International Journal of Applied Mathematics

Volume 23 No. 1 2010, 11-22

STABILITY AND UNIFORM ULTIMATE BOUNDEDNESS OF SOLUTIONS OF A THIRD-ORDER DIFFERENTIAL EQUATION

A.T. Ademola ${ }^{1}$ §, P.O. Arawomo ${ }^{2}$
${ }^{1}$ Department of Mathematics and Statistics
Bowen University
Iwo, NIGERIA
e-mail: ademola672000@yahoo.com
${ }^{2}$ Department of Mathematics
University of Ibadan
Ibadan, NIGERIA
e-mail: womopeter@gmail.com

Abstract: This paper is concerned with uniform ultimate boundedness of solutions of a third-order nonlinear differential equation (1.1). Sufficient conditions under which all solutions $x(t)$, its first and second derivatives tend to zero as $t \rightarrow \infty$, when $p\left(t, x, x^{\prime}, x^{\prime \prime}\right) \equiv 0$, are presented.

AMS Subject Classification: 34D20, 34D40
Key Words: third-order, differential equations, stability, uniform and ultimate boundedness, complete Lyapunov function

1. Introduction

We shall be concerned here, with stability of the zero and ultimate boundedness of solutions of a third-order nonlinear differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}+\psi(t) f\left(x, x^{\prime}, x^{\prime \prime}\right) x^{\prime \prime}+\phi(t) g\left(x, x^{\prime}\right)+\varphi(t) h\left(x, x^{\prime}, x^{\prime \prime}\right)=p\left(t, x, x^{\prime}, x^{\prime \prime}\right) \tag{1.1}
\end{equation*}
$$

or its equivalent system
Received: May 17, 2009
(c) 2010 Academic Publications
${ }^{\text {§ }}$ Correspondence author

$$
\begin{align*}
& x^{\prime}=y, y^{\prime}=z \\
& z^{\prime}=p(t, x, y, z)-\psi(t) f(x, y, z) z-\phi(t) g(x, y)+\varphi(t) h(x, y, z) \tag{1.2}
\end{align*}
$$

in which $p \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{3}, \mathbb{R}\right) ; f, h \in C\left(\mathbb{R}^{3}, \mathbb{R}\right) ; g \in C\left(\mathbb{R}^{2}, \mathbb{R}\right) ; \psi, \phi, \varphi \in C\left(\mathbb{R}^{+}, \mathbb{R}\right) ;$ $\mathbb{R}=(-\infty, \infty) ; \mathbb{R}^{+}=[0, \infty) ; \psi, \phi, \varphi, f, g, h$ and p depend only on the arguments displaced explicitly and $\frac{\partial}{\partial x} f(x, y, z)=f_{x}(x, y, z), \frac{\partial}{\partial y} f(x, y, z)=f_{y}(x, y, z)$, $\frac{\partial}{\partial z} f(x, y, z)=f_{z}(x, y, z), \frac{\partial}{\partial x} g(x, y)=g_{x}(x, y), \frac{\partial}{\partial x} h(x, y, z)=h_{x}(x, y, z)$, $\frac{\partial}{\partial y} h(x, y, z)=h_{y}(x, y, z), \frac{\partial}{\partial z} h(x, y, z)=h_{z}(x, y, z), \frac{d}{d t} \psi(t)=\psi^{\prime}(t), \frac{d}{d t} \phi(t)=$ $\phi^{\prime}(t)$ and $\frac{d}{d t} \varphi(t)=\varphi^{\prime}(t)$ exist and are continuous for all x, y, z and t. As usual, condition for uniqueness will be assumed and $x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$ as elsewhere, stand for differentiation with respect to the independent variable t.

Equation (1.2), for $p(t, x, y, z)=0, p(t, x, y, z)=p(t)$ and $p(t, x, y, z) \neq 0$, have been the object of a good deal of research over the past several years. See for instance Reissig et. al. [8], Ademola, et. al. [1, 2], Afuwape [3], Bereketoğlu and Györi [4], Ezeilo [5], Ezeilo and Tejumola [6], Omeike [7], Swick [9], Tunç [10] and the references therein. These works were done with the aid of Lyapunov functions or Yoshizawa functions except in [3], where frequency domain approach was used.

In [10] Tunç established conditions for boundedness of solutions of a thirdorder nonlinear third-order nonlinear differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}+f\left(x, x^{\prime}, x^{\prime \prime}\right) x^{\prime \prime}+g\left(x, x^{\prime}\right)+h\left(x, x^{\prime}, x^{\prime \prime}\right)=p\left(t, x, x^{\prime}, x^{\prime \prime}\right) . \tag{1.3}
\end{equation*}
$$

Recently, Ademola, et. al. [1] and Omeike [7] studied conditions under which all solutions of the third-order differential equation (1.3) were ultimately bounded using a complete Yoshizawa and a complete Lyapunov functions respectively. However, the problem of stability and ultimate boundedness of solutions in which the nonlinear terms (the restoring terms in particular) are multiple of functions of t, are scarce.

Our aim in this paper is to study uniform boundedness and conditions under which all solutions $x(t)$, its first and second derivatives tend to zero as $t \rightarrow \infty$ when $p\left(t, x, x^{\prime}, x^{\prime \prime}\right)=0$ in (1.1). We also established conditions for uniform ultimate boundedness of solutions of equation (1.1). Our results generalize many results which have been discussed in [8] and include the result in [7]. This work is motivated from the works of Ademola, et. al. [2], Omeike [7] and Tunç [10].

2. Main Results

In the case $p(t, x, y, z) \equiv 0$, equation (1.2) becomes

$$
\begin{equation*}
x^{\prime}=y, \quad y^{\prime}=z, \quad z^{\prime}=-\psi(t) f(x, y, z) z-\phi(t) g(x, y)-\varphi(t) h(x, y, z) \tag{2.1}
\end{equation*}
$$

with the following result.
Theorem 1. Further to the basic assumptions on the functions f, g, h, ψ, ϕ and φ, suppose that $a, a_{1}, b, b_{1}, c, \delta_{0}, \epsilon_{0}, \psi_{0}, \psi_{1}, \phi_{0}, \phi_{1}, \varphi_{0}$ and φ_{1} are positive constants and that:
(i) $\psi_{0} \leq \psi(t) \leq \psi_{1}, \phi_{0} \leq \phi(t) \leq \phi_{1}$ and $\varphi_{0} \leq \varphi(t) \leq \varphi_{1}$ for all $t \geq 0$;
(ii) $h(0,0,0)=0, \delta_{0} \leq h(x, y, z) / x$ for all $x \neq 0, y$ and z;
(iii) $h_{x}(x, 0,0) \leq c$ for all x;
(iv) $g(0,0)=0, b \leq g(x, y) / y \leq b_{1}$ for all $x, y \neq 0$;
(v) $a \leq f(x, y, z) \leq a_{1}$ for all x, y, z and $a b>c$;
(vi) $\sup _{t \geq 0}\left[\left|\psi^{\prime}(t)\right|+\left|\phi^{\prime}(t)\right|+\left|\varphi^{\prime}(t)\right|\right]<\epsilon_{0} ;$
(vii) $g_{x}(x, y) \leq 0, y f_{x}(x, y, z) \leq 0$ for all x, y;
(viii) $h_{y}(x, y, 0) \geq 0, h_{z}(x, 0, z) \geq 0, y f_{z}(x, y, z) \geq 0$ for all x, y, z.

Then every solution $(x(t), y(t), z(t))$ of (2.1) is uniform-bounded and satisfies $x(t) \rightarrow 0, y(t) \rightarrow 0, z(t) \rightarrow 0$ as $t \rightarrow \infty$.

Remark 2. The hypotheses: $\psi(t) \geq \psi_{0}, \phi(t) \geq \phi_{0}, \varphi(t) \leq \varphi_{1}, h(x, 0,0) / x$ $\geq \delta_{0} x \neq 0, g(x, y) / y \geq b \quad y \neq 0, h_{x}(x, 0,0) \leq c$ and $f(x, y, z) \geq a$ imply the existence of positive constants α and β, satisfying

$$
\begin{equation*}
\frac{\varphi_{1} c}{\phi_{0} b}<\alpha<\psi_{0} a \tag{2.2a}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta<\min \left\{\left(a b \psi_{0} \phi_{0}-c \varphi_{1}\right) \eta_{1} ; b \phi_{0} ; \frac{1}{2}\left(a \psi_{0}-\alpha\right) \eta_{2}\right\} \tag{2.2~b}
\end{equation*}
$$

where

$$
\eta_{1}=\left[1+a \psi_{1}+\delta_{0}^{-1} \varphi_{0}^{-1} \phi_{0}^{2}\left[\frac{g(x, y)}{y}-b\right]^{2}\right]^{-1}
$$

and

$$
\eta_{2}=\left[1+\delta_{0}^{-1} \varphi_{0}^{-1} \psi_{0}^{2}[f(x, y, z)-a]^{2}\right]^{-1}
$$

are generalization of Routh-Hurwitz stability criteria.
Remark 3. (i) If $\psi(t) \equiv \phi(t) \equiv \varphi(t) \equiv 1, f(x, y, z) z \equiv f(z), g(x, y) \equiv$ $g(y)$ and $h(x, y, z) \equiv h(x)$, then the conclusion of Theorem 1 coincides with those of Ademola in [2].
(ii) Whenever $\psi(t) f(x, y, z) \equiv f(t, x, y), \phi(t) g(x, y) \equiv r(t) g(y)$, and $\psi(t) h(x, y$, $z) \equiv q(t) h(x)$ also, the conclusion of Theorem 1 coincides with that of Swick in [9].
(iii) Moreover, hypotheses of Theorem 1 (in particular on functions h and f) are less restrictive than those in [2] and [9], respectively.

In what follows, $D, D_{0}, D_{1}, \cdots, D_{15}$ denote finite positive constants whose magnitudes depend only on $a, a_{1}, b, b_{1}, c, \delta_{0}, \delta_{1}, \psi_{0}, \psi_{1}, \phi_{0}, \phi_{1}, \varphi_{0}, \varphi_{1}, \epsilon_{0}, \epsilon_{1}, P_{0}$, P_{1} and ρ. The D 's without suffixes are not necessarily the same each time they occur, but each of the numbered D 's: $D_{0}, D_{1}, \cdots, D_{15}$ retains a fixed identity throughout.

The proofs of the above and the subsequent results depend on a continuously differentiable function $V=V(t, x, y, z)$ defined by

$$
\begin{align*}
& 2 V=2[\alpha+a \psi(t)] \varphi(t) \int_{0}^{x} h(\xi, 0,0) d \xi+4 y \varphi(t) h(x, 0,0)+2 a \beta \psi(t) x y \\
& +4 \phi(t) \int_{0}^{y} g(x, \tau) d \tau+2[\alpha+a \psi(t)] \psi(t) \int_{0}^{y} \tau f(x, \tau, 0) d \tau+2 z^{2} \tag{2.3}\\
& +\beta y^{2}+b \beta \phi(t) x^{2}+2 \beta x z+2[\alpha+a \psi(t)] y z
\end{align*}
$$

where α and β are positive constants defined in (2.2a) and (2.2b) respectively. This function and its derivative with respect to the independent variable t, satisfies some fundamental inequalities as seen in the following lemmas.

Lemma 4. Subject to assumptions (i)-(v) of Theorem $1, V(t, 0,0,0)=0$ $D_{1}=D_{1}\left(a, b, c, a_{1}, b_{1}, \alpha, \beta, \psi_{1}, \phi_{1}, \varphi_{1}\right)$ such that

$$
D_{0}\left(x^{2}(t)+y^{2}(t)+z^{2}(t)\right) \leq V(t, x, y, z) \leq D_{1}\left(x^{2}(t)+y^{2}(t)+z^{2}(t)\right)
$$

and

$$
V(t, x, y, z) \rightarrow \infty \text { as } x^{2}(t)+y^{2}(t)+z^{2}(t) \rightarrow \infty
$$

Proof. Clearly $V(t, 0,0,0)=0$. Since $b \neq 0 \neq \phi(t)$ and $h(0,0,0)=0$, by hypotheses of Theorem 1, then equation (2.3) can be recast in the form

$$
\begin{align*}
V= & \int_{0}^{y}\left\{[\alpha+a \psi(t)] \psi(t) f(x, \tau, 0)-\left[\alpha^{2}+a^{2} \psi^{2}(t)\right]\right\} \tau d \tau+\frac{1}{2}(\alpha y+z)^{2} \\
& +\frac{\varphi(t)}{b \phi(t)} \int_{0}^{x}\left\{[\alpha+a \psi(t)] b \phi(t)-2 \varphi(t) h_{\xi}(\xi, 0,0)\right\} h(\xi, 0,0) d \xi \\
& +\frac{1}{2} \beta y^{2}+2 \phi(t) \int_{0}^{y}\left[\frac{g(x, \tau)}{\tau}-b\right] \tau d \tau+\frac{1}{2}(\beta x+a \psi(t) y+z)^{2} \tag{2.4}\\
& +\frac{1}{2} \beta[b \phi(t)-\beta] x^{2} .
\end{align*}
$$

In view of hypotheses (i) and (v) of Theorem $1, \psi(t) \geq \psi_{0}, \phi(t) \geq \phi_{0}$ and $f(x, y, 0) \geq a$ for all x, y and $t \geq 0$, so that

$$
\begin{equation*}
\int_{0}^{y}\left\{[\alpha+a \psi(t)] \psi(t) f(x, \tau, 0)-\left[\alpha^{2}+a^{2} \psi^{2}(t)\right]\right\} \tau d \tau \geq \frac{1}{2} \alpha\left(a \psi_{0}-\alpha\right) y^{2} \tag{2.5a}
\end{equation*}
$$

From hypotheses (i)-(iii) of Theorem $1, \psi(t) \geq \psi_{0}, \phi(t) \geq \phi_{0}, \varphi(t) \leq \varphi_{1}$ $h(x, 0,0) / x \geq \delta_{0}$ and $h_{x}(x, 0,0) \leq c$ so that

$$
\begin{equation*}
\int_{0}^{x}\left\{[\alpha+a \psi(t)] b \phi(t)-2 \varphi(t) h_{\xi}(\xi, 0,0)\right\} h(\xi, 0,0) d \xi \geq \eta_{3} x^{2} \tag{2.5b}
\end{equation*}
$$

where $\eta_{3}=\frac{1}{2}\left\{\left(\alpha+a \psi_{0}\right) b \phi_{0}-2 c \varphi_{1}\right\} \delta_{0}$. Finally, since $\phi(t) \geq \phi_{0}$, we obtain

$$
\begin{equation*}
(b \phi(t)-\beta) x^{2} \geq\left(b \phi_{0}-\beta\right) x^{2} \tag{2.5c}
\end{equation*}
$$

On gathering estimates (2.5a)-(2.5c), into (2.4), we obtain

$$
\begin{align*}
& V \geq \frac{1}{2}\left\{b^{-1} \phi_{0}^{-1} \delta_{0} \varphi_{0}\left[\left(\alpha+a \psi_{0}\right) b \phi_{0}-2 c \varphi_{1}\right]+\beta\left(b \phi_{0}-\beta\right)\right\} x^{2}+\frac{1}{2}(\alpha y+z)^{2} \\
& +\frac{1}{2}\left[\alpha\left(a \psi_{0}-\alpha\right)+\beta\right] y^{2}+b^{-1} \phi_{0}^{-1}\left[b \phi_{0} y+\varphi_{0} \delta_{0} x\right]^{2}+\frac{1}{2}\left[\beta x+a \psi_{0} y+z\right]^{2} \tag{2.6}
\end{align*}
$$

In view of (2.2a) and (2.2b), we have $a \psi_{0}>\alpha, a b \psi_{0} \phi_{0}>c \varphi_{1}$ and $b \phi_{0}>\beta$, such that estimate (2.6) is positive definite, thus there exists a positive constant D_{2} such that

$$
\begin{equation*}
V \geq D_{2}\left(x^{2}+y^{2}+z^{2}\right) \tag{2.7}
\end{equation*}
$$

Now, to establish the upper inequality of Lemma 4, condition (iii) of Theorem 1 implies that $h(x, 0,0) \leq c x$ for all $x \neq 0$ since $h(0,0,0)=0$. Also, in view of conditions (i), (iv), (v) of Theorem 1 and Schwartz inequality, equation (2.3) becomes

$$
V \leq \eta_{4} x^{2}+\eta_{5} y^{2}+\eta_{6} z^{2}
$$

where $\eta_{4}=\frac{1}{2}\left[\left(a \psi_{1}+b \phi_{1}+1\right) \beta+\left(\alpha+a \psi_{1}+2\right) c \varphi_{1}\right], \eta_{5}=\frac{1}{2}\left[\left[\left(\alpha+a \psi_{1}\right) a_{1}+a(\beta+\right.\right.$ 1) $\left.] \psi_{1}+2 b_{1} \phi_{1}+2 c \varphi_{1}+\alpha+\beta\right]$ and $\eta_{6}=\frac{1}{2}\left[a \psi_{1}+\alpha+\beta+2\right]$. Hence, there is a positive constant $D_{3}=\max \left\{\eta_{4}, \eta_{5}, \eta_{6}\right\}$ such that

$$
V \leq D_{3}\left(x^{2}+y^{2}+z^{2}\right)
$$

From estimate (2.7), it follows that $V(t, 0,0,0)=0$ if and only if $x^{2}+y^{2}+z^{2}=0$ and $V(t, x, y, z)>0$ for $x^{2}+y^{2}+z^{2} \neq 0$ and hence

$$
V(t, x, y, z) \rightarrow \infty \text { as } x^{2}+y^{2}+z^{2} \rightarrow \infty
$$

This completes the proof of Lemma 4.
Lemma 5. Under the hypotheses of Theorem 1, there is a positive constant $D=D\left(a, b, c, \delta_{0}, \epsilon, \psi_{0}, \phi_{0}, \varphi_{0}, \varphi_{1}, \alpha, \beta\right)$ such that along a solution of (2.1)

$$
V^{\prime}=\frac{d}{d t} V(t, x, y, z) \leq-D\left(x^{2}(t)+y^{2}(t)+z^{2}(t)\right) \leq 0
$$

Proof. Along any solution $(x(t), y(t), z(t))$ of (2.1), we have

$$
\begin{align*}
V_{(2.1)}^{\prime} & =W_{1}+W_{2}+W_{3}-\left(W_{4}+W_{5}\right)-\beta \phi(t)\left[\frac{g(x, y)}{y}-b\right] x y \tag{2.8}\\
& -\beta \psi(t)[f(x, y, z)-a] x z
\end{align*}
$$

where

$$
\begin{gathered}
W_{1}:=a \beta \psi(t) y^{2}+2 \beta y z \\
W_{2}:=2 \phi(t) y \int_{0}^{y} g_{x}(x, \tau) d \tau+[\alpha+a \psi(t)] \psi(t) y \int_{0}^{y} \tau f_{x}(x, \tau, 0) d \tau \\
W_{3}:=\left\{[\alpha+a \psi(t)] \varphi^{\prime}(t)+a \psi^{\prime}(t) \varphi(t)\right\} \int_{0}^{x} h(\xi, 0,0) d \xi+2 \phi^{\prime}(t) \int_{0}^{y} g(x, \tau) d \tau \\
+2 \varphi^{\prime}(t) h(x, 0,0) y+[\alpha+2 a \psi(t)] \psi^{\prime}(t) \int_{0}^{y} \tau f(x, \tau, 0) d \tau \\
+\frac{1}{2} b \beta \phi^{\prime}(t) x^{2}+a \beta \psi^{\prime}(t) x y+a \psi^{\prime}(t) y z
\end{gathered}
$$

$$
\begin{aligned}
& W_{4}:=[\alpha+a \psi(t)] \varphi(t) y^{2}\left[\frac{h(x, y, z)-h(x, 0,0)}{y}\right]+2 \varphi(t) z^{2}\left[\frac{h(x, y, z)-h(x, 0,0)}{z}\right] \\
&+[\alpha+a \psi(t)] \psi(t) y z^{2}\left[\frac{f(x, y, z)-f(x, y, 0)}{z}\right]
\end{aligned}
$$

and

$$
\begin{gathered}
W_{5}:=\beta \varphi(t) \frac{h(x, y, z)}{x} x^{2}+\left[[\alpha+a \psi(t)] \phi(t) \frac{g(x, y)}{y}-2 \varphi(t) h_{x}(x, 0,0)\right] y^{2} \\
+
\end{gathered}
$$

Now, from the obvious inequality $2|p||q| \leq p^{2}+q^{2}$ and $\psi(t) \leq \psi_{1}$, we have

$$
W_{1} \leq \beta\left[\left(a \psi_{1}+1\right) y^{2}+z^{2}\right]
$$

By hypothesis (vii) of Theorem 1, we obtain

$$
W_{2} \leq 0
$$

Furthermore, $h(0,0,0)=0$ implies that $h(x, 0,0) / x \leq c$ for $x \neq 0$. Also $\psi(t) \leq$ $\psi_{1}, \phi(t) \leq \phi_{1}, \varphi(t) \leq \varphi_{1}, g(x, y) / y \leq b_{1}$ for all $y \neq 0$ and $f(x, y, 0) \leq a_{1}$. With these conditions, we have

$$
\begin{gathered}
W_{3} \leq\left[\frac{1}{2} a c\left(\varphi_{1}+\beta\right)\left|\psi^{\prime}(t)\right|+\frac{1}{2} b \beta\left|\phi^{\prime}(t)\right|+\frac{1}{2} c\left[\alpha+a \psi_{1}+2\right]\left|\varphi^{\prime}(t)\right|\right] x^{2} \\
+\left[\frac{1}{2}\left[a_{1}\left(\alpha+2 a \psi_{1}\right)+a(\beta+1)\right]\left|\psi^{\prime}(t)\right|+b_{1}\left|\phi^{\prime}(t)\right|+c\left|\varphi^{\prime}(t)\right|\right] y^{2}+\frac{1}{2} a\left|\psi^{\prime}(t)\right| z^{2}
\end{gathered}
$$

Thus, there are positive constants D_{4}, D_{5}, D_{6} such that

$$
W_{3} \leq \max \left\{D_{4}, D_{5}, D_{6}\right\}\left[\left|\psi^{\prime}(t)\right|+\left|\phi^{\prime}(t)\right|+\left|\varphi^{\prime}(t)\right|\right]\left(x^{2}+y^{2}+z^{2}\right)
$$

where $D_{4}=\frac{1}{2} \max \left\{a c\left(\varphi_{1}+\beta\right), b \beta, c\left(\alpha+a \psi_{1}\right)\right\}, D_{5}=\max \left\{\frac{1}{2}\left[a_{1}\left(\alpha+2 a \psi_{1}\right)+\right.\right.$ $\left.a(\beta+1)], b_{1}, c\right\}$ and $D_{6}=\frac{1}{2} a$.

By assumption (viii) of Theorem 1 for $y \neq 0$, we have

$$
\begin{align*}
{[\alpha+a \psi(t)] \varphi(t) y^{2} } & {\left[\frac{h(x, y, z)-h(x, 0,0)}{y}\right] } \tag{2.9a}\\
& =[\alpha+a \psi(t)] \varphi(t) y^{2} h_{y}\left(x, \theta_{1} y, 0\right) \geq 0
\end{align*}
$$

$0 \leq \theta_{1} \leq 1$ and when $y=0,[\alpha+a \psi(t)] \varphi(t) y^{2} h_{y}\left(x, \theta_{1} y, 0\right)=0$.

Similarly, for $z \neq 0$, we have

$$
\begin{equation*}
2 \varphi(t) z^{2}\left[\frac{h(x, y, z)-h(x, 0,0)}{z}\right]=2 \varphi(t) z^{2} h_{z}\left(x, 0, \theta_{2} z\right) \geq 0, \tag{2.9b}
\end{equation*}
$$

$0 \leq \theta_{2} \leq 1$ and $2 \varphi(t) z^{2} h_{z}\left(x, 0, \theta_{2} z\right)=0$ when $z=0$. Also for $z \neq 0$, we obtain

$$
\begin{align*}
{[\alpha+a \psi(t)] \psi(t) y z^{2} } & {\left[\frac{f(x, y, z)-f(x, y, 0)}{z}\right] } \tag{2.9c}\\
& =[\alpha+a \psi(t)] \psi(t) y z^{2} f_{z}\left(x, y, \theta_{3} z\right) \geq 0
\end{align*}
$$

$0 \leq \theta_{3} \leq 1$ and $[\alpha+a \psi(t)] \psi(t) y z^{2} f_{z}\left(x, y, \theta_{3} z\right)=0$ when $z=0$.
A combination of (2.9a), (2.9b) and (2.9c) yields

$$
W_{4} \geq 0 .
$$

Also, by hypotheses (i) and (ii) of Theorem 1, we obtain

$$
\begin{equation*}
\beta \varphi(t) h(x, y, z) x \geq \beta \delta_{0} \varphi_{0} x^{2} . \tag{2.10a}
\end{equation*}
$$

Since $\psi(t) \geq \psi_{0}, \phi(t) \geq \phi_{0}, \varphi(t) \leq \varphi_{1}, h_{x}(x, 0,0) \leq c$ and $g(x, y) / y \geq b$ for all $x, y \neq 0$, we have

$$
\begin{equation*}
[\alpha+a \psi(t)] \phi(t) \frac{g(x, y)}{y}-2 \varphi(t) h_{x}(x, 0,0) \geq\left(\alpha+a \psi_{0}\right) b \phi_{0}-2 c \varphi_{1} . \tag{2.10b}
\end{equation*}
$$

By conditions (i) and (v) of Theorem 1, we find that

$$
\begin{equation*}
2 \psi(t) f(x, y, z)-[\alpha+a \psi(t)] \geq a \psi_{0}-\alpha . \tag{2.10c}
\end{equation*}
$$

Combining estimates (2.10a), (2.10b) and (2.10c), we have

$$
W_{5} \geq \beta \delta_{0} \varphi_{0} x^{2}+\left[\left(\alpha+a \psi_{0}\right) b \phi_{0}-2 c \varphi_{1}\right] y^{2}+\left(a \psi_{0}-\alpha\right) z^{2} .
$$

On gathering estimates $W_{i}(i=1,2,3,4,5)$ with (2.8), we obtain

$$
\begin{align*}
& V_{(2.1)}^{\prime} \leq-\frac{1}{2} \beta \delta_{0} \varphi_{0} x^{2}-\left[\left(\alpha+a \psi_{0}\right) b \phi_{0}-2 c \varphi_{1}-\beta\left(a \psi_{1}+1\right)\right] y^{2} \\
& -\left(a \psi_{0}-\alpha-\beta\right) z^{2}-\left(W_{6}+W_{7}\right) \tag{2.11}\\
& +D_{7}\left[\left|\psi^{\prime}(t)\right|+\left|\phi^{\prime}(t)\right|+\left|\varphi^{\prime}(t)\right|\right]\left(x^{2}+y^{2}+z^{2}\right)
\end{align*}
$$

where $W_{6}=\frac{1}{4} \beta \delta_{0} \varphi_{0} x^{2}+\beta \phi_{0}\left[\frac{g(x, y)}{y}-b\right] x y, W_{7}=\frac{1}{4} \beta \delta_{0} \varphi_{0} x^{2}+\beta \psi_{0}[f(x, y, z)-$ $a] x z$ and $D_{7}=\max \left\{D_{4}, D_{5}, D_{6}\right\}$. On completing the squares, we have

$$
\begin{equation*}
W_{6}=\geq-\beta \delta_{0}^{-1} \varphi_{0}^{-1} \phi_{0}^{2}\left[\frac{g(x, y)}{y}-b\right]^{2} y^{2} \tag{2.12a}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{7} \geq-\beta \delta_{0}^{-1} \varphi_{0}^{-1} \psi_{0}^{2}[f(x, y, z)-a]^{2} z^{2} \tag{2.12b}
\end{equation*}
$$

since $\beta, \delta_{0}, \varphi$ are positive constants, it follows that $\left[x+2 \delta_{0}^{-1} \varphi_{0}^{-1} \phi_{0}\left[\frac{g(x, y)}{y}-b\right] y\right]^{2} \geq$ 0 and $\left[x+2 \delta_{0}^{-1} \varphi_{0}^{-1} \psi_{0}[f(x, y, z)-a] z\right]^{2} \geq 0$ for all x, y, z. Substituting (2.12a) and (2.12b) into (2.11) and by (2.2b), we obtain

$$
\begin{equation*}
V_{(3.2)}^{\prime} \leq-D_{8}\left(x^{2}+y^{2}+z^{2}\right)+D_{7}| | \psi^{\prime}(t)\left|+\left|\phi^{\prime}(t)\right|+\left|\varphi^{\prime}(t)\right|\right]\left(x^{2}+y^{2}+z^{2}\right), \tag{2.13}
\end{equation*}
$$

where $D_{8}=\min \left\{\frac{1}{2} \beta \delta_{0} \varphi_{0}, \alpha b \phi_{0}-c \varphi_{1}, \frac{1}{2}\left(a \psi_{0}-\alpha\right)\right\}$.
Finally, by condition (vi) of Theorem 1 , choose ϵ_{0} sufficiently small such that $D_{8}>D_{7} \epsilon_{0}$, then we can find a positive constant D_{9} such that

$$
V_{(2.1)}^{\prime} \leq-D_{9}\left(x^{2}+y^{2}+z^{2}\right) \leq 0
$$

for all x, y and z. This completes the proof of Lemma 5 .
Proof of Theorem 1. Let $(x(t), y(t), z(t))$ be any solution of (2.1). From Lemma 4 and Lemma 5 all solutions of (2.1) are uniform bounded (see p. 38-39 in [11]). Furthermore, from Lemma 5, we have $V^{\prime} \leq-D_{9}\left(x^{2}+y^{2}+z^{2}\right)$. Let $W(X) \equiv D_{9}\left(x^{2}+y^{2}+z^{2}\right)$, a positive definite function with respect to a closed set $\Omega \equiv\{(x, y, z) \mid x=0, y=0, z=0\}$, then $V^{\prime} \leq-W(X)$. Since $h(x, y, z)$, is continuous for all x, y, z and functions $\psi(t), \phi(t), \varphi(t), f(x, y, z)$ and $g(x, y)$ are bounded above, it follows that

$$
\|F(t, X)\|=\left\|\left(\begin{array}{c}
y \\
z \\
-\varphi(t) h(x, y, z)-\phi(t) g(x, y)-\psi(t) f(x, y, z) z
\end{array}\right)\right\|
$$

is bounded for all t when X belongs to any compact subset of \mathbb{R}^{3}. Since $x=$ $0, y=0, z=0$ on the set Ω, it follows from Theorem $14.1 \mathrm{p} .60-61$ in [11] that $x(t) \rightarrow 0, y(t) \rightarrow 0, z(t) \rightarrow 0$ as $t \rightarrow \infty$.

Theorem 6. Suppose that $a, b, c, \delta_{0}, \epsilon_{0}, \epsilon_{1}, \psi_{0}, \psi_{1}, \phi_{0}, \varphi_{0}, \varphi_{1}$ are positive constants and $P_{1} \geq 0$ so that:
(i) hypotheses (i)-(viii) of Theorem 1 hold;
(ii) $|p(t, x, y, z)| \leq p_{1}(t)+p_{2}(t)(|x|+|y|+|z|)$ where $p_{1}(t)$ and $p_{2}(t)$ are nonnegative continuous functions satisfying

$$
\begin{equation*}
0 \leq p_{1}(t) \leq P_{1} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq p_{2}(t) \leq \epsilon_{1} . \tag{2.15}
\end{equation*}
$$

Then the solution $(x(t), y(t), z(t))$ of (1.2) is uniformly ultimately bounded.
Lemma 7. Subject to the conditions of Theorem 2.6 there exists positive constant D_{10} depending only on $a, b, c, \delta_{0}, \psi_{0}, \psi_{1}, \phi_{0}, \varphi_{0}, \varphi_{1}, \epsilon_{0}, \epsilon_{1}, \alpha, \beta$ and P_{1} such that for any solution $(x(t), y(t), z(t))$ of (1.2)

$$
V^{\prime} \equiv \frac{d}{d t} V(t, x(t), y(t), z(t)) \leq-D_{10}\left(x^{2}+y^{2}+z^{2}\right)
$$

Proof. Along a solution $(x(t), y(t), z(t))$ of (1.2), we have

$$
V_{(1.2)}^{\prime}=V_{(2.1)}^{\prime}+[\beta x+[\alpha+a \psi(t)] y+2 z] p(t, x, y, z)
$$

In view of (2.13), hypotheses (vi) of Theorem 1 and (ii) of Theorem 6, we find

$$
\begin{aligned}
V_{(1.2)}^{\prime} \leq & -D_{8}\left(x^{2}+y^{2}+z^{2}\right)+D_{11}(|x|+|y|+|z|)|p(t, x, y, z)| \\
& +D_{7}\left(\left|\psi^{\prime}(t)\right|+\left|\phi^{\prime}(t)\right|+\left|\varphi^{\prime}(t)\right|\right)\left(x^{2}+y^{2}+z^{2}\right) \\
& \leq-D_{8}\left(x^{2}+y^{2}+z^{2}\right)+D_{7} \epsilon_{0}\left(x^{2}+y^{2}+z^{2}\right) \\
+ & D_{11}(|x|+|y|+|z|)\left[p_{1}(t)+p_{2}(t)(|x|+|y|+|z|)\right]
\end{aligned}
$$

where $D_{11}=\max \left\{\beta, \alpha+a \psi_{0}, 2\right\}$. By (2.14) and (2.15) and the Schwartz inequality, we obtain

$$
V_{(1.2)}^{\prime} \leq-\left(D_{8}-D_{7} \epsilon_{0}-3 D_{11} \epsilon_{1}\right)\left(x^{2}+y^{2}+z^{2}\right)+3^{1 / 2} P_{1} D_{11}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}
$$

Again choose ϵ_{0} and ϵ_{1} so small so that $D_{8}>D_{7} \epsilon_{0}+3 D_{11} \epsilon_{1}$ then there exist positive constants D_{12} and D_{13} such that

$$
\begin{equation*}
V_{(1.2)}^{\prime} \leq-D_{12}\left(x^{2}+y^{2}+z^{2}\right)+D_{13}\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \tag{2.16}
\end{equation*}
$$

Choose $\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2} \geq 2 D_{12}^{-1} D_{13}=D_{14}$ the inequality in (2.16) becomes

$$
V_{(1.2)}^{\prime} \leq-D_{15}\left(x^{2}+y^{2}+z^{2}\right)
$$

where $D_{15}=\frac{1}{2} D_{12}$.
Proof. of Theorem 2.6. The proof of Theorem 2.6 follows from Lemma 4, Lemma 7 and Theorem 10.4, p. 42 in [11] that the solution $(x(t), y(t), z(t))$ of (1.2) is uniform ultimately bounded.

Remark 8. As usually, if $\psi(t) f\left(x, x^{\prime}, x^{\prime \prime}\right)=a, \phi(t) g\left(x, x^{\prime}\right)=b x^{\prime}$, $\varphi(t) h\left(x, x^{\prime}, x^{\prime \prime}\right)=c x$ and $p\left(t, x, x^{\prime}, x^{\prime \prime}\right)=0$ in (1.1) all hypotheses of Theorem 1 reduce to

$$
a>0, b>0, c>0, a b-c>0
$$

which is the Routh-Hurwitz criterion for the global asymptotic stability of the zero solution of the equation

$$
x^{\prime \prime \prime}+a x^{\prime \prime}+b x^{\prime}+c x=0 .
$$

Remark 9. If $\psi(t) \equiv \phi(t) \equiv \varphi(t) \equiv 1$ and $p_{2}(t)=0$, then system (1.2) reduces to that studied by Omeike in [7], thus our result includes that of [7]. In addition, the hypothesis on the function $f(x, y, z)$ is weaker than those used by Omeike in [7], since there it was required that $f(x, y, z)>0$. Hence, our result generalizes that of [7].

References

[1] A.T. Ademola, R. Kehinde, and M.O. Ogunlaran, A boundedness theorem for a certain third-order nonlinear differential equation, J. Math. and Stat., 4, No. 2 (2008), 88-93.
[2] A.T Ademola, M.O. Ogundiran, P.O. Arawomo and O.A. Adesina, Stability results for the solutions of a certain third-order nonlinear differential equation. Math. Sci. Res. J., 12, No. 6 (2008), 124-134.
[3] A.U. Afuwape, Remarks on Barbashin-Ezeilo problem on third-order nonlinear differential equations, J. Math. Anal. Appl., 317 (2006), 613-619.
[4] H. Bereketoğlu and I. Györi, On the boundedness of solutions of a thirdorder nonlinear differential equation, Dynam. Systems Appl., 6, No. 2 (1997), 263-270.
[5] J.O.C. Ezeilo, A generalization of a boundedness theorem for the equation $x^{\prime \prime \prime}+a x^{\prime \prime}+\phi_{2}\left(x^{\prime}\right)+\phi_{3}(x)=\psi\left(t, x, x^{\prime}, x^{\prime \prime}\right)$, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 13, No. 50 (1971), 424-431.
[6] J.O.C. Ezeilo and H.O. Tejumola, Boundedness theorems for certain thirdorder differential equations, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 55, No. 10 (1973), 194-201.
[7] M.O. Omeike, New result in the ultimate boundedness of solutions of a third-order nonlinear ordinary differential equation, J. Inequal. Pure and Appl. Math., 9, No. 1 (2008), Art. 15, 8 pp.
[8] R. Reissig, G. Sansone, and R. Conti, Nonlinear Differential Equations of Higher Order, Noordhoff International Publishing Leyeden (1974).
[9] K.E Swick, On the boundedness and stability of solutions for some nonautonomous differential equations of the third-order, J. London Math. Soc., 44 (1969), 347-359.
[10] C. Tunç, Boundedness of solutions of a third-order nonlinear differential equation, J. Inequal. Pure and Appl. Math., 6, No. 1 (2005), 1-6.
[11] T. Yoshizawa, Stability Theory by Liapunov's Second Method, The Mathematical Society of Japan (1966).

