {-times }}, \quad n \geq 1, \quad r>1, \quad n
$$

a positive integer , p a prime number, it is desirable to know the number of cyclic quotients of G and the exact picture of the formula for G. Our results extend [2].

The Results and their Proofs

We established first the following lemma, which constitute the technical heart of the next theorem.

Lemma 2.1:

Let

$$
G:=\underbrace{\mathbb{Z} / p^{n} \oplus \mathbb{Z} / p^{n} \oplus \cdots \oplus \mathbb{Z} / p^{n}}_{r \text {-times }}, r>1, \quad n \text { a positive integer, } p
$$

a prime number and H a subgroup of G. Then the number of the cyclic factor groups G/H up to isomorphism such that
$|G / H|=p^{n}$ is $p^{(n-1)(r-1)}\left(\frac{p^{r}-1}{p-1}\right)$

Proof:

By the Duality Theorem for finite abelian groups, the number of subgroups H of G for which G / H is cyclic of order m is equal to the number of cyclic subgroups of G of order m.[11]
Now $G=\left(\mathbb{Z} / p^{n}\right)^{r}$.
The number of elements of order p^{n} in G is
$p^{n r}-p^{(n-1) r}$
and a cyclic group of order p^{n} contains $p^{n}-p^{n-1}$ such elements; so the number of cyclic subgroups is
$\frac{p^{n r}-p^{(n-1) r}}{p^{n}-p^{n-1}}=p^{(n-1)(r-1)}\left(\frac{p^{r}-1}{p-1}\right)$.
Next, consider

Theorem 2.2:

Let

$$
G:=\underbrace{\mathbb{Z} / p^{j} \oplus \mathbb{Z} / p^{j} \oplus \cdots \oplus \mathbb{Z} / p^{j}}_{r \text {-times }}, \quad r>1, j \in\{1,2, \ldots, n\}, p
$$

a prime number and H is a subgroup of G. Then the number of the cyclic factor groups G / H up to isomorphism such that $|G / H|=p^{j}$ for all j summed to n, is $\left(\frac{p^{r}-1}{p-1}\right)\left(\frac{p^{n(r-1)}-1}{p^{r-1}-1}\right)$.
Proof:
Using Lemma 2.1 and summing over j from 1 to n immediately gives the theorem

Finally, we give the proof of the following:

Proposition 2.3:

For $r>1, p$ a prime number and $j \in\{1,2, \ldots, n\}$.
Let

$$
G:=\underbrace{\mathbb{Z} / p^{j} \oplus \mathbb{Z} / p^{j} \oplus \cdots \oplus \mathbb{Z} / p^{j}}_{r-\text { times }}
$$

Then
$\mathcal{G}_{0}(\mathbb{Z} G)=$
$\mathbb{Z} \bigoplus C l\left(\mathbb{Z}\left[\zeta_{1}\right]\right) \bigoplus_{j=1}^{t}\left(\mathbb{Z} \bigoplus C l\left(\mathbb{Z}\left[\zeta_{p^{j}}, \frac{1}{p^{j}}\right]\right)^{s}\right.$
where $C l(R)$ is the ideal class group of Dedekind ring R, t is determined from Theorem 2.2 and $s=p^{(j-1)(r-1)}\left(\frac{p^{r}-1}{p-1}\right)$ (by Lemma 2.1)

Proof:

For $G:=\underbrace{\mathbb{Z} / p^{j} \oplus \mathbb{Z} / p^{j} \oplus \cdots \oplus \mathbb{Z} / p^{j}}_{r \text {-times }}, r>1$,
p a prime number and $j \in\{1,2, \ldots, n\}$.
Let $\left\{H_{0}, \ldots, H_{t}\right\}$ be the set of all
subgroups of G for which G / H_{j} is cyclic, where t is determined from Theorem

2.2 above .

Then we obtain two forms:
(I) If $\rho_{0}=G / H_{0}$ with $\left|\rho_{0}\right|=1$,
then $\mathbb{Z}\left(\rho_{0}\right)=\mathbb{Z}\left\langle\rho_{0}\right\rangle=\mathbb{Z}\left[\zeta_{1}\right]$ is a Dedekind ring. Where ζ_{1} is the first primitive root of unity. But it is well known for any Dedekind ring R that $\mathcal{G}_{0}(R) \cong \mathbb{Z} \bigoplus C l(R)$
where $C l(R)$ is the ideal class group of R. Thus, for this form we obtain $\mathcal{G}_{0}\left(\mathbb{Z}\left\langle\rho_{0}\right\rangle\right) \cong \mathbb{Z} \bigoplus C l\left(\mathbb{Z}\left[\zeta_{1}\right]\right)$
(II) For $j>0$, we consider
$\rho_{j}=G / H_{j}$. with $\left|\rho_{j}\right|=p^{j}$
and obtain for each $j>0 \mathbb{Z}\left(\rho_{j}\right) \cong \mathbb{Z}\left[\zeta_{p^{i}}\right]$, where $\zeta_{p^{j}}$ denotes a primitive p^{j} th root of unity.
Therefore, we get
$\mathbb{Z}\left\langle\rho_{j}\right\rangle \cong \mathbb{Z}\left[\zeta_{p^{j}}, \frac{1}{p^{j}}\right]$ a Dedekind ring .
Thus, we obtain (using Lemma 2.1 and Theorem 2.2)
$\mathcal{G}_{0}\left(\mathbb{Z}\left\langle\rho_{j}\right\rangle\right\rangle \cong \bigoplus_{j=1}^{t}\left(\mathbb{Z} \bigoplus C l\left(\mathbb{Z}\left[\zeta_{p^{j}}, \frac{1}{p^{j}}\right]\right)^{s}\right.$ where $s=p^{(j-1)(r-1)}\left(\frac{p^{r}-1}{p-1}\right)$
Hence combining results from I and $I I$, and by Lenstra's formula ,
that is,
$\mathcal{G}_{0}(\mathbb{Z} G) \cong \prod_{j=0}^{t} \mathcal{G}_{0}\left(\mathbb{Z}\left\langle\rho_{j}\right\rangle\right)$
we obtain
$\mathcal{G}_{0}(\mathbb{Z} G)=$
$\mathbb{Z} \oplus C l\left(\mathbb{Z}\left[\zeta_{1}\right]\right) \oplus_{j=1}^{t}\left(\mathbb{Z} \oplus C l\left(\mathbb{Z}\left[\zeta_{p^{j}}, \frac{1}{p^{j}}\right]\right)^{s}\right.$

Open Problems

Determine the version of the above proposition 2.3 for $\mathcal{G}_{n}(\mathbb{Z} G), n \geq \mathbf{1}$. and extend to the ideas discussed in [1], [3], [4], [5], [6], [7], [9], [10], [12] and [14] respectively.

Acknowledgments

The author would like to thank the ICTP and the SIDA for their generosity and support.

Bibliography

[1] Danchev,P.V. "A note on decompositions in abelian group rings" An. Stiint. Univ. "Ovidius", Constanta Ser. Mat. 16 (2008), no 1, 73-76.
[2] EniOluwafe, M. "On the number of cyclic quotients of some abelian $p-$ groups", J. Nigerian Assoc. of Mathematical Physics 11(2007):33-38.
[3] Fan, Y. "A characterization of elementary abelian p-groups by counting subgroups" (Chinese) Math. Practice Theory (1988), no 1, 63-65.
[4] Freeze, M.; Gao, W.; Geroldinger, A. "The critical number of finite abelian groups" J. Number Theory 129 (2009), no 11, 2766-2777.
[5] Gumber, D.K.; Karan, R.; Pal, I. "Some augmentation quotients of integral group rings" Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no 4, 537-546.
[6] Hertweck, M. "Torsion units in integral group rings of certain metabelian groups" Proc. Edinb. Math. Soc. (2) 51 (2008), no 10,3585-3588.
[7] Lee, G.T.; Spinelli, E. "Group rings whose symmetric units are solvable" Comm. Algebra 37 (2009), no 5, 1604-1618.
[8] Lenstra,H. "Grothendieck groups of Abelian group rings", J. Pure Appl. Algebra 20(1981): 173-193.
[9] Okon, J.S.; Rush, D.E.; Vicknair, J. P. "Numbers of generators of ideals in a group ring of an elementary abelian p-group" J. Algebra 224 (2000), no 1, 1-22.
[10] Paul, Y. "Grothendieck group and generalized mutation rule for 2-Calabi-Yau triangulated categories" J. Pure Appl. Algebra 213 (2009), no 7, 1438-1449.
[11] Robinson,D. "A course in the theory of groups," Springer, New York:(1982).
[12] Wang, X.H.; Huang, B.W. "Structure of finite abelian groups with an automorphism group of order $2^{8 p}$." (Chinese) J. Wuhan Univ. Natur. Sci. Ed. 55 (2009), no 4, 405-408.
[13] Webb,D.L. "Quillen G-theory of Abelian groúp rings," J. Pure Appl. Algebra 39(1986): 177-195.
[14] Yang, G.Y. "Generating relation of grothendieck groups in a concealed algebra (Chinese) Beijing Shifan-Daxue Xuebao 44 (2008), no 4, 368-370.

