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A bstract

The formula for the G — theory of the group ring of a finite group G given by H. 
Lenstra is shown to be valid for groups of elementary abelian p— groups.
Keywords: Group rings , G — theory.

In tro d u ctio n

In [8] . H. Lenstra obtained a fundamental formula for the Grothendieck group 
Qo(ZG) for G a finite abelian group and Z a commutative noetherian ring , in terms 
of Grothendieck groups of rings of fractions of algebraic integer rings. In [13], D. L. 
Webb established the formula

Qn(ZG) ~  Gn{% < P >) } n > 0 ,
P € X(G)

where Z < p >  denotes the ring of fractions Z(p)[l/|p|] obtained by inverting \p\ , 
Z(p) denotes the quotient of the group ring Zp by the \p\~th cyclotomic polynomial 
$lpj evaluated at a generator of p (the ideal factored out is independent of the choice 
of generator for p ). |.| denotes cardinality and X (it) the set of cyclic quotients of 
7r . A natural problem is that of computing Qn(ZG) as explicitly as possible and from 
the formula above, when G is substituted as

Z/pn 0  Z/pn 0  • • • 0  Z/pn, n  > 1, r  > 1, n
V 1 '

1— times

a positive integer , p a prime number, it is desirable to know the number of cyclic 
quotients of G and the exact picture of the formula for G . Our results extend [2].

T he  R esu lts  and th e ir  Proofs

We established first the following lemma , which constitute the technical heart of 
the next theorem.
Lem m a 2.1 :

Let

G := Z/p n 0  Z/pn 0  • • • 0 Z /pn, r > 1, n  a positive integer, p
r—times

a prime number and H a subgroup of G. Then the number of the cyclic factor groups 
G /H  up to isomoiphism such that

G -Theory of G roup  R ings for G roups of E lem en tary  A belian  p-G roups
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\G/H\ =  pn is 
Proof:

By the Duality Theorem for finite abelian groups , the number of subgroups H  of

G for which G /H  is cyclic of order m  is equal to the number of cyclic subgroups of 
G of order m  .[11]
Now G = (Z /p n)r .
The number of elements of order pn in G is
pnr  _  p(n—l)r

and a cyclic group of order pn contains pn -  pn~l such elements; so the number of 
cyclic subgroups is

Next, consider 
Theorem 2.2:

Let
G := Z /p 1 QdZ.jp/ © • • • © Z /p7. r > 1, j  £ {1,2, p

r—times
a prime number and H  is a subgroup of G. Then the number of .the cyclic factor 
groups G /H  up to isomorphism such that \G/H\ = p1 for all j  summed to n. is

Proof:

Using Lemma 2.1 and summing over j  from 1 to n  immediately gives the theorem
. □

Finally , we give the proof of the following:
Proposition 2.3:

' %
For r > 1, p a prime number and j  € {1,2,...., n}.
Let

G := Z/p> © Z/p> © • • • © Z /V  .
N------------------ v------------------ '

i— times

Then
Go(ZG) =
z © ci(z[c,D ®*=1(z © c m , i])»
where Cl{R) is the ideal class group of Dedekind ring R  , t. is determined from 
Theorem 2.2 and s =  p ^ _I^ r_ l^ (^ rr)  (by Lemma 2.1)
Proof:

For G := Z /p7 © Z /p i © • • • © ZfpF , r  > 1 ,>--------------- ---------------- -
1— tim es

p a prime number and j  £ {1,2, ...,n}.
Let {H o,..., Ht} be the set of all
subgroups of G for which G/ Hj  is cyclic , where t is determined from Theorem
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2.2 above .
I hen we obt ain two forms:

(I) If po = G/Ho with |A)I = I >
then Z(p0) =  Z(/jo) =  Z[Ci] is a Dedekind ring. Wliere Ci & the first primitive 
root of unity . But it is well known for any Dedekind ring R  that 
Go(R) =  C l(R )
where Cl(R) is the ideal class group of R  . Thus , for this form we obtain
So(Z<po» £  Z ®  Cl{Z[C,])

(II) For j  > 0, we consider
Pj =  G/ Hj  with \pj\ = pi
and obtain for each j  > 0 Z{p3) ^  Z[C^], where denotes a primitive 
/>' 1,1 root of unity .
Therefore , we get
^<A/> -  a Dedekind ring .
Thus . we obtain (using Lemma 2.1 and Theorem 2.2 )
So(Zm  = ®  C/(Z[Cp,,£])‘ where S =
Hence combining results from J and I I  , and by Lenstra’s formula . 
that is.
So(ZG) S  n b u e o (Z ( f t»  
we obtain 
Go(ZG) =
z  ©  ci(z[Ci]) © $=1(Z ©  □

O pen P rob lem s

Determine the version of the above proposition 2.3 for Qn(ZG) . n > 1. and 
extend to the ideas discussed in [1]. [3]. [4]. [5], [Cj. [7J. [9], [10], [12] and [14] 
respectively.
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