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Abstract

A vanishing result is obtained in respect of nil groups of rings of finite
global dimension. Also a connection is established with the extension
problem.
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1 Introduction

Let C be an admissible subcategory of an abelian category. We are interested
in the category Nil(C) whose objects are the pairs (M, ν), where M ∈ C and
ν ∈ EndC(M) is nilpotent. The nil groups have geometrical significance as
they occur as obstructions to geometrical problems ( [4],[7]). The Nil group
vanishes for any abelian category (Proposition 6.1 on page 653 of [2]), and it is
an interesting problem to determine under what conditions will the Nil group
vanish for a nonabelian category [11]. Some known vanishing results in respect
of nil groups for rings are those for the group ring Z[G] where G is a finite
group of square - free order [5], regular rings ([7],[11]), quasi-regular rings [7],
the cyclic group Cn of finite order n ≥ 2 and the finite group of finite type
G ∼= F � Z where F is a finite subgroup of G [8]. This paper gives a solution
of the above stated problem in respect of the nonabelian category of rings. We
obtain that

NKi(R) = 0 ∀ i

for a ring R of finite global dimension.
Let M ′, M ′′ be R - modules. The question is asked as regards the R -

modules M such that M ′ is a submodule of M and M ′′ be its quotient. Equiv-
alently, this question can be posed as follows: which are the R - modules M
such that the sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

be exact? The classification of such R - modules M constitute what is known
as the extension problem [10]. In this paper, we establish a result that relates
the extension problem to rings of finite global dimension. Thus giving us a
supply of rings of finite global dimension.

2 Extensions, Global Dimensions and Nil Groups

Definition 2.1 An extension of an R - module M ′ by M ′′ is a short exact
sequence E : 0 −→ M ′ −→ M −→ M ′′ −→ 0.

Definition 2.2 (i) Let R be a ring and E an R - module. E is said to
have homological dimension (denoted hdRE) ≤ n if ∃ an exact sequence

0 −→ Pn
∂n−→ Pn−1

∂n−1−→ · · · −→ P0 −→ E −→ 0

where each Pi is projective (i.e. a sum of free R - modules).

(ii) The global dimension of R denoted by gl.dimR is defined as

gl.dimR =sup hdRE ∀ R - modules E
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(iii) The finitistic global dimension of R denoted by f.gl.dimR is defined as

f.gl.dimR =sup hdRE ∀ R - modules E 
 hdRE < ∞.

(iv) Let G be a group, R[G] its corresponding

group ring and ε : R[t] −→ R the augmentation map. The i - th nil group
of R is defined as

NKi(R) = ker(Ki(R[t])
ε∗−→ Ki(R))

(v) Let G be a finite group, α : Z −→ Aut(G) a homomorphism and V =
G �α Z the semidirect product. The nil groups of Z[V ] which takes into
account the automorphism α, are called twisted nil groups and are denoted
by NKα

i (Z[G]) i.e.

NKα
i (R) = ker(Ki(Rα[t])

ε∗−→ Ki(R))

(vi) Let τ be the category of triples R = (R; B0, B1), where Bi, i = 0, 1 are
two bimodules. A morphism in τ is a triple

(φ, f0, f1) : (R; B0, B1) −→ (S, C0, C1)

where φ : R −→ S is a ring homomorphism and fi : Bi⊗R S −→ Ci, i =
0, 1, are R − S - bimodule homomorphisms. Waldhausen nil groups are
functors from the category τ to abelian groups. For an object R in τ , we
first define an exact category Nil(R) with objects quadruples (P, Q, ; p, q),
where P and Q are finitely generated projective right R - modules and

p : P −→ Q ⊗ B0, q : Q −→ P ⊗ B1

is a pair of R - module homomorphisms such that the compositions

P
p−→ Q ⊗ B0

q⊗1−→ P ⊗ B1 ⊗ B0 · · ·

Q
q−→ P ⊗ B1

p⊗1−→ P ⊗ B0 ⊗ B1 · · ·
are zero after finitely many steps. Morphisms are homomorphisms on the
modules that are compatible with the maps. There is a forgetful functor
φ : Nil(R) −→ PR×PS , where PR is finitely generated projective right R

- modules. Then the Waldhausen Nil - groups ([7], [9] and [11]) ˜Nil
W

i R
are defined as

˜Nil
W

i R = ker(Ki(Nil(R))
φi−→ Ki(PR × PR)), for〉 ∈ Z.
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Remark 2.3 There is a natural isomorphism between the NK - groups and
the Waldhausen Nil - groups

NKi(R) ∼= ˜Nil
W

i−1(R), for i ≤ 1.

Thus the vanishing results of Waldhausen Nil - groups can be applied to the
NK - groups. ([3])

The group of equivalence classes of extensions of M ′ by M ′′ under the Baer
sum is denoted by Ex(M ′′, M ′) and it is isomorphic to Ext1(M ′′, M ′) [10].

3 Nil Groups of Rings of Finite Global Dimen-

sion

It is known that the relationship between the extension bifunctor and the
Baer sum is illustrated in the solution to the extension problem ([10]). Then
by results from ([12]), we relate rings of finite global dimension to the exten-
sion problem. Thus giving a condition for the supply of rings of finite global
dimension.

Theorem 3.1 Let R be a ring of finite global dimension. Then
NKi(R) = 0 ∀ i.

Proof: Let R be a ring of finite global dimension. Then hdRE ≤ n < ∞ for
any R - module E and exact sequence

0 −→ Pn
∂n−→ Pn−1 · · · −→ P0 −→ E −→ 0

where each Pi is projective. Let p be a prime ideal of R and S a multiplicatively
closed subset of R not containing 0 given by S = R − p. The ring of fractions
Rp = S−1R can give an indication on whether R is regular ([1]). Since R is
of finite global dimension, it follows that Rp also has finite global dimension
and is regular. Thus R is regular. It is known that every R - module has a
projective resolution and since R is of finite global dimension, it means that
every R - module is of homological dimension ≤ n(n ∈ N). Now the category
of finitely generated projective modules is a full subcategory of the category of
R - modules. Therefore Ki(Nil(R)) −→ Ki(Nil(ModR)) is an isomorphism.
Using Corollary 6.3 on p. 654 of [2] and the fact that the groups NKi are

isomorphic to the Waldhausen’s groups ˜Nil
W

i−1 for regular rings (see Proof of
Proposition 3.8 in [3]), it follows that NKi(R) = 0 ∀ i.

Theorem 3.2 Let A be a ring such that the extensions of any simple module
S by S over A splits and consists of exactly only one element. Then A is of
finite global dimension.
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Proof: Suppose that A be a ring such that the extensions of any simple A
- module S by S over A splits and consists of only one element. Then by
Theorem 3.14 on page 15 of [10] we have that ExtnA(S, S) = 0 ∀ n ≥ 1 and
all simple A - modules S and consequently ExtnA(S, S) = 0 for all simple A -
modules S and all n >> 0. Then by Theorem 2 of [12], A is of finite global
dimension.
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