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Abstract
Computations showing that 

IO(C2. )*l = 23 and 112(G)*! = 2 \

were obtained respectively if G is a cyclic group C2. of order 2* and when G = C2 © C4

Introduction
Let G be a finite group, f2(G) the Burnside ring of G, that is, 
the Grothendieck ring obtained from the semi-ring of G- 
isomorphism classes of finite G-sets under addition and 
multiplication induced respectively by the disjoint union and 
the Cartesian product. The goal of this paper is to study the 
structure of the group Q(G)* of units of £2(G).

In section 1 of this paper, we investigate the structure of 
units of Burnside rings for G = Cj», a cyclic group of order 2" 
and show that lf2(C^)* I = 22 while in section 2 we study 
(2(G)*, G = C2 © C4 where we obtain IQ(G)*I = 2*.

§ l.The structure of the group of units of the Burnside 
ring for G a cyclic group of order 2*: C2».

n-j
1.2 Let a  denote a generator of G and put a  :=a3 so that

Ho := < a o >• Hj :=<ai > . j* ° .  J = 1.2.....n

with

1 =<a„ 5 < a ,> ,. . .  £< a  >=G 

Now since

^ ( < 0^ )  = G for all j, since G is commutative.

Then we have the following list of distinct conjugate 
classes denoted by C1(C2»). list of distinct subgroups.

C1(C2»)= ( < ^ > , < 0 , >......< a m> }

1.1 Let
i : = 2 »= [G : 1].

We can enumerate all divisors of i in an increasing sequence 
of numbers, say,

i := 1, i, ;=2, L:=4, i, :=8.... ,« = 2".

For each divisor i. of i, there is a unique subgroup H( c  G 
such that IHjI = 2j, and hence [G : = 2* J.

1.3 Now let g be an arbitrary element of G, then g -  cik for 
all k = 1 , . . . .  2°, it also follows from above relations dial < 
g >= H , for some j that is, < a k >=<a3* i>. So we can rewrite 
each member in C1(C2.) in terms of its set of generators as 
follows:

Let A, be set of generators of H,, i = 0 ,1 ,2 , . . . ,  n then we ha vc

A0 := (a 3" ) = (e) e = identity of G.
A, := (a 3" ’ ]

= (a 3, a \  . .  „a3' . a
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A, := (a ,a J...... a *  .a * 1)

where

#A, /  1, = 1,. = 2*1, #A. = 2*'

Also,\*e obtain the following sequence of indexes in G:

IGI = (G : = 2*
(G ; //,) = 2*'
( G : = 2*1

( G . / / J  = 2

1.4 Now we know, for X d  ZC/(G), G a finite group, )hat

y e  G (G )«  I X < g > ) - 0 (IGI) 
geG

! K < g > S )  -0 (N o(S):S)) 
gS€N0(S)/S

so the above sum formula implies

KH0) + T<H1) + 27(H1) + 4KHJ>f . . .+ 2*3X H > - 2*XG>» 0(2*)

* « ,)  + + 2T (HJ + . . . +  2*5 2 ^ G )  -  0(2-’)

+ KG) -  0(2)

Now since for all H <, G.

KH) ■ (±1) in case y e  Q(G)*

we obtain the following table with respect to the conjugate 
classes of G.

1.5 Table for n(C,-)*

H, H, G
+ 1 + 1 + 1 +i +1
-1 -1 -1 -i -1

-1 -1 -1 -i + 1

+1 + 1 + 1 +i -1

That means:

t£XCj»)*l = 21

By the above table for f l  (C,»)* we observe the following 
claim:

1.5.1 C laim

Assume that y(H,) e  (±1) for 1 = 0 , . . . .  n -1  then 

T(H,) + TCH^H 2 y ( H ,J  + • • • + yCH^) + ,  . .

+2~J ( H J  + 2 * " y (H .) -0 (2 * 0 fo ra l l i  = 0, l „ . . , n -  1 

«  KH#) = KHi) = . . .  = Y ( H J * ± T ( H ;

Proof" =>" It i$ easy to see, since

y a y + k h , , , )+ 2y (h ,j  + . . . . + 2^»  y a y , ) = ^  Y a y

and by assumption we must have that

l a y  + TOW  + 2KH,4l) + . . .  + 2^ 'K H y -  0 (2*0

for all i

To see “<=” We use method of induction on it - 1 :

For n - i = 0 => i = n it is easy to see that

x / y  -  x / y

Similarly for i = n - 1

Now assume that the induction hypothesis is true for i < n - 
1, that is, n - i > 1, so that we have

y. ;= t o w = t o w = . . .  = i o y , ) = ± y o u

Then we obtain by hypothesis 

XH,) + (2"" - 1) y ^  l ' 4' XH,) -  0 <2"> 

this implies,

X R ) + 2 -" (7 0± X H ) -  Y„*0(2*0

But since (70 ± y(HJ) is either 0 or ± 2 we get that

2 - " ( y, ± y(h ; ) - 0(2*0
and

W *  70 ■ 0 (2*0

also since n - i>  1, XH,) = {±1},V0 = (±1) we cannot get that 
+ 1 ■ -1 (4) for instance, so it follows that
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34 ALAWODE

7<H.) = Y0

Therefore the proof of the claim is complete.

§ 2. The structure of the group of units of the Burnside 
ring for G := C7 © Ct

2.1 We derive its set of subgroups as follows:

Sub (C} QC.) := [< 1 > := {(1,1)}; 11 2, := {(1,1), (1.L9))
-  < (1, V) > ;
Ha  := {(1,1), (a, 1)) = < (a, 1) >;

Hu  . = {(1 ,1), (a. b2)} < (a. b2) >;

/ /„  . = {(1,1), (1. b2), (a, 1), (a, b2)} = < (1, b2), (a, 1) > ; 

l la  := {(1.1). (1 ,b), (1, b2), (1. b>)} =< (1. b) >;

H4,  /= {(1,1). (a, b), (1, b2), (a, b>)} = < (a. b) >;

H„ := C, © C4;

:= {(1,1), (ljb2), (1. b). (lb>). (a. 1). (a, b). (a. b2), (a. V)}]

H^.H^andH, ,  is H,,.

Then, by the congruence (Tom Dieck):

2.3 I ' I N ( H ) / N ( H ) n N ( K ) l l ( K / H ) * f y ( K ) ) ) -  Omod 
K

(N ( H ) : H) [4]

for all ( H) e Sub (G), where X is over all N (H)-conjugate 
classes ( K ) such that H is normal in K and K1H is cylic, and 
(K/H)* is the set of generators of K/H.  y. Sub(G) —» {±1). 
That means, the following congruences:

(i) H ;= H>r (N ( H J  : H„) = /, y H J  * 0 ( 1 ) .

(U) 11 ••= n 4r (N (11 J  : u 4l) =  2 , * / / „ )  +  yO !J *0  (2)
(Hi) H  .'= 11 n . (N (H J  : 11J  = 2, y H J  + * 7 / J  *0(2)
(iv) n  : =  1143. (N <H4J) . 11 J  = 2. J 1 J  +  y i l j  * 0 (2)
(v) H . = 112I, (N (H2,) : H2I) = 4, the set of subgroups

between l lgl and 11 is {11 , 114t, 11 a , H4J, U2I).

We must compute for

l(H|l/H2I)*l»l(H4l/HJ1)* I, (l landl (H4J/H,,)*I.

Clearly l(H^I/H21)*l = 1, and since s  2Z,, = 2Z2,
7ZV it follows that

KH JH lt)*\ = 1. W J H J * .  = 1, and W J U J * \  = 1.

Now, let us compute the factor group Hl/H 2, as follows: 
Recall (H,, := ((1.1)., (1, bOJ; := C2 © C4.

Here the first factor C2 of C2 © C4 is left alone. The C, factor, 
on the other hand, is essentially collapsed by a subgroup of 
order 2. That means,

Hj/Hjy = C7 © Cj

which is abelian but not cyclic, hence

K W i - o .

So then we obtain

’ k u j  + y n j  + y n j  + y n j  ®o (4)

(Vi) H := n a , (N ( H J : H J  = 4, K := / /„ .  11 Ha

Clearly, \(HtlIHJ*\ = 2, since H|//HJ2 = 2Z4 which has two 
generators

l( HJ11J*\  = 1, since H J H U = 7Z2

1 (H J H J* \  -  1, so we obtain

2y (//„) + * //„>  + * / /„ )*  0(4)

(Vii) H ;= 11 iy (N (Hjj) : H J  = 4,K  := H„. H4I, HJ} 
Since (/, b )l ln is of order 4 in the factor group Ht l l Hu , that
means,

ll„  / Uu = 2Zt and se I ( 1 1 «= 2.

Also. I(//,,///„)*!= 1. ! ( / / / /„ )* ! =  1, 
hence, we have

2y ( n j  + y n j  + y i Q  m o (4)
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(viii) / /  :=< 1 >, (N (< 1 >) :< 1 > ) = 8,

K := Hir  H4I, Hn , Hty Hjr Hu , Hu , < 1 >.

\(Htl/  < 1 >)*l = 0, since Hfl is not cyclic

\(U4J  < 1 >)*l = 0, since H4I is not cyclic

l(/f<2/  <  1 >)*l =  2, since lln  =  2Z4 which has two generators.

\{HJ  < 1 >)*l = 2. since H4] =2Z4

\{H J  < 1 >)*l = 1, since / /„  = 7L2

\(H J  < 1 >)*l = 1, since Hu

l( H J  < 1 >)*l = 1, since / /„  =ZZ2

l( < 1 > / < 1 >)*l = 1, so we have

Oy(H„) + Oy(!!4l) + 2y(Hn ) + 2 y ( H J  + * //„ )  + *H n )
+y(Hv ) + X <  1 > ) =  0 (8)

2.4 The ring Q (C2 © C4) contains precisely the following 
units

< 1 >

+1 +1 +1 +1 +1 +1 +1 + 1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 +1 +1 -1 -1 -1 -1

+1 +1 -1 -1 +1 +1 + 1 + 1

+ 1 -1 +1 +1 -1 -1 -1 -1

-1 +1 -1 -1 +1 +1 + 1 + 1 .

+1 +1 -1 +1 -1 +1 + 1 -1

-1 -1 +1 *1 +1 -1 -1 + 1

-1 +1 -1 +1 -1 +1 + 1 -1

+1 -1 +1 -1 +1 -1 -1 + 1

+1 +1 +1 -1 -1 +1 + 1 -1

-1 -1 -1 +1 + 1 -1 -1 + 1

-1 +1 +1 -1 -1 +1 + 1 -1

+1 -1 -1 +1 +1 -1 -1 +1

-1 +1 +1 +1 + 1 +1 + 1 + 1

+1 -1 -1 -1 -1 -1 -1 -1

That is,

lii (C2 9  C,)* I = 24

An alternative method

The above table for Q (C} © C4)* U equivalent to the 
following lemma. * 1 ;

2.5 Let U be an arbitrary element of Sub(C, © C4) and 
y(U) e (±1 ]. Then the congruences

(i) t O f J  * 0  (1).

(U) Otl„) + X H J  * 0  (2).
(Hi) * //„ )  + K H J  * 0  (2),
(iv) * //,,)  + y f l j  mO (2),

(v) * //„ )  + *H n ) + * / /„ )  + * / /„ )  - o  (4),
(Vi) 2 y ( H J  + * / /„ )  + 7<Hn ) -  0 (4).

(vii) 2y(Htl) + t f H J  + X / / J  = 0 (4).

(viii) 2y(Hn ) + 2 y ( H J  + * / /„ )  + X//u ) +
+y(< 1 >) *  0 (8) imply the following results:

Firstly, in view of 

2y(U) = ±2 ®2 (4) 

and, hence,

•* U ). 2-y(U ) (4).

for every U e Sub (C} © C4), the equations (vi) and (vii) 
imply

y(IIu) » 2 - * / /„ )  » * / /„ )  (4) 

and

W  -  2 - * //„ )  * * //„ )  (4) 

and tliereforc

(is) t f / y  = * / /„ )  = W  •

From (v), wc have

(x) 2*7/,,) + 2y(Hn ) + 2y(H4J) + 2y(Hu ) » 0 (8), ana 
substituting (ix) in (x) and (viii), respectively, we gel

(xi) 2 * / y  + 2y(H J  + 2 y ( /y  + 2y(Hit) -  0 (8)

(xii) 2X//a ) + 2 y (/V  + 2y(l(4J) + 2 y ( /y  + y « ;> )  » 0 (8)

and subtracting (xii) from (xi), we obtain
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36 M A W  ODE

*HV) - * <  1 >) -  0 (8). 

this implies

W ^ < 1 > )  (8).

also, this implies

* < i > ) = w .

Next, we have the following claim:

2.6 -y(U)e {± 1) for all U S  G 

and

XU,) + XU2)+  XU3) + X U )  - 0  (4) 

for some Ur  Ur  U,, U4<,G implies

X U , ) . x u ) . X U ,) . x u 4) = 1 

that is

m  = x u , ) . x u , ) . x u , )

To verify this claim, all we have to do is to show that no two
of

(XU,), XU,). XU,). XU,))

are congruent modulo 4. To see this is easy: Suppose that for 
any pair (i.j), i * j =  1,2,3,4

XU)  ^  XU} (4)

That means,

XU)  ^  XU) = ± 1

and so our assumption is affected because 2y(U) = -l (4) is 
not possible. Hence if

XU)  * XU),

then XU) £  XU) (4),

and no two elements of

\XU, ) .XU, ) .XU, ) ,XU, )}

arc congruent modulo 4. Therefore we can have

XU,) = X U ) . X U ,) . XU,)

Finally, we can choose

X I I , )  = a, X U . )  = b, X I I , )  = c and X " , )  « d.

where a, b, c, d, e | ± 1) and obtain the following equivalent 
table

2.7 n „  II„ n „  n „  n „  u a  / /„  < i>  
a b e  c d b b d .

\n(c,®c,)*\ = 2\
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