The Explicit Formula for the Number of the Distinct Fuzzy Subgroups of the Cartesian Product of the Dihedral Group 2 ${ }^{\text {n }}$ with a Cyclic Group of Order Eight, where $n>3$

S. A. Adebisi ${ }^{1}$, M. Ogiugo ${ }^{2 *}$ and M. Eni Oluwafe ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Lagos, Nigeria
${ }^{2}$ Department of Mathematics, School of Science, Yaba College of Technology, Nigeria
${ }^{3}$ Department of Mathematics, Faculty of Science, University of Ibadan, Nigeria
E-mail: adesinasunday@yahoo.com, michael.enioluwafe @ gmail.com
*Corresponding author. Email: ekpenogiugo @ gmail.com,

Received 14 March 2020; accepted 11 June 2020

Abstract

In this paper, the explicit formulae is given for the number of distinct fuzzy subgroups of the cartesian product of the dihedral group of order 2^{n} with a cyclic group of order 8 , where $n>3$.

Keywords: Fuzzy subgroups, Dihedral Group, Inclusion-exclusion principle, Maximal Subgroups.

AMS Mathematics Subject Classification (2010): 20D15, 60A86

1. Introduction

One of the most important problem of fuzzy group theory is to classify the fuzzy subgroup of a finite groups. This topic has enjoyed a rapid development in the last few years.This paper is a follow up from[1,2].

2. Methodology

Suppose that $M_{1}, M_{2}, \ldots, M_{t}$ are the maximal subgroups of a finite group G, and denote $h(G)$ as the number of distinct fuzzy subgroups of G. By simply applying the technique of computing $h(G)$, using the application of the Inclusion-Exclusion Principle, we have that:

$$
\begin{equation*}
h(G)=2\left(\sum_{r=1}^{t} h\left(M_{r}\right)-\sum_{1 \leq r_{1}<r_{2} \leq t} h\left(M_{r_{1}} \cap M_{r_{2}}\right)+\cdots+(-1)^{t-1} h\left(\bigcap_{r=1}^{t} M_{r}\right)\right) \tag{1.1}
\end{equation*}
$$

In [4], (1.1) was used to obtain the explicit formulas for some positive integers n.
Theorem 1.1. [5] The number of distinct fuzzy subgroups of a finite p-group of order p^{n} which have a cyclic maximal subgroup is:

1. $h\left(\mathbb{Z}_{p^{n}}\right)=2^{n}$
2. $h\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{n-1}}\right)=h\left(M_{p^{n}}\right)=2^{n-1}[2+(n-1) p]$

S. A. Adebisi, M. Ogiugo and M. EniOluwafe

3. The number of fuzzy subgroups for $\mathbb{Z}_{\mathbf{8}} \times \mathbb{Z}_{\mathbf{8}}$

Lemma 2.1. Let G be abelian such that $G=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ Then, $h(G)=2 h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}\right)=$ 48
Proof: By the use of GAP (Group Algorithms and Programming), G has three maximal subgroups in which each of them is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}$. Hence, we have that: $\frac{1}{2} h(G)=3 h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}\right)-3 h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}\right)+h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}\right)=h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$. And by theorem $\left.{ }^{*}\right), h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}\right)=24 . \Rightarrow h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right)=48$.

Corrolary 2.1. Following the last lemma, $h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2^{5}}\right), h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2^{6}}\right), h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2^{7}}\right)$ and $h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2^{8}}\right)=1536,4096,10496$ and 26112 respectively.

Proposition 2.1 [3] Suppose that $G=\mathbb{Z}_{8} \times \mathbb{Z}_{2^{n}, n \geq 2 \text {. Then, } h(G)=2^{n}\left[n^{2}+5 n-2\right]}$
Proof: G has three maximal subgroups of which two are isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n}}$ and the third is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{2^{n-1}}$.
Hence,

$$
\begin{aligned}
& h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2} n\right)=2 h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} n\right)+2^{1} h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-1}}\right)+2^{2} h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}\right)+2^{3} h\left(\mathbb{Z}_{2} \times\right. \\
&\left.\mathbb{Z}_{2^{n-3}}\right)+2^{4} h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-4}}\right)+\cdots+2^{n-2} h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}\right) \\
&= 2^{n+1}\left[2(n+1)+\sum_{j=1}^{n-2}[(n+1)-j]\right. \\
&= 2^{n+1}\left[2(n+1)+\frac{1}{2}(n-2)(n+3)\right]=2^{n}\left[n^{2}+5 n-2\right], n \geq 2
\end{aligned}
$$

We have that: $h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2^{n-1}}\right)=2^{n-1}\left[(n-1)^{2}+5(n-1)-2\right]=2^{n-1}\left[n^{2}+\right.$ $3 n-6], n>2$.

Theorem 2.1. [2] Let $G=D_{2^{n}} \times \mathbb{C}_{2}$, the nilpotent group formed by the cartesian product of the dihedral group of order 2^{n} and a cyclic group of order 2 . Then, the number of distinct fuzzy subgroups of G is given by : $h(G)=2^{2 n}(2 n+1)-2^{n+1}, n>.3$
4. The number of fuzzy subgroups for $D_{2^{n}} \times \mathbb{C}_{\mathbf{8}}$

Proposition 4.1. Suppose that $G=D_{2^{n}} \times \mathbb{C}_{8}$. Then, the number of distinct fuzzy subgroups of G is given by :

$$
2^{2(n-2)}(64 n+173)+3 \sum_{j=1}^{n-3} 2^{(n-1+j)}(2 n+1-2 j
$$

Proof :

$$
\begin{aligned}
\frac{1}{2} h\left(D_{2^{n}} \times C_{8}\right)= & h\left(D_{2^{n}} \times C_{4}\right)+2 h\left(D_{2^{n-1}} \times C_{8}\right)+h\left(D_{2^{n-1}} \times C_{8}\right)+2 h\left(D_{2^{n-1}} \times C_{4}\right) \\
& +\mathbb{Z}_{2^{n-1}}-4 h\left(D_{2^{n-1}} \times C_{2}\right)+h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2^{n-1}}\right)-2 h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-1}}\right) \\
& -2 h\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2^{n-2}}\right)+8 h\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}\right)+h\left(\mathbb{Z}_{2^{n-1}}\right)-4 h\left(\mathbb{Z}_{2^{n-2}}\right) \\
h\left(D_{2^{n}} \times C_{4}\right)= & (n-3) .2^{2 n+2}+2^{2(n-3)}(1460)+3\left[2^{n}(2 n-1)+2^{n+1}(2 n-3)\right. \\
& \left.+2^{n+2}(2 n-5)+\cdots+7\left(2^{2(n-2)}\right)\right] \\
= & (n-3) .2^{2 n+2}+2^{2(n-3)}(1460)+3 \sum_{j=1}^{n-3} 2^{n-1+j}(2 n+1-2 j) \\
= & 2^{2(n-2)}(64 n+173)+3 \sum_{j=1}^{n-3} 2^{n-1+j}(2 n+1-2 j)
\end{aligned}
$$

The Explicit Formula for the Number of the Distinct Fuzzy Subgroups of the Cartesian Product of the Dihedral Group 2^{n} with a Cyclic Group of Order Eight, where $n>3$

5. Conclusion

In this work, the explicit formulae for the number of distinct fuzzy subgroups of the cartesian product of the dihedral group of order 2^{n} with a cyclic group of order 8 is established.

REFERENCES

1. S.A.Adebisi, M.Ogiugo and M.EniOluwafe, Computing the number of distinct fuzzy subgroups for the nilpotent p-group of $D_{2^{n}} \times C_{4}$, International J.Math. Combin., 1 (2020) 86-89.
2. S.A.Adebisi and M.Enioluwafe, An explicit formula for the number of distinct fuzzy subgroups of the cartesian product of the Dihedral group of order 2^{n} with a cyclic group of order 2, Universal J.of Mathematics and Mathematical Sciences, 13 (1) (2020) 1-7.
3. S.A.Adebisi, M.Ogiugo and M.EniOluwafe, The classification of fuzzy subgroups of a certain Abelian structure: $\mathrm{Z}_{8} \times \mathrm{Z}_{2}{ }^{\mathrm{n}}, \mathrm{n}>2$, submitted.
4. M.Tarnauceanu, Classifying fuzzy subgroups of finite nonabelian groups, Iran. J. Fuzzy Syst., 9 (2012) 33-43.
5. M.Tarnauceanu, Classifying fuzzy subgroups for a class of finite p-groups, ALL CUZa Univ. Iasi, (2011) .
6. GAP-Groups, Algorithms, and Programming, Version 4.8.7; (https://www.gap-system.org)
