Counting Subgroups of nonmetacyclic groups of type: $D_{2^{n-1}} \times C_{2}, n \geq 3$

EniOluwafe, Michael

Abstract

The main goal of this note is to determine an explicit formula of finite group formed by taking the Cartesian product of the dihedral group of two power order with a order two cyclic group.

Mathematics Subject Classification (2000). Primary 20D60; Secondary 20D15; 20D30; 20D40.

Keywords. Dihedral groups, cyclic subgroups, Cartesian products, number of subgroups.

I. Preliminaries

Counting subgroups of finite groups is one of the most important problems of combinatorial finite group theory.
In the last century, the problem was completely solved in the abelian case, by establishing an explicit expression of the number of subgroups of a finite abelian group (see [1]).

Unfortunately, in the nonabelian case a such expression can be given only for certain finite nonabelian groups (see [4]). Thus this paper derived an explicit formula for number of subgroups of nonmetacyclic groups of type: $D_{2^{n-1}} \times C_{2}$ where $D_{2^{n-1}}$ is a dihedral group of order $2^{n-1}, n \geq 3$, and C_{2} is a cyclic group of order 2.

In the following if G is a group, then the set $L(G)$ consisting of all subgroups of G forms a complete lattice with respect to set inclusion, called the subgroup lattice of G.

Most of our notation is standard and will usually not be repeated here. For basic definitions and results on groups we refer the reader to [2], [3] and [5].

More precisely, we prove the following result.

Theorem E

For $n \geq 3$, the number of subgroups of the nonmetacyclic group $D_{2^{n-1}} \times C_{2}$ is given by the following equality:

$$
\left|L\left(D_{2^{n-1}} \times C_{2}\right)\right|= \begin{cases}16 & \text { if } n=3 \\ 3\left(n+1+\sum_{k=2}^{n-2} 2^{n-k}\right)+2^{n-1} & ; \text { if } n \geq 4\end{cases}
$$

Where $\left|L\left(D_{2^{n-1}} \times C_{2}\right)\right|$ is the subgroup lattice of $D_{2^{n-1}} \times C_{2}$

[^0]
II. Proof of Theorem E:

Proof. Let $D_{2^{n-1}} \times C_{2}:=\left\langle x, y: x^{2^{n-2}}=y^{2}=1, y x y^{-1}=x^{-1}\right\rangle \times\langle a\rangle$
The case $n=3$ is clear. So we assume $n \geq 4$.
An important property of this group is that its characteristic subgroup defined by

$$
\mho_{n-3}\left(D_{2^{n-1}} \times C_{2}\right):=\left\langle z^{2^{n-3}}: z \in D_{2^{n-1}} \times C_{2}\right\rangle
$$

is of order 2. Also, for $n \geq 4$, we have:

$$
\begin{equation*}
\frac{D_{2^{n-1}} \times C_{2}}{\mho_{n-3}\left(D_{2^{n-1}} \times C_{2}\right)} \cong D_{2^{n-2}} \times C_{2} \tag{1}
\end{equation*}
$$

This follows from the epimorphism $\gamma: D_{2^{n-1}} \times C_{2} \longrightarrow D_{2^{n-2}} \times C_{2}$ defined by $\gamma(z):=z\left\langle\left(x^{2^{n-3}}, 1\right)\right\rangle$ where $z \in D_{2^{n-1}} \times C_{2}$ and
$z\left\langle\left(x^{2^{n-3}}, 1\right)\right\rangle \in D_{2^{n-2}} \times C_{2}$. Clearly, the kernel of γ is $\mho_{n-3}\left(D_{2^{n-1}} \times C_{2}\right):=\left\langle\left(x^{2^{n-3}}, 1\right)\right\rangle$ and from the first isomorphism theorem for groups.

Now for $D_{2^{n-1}} \times C_{2}$, this isomorphism (1), will lead us to a recurrence relation verified by $\left|L\left(D_{2^{n-1}} \times C_{2}\right)\right|$, but first we need to compute the number of subgroups in $D_{2^{n-1}} \times C_{2}$ which not contain $\mho_{n-3}\left(D_{2^{n-1}} \times C_{2}\right)$.
Here we have two cases to consider as follows.

Case 1

Clearly, the trivial subgroup as well as all minimal subgroups of $D_{2^{n-1}} \times C_{2}$ excepting $\mho_{n-3}\left(D_{2^{n-1}} \times C_{2}\right)$ satisfy this property, and thus we obtain $2^{n-1}+3, n \geq 4$ total number of them.

Case 2

Finally, we consider the distinct subgroups each generated by the joins of the following form:
$(1, a) \vee(y, 1),(1, a) \vee(x y, 1), \cdots,(1, a) \vee\left(x^{2^{n-1}-1} y, 1\right)$, $\left(x^{2^{n-2}}, a\right) \vee(y, 1),\left(x^{2^{n-2}}, a\right) \vee(x y, 1), \cdots,\left(x^{2^{n-2}}, a\right) \vee\left(x^{2^{n-1}-1} y, 1\right)$,
respectively, where $(1, a),\left(x^{2^{n-2}}, a\right),(y, 1),(x y, 1), \cdots,\left(x^{2^{n-1}-1} y, 1\right)$ belong to set of minimal subgroups of $D_{2^{n-1}} \times C_{2}$, satisfy this property, and so we realize a total number $2^{n-1}, n \geq 4$ of them.
Therefore one obtains that the number of subgroups of $D_{2^{n-1}} \times C_{2}$ verifies the recurrence relation:

$$
\begin{equation*}
\left|L\left(D_{2^{n-1}} \times C_{2}\right)\right|=\left|L\left(D_{2^{n-2}} \times C_{2}\right)\right|+2^{n}+3 \tag{2}
\end{equation*}
$$

for all $n \geq 4$.
Writing (2) for $n=4,5, \cdots$ and summing up these equalities, we obtain an explicit expression as follows:

$$
\left|L\left(D_{2^{n-1}} \times C_{2}\right)\right|= \begin{cases}16 & \text { if } n=3 \\ 3\left(n+1+\sum_{k=2}^{n-2} 2^{n-k}\right)+2^{n-1} & ; \text { if } n \geq 4\end{cases}
$$

Thus the proof of the theorem is complete

References

[1] G. Bhowmik, 'Evaluation of the divisor function of matrices', Acta Arithmetica 74 (1996), 155 159.
[2] B. Huppert, 'Endliche Gruppen I, II', Springer-Verlag, Berlin, 1967.
[3] M. Suzuki, 'Group theory I, II', Springer-Verlag, Berlin, 1982, 1986.
[4] M. Tărnăuceanu, 'Counting subgroups for a class of finite nonabelian p-groups', Analele Universitaătii de Vest, Timisoara Seria Matematică - Informatică XLVI, 1, (2008), 147-152.
[5] H. Zassenhaus, 'Theory of Groups', Chelsea, New York, 1949.

EniOluwafe, Michael
Department of Mathematics, University of Ibadan, Ibadan,Oyo State, Nigeria. e-mail: michael.enioluwafe@gmail.com

[^0]: Communication presentée au $4^{\text {ème }}$ atelier annuel sur la CRyptographie, Algèbre et Géométrie (CRAG-4), 21 - 25 Juillet 2014, Université de Dschang, Dschang, Cameroun / Paper presented at the $4^{\text {th }}$ annual workshop on CRyptography, Algebra and Geometry (CRAG-4), 21- 25 July 2014, University of Dschang, Dschang, Cameroon.

