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INTRODUCTION

Ž .Let G be a finite group, � G the Burnside ring of G, that is, the
Grothendieck ring obtained from the semi-ring of G-isomorphism classes
of finite G-sets under addition and multiplication induced respectively by
the disjoint union and the Cartesian product. The goal of this paper is to

Ž .�give the connection between the structure of the group � G of units of
Ž .� G and the associated Exterior Algebra, where

G � � � ��� � �2 2� � �
n-times

is an elementary abelian 2-group of order 2 n.
Ž .In Section 1 we discuss the condition UB and show how an element of

Ž .�� G can be identified. In Section 2, we show that the map

� �i� : G � � G �� GŽ . Ž .i�1 ii

is multilinear and that

� g , . . . , g � 0Ž .i 1 i

if

� 4� g , . . . , g � i .1 i

i Ž .Finally, we show that � induces an isomorphism between � G andi
Ž .� Ž .�� G �� G .i�1 i
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BURNSIDE RINGS AND EXTERIOR ALGEBRAS 837

Ž .1. CONDITION UB

1.1. Let
G � � � ��� � �2 2� � �

n-times
n Ž .be an elementary abelian 2-group of order 2 and let Sub G denote its

Ž .�subgroup lattice. It is well known that the group � G of units in the
Ž .Burnside ring � G of G is canonically isomorphic to the group of maps

� 4e : Sub G � �1Ž .
satisfying the following condition:

Ž . Ž . Ž .UB For all U,U ,U ,U ,V � Sub G with V :U � 4 such that1 2 3

� 4U ,U ,U � W � Sub G � U� W � V ,� 4Ž .1 2 3

we have
e U � e U � e U � e U � 1.Ž . Ž . Ž . Ž .1 2 3

1.2. THEOREM. For e�ery H � G, the map

� 4e : Sub G � �1Ž .H

1, if H � U� GU� 1 � 2� �G , H�U ½�1, if H � U� G

Ž . Ž .�satisfies UB and hence represents an element in � G .

Ž .Proof. Assume that U,V,U ,U ,U are as in UB . We distinguish the1 2 3
following cases:

Case 1. If

e U � e U � e U � e U � 1Ž . Ž . Ž . Ž .H H 1 H 2 H 3

there is nothing to prove.

Case 2. If

e U � �1, that is, H � U� G ,Ž .H

then
G 	 H � U 	 H � U� G ,i

Ž .so H � U � G for i� 1, 2, 3 and therefore e U � �1 for i� 1, 2, 3. Soi H i
also in this case

4e U � e U � e U � e U � �1 � 1.Ž . Ž . Ž . Ž . Ž .H H 1 H 2 H 3

Case 3. If
e U � 1, e U � �1Ž . Ž .H H i
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MICHAEL A. ALAWODE838

� 4for at least one i� 1, 2, 3 , say i� 1, then we argue as follows. We have

U � H � G
and

U H � G.1

We have to show that we can neither have

U � H � U � H � G2 3

nor
U � H � G , U � H � G.2 3

To this end we prove first the following.

1.3. LEMMA. If G is a group, H a normal subgroup, and W ,W are1 2
subgroups of G with W � W , then1 2

W :WŽ .2 1
.

H � W : H � WŽ .2 1

Proof. Given that W � W and H
 G, then we have1 2 �
HW � HW � G , W � H
 W , and W � H
 W .1 2 1 1 2 2� �

Consider
W � H .1

Let � be an arbitrary element of W � H. Then � � H and � � W . But1 1
W � W ; this implies � � W . Now � � W and � � H; this implies1 2 2 2
� � W � H.2

So we have

� � W � H � � � W � H .1 2

Hence,
W � H � W � H1 2

and as both intersection are subgroups

W � H � W � H .1 2

In particular,
� �H � W2

� �H � W1

is a positive integer. We now consider

� � � � � � � � � � � �H � W H � W � H � W W � H � WŽ .2 2 2 2 1
� �

� � � � � � � � � � � �H � W H � W � H � W W � H � WŽ .1 1 1 1 2
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BURNSIDE RINGS AND EXTERIOR ALGEBRAS 839

which implies that

W :W � H � W : H � W H � W : HW .Ž . Ž . Ž .2 1 2 1 2 1

Ž . Ž . Ž .This implies that HW : HW divides W :W , since H � W : H � W2 1 2 1 2 1
is a positive integer.

Hence

W :WŽ .2 1
.

H � W : H � WŽ .2 1

It also follows from this result that if

W :W � 2, then H � W : H � W � 2.Ž . Ž .2 1 2 1

Next, we show that with G, H,U,U ,U ,U ,V as above.1 2 3

Ž .1.4. LEMMA. If G :U � H � 2, then one has

U � H � G � U � U � H for j � 1, 2, 3.j j

Proof. Assume first that U � H � G. Then since U � H � G, we obtainj

that U � H � U � H, and this implies that U � H � U � H, so we have thatj j
U � U � H, since H � U � H. Thus, U � H � G � U � U � H.j j j

Conversely, suppose that U � U � H. Then U � H � U � H. It also followsj j
that U � H � U � H, since U� U and therefore U � H � U � H but U � H �j j j
U � H. Now, as U � H � G, we get that U � H � G. We know also thatj

U � H � G. So it follows thatj

U � H � U � H � G.j

Hence

2 � G :U � H � G :U � H � U � H :U � HŽ . Ž . Ž .j j

Ž . Ž .together with U � H :U � H � 1 and therefore by Lemma 1.3j

U � H :U � H � 2.Ž .j

This implies

2 � G :U � H � 2Ž .j

or

G :U � H � 1.Ž .j

So we must have that

G � U � H .j
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MICHAEL A. ALAWODE840

FIG. 1. Step 1.

Thus,
U � U � H � U � H � G ,j j

and so
U � H � G � U � U � H .j 1

Now we continue with the proof of Case 3.
Consider the stepwise diagrams shown in Figs. 1�3 with the motive of

getting a final result for Case 3.

Ž .Step 1. Consider H � U � G see Fig. 1 .1

Step 2. See Fig. 2.

Ž .iii To show that U � H � V � U , assume U � H � G. We must1
show that

Ž .ii H � U � U by first showing that1

Ž .i H � U� U � U.1

Ž .Proof of i . In the first place, it is evident that
U� U � H � U ,1

FIG. 2. Step 2.
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BURNSIDE RINGS AND EXTERIOR ALGEBRAS 841

FIG. 3. Step 3.

since
U� U � H , U� U .1

To prove
U � H � U � U,1

consider
U � H � U .1

By definition of intersection,

U � H � U � U .1 1

So,
U� U � H � U � U .1 1

Ž .But since U :U � 2, it then follows that either1

U� U � H � U1

or
U � H � U � U .1 1

But then, by our assumption that

U � H � G ; U � H � G ,1

which also implies

U � U � H see Lemma 1.4Ž .1

we obtain that
U � H � U � U1 1
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MICHAEL A. ALAWODE842

because U � H � U � U would imply that U � U � H which in turn gives1 1 1
a contradiction to our assumption. Hence

U � H � U � U.1

Ž .Step 3 see Fig. 3 . Since we obtain from Step 2 that

U� U � H � U � U ,1 1

this implies U � U � H and therefore1

U � H � V � U .1
Observe that

U� U � H � V � V .

Step 4. See Fig. 4.

Step 5. See Fig. 5.

Without loss of generality, say, U � H � V � U and U � H � V � U .2 3
We must show first that

� 4U � H � V � U ,U .2 3

Proof. As
U � H � U � H � V � G

and
V 
 U � H � V ,�

we obtain
U � H � V 
 U � H ,�

� � � � nU � H � V � G � 2 .

FIG. 4. Step 4.
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BURNSIDE RINGS AND EXTERIOR ALGEBRAS 843

FIG. 5. Step 5.

We also have that

� � nU � H � 2 ,

since U � H � G, and U � H � G for any i together impliesi

1 � G :U � H � 2.Ž .
This implies

G :U � H � 2Ž .
and hence that

� � n�1U � H � 2 .

Next, we consider the equation

� � � �U � H � V
� �U � H � V �

U � H � VŽ .

which implies that

n�1 � �2 � V
n n�12 � � 2 V : U � H � V .Ž .Ž .

U � H � VŽ .

This implies

2 n

V : U � H � V � � 2,Ž .Ž . n�12

and since U� U � H and U� V implies U� U � H � V, because

V : U � H � V � 2 � V : V , V :UŽ . Ž . Ž .Ž .
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MICHAEL A. ALAWODE844

we obtain
U � H � V � V ,U

and also by Step 3,
U � H � V � U .1

Hence
� 4U � H � V � U ,U .2 3

We shall finally prove Step 5.
Since

� 4U � H � V � U ,U2 3

by Step 4, we may then assume without loss of generality that

U � H � V � U ; U � H � V � U .2 3

This implies

U � U � H ; U � U � H , since U � V .2 3 3

This implies
U � H � UH� G ; U � U � H .2 3

Hence,

U H � G ; U � H � G by Lemma 1.4 .Ž .2 3

Therefore the proof of Case 3 is complete.

So we conclude by Case 1, Case 2, and Case 3 that the map

� 4e : Sub G � �1Ž .H

Ž .satisfies condition UB .

2. MULTILINEARITY CONDITION

2.1. Now for each i� 0, 1, 2, . . . , we define
� � n�i� �� G � e � � G � e U � 1 for all U� G with U � 2� 4Ž . Ž . Ž .i

and observe that
� i�1� �e � � G if H � 2 , H � G.Ž . iH

2.2. THEOREM. Define the map
� �i� :G � � G �� GŽ . Ž .i�1 il

by
�: g , . . . , g � e � G .Ž . Ž . i1 i ² g , . . . , g :1 i
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BURNSIDE RINGS AND EXTERIOR ALGEBRAS 845

Then

2.2.1. � is multilinear, andi

Ž . � 42.2.2. � g , . . . , g � 0 if � g , . . . , g � i.i 1 i 1 i

Before we prove Statement 2.2.1, we shall first state and prove the
following useful lemmata:

2.3. LEMMA. Let G be a group of order 2 n and K , H
 G, such that�
� � i � � n� iK � 2 and H � 2 . Then K � H � G � K � H � 1.

Proof. As K � G and H
 G imply�
² :K � H � K , H � G ,

we consider the equation
� � � �K � H

� �K � H �
� �K � H

2 i � 2 n� i

�
� �K � H

2 i�n�i

�
� �K � H

2 n

� .
� �K � H

Hence
� � � � n � �K � H � G � 2 � K � H � 1.

Therefore
G � K � H � K � H � 1.

2.4. LEMMA. Let

G � � � � � ��� � � , A� G.2 2 2� � �
n-times

Then
�A² :A � 2 .

Proof. Assume �A� i. Label the elements in A as, say, a , . . . , a , so1 i
that

� 4A� a , . . . , a .1 i

Then
² : �1 � i � 4A � a , . . . , a � � , . . . , � � 0, 1 .� 41 i 1 i

² :To see this, let H be the set on the righthand side above. Since A is
² :closed under multiplication and the forming of inverses, H � A . But
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MICHAEL A. ALAWODE846

² :also, by definition, A is the unique smallest subgroup of G containing
² :A in the sense that, for all U� G, whenever A� U� G, then A � U.

Obviously, since all the elements of A are used up in the construction of
an element of H, A� H. Now, let h , h � H. Then h � a�1 . . . a� i for1 2 1 1 i

� 4 �1 �iall choices of � , . . . , � � 0, 1 , and h � a . . . a for every choice of1 i 2 1 i
� 4� , . . . , � � 0, 1 . Next we consider1 i

�1��1 � � � �1 � � � �i�11 2 i i 1 2 ih � h � a � a . . . a � a a � a . . . a � a ,Ž .Ž .1 2 1 2 i�1 i 1 2 ii�1

� a�1 � a�2 . . . a� i�1 � a� i � a�� i � a�� i�1 . . . a�� 2 � a�� 1
1 2 i i 2 1i�1 i�1

� a�1 � a�� 1 � a�2 . . . a� i�1 � a� i � a�� i � a�� i�1 . . . a�� 2
1 1 2 i i 2i�1 i�1

� a�1 � a�� 1 � a�2 � a�� 2 . . . a� i�1 � a� i � a�� i � a�� i�1 . . . .1 1 2 2 i ii�1 i�1

Continuing in this way, we get

h � h�1 � a�1�� 1 � a�2�� 2 . . . a� i�1�� i�1 � a� i�� i
1 2 1 2 ii�1

� a�1 � a�2 . . . a� i�1 � a� i ,1 2 ii�1

where in view of the special structure of G, � is determined by � and �i i i
according to the scheme

� � � 0 1
0 0 1
1 1 0

Hence h � h�1 � H, and this implies that H � G. So we have1 2

² : ² :A � H , and therefore A � H .

�² : � �AHence, we obtain A � 2 , since

i � 42 � � � , . . . , � � � � 0, 1 .� 4Ž .1 i i

Proof of Statement 2.2.1. Let r be such that 1 � r � i. For every r and
g , h � G. Considerr r

� g , . . . , g , g �h , g , . . . , gŽ .i 1 r�1 r r r�1 i

� � g , . . . , g , . . . , g � � g , . . . , h , . . . , g .Ž . Ž .i 1 r i i 1 r i

To see this, we must prove that

e H e H e H � 1Ž . Ž . Ž .² g , . . . , g � h , . . . , g : ² g , . . . , g , . . . , g : ² g , . . . , h , . . . , g :1 r r i 1 r i 1 r i

� � n� ifor all H � G with H � 2 .
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Without loss of generality we may assume that r � i, put a� g , b� h ,i i
c � g �h so that a � b � c � 1. Then we can definei i

² :A� g , . . . , g , a1 i�1

² :B� g , . . . , g , b1 i�1

² :C � g , . . . , g , c .1 i�1

Note that since
� � iA � 2 ,

� � iB � 2 ,

� � iC � 2 ,

we have by the above result that
�

e � � G ,Ž . i�1A

�
e � � G ,Ž . i�1B

and
�

e � � G ,Ž . i�1C

respectively, that is, the following case is obvious. For any H � G with
� � n� iH � 2 , we get that

e H � e H � e H � 1.Ž . Ž . Ž .A B C

� � n� iSo, we consider the only non-trivial case H � 2 .
Next we shall discuss under this case some of the useful consequences

derived for members in the set

� 4A , B ,C

and with respect to distinguished cases as

Ž . � � � � � � ii Assume A � B � C � 2 .
Ž . � � i � � � � iii Assume A � 2 , B � C � 2 .
Ž . � � i � � i � � iiii Assume A � 2 , B � 2 , C � 2 .
Ž . � � i � � i � � iiv Assume A � 2 , B � 2 , C � 2 .

Ž .First, we discuss case iv as follows: As

� � i�1 � � i�1 � � i�1A � 2 , B � 2 , C � 2 ,
we obtain

� � n� i i�1 n�1 � �H � A � 2 � 2 � 2 � G ,

� � n� i i�1 n�1 � �H � B � 2 � 2 � 2 � G ,

� � n� i i�1 n�1 � �H � C � 2 � 2 � 2 � G ,
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MICHAEL A. ALAWODE848

and it follows by definition that

e H � e H � e H � 1.Ž . Ž . Ž .A B C

Ž . Ž .Second, we discuss cases ii and iii by proving the following lemma:

2.5. LEMMA. The following are equi�alent

Ž . ² :i A� g , . . . , g1 i�1

Ž . ² :ii a� g , . . . , g1 i�1

Ž .iii B� C.

Ž . Ž . ² : ² :Proof. i � ii , i.e., A � g , . . . , g � a � g , . . . , g . As-1 i�1 1 i�1
sume

² :A� g , . . . , g .1 i�1

Since

² : ² :a� A� g , . . . , g , a and A� g , . . . , g1 i�1 1 i�1

² :it follows that a� g , . . . , g .1 i�1
Ž . Ž .ii � iii , i.e.,

² :a� g , . . . , g � B� C.1 i�1

² :Assume a� g , . . . , g . Then we have1 i�1

�1 � i�1 � 4a� g , . . . , g for some choices � , . . . , � � 0, 1 .1 1 i�1i�1

In view of g , . . . , g � C by definition, it is enough to observe that1 i�1

b� ac� g �1 . . . g � i�1 � c1 i�1

² :� g , . . . , g , c � C ,1 i�1

hence, B� C.
Similarly, on the other hand, in view of g , . . . , g � B we observe that1 i�1

c � ab� g �1 . . . g � i�1 � b1 i�1

² :� g , . . . , g , b � B.1 i�1

Hence, C � B; therefore, B� C.
Ž . Ž . ² :iii � ii , i.e., B� C � a� g , . . . , g . Assume B� C. Then1 i�1

there exist � , . . . , � , � and � , . . . , � , � with b� g �1 . . . g � i�1 � c� and1 i�1 1 i�1 1 i�1
c � g�1 . . . g� i�1 � b�. Now if � � 1, then1 i�1

�1 � i�1 �1 � i�1 ² :a� bc� g . . . g � c � c � g . . . g � g , . . . , g .1 1 1 i�1i�1 i�1

Similarly, if � � 1, then
�1 � i�1 �1 �i�1 ² :a� bc� cb� g . . . g � b � b� g . . . g � g , . . . , g1 1 1 i�1i�1 i�1
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BURNSIDE RINGS AND EXTERIOR ALGEBRAS 849

and if � � � � 0 then

² : ² :b� g , . . . , g , c � g , . . . , g .1 i�1 1 i�1

This implies

² :a� bc� g , . . . , g1 i�1

hence,

² :a� g , . . . , g .1 i�1

Ž . Ž . ² : ² :ii � i , i.e., a� g , . . . , g � A� g , . . . , g . Assume1 i�1 1 i�1

² :a� g , . . . , g .1 i�1

Then we have

² :g , . . . , g � A ,1 i�1

since

² :a� A� g , . . . , g , a1 i�1

also

² :A� g , . . . , g ,1 i�1

since by assumption

² :a� g , . . . , g ,1 i�1

hence

² :A� g , . . . , g ,1 i�1

and the proof of the lemma is complete.

Continuation of the Proof of Statement 2.2.1. By Lemma 2.4, we get that

i�1² :g , . . . , g � 2 .1 i�1

Hence, in this case,

� � i � � i�1 ² :A � 2 � A � 2 � A� g , . . . , g .1 i�1

Ž .In view of the above considerations we conclude that Case ii is possible
and our formula

e H � e H � e H � 1Ž . Ž . Ž .A B C

is almost trivially satisfied, since

� � n� i i�1 n�1 � �H � A � 2 � 2 � 2 � G , implies e H � 1,Ž .A
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MICHAEL A. ALAWODE850

and either H � B� H � C � G and then we have

� � n� i i n � �H � B � 2 � 2 � 2 � G , implies e H � �1,Ž .B

and

� � n� i i n � �H � C � 2 � 2 � 2 � G , implies e H � �1,Ž .C

or

H � B� H � C � G.
Then we obtain

� � n� i i�1 n�1 � �H � B � 2 � 2 � 2 � G , implies e H � 1,Ž .B

� � n� i i�1 n�1 � �H � C � 2 � 2 � 2 � G , implies e H � 1.Ž .C

Ž . Ž .But case iii is not possible. So we are left to discuss case i as follows.
Assume

� � � � � � iA � B � C � 2

and consider

² :² :A� g , . . . , g a ,1 i�1

² : ² :B� g , . . . , g � b ,1 i�1

² : ² :C � g , . . . , g � c ,1 i�1

² :a
² :� A : g , . . . , g � 2.Ž .1 i�1² : ² :g , . . . , g � a1 i�1

Since
i�1² :g , . . . , g � 2 ,1 i�1

this implies

² : ² : ² :a � 2, g , . . . , g � a � 1.1 i�1

Similarly, we obtain

² :B : g , . . . , g � 2,Ž .1 i�1

² :C : g , . . . , g � 2.Ž .1 i�1

Also, since it is clear that g , . . . , g � A and g , . . . , g � B implies1 i�1 1 i�1
g , . . . , g � A� B, this implies1 i�1

² :g , . . . , g � A� B� A , B1 i�1

and A� B� A or B because A� B by Lemma 2.5.
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Similarly, we obtain

² :g , . . . , g � B� C � B ,C , B� C1 i�1

² :g , . . . , g � A� C � A ,C , A� C1 i�1

so we must have

A : A� B � 2, B : A� B � 2,Ž . Ž .
C : B� C � 2, B : B� C � 2,Ž . Ž .
C : A� C � 2, A : A� C � 2.Ž . Ž .

Next we consider

² : ² :A : A� B � A� B : g , . . . , g � A : g , . . . , g .Ž . Ž . Ž .1 i�1 1 i�1

Then we have

² :2 � A� B : g , . . . , g � 2.Ž .1 i�1

This implies

² :A� B : g , . . . , g � 1Ž .1 i�1

hence,
² :A� B� g , . . . , g .1 i�1

Similarly, we obtain

² :B� C � g , . . . , g ,1 i�1

² :A� C � g , . . . , g .1 i�1

It also follows that

� � � � � � i�1A� B � B� C � A� C � 2 .
Also, since

² : ² :g , . . . , g , a, b� g , . . . , g , a � g , . . . , g , b ,1 i�1 1 i�1 1 i�1

² : ² :g , . . . , g , b , c � g , . . . , g , b � g , . . . , g , c ,1 i�1 1 i�1 1 i�1

² : ² :g , . . . , g , a, c � g , . . . , g , a � g , . . . , g , c ,1 i�1 1 i�1 1 i�1

and a � b � c � 1, we get that

D � A � B , because c � a � b ,

D � B � C , because a� b � c,

D � A � C , because b� a � c,
where

² :D � g , . . . , g , a, b ,1 i�1
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and since

A� D , B� D implies A � B� D ,

B� D ,C � D implies B � C � D ,

A� D ,C � D implies A � C � D ,

it follows that

D � A � B� B � C � A � C.

Now we compute

� � � � � � � � � � � �A B B C A C
i�1� �D � � � � 2 .

� � � � � �A� B B� C A� C

2.6. We are now set to give the proof of non-trivial case: That is, we
� � n� imust prove that if H � G, H � 2 and H � A� G then either H � B�

G and H � C � G or vice-versa.
Note that H � A� G implies H � D � G.

Proof. Since

� � � �H D
� �H � D � ,

� �H � D

we have

2 n� i � 2 i�1
n2 � ,

� �H � D

and hence

2 n� i � 2 i�1
n�i�i�1�n 1� �H � D � � 2 � 2 � 2.n2

Similarly, we obtain

² : ² : ² :H � A � B � H � B � C � H � A � C � 2,

since

D � A � B� B � C � A � C ,

� ² : �Now as H � A � C � 2, there exists precisely one element, say u� G,
�² : � ² : ² : ² :such that u� 1 and u � 2 with u � H and u � A � C , since

² : ² : ² : ² :H � A � C � u . Similarly, we get H � A � B � H � B � C � H
² :� D � u . But then by our hypothesis H � A� G implies H � A� 1,

² : ² :and it follows that u � A, as u � H.
Now we know the following:
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H � A� G and H � A� 1, and this implies u� A,
H � B� G � H � B� 1,
H � C � G � H � C � 1,

² :H � D � u 	 H � B, H � C 	 1, and this implies

H � B� 1 � u� B and H � C � 1 � u� C

or, in other words,

H � B� 1 � u� B and H � C � 1 � u� C.

We must show either

u� B and u� C

or

u� B and u� C

To see this, we have to show that neither

u� B and u� C

nor

u� B and u� C

can hold.

Hence, assume first that on the contrary u� B and u� C. Then we
consider B� C, and use the fact that

² : ² :A : g , . . . , g � 2, B� C � g , . . . , g .Ž .1 i�1 1 i�1

We obtain

B� C � A ,

and it follows that u� A, a contradiction. So we can’t have

u� B and u� C.

Assume second that

u� B and u� C.

Then we have

² :u� B � C � D � g , . . . , g , a, b .1 i�1
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This implies

u� g �1 . . . g � i�1 � a� i � b� i�1
1 i�1

� 4for some choices of � , . . . , � � 0, 1 .1 i�1
Now, by hypotheses

u� A implies u� g �
	
1 . . . g �

	
i�1 � a�

	
i for every choice of � 	 , . . . , � 	 �1 1 ii�1

� 40, 1 ,
u� B implies u� g �



1 . . . g �



i�1 � b�



i for every choice of �
, . . . , �
 �1 1 ii�1

� 40, 1 , and
u� C implies u� g �

�
1 . . . g �

�
i�1 � c�

�
i for every choice of �� , . . . , �� �1 1 ii�1

� 40, 1 .

Now if � � 0, then we shall havei�1

�1 � i�1 � i ² :u� g . . . g � a � A� g , . . . , g , a ,1 1 i�1i�1

hence

� � 0 � � � 1.i�1 i�1

If � � 0, then we get thati

�1 � i�1 � i�1 ² :u� g . . . g � b � B� g , . . . , g , b ,1 1 i�1i�1

hence

� � 0 � � � 1,i i

and so we have

� � 1, � � 1.i i�1

Hence we obtain

1� �� � 1i�1 i�11 1u� g . . . g � ab � g . . . g � c since abc� 1Ž .1 1i�1 i�1

² :� C � g , . . . , g , c , a contradiction.1 i�1

So we cannot have

u� B and u� C.

Therefore, the proof of the non-trivial case is complete.
Hence

e H � e H � e H � 1Ž . Ž . Ž .² g , . . . , g � h , . . . , g : ² g , . . . , g : ² g , . . . , h , . . . , g :1 r r i 1 i 1 r i
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� � n� ifor all H � G with H � 2 , and by definition, we obtain

� g , . . . , g �h , . . . , gŽ .i 1 r r i

� � g , . . . , g � � g , . . . , h , . . . , g .Ž . Ž .i 1 i i 1 r i

Thus, � is a multilinear map.i
Now, consider again the map

� �i� :G � � G �� GŽ . Ž .i�1 ii

�: g , . . . , g � e � G .Ž . Ž . i1 i ² g , . . . , g :1 i

� 4If we impose on this map the condition that � g , . . . , g � i then we1 i
� 4obtain as follows. As � g , . . . , g � i� 1, then we obtain by Lemma 2.41 i

that

i�1² :g , . . . , g � 21 i

and this implies
�

e � � GŽ . i² g , . . . , g :1 i

or
� �

e � G � � G .Ž . Ž .i i² g , . . . , g :1 i

So by definition, we get

� g , . . . , g � 0.Ž .i 1 i

Ž . � 4Hence, � g , . . . , g � 0 whenever � g , . . . , g � i, and the proof ofi 1 i 1 i
Theorem 2.2 is complete.

i Ž . Ž .� Ž .�3. ISOMORPHISM BETWEEN � G AND � G �� Gi�1 i

3.1. � induces a canonical mapi

i
� �

� : G � � G �� GŽ . Ž . Ž .ˆ � i�1 ii

which maps

i

g � ��� � g � G ontoŽ .�1 i

�
e � G .Ž . i² g , . . . , g :1 i
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3.2. CLAIM. � is an isomorphism.ˆi

Proof. First, we note that � is a well defined linear map, because ofˆi
i Ž .the universal properties of � G and the particular properties established

above of the map � .i
Second,

i
� �

G and � G �� GŽ . Ž . Ž .� i�1 i

are both of the same order, because

n� � .Ž i� G : � G � 2Ž . Ž .Ž .i�1 i

Ž .and by standard results, we know that as dim G�� � n, we have2
i nŽ . Ž .dim � G � , and this impliesi

i
n .Ž iG � 2 .Ž .�

Third, we establish injectivity of � in the following way. Now assumeˆi
i Ž .that 	 � � G satisfies

� 	 � 0, that is,Ž .ˆi

� 41, . . . , n

 � 	 � 1 for all T � ,Ž .Ž .ˆT i ž /n� i

� � 4where 
 : � G � �1 .Ž . i�1T

This implies that for every

� 41, 2, . . . , n
T � ž /n� i

we have

² :� 	 e � i� T � 1,Ž . Ž .ˆi i

Ž .where e � 1, . . . , 1, �1, 1, . . . , 1 � Gi �

ith position

for all i� 1, . . . , n.
² : i Ž .As G � e , . . . , e and 	 � � G there are unique coefficients1 n

Ž .C � � 1 � k � ��� � k � n such thatk , . . . , k 2 1 i1 i

	 � C e � ��� � e .Ý k . . . k k k1 i 1 i
1�k �k � ��� �k �n1 2 i
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Hence, for any

� 41, . . . , n
T � ,ž /n� i

we have

² :
 � 	 � � 	 e � i� TŽ . Ž . Ž .Ž .ˆ ˆT i i i

Ck . . . k1 i² :� e e � i� T � 1,Ž .Ł ² e , . . . , e : ik k1 i1�k �k � ��� �k �n1 2 i

where

� T
�k , . . . , k 41 i² :e e � i� T � �1 ,Ž .Ž .² e , . . . , e : ik k1 i

we define with

� 40, if k , . . . , k � T � �1 iT� ��k , . . . , k 41 i ½ � 41, if k , . . . , k � T � �.1 i

This means that

T � 4 � 4� � 1 if and only if T � 1, . . . , n  k , . . . , k .�k , . . . , k 4 1 i1 i

Applying this definition on individual factors of the above products rela-
� 0 04 � 4 � 0 04tion, we obtain for a fixed k , . . . , k with T � 1, . . . , n  k , . . . , k1 i 1 i

that

� T
0 0 � 1 and � T � 0�k , . . . , k 4 �k , . . . , k 41 i 1 i

for

� 4 0 0k , . . . , k � k , . . . , k .� 41 i 1 i

This implies

² : ² :e e � i� T � �1, e e � i� T � 1Ž . Ž .² e , . . . , e : i ² e , . . . , e : i0 0k k k k1 i 1 i

and substituting this in the above products relation, we get that

C . . . kT k i1�1 � 
 � 	 � �1Ž . Ž . � 4Ž .ˆ k , . . . , kŁ ž /T i 1 i
1�k � ��� �k �n1 i

C 0 0. . . kk i1� �1 ,Ž .

and therefore,

C 0 0 � 0.k . . . k1 i
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� 0 04Hence, for every k , . . . , k we must have1 i

C 0 0 � 0,k . . . k1 i

which implies that

	 � C e � ��� � e � 0,Ý k . . . k k k1 i 1 i
1�k �k � ��� �k �n1 2 i

hence, � is injective.ˆi
So it is clear from the above considerations that � is surjective and thatˆi

the vectors

� 4 � 4e , k , . . . , k � 1, 2, . . . , n² e , . . . , e : 1 ik k1 i

generate
� �

� G �� G .Ž . Ž .i�1 i

Therefore, � is an isomorphism.ˆi
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