Journal of Science Research. Volume 5[1] 1999 pp 32-37 © Faculty of Science 1999. University of Ibadan, Nigeria ISSN 1117 9333

Units of burnside rings of cyclic groups

Michael A. Alawode

Department of Mathematics, University of Ibadan, Ibadan.

Abstract

Computations showing that

 $|\Omega(C_{2^n})^*| = 2^2$ and $|\Omega(G)^*| = 2^4$,

were obtained respectively if G is a cyclic group C_{2^n} of order 2ⁿ and when $G = C_2 \oplus C_4$

Introduction

Let G be a finite group, $\Omega(G)$ the Burnside ring of G, that is, the Grothendieck ring obtained from the semi-ring of Gisomorphism classes of finite G-sets under addition and multiplication induced respectively by the disjoint union and the Cartesian product. The goal of this paper is to study the structure of the group $\Omega(G)^*$ of units of $\Omega(G)$.

In section 1 of this paper, we investigate the structure of units of Burnside rings for $G = C_{2^n}$, a cyclic group of order 2^n and show that $|\Omega(C_2)|^* | = 2^2$ while in section 2 we study $\Omega(G)^*$, $G = C_2 \oplus C_4$ where we obtain $|\Omega(G)^*| = 2^4$.

§ 1. The structure of the group of units of the Burnside ring for G a cyclic group of order 2^n : C_{2^n} .

1.1 Let

i

$$i := 2^n = [G:1].$$

We can enumerate all divisors of *i* in an increasing sequence of numbers, say,

$$:= 1, i_1 := 2, i_2 := 4, i_3 := 8, \dots, i_n = 2^n$$
.

For each divisor i_j of i, there is a unique subgroup $H_j \subseteq G$ such that $|H_i| = 2^j$, and hence $[G : H_i] = 2^{n-j}$.

1.2 Let σ denote a generator of G and put $\sigma_j := \sigma^{2^{n-1}}$ so that $H_0 := <\sigma_0 >$, $H_i := <\sigma_i >$, $j \neq 0$, j = 1, 2, ..., n

with

Now since

 $N_{\alpha}(\langle \alpha \rangle) = G$ for all j, since G is commutative.

Then we have the following list of distinct conjugate classes denoted by $Cl(C_2^n)$, list of distinct subgroups.

$$Cl(C_{2^{n}}) = \{ <\alpha_{2} >, <\alpha_{2} >, ..., <\alpha_{2} > \}$$

1.3 Now let g be an arbitrary element of G, then $g = \alpha^k$ for all $k = 1, ..., 2^n$, it also follows from above relations that $< g >= H_j$, for some j that is, $< \alpha^k >= <\alpha^{2^n \cdot j}$. So we can rewrite each member in $Cl(C_{2^n})$ in terms of its set of generators as follows:

Let A, be set of generators of H_i , i = 0, 1, 2, ..., n then we have

$$\begin{array}{l} A_{0} := \{\alpha^{2^{n}}\} = \{e\} \ e = identity \ of \ G. \\ A_{1} := \{\alpha^{2^{n-1}}\} \\ \vdots : : \\ A_{n,1} := \{\alpha^{2}, \alpha^{6}, \ldots, \alpha^{2^{n-6}}, \alpha^{2^{n-2}}\} \end{array}$$

$$A_n := \{a, a^3, \dots, a^{2^{n_3}}, a^{2^{n_1}}\}$$

where

$$#A_{n} = 1, #A_{1} = 1, \dots, #A_{n-1} = 2^{n-2}, #A_{n} = 2^{n-1}$$

Also, we obtain the following sequence of indexes in G:

$$\begin{array}{ll} |G| = (G:H_{0}) &= 2^{n} \\ (G:H_{1}) &= 2^{n-1} \\ (G:H_{2}) &= 2^{n-2} \\ \vdots &\vdots \\ (G:H_{n-1}) &= 2 \end{array}$$

1.4 Now we know, for $8 \supseteq \mathbb{ZC}(G)$, G a finite group, that

$$\gamma \in \Omega(G) \Leftrightarrow \sum \gamma(\langle g \rangle) = 0 (IGI)$$

$$g \in G$$

$$\sum \gamma(\langle g \rangle S) = 0(N_{g}(S) : S))$$

$$g S \in N_{g}(S) / S$$

so the above sum formula implies

$$\begin{split} \gamma(\mathrm{H}_{p}) + \gamma(\mathrm{H}_{1}) + 2\gamma(\mathrm{H}_{2}) + 4\gamma(\mathrm{H}_{3}) + \ldots + 2^{p_{3}}\gamma(\mathrm{H}_{p_{1}}) + 2^{p_{1}}\gamma(\mathrm{G}) &\equiv 0(2^{p_{1}}) \\ \gamma(\mathrm{H}_{1}) + \gamma(\mathrm{H}_{2}) + 2\gamma(\mathrm{H}_{3}) + \ldots + 2^{p_{3}}\gamma(\mathrm{H}_{p_{1}}) + 2^{p_{2}}\gamma(\mathrm{G}) &\equiv 0(2^{p_{1}}) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \gamma(\mathrm{H}_{p_{1}}) + \gamma(\mathrm{G}) &\equiv 0(2) \end{split}$$

Now since for all $H \leq G$.

 $\gamma(H) = \{\pm 1\}$ in case $\gamma \in \Omega(G)^*$

we obtain the following table with respect to the conjugate classes of G.

1.5 Table for $\Omega(C_2)^*$

H	H	H,	 H _{P-1}	G
+1	+1	+1	 +1	+1
-1	-1	-1	 -1	-1
-1	-1	-1	 -1	+1
+1	+1	+1	 +1	-1

That means:

 $|\Omega(C_*)^*| = 2^2$

By the above table for Ω $(C_{2^n})^*$ we observe the following claim:

1.5.1 Claim

Assume that $\gamma(H_i) \in \{\pm 1\}$ for i = 0, ..., n - 1 then

$$\gamma(H_{\mu}) + \gamma(H_{\mu 1}) + 2\gamma(H_{\mu 2}) + ... + 2^{\mu}\gamma(H_{\mu}) + ...$$

+2^{*ni*.2} (H_{*n*1}) + 2^{*ni*.1}
$$\gamma$$
 (H_{*n*}) = 0 (2^{*n*}) for all *i* = 0, 1, ..., n - 1

$$\Leftrightarrow \gamma(H_{a}) = \gamma(H_{i}) = \ldots = \gamma(H_{a,i}) = \pm \gamma(H_{a})$$

Proof " \Rightarrow " It is easy to see, since

$$\gamma(H_{1}) + \gamma(H_{1+1}) + 2\gamma(H_{1+2}) + \dots + 2^{n+2}\gamma(H_{n-1}) = 2^{n+1}\gamma(H_{n})$$

and by assumption we must have that

$$\gamma(H_{i}) + \gamma(H_{i+1}) + 2\gamma(H_{i+2}) + \ldots + 2^{n+1}\gamma(H_{n}) = 0 \ (2^{n+1})$$

for all i

To see "
$$\leftarrow$$
" We use method of induction on $n - i$:

For $n - i = 0 \Rightarrow i = n$ it is easy to see that

$$\gamma(H_{o}) = \gamma(H_{o})$$

Similarly for i = n - 1

Now assume that the induction hypothesis is true for i < n - 1, that is, n - i > 1, so that we have

$$\gamma_{0} := \gamma(H_{i+1}) = \gamma(H_{i+2}) = \ldots = \gamma(H_{i+1}) = \pm \gamma(H_{i})$$

Then we obtain by hypothesis

$$\gamma(H_{1}) + (2^{n+1} - 1) \gamma_{n} \pm 2^{n+1} \gamma(H_{n}) = 0 (2^{n+1})$$

this implies,

 $\gamma(H_{\star}) + 2^{n+1} \left(\gamma_{0} \pm \gamma(H_{\star}) - \gamma_{0} \equiv 0 \left(2^{n+1} \right) \right)$

But since $(\gamma_0 \pm \gamma(H_p))$ is either 0 or ± 2 we get that

 $2^{*i-1}\left(\gamma_{o}\pm\gamma(\mathrm{H_{n}})\right)\equiv0\;(2^{*i})$ and

$$\gamma(H_{c}) - \gamma_{c} = 0 (2^{4/c})$$

also since n - i > 1, $\gamma(H_i) = \{\pm 1\}$, $\bigvee_o := \{\pm 1\}$ we cannot get that +1 = -1 (4) for instance, so it follows that

 $\dot{\gamma}(H_i) = \gamma_0$

Therefore the proof of the claim is complete.

§ 2. The structure of the group of units of the Burnside ring for $G := C_2 \oplus C_4$

2.1 We derive its set of subgroups as follows:

$$\begin{split} & \text{Sub} \ (C_2 \oplus C_4) \ := \ [<1>:= \{(1,1)\}; \ H_{21} := \{(1,1), (1,b^2)\} \\ & = <(1,b^2)>; \\ & H_{22} \ := \ \{(1,1), (a,1)\} = <(a,1)>; \\ & H_{23} \ := \ \{(1,1), (a,b^2)\} < (a,b^2)>; \\ & H_{41} \ := \ \{(1,1), (1,b^2), (a,1), (a,b^2)\} = <(1,b^2), (a,1)>; \\ & H_{42} \ := \ \{(1,1), (1,b), (1,b^2), (1,b^3)\} = <(1,b)>; \\ & H_{43} \ := \ \{(1,1), (a,b), (1,b^2), (a,b^3)\} = <(a,b)>; \\ & H_{81} \ := \ C_2 \oplus C_4; \\ & := \ \{(1,1), (1,b^2), (1,b), (1b^3), (a,1), (a,b), (a,b^2), (a,b^3)\}] \end{split}$$

2.2 The diagram of conjugate subrgoups of $C_{1} \oplus C_{1}$ is:

The normalizer of each of the groups < 1 >, H_{21} , H_{22} , H_{23} , H_{41} , H_{42} , H_{43} and H_{11} is H_{11} .

Then, by the congruence (Tom Dieck):

2.3
$$\Sigma' \mathbb{N}(H) / \mathbb{N}(H) \cap \mathbb{N}(K) ||(K/H)*h(K)) \ge 0 \mod K$$

(N (H) : H) [4]

for all (H) \in Sub (G), where Σ is over all N (H)-conjugate classes (K) such that H is normal in K and K/H is cylic, and (K/H)* is the set of generators of K/H. γ . Sub(G) \rightarrow {±1}. That means, the following congruences:

(i)
$$H := H_{n,r} (N(H_n) : H_n) = 1, \gamma(H_n) = 0(1).$$

(ii) $H := H_{41} (N(H_{41}) : H_{41}) = 2, \gamma(H_{81}) + \gamma(H_{41}) \equiv 0 (2)$

(iii) $H := H_{42} \cdot (N(H_{42}) : H_{42}) = 2, \gamma(H_{81}) + \gamma(H_{42}) \equiv 0$ (2)

(iv) $H := H_{43} \cdot (N(H_{43}) : H_{43}) = 2, \gamma(H_{43}) + \gamma(H_{43}) = 0$ (2)

(v)
$$H := H_{2l}, (N(H_{2l}) : H_{2l}) = 4$$
, the set of subgroups
between H_{2l} and H_{3l} is $\{H_{2l}, H_{4l}, H_{4l}, H_{4l}, H_{2l}\}$.

We must compute for

$$|(H_{*1}/H_{21})^*|, |(H_{41}/H_{21})^*|, |(H_{42}/H_{21})^*|$$
and $|(H_{43}/H_{21})^*|.$

Clearly $|(H_{21}/H_{21})^*| = 1$, and since $H_{41}/H_{21} \cong \mathbb{Z}_2$, $H_{42}/H_{21} \cong \mathbb{Z}_2$, $H_{43}/H_{21} \cong \mathbb{Z}_2$, $H_{43}/H_{21} \cong \mathbb{Z}_2$, it follows that

$$|(H_{41}/H_{21})^*| = 1$$
, $|(H_{42}/H_{21})^* = 1$, and $|(H_{43}/H_{21})^*| = 1$.

Now, let us compute the factor group H_{a_1}/H_{a_1} as follows: Recall $(H_{a_1} := \{(1, 1), (1, b^2)\}; H_{a_1} := C_2 \oplus C_4$.

Here the first factor C_2 of $C_2 \oplus C_4$ is left alone. The C_4 factor, on the other hand, is essentially collapsed by a subgroup of order 2. That means,

$$H_{a_1}/H_{a_1} \cong C_2 \oplus C_2$$

which is abelian but not cyclic, hence

$$(H_{n}/H_{n})^{*} = 0.$$

So then we obtain

$$(\gamma(H_{41}) + \gamma(H_{42}) + \gamma(H_{43}) + \gamma(H_{21}) \equiv 0$$
 (4)

(vi)
$$H := H_{22}, (N(H_{22}): H_{22}) = 4, K := H_{81}, H_{41}, H_{22}$$

Clearly, $|(H_{g_1}/H_{22})^*| = 2$, since $H_{g_1}/H_{22} \cong \mathbb{Z}_4$ which has two generators

$$|(H_{4}/H_{2})^{*}| = 1$$
, since $H_{4}/H_{2} \cong \mathbb{Z}_{2}$

 $|(H_{22}/H_{22})^*| = 1$, so we obtain

 $2\gamma (H_{a_l}) + \gamma (H_{a_l}) + \gamma (H_{22}) \equiv 0 \ (4)$

(vii) $H := H_{23}$, $(N(H_{23}): H_{23}) = 4$, $K := H_{31}$, H_{41} , H_{23} Since $(1, b) H_{23}$ is of order 4 in the factor group H_{31}/H_{23} , that means,

$$H_{a_1}/H_{a_2} \cong \mathbb{Z}_{a_1}$$
 and so $|(H_{a_2}/H_{a_3})^*| = 2.$

Also, $|(H_{4/}/H_{23})^*| = 1$, $|(H_{23}/H_{23})^*| = 1$, hence, we have

$$2\gamma(H_{ij}) + \gamma(H_{ij}) + \gamma(H_{ij}) \equiv 0 (4)$$

(viii) H := <1>, (N(<1>):<1>) = 8,

$$\begin{split} & \text{K} := H_{81}, H_{41}, H_{42}, H_{43}, H_{21}, H_{22}, H_{23}, <1>.\\ & |(H_{81}/<1>)^*| = 0, \text{ since } H_{81} \text{ is not cyclic} \\ & |(H_{41}/<1>)^*| = 0, \text{ since } H_{41} \text{ is not cyclic} \\ & |(H_{42}/<1>)^*| = 2, \text{ since } H_{42} \cong \mathbb{Z}_4 \text{ which has two generators.} \\ & |(H_{43}/<1>)^*| = 2, \text{ since } H_{43} \cong \mathbb{Z}_4 \\ & |(H_{21}/<1>)^*| = 1, \text{ since } H_{21} \cong \mathbb{Z}_2 \\ & |(H_{22}/<1>)^*| = 1, \text{ since } H_{22} \cong \mathbb{Z}_2 \\ & |(H_{23}/<1>)^*| = 1, \text{ since } H_{23} \cong \mathbb{Z}_2 \\ & |(H_{23}/<1>)^*| = 1, \text{ since } H_{23} \cong \mathbb{Z}_2 \\ & |(<1>/<1>)^*| = 1, \text{ so we have} \end{split}$$

$$\begin{array}{l} O\gamma(H_{a1}) + O\gamma(H_{41}) + 2\gamma(H_{42}) + 2\gamma(H_{43}) + \gamma(H_{21}) + \gamma(H_{22}) \\ +\gamma(H_{23}) + \gamma(<1>) \equiv 0 \ (8) \end{array}$$

2.4 The ring Ω ($C_2 \oplus C_4$) contains precisely the following units

H ₈₁	H_{41}	H ₄₂	H ₄₃	H ₂₁	H ₂₂	Hy	<1>
+1	+1	+1	+1	+1	+1	+1	+1
-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	+1	+1	-1	-1	-1	-1
+1	+1	-1	-1	+1	+1	+1	+1
+1	-1	+1	+1	-1	-1	-1	-1
-1	+1	-1	-1	+1	+1	+1	+1.
+1	+1	-1	+1	-1	+1	+1	-1
-1	-1	+1	-1	+1	-1	-1	+1
-1	+1	-1	+1	-1	+1	+1	-1
+1	-1	+1	-1	+1	-1	-1	+1
+1	+1	+1	-1	-1	+1	+1	-1
-1	-1	-1	+1	+1	-1	-1	+1
-1	+1	+1	-1	-1	+1	+1	-1
+1	-1	-1	+1	+1	-1	-1	+1
1	+1	+1	+1	+1	+1	+1	+1
+1	-1	-1	-1	-1	-1	-1	-1

That is,

 $|\Omega\left(C,\oplus C_*\right)^*|=2^4$

An alternative method

The above table for Ω $(C_j \oplus C_j)^*$ is equivalent to the following lemma.

2.5 Let U be an arbitrary element of Sub $(C_2 \oplus C_4)$ and $\gamma(U) \in \{\pm 1\}$. Then the congruences

(i) $\gamma(H_{nl}) \equiv 0 \ (1),$ (ii) $(\gamma H_{\mu}) + \gamma (H_{\mu}) \equiv 0$ (2). $\gamma(H_{_{\rm AI}}) + \gamma(H_{_{\rm AI}}) \equiv 0 \ (2),$ (iii) $\gamma(H_{\rm AI}) + \gamma(H_{\rm AI}) = 0 \ (2),$ (iv) $\gamma(H_{41}) + \gamma(H_{42}) + \gamma(H_{43}) + \gamma(H_{21}) = 0$ (4), (v) $2\gamma(H_{a1}) + \gamma(H_{41}) + \gamma(H_{22}) = 0 \quad (4),$ (vi) $2\gamma(H_{a1}) + \gamma(H_{a1}) + \gamma(H_{23}) \equiv 0$ (4), (vii) $2\gamma(H_{42}) + 2\gamma(H_{43}) + \gamma(H_{21}) + \gamma(H_{22}) + \gamma(H_{23})$ (viii) $+\gamma(<1>) = 0$ (8) imply the following results:

Firstly, in view of

$$2\gamma(U) = \pm 2 \equiv 2$$
 (4)

and, hence,

$$\gamma(U) = 2 - \gamma(U)$$
 (4),

for every $U \in \text{Sub}(C_2 \oplus C_4)$, the equations (vi) and (vii) imply

$$\gamma(II_{22}) \equiv 2 - \gamma(H_{41}) \equiv \gamma(H_{41}) \quad (4)$$

and

$$\gamma(H_{23}) \equiv 2 - \gamma(H_{41}) \equiv \gamma(H_{41})$$
 (4)

and therefore

(ix)
$$\gamma(H_{22}) = \gamma(H_{23}) = \gamma(H_{41}).$$

From (v), we have

(x) $2\gamma(H_{41}) + 2\gamma(H_{42}) + 2\gamma(H_{43}) + 2\gamma(H_{21}) \equiv 0$ (8), and substituting (ix) in (x) and (viii), respectively, we get

(xi)
$$2\gamma(H_{22}) + 2\gamma(H_{42}) + 2\gamma(H_{43}) + 2\gamma(H_{22}) = 0$$
 (8)

(xii)
$$2\gamma(H_{12}) + 2\gamma(H_{22}) + 2\gamma(H_{21}) + 2\gamma(H_{22}) + \gamma(<1>) = 0$$
 (8)

and subtracting (xii) from (xi), we obtain

36 ALAWODE

 $\gamma(H_{21}) - \gamma(<1>) = 0$ (8),

this implies

 $\gamma(H_{21}) \equiv \gamma(<1>) (8),$

also, this implies

 $\gamma(<1>)=\gamma(H_{,i}),$

Next, we have the following claim:

2.6
$$\gamma(U) \in \{\pm 1\}$$
 for all $U \leq G$

and

$$\chi(U_1) + \chi(U_2) + \chi(U_3) + \chi(U_4) = 0$$
 (4)

for some $U_1, U_2, U_3, U_4 \leq G$ implies

$$\gamma(U_1)$$
. $\gamma(U_2)$. $\gamma(U_3)$. $\gamma(U_4) = 1$

that is

$$\gamma(U_{4}) = \gamma(U_{1}) \cdot \gamma(U_{2}) \cdot \gamma(U_{3})$$

To verify this claim, all we have to do is to show that no two of

 $\{\chi U_1, \chi U_2, \chi U_3, \chi U_3, \chi U_4\}$

are congruent modulo 4. To see this is easy: Suppose that for any pair (i, j), $i \neq j = 1, 2, 3, 4$

 $\gamma(U_i) \equiv \gamma(U_i) \quad (4)$

That means,

 $\gamma(U_i) \equiv \gamma(U_i) = \pm 1$

and so our assumption is affected because $2\gamma(U) \equiv -1$ (4) is not possible. Hence if

 $\gamma(U_i) \neq \gamma(U_i),$

then $\gamma(U_i) \neq \gamma(U_i)$ (4),

and no two elements of

$$\{\chi U_1, \chi U_2, \chi U_3, \chi U_3, \chi U_4\}$$

are congruent modulo 4. Therefore we can have

 $\chi(U_{\star}) = \chi(U_{\star}) \cdot \chi(U_{\star}) \cdot \chi(U_{\star})$

Finally, we can choose

 $\gamma(II_{41}) = a, \ \gamma(II_{41}) = b, \ \gamma(II_{42}) = c \text{ and } \gamma(II_{21}) = d,$

where $a, b, c, d, \in \{\pm 1\}$ and obtain the following equivalent table

2.7 $\prod_{g_1} \prod_{q_1} \prod_{q_2} \prod_{q_3} \prod_{q_3}$

I am sincerely grateful to my Ph.D thesis supervisors Professor (Dr.) Andreas Dress and Professor Aderemi O. Kuku for their guidance, patience and generosity.

References

Alawode, M. A (1999). The group of units of Burnside rings of various finite groups. Ph.D thesis, University of Ibadan, Ibadan, Nigeria.

Araki, R (1982). Equivariant stable homotopy theory and idempotents of Burnside rings, *Publ. R.I.M.S, Kyoto Univ., 18*, 1193-1212

Bender, H (1970)., On groups with abelian sylow 2-subgroups Math. Z., 117, 164-176.

Curtis, C. W. and Reiner, I (1981). *Method of Representation Theory*, Wiley-interscience Publ., New York, Vol. 1 & 2.

Dieck, T (1979). Transformation Groups and Representation Theory. *Lecture Notes in Math.*, 766, Springer.

Dress, A. A (1969). Characterization of solvable groups, *Math. Z., 110*(1969), 213-217.

Dress, A (1971). Operations in representation rings, In *Pro Symposia* in *Pure Math.*, pp. 39-45.

Dress, A.(1973) Contributions to the theory of induced representations, in., "Algebraic K-theory II", Proc. Battle Institute Conf., 1972 Lecture Notes in Math., 342, Springer, pp. 183-240

Dress, A. (1971) Notes on the theory of representations of finite groups. *Bielefeld Notes*.

Dress, A. and Kuchler, M. Zur (1970) Darstellungstheorie endlicher Gruppen I. Bielefeld Notes,

Feit, W. and Thompson, J. (1963) Solvability of groups of odd order. *Pacific J. Math.*, 13, 775-1029.

Gluck, D (1981). Idempotent formula for the Burnside algebra with applications to the P-subgroup Simplicial Complex. Illinois J. Math., 25, 63 - 67.

Gorenstein, D (1968). Finite Groups, Harper & Row, New York. Green, J. A (1971). Axiomatic representation theory for finite groups. J. Pure Appl. Algebra 1, 41-77.

Grcub, W. H (1967). Multilinear Algebra, Springer-Verlag Berlin

UNITS OF BURNSIDE RINGS OF CYCLIC GROUPS 37

Heidelberg, New York.

Gustafson, W. H (1977). Burnside rings which are Gorenstein Comm. Algebra 5, 1-16.

Keown, R (1975). An introduction to Group Representation Theory.

Kuku, A. O (1985). Axiomatic theory of induced representation of finite groups. In: A. O. Kuku (Ed.) Group Representation and its applications; *les cours du C.I.M.P.A.*

Li, I (1978), Burnside algebra of a finite inverse semigroup, Zap. Nauc. Steklov Inst. 46(1974), 41-52; J. Soviet Math. 9, 322-331.

Matsuda, T (1982). On the unit groups of Burside rings, Japanese J. Math. (New Series) 8 (1982), 71-93.

Matsuda, T. (1986) A note on the unit groups of the Burnside rings as Burnside ring Modules. J. Fac. Sci., Shinshu Univ., Vol. 21, No. 1,

Matsuda, T. and Miyata, T (1983). On the unit groups of the Burnside rings of finite groups, J. Math. Soc. Japan, 35,, 345-354.

Sasaki, H.(1982) Green correspondence and transfer theorems of Wielandt type for G-functors. J. Algebra 79, 98-120.

Serre, J. P. Linear Representation of finite Groups. GTM, 42 Springer-Verlag New York, Heidelberg, Berlin.

Walter, J. H. (1969) Finite groups with abelian sylow 2-subgroups, Ann. of Math. 89, 405-514.

Yoshida, T. (1978) Character-theortic transfer, J. Algebra, 52, 1-38.

Yoshida, T. On G-functors I: Transfer theorems for cohomological G-functors, Hokkaido Math. J., 9(1980), 222-257.

Yoshida, T. (1983) Idempotents of Burnside rings and Dress induction theorem, J. Algebra, 80. 90-105

Yoshida, T. (1985) Idempotents and transfer theorems of Burnside rings, character rings and span rings In. Algebraic and Topological Theories, Kinokuniya, Tokyo pp. 589-615

Yoshida, T. (1990) On the unit groups for Burnside rings. J. Math. Soc. Japan, Vol. 42, No. 1.