Units of burnside rings of cyclic groups

Michael A. Alawode
Department of Mathematics, University of Ibadan, Ibadan.

Abstract

Computations showing that $\left|\Omega\left(C_{2^{\mathrm{n}}}\right)^{*}\right|=2^{2}$ and $\left|\Omega(G)^{*}\right|=2^{4}$,

were obtained respectively if G is a cyclic group $\mathrm{C}_{2^{2}}$ of order $2^{\text {² }}$ and when $G=\mathrm{C}_{2} \oplus \mathrm{C}_{4}$

Introduction

Let G be a finite group, $\Omega(G)$ the Burnside ring of G, that is, the Grothendieck ring obtained from the semi-ring of Gisomorphism classes of finite G-sets under addition and multiplication induced respectively by the disjoint union and the Cartesian product. The goal of this paper is to study the structure of the group $\Omega(G)^{*}$ of units of $\Omega(G)$.
In section 1 of this paper, we investigate the structure of units of Burnside rings for $G=\mathrm{C}_{2^{n}}$, a cyclic group of order 2^{n} and show that $\Omega \Omega\left(\mathrm{C}_{f}\right)^{*} \mid=2^{2}$ while in section 2 we study $\Omega(\mathrm{G})^{*}, \mathrm{G}=\mathrm{C}_{2} \oplus \mathrm{C}_{4}$ where we obtain $\left\lfloor\Omega(\mathrm{G})^{*} \mid=2^{4}\right.$.
§ 1.The structure of the group of units of the Burnside ring for G a cyclic group of order $2^{\text {a }}: \mathrm{C}_{2^{\mathrm{n}}}$.

1.1 Let
 $$
i:=2^{\circ}=[G: 1] .
$$

We can enumerate all divisors of i in an increasing sequence of numbers, say,

$$
i_{0}:=1, i_{1}:=2, i_{2}:=4, i_{3}:=8, \ldots, i_{n}=2^{n} .
$$

For each divisor i_{j} of i, there is a unique subgroup $\mathrm{H}_{j} \subseteq \mathrm{G}$ such that $\left|\mathrm{H}_{\mathrm{j}}\right|=2^{j}$, and hence $\left[\mathrm{G}: \mathrm{H}_{\mathrm{j}}\right]=2^{2 \cdot}$.
1.2 Let a denote a generator of G and put $a_{j}:=a^{2^{n-i}}$ so that

$$
H_{0}:=<a_{0}>, H_{1}:=<a_{1}>, j \neq 0, j=1,2, \ldots, n
$$

with

$$
1=<a_{0} \leq<a_{1}>\ldots . \leq<a_{1}>=G
$$

Now since
$\left.\mathrm{N}_{\mathrm{o}}(<\mathrm{a}\rangle\right)=\mathrm{G}$ for all j , since G is commutative.
Then we have the following list of distinct conjugate classes denoted by $\mathrm{Cl}\left(\mathrm{C}_{2}{ }^{2}\right)$, list of distinct subgroups.

$$
\mathrm{Cl}\left(\mathrm{C}_{2}{ }^{\mathrm{n}}\right)=\left\{\left\langle\mathrm{a}_{0}\right\rangle,\left\langle\mathrm{a}_{1}\right\rangle, \ldots,\left\langle\mathrm{a}_{\mathrm{a}}\right\rangle\right\}
$$

1.3 Now let g be an arbitrary element of G , then $\mathrm{g}=\mathrm{a}^{\mathrm{k}}$ for all $k=1, \ldots, 2^{\text {a }}$, it also follows from above relations that < $g\rangle=H_{j}$, for some j that is, $\left\langle a^{k}\right\rangle=\left\langle a^{2}-j\right.$. So we can rewrite each member in $\mathrm{Cl}\left(\mathrm{C}_{2}{ }^{2}\right)$ in terms of its set of generators as follows:

Let A be set of generators of $H_{i}, i=0,1,2, \ldots, n$ then we have
$\Lambda_{0}:=\left\{a^{2^{2}}\right\}=\{e \mid e=$ identity of G.
$A_{1}:=\left\{\mathrm{a}^{2+1}\right\}$
$A_{0,1}:=\left\{a^{2}, a^{6}, \ldots, a^{2^{n}-6}, a_{0}^{2^{2}-2}\right\}$
$A_{a}:=\left\{a, a^{3}, \ldots, a^{2_{3}}, a^{m_{1}}\right\}$
where
$\# A_{0}=1, \# A_{1}=1, \ldots, \# A_{n-1}=2^{n-2}, \# A_{2}=2^{n-1}$
Also, we obtain the following sequence of indexes in G :

$$
\begin{aligned}
\mid G /=\left(G: H_{0}\right) & =2^{n} \\
\left(G: H_{1}\right) & =2^{n-1} \\
\left(G: H_{2}\right) & = \\
\vdots & \\
\left(G: H_{m-1}\right) & =2
\end{aligned}
$$

1.4 Now we know, for $8 \geq \mathbb{Z C l}(\mathrm{G})$, G a finite group, jhat

$$
\begin{gathered}
\gamma \in \Omega(\mathrm{G}) \Leftrightarrow \sum_{\mathrm{g} \in \mathrm{G}} \gamma(<\mathrm{g}>) \equiv 0(\mathrm{G} \mid) \\
\left.\sum_{\mathrm{g} S \in \mathrm{~N}_{0}(\mathrm{~S}) / \mathrm{S}} \gamma(<\mathrm{g}>\mathrm{S})=0\left(\mathrm{~N}_{\mathrm{o}}(\mathrm{~S}): \mathrm{S}\right)\right)
\end{gathered}
$$

so the above sum formula implies
$\gamma\left(\mathrm{H}_{2}\right)+\gamma\left(\mathrm{H}_{1}\right)+2 \gamma\left(\mathrm{H}_{2}\right)+4 \gamma\left(\mathrm{H}_{3}\right)+\ldots+2^{n-2} \gamma\left(\mathrm{H}_{21}\right)+2^{-2} \gamma(\mathrm{G})=0\left(2^{*}\right)$
$\gamma\left(\mathrm{H}_{1}\right)+\gamma\left(\mathrm{H}_{2}\right)+2 \gamma\left(\mathrm{H}_{3}\right)+\ldots+2^{-3} \gamma\left(\mathrm{H}_{21}\right)+2^{2-2} \gamma(\mathrm{G})=0\left(2^{-1}\right)$

$$
x\left(\mathrm{H}_{=1}\right)+x(\mathrm{G}) \equiv O(2)
$$

Now since for all $\mathrm{H} \leq \mathrm{G}$.
$\gamma(\mathrm{H})=(\pm 1)$ in case $\gamma \in \Omega(\mathrm{G})^{*}$
we obtain the following table with respect to the conjugate classes of G .

1.5 Table for $\Omega\left(\mathrm{C}_{2^{\circ}}\right)^{*}$

H_{0}	H_{1}	H_{2}	\ldots	H_{21}	G
+1	+1	+1	\ldots	+1	+1
-1	-1	-1	\ldots	-1	-1
-1	-1	-1	\ldots	-1	+1
+1	+1	+1	\ldots	+1	-1

That means:
$\boxed{\square}\left(\mathrm{C}_{2^{2}}\right)^{*} 1=2^{2}$

By the above table for $\Omega^{*}\left(\mathrm{C}_{2}\right)^{*}$ we observe the following claim:

1.5.1 Claim

Assume that $\gamma(\mathrm{H}) \in[\pm 1]$ for $\mathrm{i}=0, \ldots, \mathrm{n}-1$ then
$\gamma\left(\mathrm{H}_{\mathrm{P}}\right)+\gamma\left(\mathrm{H}_{t+1}\right)+2 \boldsymbol{\gamma}\left(\mathrm{H}_{t+\infty}\right)+\ldots+2^{+1} \gamma\left(\mathrm{H}_{t+1}\right)+\ldots$
$+2^{n i 2}\left(\mathrm{H}_{* 1}\right)+2^{n-1} \boldsymbol{\gamma}\left(\mathrm{H}_{\omega}\right)=0\left(2^{\circ}\right)$ for all $\mathrm{i}=0,1_{r} \ldots, \mathrm{n}-1$
$\Leftrightarrow \gamma\left(\mathrm{H}_{0}\right)=\gamma\left(\mathrm{H}_{1}\right)=\ldots=\gamma\left(\mathrm{H}_{\Delta 1}\right)= \pm \gamma\left(\mathrm{H}_{\star}\right)$
Proof " \Rightarrow " It is easy to see, since
$\gamma\left(\mathrm{H}_{\mathrm{l}}\right)+\gamma\left(\mathrm{H}_{1+1}\right)+2 \gamma\left(\mathrm{H}_{1+2}\right)+\ldots+2^{2+2} \gamma\left(\mathrm{H}_{2-1}\right)=2^{2+1} \gamma\left(\mathrm{H}_{8}\right)$
and by assumption we must have that
$\gamma\left(\mathrm{H}_{i}\right)+\gamma\left(\mathrm{H}_{i+1}\right)+2 \gamma\left(\mathrm{H}_{t+2}\right)+\ldots+2^{n+1} \gamma\left(\mathrm{H}_{\Sigma}\right) \equiv 0\left(2^{n-1}\right)$
for all i
To see " \Leftarrow " We use method of induction on $\boldsymbol{n}-\boldsymbol{i}$:
For $n-i=0 \Rightarrow i=n$ it is easy to see that
$\left.\gamma H_{0}\right)=\gamma\left(H_{\alpha}\right)$
Similarly for $i=n-1$
Now assume that the induction hypothesis is true for $\mathrm{i}<\mathrm{n}$ 1 , that is, $n-i>1$, so that we have
$\gamma_{0}:=\gamma\left(\mathrm{H}_{t+1}\right)=\gamma\left(\mathrm{H}_{t+2}\right)=\ldots=\gamma\left(\mathrm{H}_{n+1}\right)= \pm \gamma\left(\mathrm{H}_{n}\right)$
Then we obtain by hypothesis
$\gamma\left(\mathrm{H}_{\mathrm{O}}\right)+\left(2^{n+1}-1\right) \gamma_{0} 2^{n+1} \gamma\left(\mathrm{H}_{\mathrm{g}}\right) \equiv 0\left(2^{n i}\right)$
this implies,
$\gamma\left(\mathrm{H}_{\mathrm{j}}\right)+2^{n+1}\left(\gamma_{0} \pm \gamma\left(\mathrm{H}_{\mathrm{p}}\right)-\gamma_{\mathrm{n}}=0\left(2^{n-1}\right)\right.$
But since $\left(\gamma_{0} \pm \gamma_{2}\right)$) is either 0 or ± 2 we get that
$2^{n-1}\left(\gamma_{0} \pm \gamma\left(H_{n}\right)\right) \equiv 0\left(2^{n-}\right)$
and
$\gamma\left(H_{i}\right)-\gamma_{0}=0\left(2^{4}\right)$
also since $n-i>1, \gamma\left(H_{i}\right)=\{ \pm 1\},{ }^{v}=\{ \pm 1\}$ we cannot get that $+1=-1$ (4) for instance, so it follows that
$\dot{\gamma}\left(H_{i}\right)=\gamma_{0}$
Therefore the proof of the claim is complete.
§ 2. The structure of the group of units of the Burnside ring for $\mathrm{G}:=C_{2} \oplus C_{4}$
2.1 We derive its set of subgroups as follows:
$\operatorname{Sub}\left(C_{1} \oplus C_{4}\right):=\left[<1>:=\{(1,1)\} ; H_{11}:=\left\{(1,1),\left(1, b^{2}\right)\right\}\right.$ $=\left\langle\left(1, b^{2}\right)\right\rangle$;
$H_{22}:=\{(1,1),(a, 1)\}=\langle(a, 1)\rangle$;
$H_{2 J}:=\left\{(1,1),\left(a, b^{2}\right)\right\}\left\langle\left(a, b^{2}\right)\right\rangle$;
$H_{41}:=\left\{(1,1),\left(1, b^{2}\right),(a, 1),\left(a, b^{2}\right)\right\}=\left\langle\left(1, b^{2}\right),(a, 1)\right\rangle$;
$H_{a 2}:=\left\{(1,1),(1, b),\left(1, b^{2}\right),\left(1, b^{3}\right)\right\}=\langle(1, b)\rangle$;
$H_{d 3}:=\left\{(1,1),(a, b),\left(1, b^{2}\right),\left(a, b^{3}\right)\right\}=\langle(a, b)\rangle ;$
$H_{81}:=C_{2} \oplus C_{8} ;$

$$
\left.:=\left\{(1,1),\left(1, b^{2}\right),(1, b),\left(1 b^{3}\right),(a, 1),(a, b),\left(a, b^{2}\right),\left(a, b^{3}\right)\right\}\right]
$$

2.2. The diagram of conjugate subrgoups of $\mathrm{C}_{2} \oplus \mathrm{C}_{4}$ is:

The normalizer of each of the groups $\langle 1\rangle, \mathrm{H}_{21}, \mathrm{H}_{2}, \mathrm{H}_{2}, \mathrm{H}_{41}$, $\mathrm{H}_{42}, \mathrm{H}_{43}$ and H_{11} is H_{31}.

Then, by the congruence (Tom Dieck):

$\left.\left.2.3 \sum^{\prime} \mathbb{N}(H) / N(H) \cap N(K) \|(K / H) * h(K)\right)\right)=0 \bmod$ K

(N (H) : H)
for all $(\mathrm{H}) \in \operatorname{Sub}(\mathrm{G})$, where \sum is over all $\mathrm{N}(\mathrm{H})$-conjugate classes (K) such that H is normal in K and K / H is cylic, and $(\mathrm{K} / \mathrm{H})^{*}$ is the set of generators of $\mathrm{K} / \mathrm{H} . \gamma \cdot \operatorname{Sub}(\mathrm{G}) \rightarrow\{ \pm 1\}$. That means, the following congruences:

$$
\begin{equation*}
\left.H:=H_{s 1},\left(N\left(H_{s 1}\right): H_{s 1}\right)=1, X H_{s 1}\right) \equiv 0(1) . \tag{i}
\end{equation*}
$$

(ii) $\quad H:=H_{41}\left(N\left(H_{i 1}\right): H_{i 1}\right)=2, \gamma\left(H_{s i}\right)+\gamma\left(H_{41}\right) \equiv 0(2)$
(iii) $\left.\quad H:=H_{a 2}\left(N\left(H_{a 2}\right): H_{42}\right)=2, \gamma\left(H_{81}\right)+\gamma H_{a 2}\right) \equiv 0(2)$
(iv) $\quad H:=H_{43}\left(N\left(H_{43}\right): H_{43}\right)=2, \gamma\left(H_{81}\right)+x\left(H_{43}\right) \equiv 0(2)$
(v) $\quad H:=H_{21},\left(N\left(H_{21}\right): H_{2 l}\right)=4$, the set of subgroups between H_{81} and $H_{i j}$ is $\left\{H_{a 1}, H_{4 j}, H_{a}, H_{d j}, H_{2 j}\right\}$.

We must compute for

$$
I\left(\mathrm{H}_{31} / \mathrm{H}_{21}\right) * I,\left(\mathrm{H}_{41} / \mathrm{H}_{21}\right)^{*} 1,\left(!\left(\mathrm{H}_{42} / \mathrm{H}_{21}\right)^{*} \text { landl }\left(\mathrm{H}_{43} / \mathrm{H}_{21}\right) * \mid .\right.
$$

Clearly $\left|\left(\mathrm{H}_{21} / \mathrm{H}_{21}\right) *\right|=1$, and since $\mathrm{H}_{41} / \mathrm{H}_{21} \cong Z_{1}, \mathrm{H}_{46} / \mathrm{H}_{21} \cong Z_{2}$, $\mathrm{H}_{43} / \mathrm{H}_{21} \cong \mathbb{Z}_{2}$, it follows that
$\left|\left(H_{41} / H_{21}\right)^{*}\right|=1, \mid\left(H_{22} / H_{21}\right)^{*} .=1$, and $\left|\left(H_{4 j} / H_{21}\right)^{*}\right|=1$.
Now, let us compute the factor group $\mathrm{H}_{8} / \mathrm{H}_{21}$ as follows:
Recall $\left(\mathrm{H}_{21}:=\left\{(1,1), .\left(1, \mathrm{~b}^{2}\right)\right\} ; \mathrm{H}_{31}:=C_{2} \oplus C_{4}\right.$.
Here the first factor C_{2} of $C_{2} \oplus C_{4}$ is left alone. The C_{4} factor, on the other hand, is essentially collapsed by a subgroup of order 2 . That means,
$\mathrm{H}_{81} / \mathrm{H}_{21} \cong C_{2} \oplus C_{2}$
which is abelian but not cyclic, hence
$K\left(H_{a 1} / H_{21}\right)^{*} \mid=0$.
So then we obrain
($\left.x H_{41}\right)+\gamma\left(H_{62}\right)+\chi\left(H_{63}\right)+\gamma\left(H_{21}\right)=0$ (4)
(vi) $\quad H:=H_{22},\left(N\left(H_{22}\right): H_{22}\right)=4, \mathrm{~K}:=H_{81}, H_{41}, H_{22}$

Clearly, $\left(\left(H_{81} / H_{22}\right)^{*} \mid=2\right.$, since $\mathrm{H}_{31} / \mathrm{H}_{22} \cong \mathbb{Z}_{4}$ which has two generators
$\left|\left(H_{41} / H_{22}\right)^{*}\right|=1$, since $\mathrm{H}_{4!} / H_{22} \cong \mathbb{Z}_{2}$
$\left|\left(H_{27} / H_{22}\right)^{*}\right|=1$, so we obtain
$2 \gamma\left(H_{s j}\right)+\gamma\left(H_{d j}\right)+\gamma\left(H_{22}\right) \equiv 0(4)$
(vii) $\quad H:=H_{23},\left(N\left(H_{23}\right): H_{25}\right)=4, K:=H_{81}, H_{41}, H_{2 v}$ Since (l,b) H_{2} is of order 4 in the factor group H_{31} / H_{2}, that means,
$H_{a i} \mid H_{2 j} \cong \mathbb{Z}_{4}$ and $s o\left|\left(H_{s i} / H_{2 j}\right) *\right|=2$.
Also, $\left.\left|\left(H_{d i} / H_{2 j}\right)^{*}\right|=1, \mid\left(H_{2 j} / H_{2}\right)\right)^{*} \mid=1$, hence, we have
$2 \gamma\left(H_{31}\right)+\gamma\left(H_{41}\right)+\gamma\left(H_{2 j}\right\rangle \equiv 0$
(viii) $H:=<1>,(N(<1>):<1>)=8$,
$\mathrm{K}:=H_{81}, H_{41}, H_{42}, H_{43}, H_{11}, H_{22}, H_{23},\langle 1\rangle$.
$\left|\left(H_{8 f} /<1>\right)^{*}\right|=0$, since H_{81} is not cyclic
$\left|\left(H_{41} J<1>\right)^{*}\right|=0$, since H_{41} is not cyclic
$\left|\left(H_{42} \mid<1>\right)^{*}\right|=2$, since $H_{12} \cong \mathbb{Z}_{4}$ which has two generators.
$\left|\left(H_{4 j} \mid<1>\right)^{*}\right|=2$, since $H_{43} \cong \mathbb{Z}_{4}$
$\mathrm{I}\left(H_{2 J} /<1>\right)^{*} \mid=1$, since $H_{2 I} \cong \mathbb{Z}_{2}$
$\mathrm{I}\left(H_{2 I} /\langle 1\rangle\right)^{*} \mid=1$, since $H_{22} \cong \mathbb{Z}_{2}$
$\left|\left(H_{2 J} \mid<1>\right)^{*}\right|=1$, since $H_{23} \cong \mathbb{Z}_{2}$
$|(<1\rangle|<1\rangle)^{*} \mid=1$, so we have
$O \gamma\left(H_{81}\right)+O \gamma\left(H_{41}\right)+2 \gamma\left(H_{42}\right)+2 \gamma\left(H_{43}\right)+\gamma\left(H_{21}\right)+\gamma\left(H_{22}\right)$ $+\gamma\left(H_{23}\right)+\chi(<1>) \equiv 0(8)$
2.4 The ring $\Omega\left(C_{2} \oplus C_{4}\right)$ contains precisely the following units

H_{81}	H_{41}	H_{42}	H_{43}	H_{21}	H_{22}	H_{23}	$\langle 1\rangle$
+1	+1	+1	+1	+1	+1	+1	+1
-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	+1	+1	-1	-1	-1	-1
+1	+1	-1	-1	+1	+1	+1	+1
+1	-1	+1	+1	-1	-1	-1	-1
-1	+1	-1	-1	+1	+1	+1	+1
+1	+1	-1	+1	-1	+1	+1	-1
-1	-1	+1	-1	+1	-1	-1	+1
-1	+1	-1	+1	-1	+1	+1	-1
+1	-1	+1	-1	+1	-1	-1	+1
+1	+1	+1	-1	-1	+1	+1	-1
-1	-1	-1	+1	+1	-1	-1	+1
-1	+1	+1	-1	-1	+1	+1	-1
+1	-1	-1	+1	+1	-1	-1	+1
-1	+1	+1	+1	+1	+1	+1	+1
+1	-1	-1	-1	-1	-1	-1	-1

That is,
$1 \Omega\left(C_{2} \oplus C_{4}\right)^{*}!=2^{4}$

An alternative method
The above table for $\Omega\left(C_{2} \oplus C_{4}\right)$ is equivalent to the following lemma.
2.5 Let U be an arbitrary element of $\mathrm{Sub}\left(C_{2} \oplus C_{4}\right)$ and $\gamma(U) \in\{ \pm 1\}$. Then the congruences
(i) $\quad \gamma\left(H_{s i}\right) \equiv 0$ (1).
(ii) $\quad\left(\gamma H_{B 1}\right)+\gamma\left(H_{A 1}\right) \equiv 0$ (2),
(iii) $\quad \gamma\left(H_{s 1}\right)+\gamma\left(H_{s 2}\right)=0$ (2).
(iv) $\left.\quad X\left(H_{s 1}\right)+\mathcal{X} H_{43}\right)=0$ (2),
(v) $\quad \gamma\left(H_{41}\right)+\mathcal{X}\left(H_{42}\right)+\mathcal{X}\left(H_{43}\right)+\mathcal{X}\left(H_{21}\right) \equiv 0$ (4),
(vi) $\quad 2 \gamma\left(H_{81}\right)+\gamma\left(H_{41}\right)+\gamma\left(H_{27}\right)=0$ (4),
(vii) $\quad 2 \gamma\left(H_{81}\right)+\gamma\left(H_{41}\right)+\gamma\left(H_{23}\right) \equiv 0$ (4),
(viii) $\quad 2 \gamma\left(H_{42}\right)+2 \gamma\left(H_{43}\right)+\gamma\left(H_{21}\right)+\gamma\left(H_{22}\right)+\gamma\left(H_{23}\right)$ $+\gamma(<1>) \equiv 0$ (8) imply the following results:

Firstly, in view of
$2 \gamma(U)= \pm 2=2(4)$
and, hence,
$X(U)=2-x(U)(4)$,
for every $U \in \operatorname{Sub}\left(C_{2} \oplus C_{4}\right)$, the equations (vi) and (vii) imply
$\gamma\left(H_{22}\right)=2-\gamma\left(H_{41}\right)=\gamma\left(H_{41}\right)$
and
$\gamma\left(H_{23}\right) \equiv 2-\gamma\left(H_{41}\right) \equiv \gamma\left(H_{41}\right)$
and therefore
(ix) $\quad \gamma\left(H_{23}\right)=\gamma\left(H_{23}\right)=\gamma\left(H_{41}\right)$.

From (v), we have
(x) $2 \gamma\left(H_{41}\right)+2 \gamma\left(H_{42}\right)+2 \gamma\left(H_{43}\right)+2 \gamma\left(H_{21}\right) \equiv 0$ (8), and substituting (ix) in (x) and (viii), respectively, we get
(xi) $2 \gamma\left(H_{22}\right)+2 \gamma\left(H_{42}\right)+2 \gamma\left(H_{43}\right)+2 \gamma\left(H_{22}\right) \equiv 0$ (8)
(xii) $2 \gamma\left(H_{22}\right)+2 \gamma\left(H_{42}\right)+2 \gamma\left(H_{43}\right)+2 \gamma\left(H_{21}\right)+\gamma(\langle l\rangle) \equiv 0$
and subtracting (xii) from (xi), we obtain
$\left.\chi\left(H_{2}\right)-\gamma<1>\right)=0(8)$,
this implies
$\left.x\left(H_{2 l}\right) \equiv x<1>\right)(8)$,
also, this implies
$\chi<1>)=\gamma\left(H_{21}\right)$,
Next, we have the following claim:

$2.6 \mathfrak{X}(\mathrm{U}) \in\{ \pm 1\}$ for all $\mathrm{U} \leq \mathbf{G}$

and
$\left.\left.\left.x U_{1}\right)+x\left(U_{2}\right)+x U_{3}\right)+x U_{4}\right)=0$
for some $U_{1}, U_{2}, U_{3}, U_{4} \leq G$ implies
$\left.\left.\left.x\left(U_{1}\right) \cdot x U_{2}\right) \cdot x U_{3}\right) \cdot x U_{1}\right)=1$
that is
$\left.\left.\left.x U_{4}\right)=x U_{1}\right) \cdot x\left(U_{2}\right) \cdot x U_{3}\right)$
To verify this claim, all we have to do is to show that no two of
$\left.\left.\left.\left\{x\left(U_{1}\right), \gamma U_{2}\right), \gamma U_{3}\right), \gamma U_{4}\right)\right\}$
are congruent modulo 4. To see this is easy: Suppose that for any pair (i, j), $i \neq j=1,2,3,4$
$\left.\left.x U_{i}\right) \equiv \gamma U_{j}\right)$
That means,
$x\left(U_{i}\right) \equiv x\left(U_{j}\right)= \pm 1$
and so our assumption is affected because $2 \gamma(\mathrm{U}) \equiv-1$ (4) is not possible. Hence if
$\left.\left.\gamma U_{i}\right) \neq \gamma U_{j}\right)$,
then $\left.\left.\gamma U_{i}\right) \not \equiv \chi U_{j}\right)$ (4)
and no two elements of
$\left.\left.\left.\left.\left(x U_{1}\right), x U_{2}\right), x U_{3}\right), x U_{4}\right)\right\}$
are congruent modulo 4 . Therefore we can have
$\left.\left.x\left(U_{1}\right)=x U_{1}\right) \cdot x\left(U_{2}\right) \cdot x U_{3}\right)$

Finally, we can ch(x)se
$\gamma\left(I_{81}\right)=\mathrm{a}, \gamma\left(I_{11}\right)=\mathrm{b}, \gamma\left(I_{42}\right)=\mathrm{c}$ and $\gamma\left(I_{11}\right)=\mathrm{d}$.
where $a, b, c, d, \in\lfloor \pm 1 \mid$ and obtain the following equivalent table

so then we have
$1 \Omega\left(C_{2} \oplus C_{4}\right)^{*} \mid=2^{4}$.

Acknowledgement

I am sincerely grateful to my Ph.D thesis supervisors Professor (Dr.) Andreas Dress and Professor Aderemi O. Kuku for their guidance, patience and generosity.

References

Alawode, M. A (1999). The group of units of Burnside rings of various finite groups. Ph.D thesis, University of Ibadan, Ibadan, Nigeria.
Araki. R (1982). Equivariant stable homotopy theory and idempotents of Burnside rings, Publ. R.I.M.S. Kyoro Univ., 18, 1193-1212
Bender, H (1970)., Ot groups with abelian sylow 2 -subgroups Math. Z., 117, 164-176.
Curtis, C. W. and Reiner, I (1981). Method of Representation Theory, Wiley-interscience Publ., New York, Vol. 1 \& 2.
Dieck, T(1979). Transformation Groups and Representation Theory. Lecture Notes in Math., 766. Springer.
Dress, A. A (1969). Characterization of solvable groups, Math. Z., 110(1969). 213-217.
Dress, A (1971). Operations in representation rings, In ProSymposia in Pure Math., pp. 39-45.
Dress, A.(1973) Contributions to the theory of induced representations, in., "Algebraic K-theory II", Proc. Battle Institute Conf., 1972 Lecture Notes in Math., 342, Springer, pp. 183-240
Dress, A. (1971) Notes on the theory of representations of finite groups. Bielefeld Notes
Dress, A. and Kuchler, M. Zur (1970) Darstellungstheorie endlicher Gruppen I. Bielefeld Notes,
Feit, W. and Thompson, J. (1963) Solvability of groups of odd order. Pacific J. Malh., 13. 775-1029.
Gluck, D(1981). Idernpotent formula for the Burnside algebra with applications to the P-subgroup Simplicial Complex. Illinois J. Math., 25, 63-67.
Gorenstcin, D (1968). Finite Groups, Harper \& Row, New York. Green, J. A (1971). Axiomatic representation theory for finite groups. J. Pure Appl. Algebra 1, 41-77.
Greub, W.H (1967). Multilinear Algebra, Springer-Verlag Berlin

Heidelberg, New York.
Gustafson, W. H (1977). Burnside rings which are Gorenstein Comm. Algebra 5, 1-16.
Keown, R (1975).An introductionto Group Representation Theory.
Kuku, A. O (1985). Axiomatic theory of induced representation of finite groups. In: A. O. Kuku (Ed.) Group Representation and its applications; les cours du C.IMPA.
Li, I (1978), Burnside algebra of a finite inverse semigroup, Zap. Nauc. Steklov Inst. 46(1974), 41-52; J. Soviet Math. 9, 322-331.
Matsuda, T (1982). On the unit groups of Burside rings, Japanese J. Math. (New Series) 8 (1982), 71-93.

Matsuda, T. (1986) A note on the unit groups of the Burnside rings as Burnside ring Modules. J. Fac. Sci., Shinshu Univ., Vol. 21, No. 1 ,

Matsuda, T. and Miyata, T (1983). On the unit groups of the Burnside rings of finite groups, J. Math. Soc. Japan, 35,, 345-354.

Sasaki, H.(1982) Green correspondence and transfer theorems of Wielandt type for G-functors. J. Algebra 79, 98-120.
Sarre, J. P. Linear Representation of finite Groups. GTM, 42 Springer-Verlag New York, Heidelberg. Berlin.
Walter, J. H. (1969) Finite groups with abelian sylow 2-subgroups, Ans of Math. 89, 405-514.
Yoshida, T. (1978) Character-theortic transfer, J. Algebra, 52, 138.

Yoshida, T. On G-functors L: Transfer theorems for cohomological . G-functors, Hokkaido Math. J., 91980), 222-257.
Yoshids, T. (1983) Idempotents of Burnside rings and Dress induction theorem, J. Algebra, 80.90-105
Yoshida, T. (1985) Idempotents and transfer theorems of Burnside rings, character rings and spanrings In. Algebraic and Topological Theories, Kinokuniya, Tokyo pp. 589-615
'Yoshida, T. (1990) On the unit groups for Burnside rings. J. Math. Soc. Japan, Vol. 42, No. 1.

