

Vol. 1 2009

ADVANCES MATHEMATICS

Proceedings Of A Memorial Conference In Honour Of LATE PROFESSOR C. O. A. SOWUNMI Department of Mathematics, University of Ibadan, Ibadan, Nigeria

Editors: E. O. AYOOLA V. F. PAYNE

Associate Editor: D. O. A. AJAYI G-Theory of Group Rings for Groups of Elementary Abelian p-Groups

Michael EniOluwafe Department of Mathematics, University of Ibadan, Ibadan, Nigeria

Abstract

The formula for the G- theory of the group ring of a finite group G given by H. Lenstra is shown to be valid for groups of elementary abelian p- groups. **Keywords:** Group rings, G- theory.

Introduction

In [8]. H. Lenstra obtained a fundamental formula for the Grothendieck group $\mathcal{G}_0(\mathbb{Z}G)$ for G a finite abelian group and \mathbb{Z} a commutative noetherian ring, in terms of Grothendieck groups of rings of fractions of algebraic integer rings. In [13], D. L. Webb established the formula

$$\mathcal{G}_n(\mathbb{Z}G) \simeq \bigoplus_{\rho \in X(G)} \mathcal{G}_n(\mathbb{Z} < \rho >), \quad n \ge 0,$$

where $\mathbb{Z} < \rho >$ denotes the ring of fractions $\mathbb{Z}(\rho)[1/|\rho|]$ obtained by inverting $|\rho|$, $\mathbb{Z}(\rho)$ denotes the quotient of the group ring $\mathbb{Z}\rho$ by the $|\rho|^{-th}$ cyclotomic polynomial $\Phi_{|\rho|}$ evaluated at a generator of ρ (the ideal factored out is independent of the choice of generator for ρ). [.] denotes cardinality and $X(\pi)$ the set of cyclic quotients of π . A natural problem is that of computing $\mathcal{G}_n(\mathbb{Z}G)$ as explicitly as possible and from the formula above, when G is substituted as

$$\underbrace{\mathbb{Z}/p^n \oplus \mathbb{Z}/p^n \oplus \cdots \oplus \mathbb{Z}/p^n}_{r-times}, \quad n \ge 1, \quad r > 1, \quad n$$

a positive integer, p a prime number, it is desirable to know the number of cyclic quotients of G and the exact picture of the formula for G. Our results extend [2].

The Results and their Proofs

We established first the following lemma , which constitute the technical heart of the next theorem. Lemma 2.1:

Let

$$G := \underbrace{\mathbb{Z}/p^n \oplus \mathbb{Z}/p^n \oplus \cdots \oplus \mathbb{Z}/p^n}_{r-times}, \quad r > 1, \quad n \text{ a positive integer, } p$$

a prime number and H a subgroup of G. Then the number of the cyclic factor groups G/H up to isomorphism such that

$|G/H| = p^n$ is $p^{(n-1)(r-1)}(\frac{p^r-1}{n-1})$ **Proof:**

By the Duality Theorem for finite abelian groups , the number of subgroups H of G for which G/H is cyclic of order m is equal to the number of cyclic subgroups of G of order m.[11] Now $G = (\mathbb{Z}/p^n)^r$. The number of elements of order p^n in G is $p^{nr} - p^{(n-1)r}$ $p^{nr} - p^{(n-1)r}$ and a cyclic group of order p^n contains $p^n - p^{n-1}$ such elements; so the number of cyclic subgroups is $\frac{p^{nr} - p^{(n-1)r}}{p^n - p^{n-1}} = p^{(n-1)(r-1)}(\frac{p^r - 1}{p-1}).$ Next, consider

Theorem 2.2:

Let

$$G := \mathbb{Z}/p^j \oplus \mathbb{Z}/p^j \oplus \cdots \oplus \mathbb{Z}/p^j, \ \ r > 1, \ j \in \{1, 2, ..., n\}, \ p$$

La generator of ρ (the ideal-factored onesis meanendent of the choice

a prime number and H is a subgroup of G. Then the number of the cyclic factor groups G/H up to isomorphism such that $|G/H| = p^j$ for all j summed to n, is $(\frac{p^r-1}{p-1})(\frac{p^{n(r-1)}-1}{p^{r-1}-1}).$ **Proof:**

Using Lemma 2.1 and summing over j from 1 to n immediately gives the theorem . 🗆

Finally, we give the proof of the following: **Proposition** 2.3:

For r > 1, p a prime number and $j \in \{1, 2, ..., n\}$. Let $G := \underbrace{\mathbb{Z}/p^j \oplus \mathbb{Z}/p^j \oplus \cdots \oplus \mathbb{Z}/p^j}_{r-times}$

-times

Then

 $\mathcal{G}_0(\mathbb{Z}G) =$ $\mathbb{Z} \bigoplus Cl(\mathbb{Z}[\zeta_1]) \bigoplus_{j=1}^t (\mathbb{Z} \bigoplus Cl(\mathbb{Z}[\zeta_{p^j}, \frac{1}{p^j}])^s)$

where Cl(R) is the ideal class group of Dedekind ring R, t is determined from Theorem 2.2 and $s = p^{(j-1)(r-1)}(\frac{p^r-1}{p-1})$ (by Lemma 2.1) **Proof:**

For
$$G := \mathbb{Z}/p^j \oplus \mathbb{Z}/p^j \oplus \cdots \oplus \mathbb{Z}/p^j$$
, $r > 1$,

r-times p a prime number and $j \in \{1, 2, ..., n\}$. Let $\{H_0, ..., H_t\}$ be the set of all subgroups of G for which G/H_j is cyclic, where t is determined from Theorem 2.2 above. Then we obtain two forms:

(I) If $\rho_0 = G/H_0$ with $|\rho_0| = 1$, then $\mathbb{Z}(\rho_0) = \mathbb{Z}\langle \rho_0 \rangle = \mathbb{Z}[\zeta_1]$ is a Dedekind ring. Where ζ_1 is the first primitive root of unity. But it is well known for any Dedekind ring R that $\mathcal{G}_0(R) \cong \mathbb{Z} \bigoplus Cl(R)$ where Cl(R) is the ideal class group of R. Thus, for this form we obtain $\mathcal{G}_0(\mathbb{Z}\langle \rho_0 \rangle) \cong \mathbb{Z} \bigoplus Cl(\mathbb{Z}[\zeta_1])$

(II) For j > 0, we consider

 $\rho_j = G/H_j \quad \text{with} \quad |\rho_j| = p^j$ and obtain for each j > 0 $\mathbb{Z}(\rho_j) \cong \mathbb{Z}[\zeta_{p^j}]$, where ζ_{p^j} denotes a primitive $p^{j th}$ root of unity.

Therefore, we get

tush O.E. Vicknehr, J. P. "Nena $\mathbb{Z}\langle \rho_j \rangle \cong \mathbb{Z}[\zeta_{p^j}, \frac{1}{p^j}]$ a Dedekind ring . Thus, we obtain (using Lemma 2.1 and Theorem 2.2) $\mathcal{G}_0(\mathbb{Z}\langle \rho_j \rangle) \cong \bigoplus_{j=1}^t (\mathbb{Z} \bigoplus Cl(\mathbb{Z}[\zeta_{p^j}, \frac{1}{p^j}])^s \text{ where } s = p^{(j-1)(r-1)}(\frac{p^r-1}{p-1})$ Hence combining results from I and II, and by Lenstra's formula, that is. $\mathcal{G}_0(\mathbb{Z}G) \cong \prod_{j=0}^t \mathcal{G}_0(\mathbb{Z}\langle \rho_j \rangle)$ we obtain $\mathcal{G}_0(\mathbb{Z}G) =$

 $\mathbb{Z} \bigoplus Cl(\mathbb{Z}[\zeta_1]) \bigoplus_{j=1}^t (\mathbb{Z} \bigoplus Cl(\mathbb{Z}[\zeta_{p^j}, \frac{1}{n^j}])^s \square$

settan yoony singe

Open Problems

Determine the version of the above proposition 2.3 for $\mathcal{G}_n(\mathbb{Z}G)$, $n \geq 1$, and extend to the ideas discussed in [1], [3], [4], [5], [6], [7], [9], [10], [12] and [14] respectively.

Acknowledgments

The author would like to thank the ICTP and the SIDA for their generosity and support.

Bibliography

- [1] Danchev, P.V. "A note on decompositions in abelian group rings" An. Stiint. Univ. "Ovidius", Constanta Ser. Mat. 16 (2008), no 1, 73-76.
- [2] EniOluwafe, M. "On the number of cyclic quotients of some abelian p- groups", J. Nigerian Assoc. of Mathematical Physics 11(2007):33-38.
- [3] Fan, Y. "A characterization of elementary abelian p-groups by counting subgroups" (Chinese) Math. Practice Theory (1988), no 1, 63-65.

227

- [4] Freeze, M.; Gao, W.; Geroldinger, A. "The critical number of finite abelian groups" J. Number Theory 129 (2009), no 11, 2766-2777.
- [5] Gumber, D.K.; Karan, R.; Pal, I. "Some augmentation quotients of integral group rings" Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no 4, 537-546.
- [6] Hertweck, M. "Torsion units in integral group rings of certain metabelian groups" Proc. Edinb. Math. Soc. (2) 51 (2008), no 10,3585-3588.
- [7] Lee, G.T.; Spinelli, E. "Group rings whose symmetric units are solvable" Comm. Algebra 37 (2009), no 5, 1604-1618.
- [8] Lenstra, H. "Grothendieck groups of Abelian group rings", J. Pure Appl. Algebra 20(1981): 173-193.
- [9] Okon, J.S.; Rush, D.E.; Vicknair, J. P. "Numbers of generators of ideals in a group ring of an elementary abelian p-group" J. Algebra 224 (2000), no 1, 1-22.
- [10] Paul, Y. "Grothendieck group and generalized mutation rule for 2-Calabi-Yau triangulated categories" J. Pure Appl. Algebra 213 (2009), no 7, 1438-1449.
- [11] Robinson, D. "A course in the theory of groups," Springer, New York: (1982).
- [12] Wang, X.H.; Huang, B.W. "Structure of finite abelian groups with an automorphism group of order 2^{8p}." (Chinese) J. Wuhan Univ. Natur. Sci. Ed. 55 (2009), no 4, 405-408.
- [13] Webb,D.L. "Quillen G-theory of Abelian group rings," J. Pure Appl. Algebra 39(1986): 177-195.
- [14] Yang, G.Y. "Generating relation of grothendieck groups in a concealed algebra (Chinese) Beijing Shifan Daxue Xuebao 44 (2008), no 4, 368-370.

228