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a b s t r a c t

Sufficient conditions for the existence of solutions to boundedness and ultimate bounded-
ness problems associated to a certain third order nonlinear differential equation are given
by means of the Lyapunov’s second method. The appropriate Lyapunov function is given
explicitly. Our results complement some well known results on the third order differential
equations in the literature.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The question addressed in this paper is related to the study of boundedness and ultimate boundedness of solutions which
is very important in the theory and applications of nonlinear differential equations. In the actual literature, many works have
been done on these properties of solutions; see for instance Reissig et al. [16], Rouche et al. [17] and Yoshizawa [24] which
contain general theorems on the subject matter. Notable authors that have contributed to the qualitative properties of solu-
tions of nonlinear third order differential equations include Ademola et al. [1] on uniform asymptotic stability of solutions;
Afuwape [2,3] and Hara [14] on ultimate boundedness of solutions; Afuwape and Adesina [5], Andres [6], Bereketog�lu, and
Györi [7], Ezeilo [8–12], Ezeilo and Tejumola [13], Swick [19], Tejumola [20] and Tunç [23] worked on boundedness of solu-
tions. For the case when the considered third order equations are non-autonomous, we can mention the works of Qian [15],
Swick [18] and Tunç [22] on asymptotic behaviour of solutions. Furthermore, Afuwape [4] and Tejumola [21] worked on
periodic solutions.

Most of these works were done with the aid of Lyapunov functions. Unfortunately, with respect to our observation, these
Lyapunov functions are either incomplete or contain signum functions. These we find too weak. Thus the purpose of this
paper is to construct a complete Lyapunov function and use it to study boundedness (when p ¼ pðt; x; _x; €xÞ in (1.1)) and ulti-
mate boundedness of solutions of the third order nonlinear differential equation

x
���
þf ð€xÞ þ gð _xÞ þ hðxÞ ¼ pðt; x; _x; €xÞ; ð1:1Þ

or its equivalent system of differential equations
_x ¼ y;
_y ¼ z;
_z ¼ pðt; x; y; zÞ � f ðzÞ � gðyÞ � hðxÞ;

ð1:2Þ
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where f ; g;h 2 CðR;RÞ; p 2 CðRþ � R� R� R;RÞ; Rþ ¼ ½0;1Þ and R ¼ ð�1;1Þ. It is assumed that the functions f, g, h and p
depend only on the arguments displayed explicitly, and the dots, as usual, denote differentiation with respect to the inde-
pendent variable t. We shall require that the derivative h0ðxÞ ¼ dhðxÞ

dx exists and continuous, also the uniqueness of (1.1) or (1.2)
will also be assumed. The results obtained in this work improve, generalize and complement existing results on third order
nonlinear differential equations in the literature.

2. Preliminaries

Our notations shall follow those of Afuwape [3] and Hara [14]. Consider the system of the form

X0 ¼ Fðt;XÞ; ð2:1Þ

where X 2 Rn; F : Rþ � Rn ! Rn is a continuous function, Rþ ¼ ½0;1Þ and Rn is then Euclidean n-space.

Definition 2.1. The solutions of (2.1) are uniformly ultimately bounded for bound B, if there exists a B > 0 and if
corresponding to any a0 > 0, there exists a T(a0) > 0 such that whenever kX0k = kX(t, t0, X0)k < a0 then

kXðt; t0;X0Þk < B for all t0 P 0 and t P t0 þ Tða0Þ:
We now give a lemma which will play a major role in the proof of our results.

Lemma 2.2. Suppose that there exists a Lyapunov function V(t, X(t)) defined on Rþ; kXðtÞkP K where K may be large, which
satisfies the following conditions:

(i) a(kX(t)k) 6 V(t, X(t)) 6 b(kX(t)k), where a(r), b(r) are continuous and increasing and a(r) ?1 as r ?1;

(ii) V 0ð2:1Þðt;XðtÞÞ � lim sup
h!0þ

1
h

Vðt þ h;XðtÞ þ Fðt;XðtÞÞÞ � Vðt;XðtÞÞ½ � 6 �½c � k1ðtÞ�Vðt;XðtÞÞ þ k2ðtÞVbðt;XðtÞÞ

ð0 6 b < 1Þ; ð2:2Þ

where c > 0 is a constant and ki P 0 (i = 1,2) are continuous functions satisfying

lim sup
ðt;mÞ!ð1;1Þ

1
m

Z tþm

t
k1ðsÞds < c ð2:3Þ

and

sup
tP0

Z tþ1

t
k2ðsÞds <1: ð2:4Þ

Then the solutions of (2.1) are uniformly ultimately bounded.

Proof. See Lemma 2.1 in [13] for b ¼ 1
2. h

3. Main results

Theorem 3.1. Suppose that a, b, b1, c, d0 are positive constants, p � p(t) and that

(i) h(0) = 0, d0 6 h(x)/x, for all x – 0;
(ii) h

0
(x) 6 c for all x;

(iii) b 6 g(y)/y 6 b1, for all y – 0;
(iv) a 6 f(z)/z, for all z – 0;
(v)

R t
0 jpðlÞjdl 6 P0 <1 where P0 is a positive constant.

Then for any given finite constants x0, y0, z0 there exists a constant D = D(x0,y0, z0), such that any solution (x(t),y(t), z(t)) of the
system (1.2) determine by x(0) = x0, y(0) = y0, z(0) = z0 for t = 0, satisfies

jxðtÞj 6 D; jyðtÞj 6 D; jzðtÞj 6 D; ð3:1Þ

for all t P 0.

Remark 3.2. When f ð€xÞ ¼ a€x; gð _xÞ ¼ b _x; hðxÞ ¼ cx and pðt; x; _x; €xÞ ¼ 0, Eq. (1.1) reduces to a linear constant coefficient differ-
ential equation and conditions (i)–(v) of Theorem 3.1 reduce to the corresponding Routh–Hurwitz criterion a > 0, ab > c and
c > 0.
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The proofs of Theorem 3.1 and subsequent results depend on some certain fundamental properties of a continuously dif-
ferentiable function V(t) = V(x(t),y(t),z(t)) defined by

2VðtÞ ¼ 2a
Z x

0
hðnÞdnþ 2

Z y

0
gðsÞdsþ 2yhðxÞ þ abx2 þ ðaþ a2Þy2 þ z2 þ 2aaxyþ 2axzþ 2ayz; ð3:2Þ

where a is a positive fixed constant satisfying

0 < a < b� c
a
: ð3:3Þ

The Eq. (3.2) and its time derivatives satisfy some fundamental inequalities as will be seen later. In what follows, we shall
state and prove some results that would be useful in the proof of the main result.

Lemma 3.3. Under the hypotheses of Theorem 3.1 , there exist positive constants Di(i = 0,1) such that for all ðx; y; zÞ 2 R3

D0ðx2ðtÞ þ y2ðtÞ þ z2ðtÞÞ 6 VðtÞ 6 D1ðx2ðtÞ þ y2ðtÞ þ z2ðtÞÞ: ð3:4Þ

Proof. We observe that the function in Eq. (3.2) can be rewritten as

2VðtÞ ¼ V1 þ V2;

where

V1 ¼ 2a
Z x

0
hðnÞdnþ 2

Z y

0
gðsÞdsþ 2yhðxÞ

and

V2 ¼ abx2 þ ðaþ a2Þy2 þ z2 þ 2aaxyþ 2axzþ 2ayz:

In view of hypothesis (iii) in Theorem 3.1, g(y) P by for all y – 0, thus

2
Z y

0
gðsÞdsþ 2yhðxÞP ðbyþ hðxÞÞ2b�1 � b�1h2ðxÞP �b�1h2ðxÞ: ð3:5Þ

This is true since (by + h(x))2 P 0 for all x, y. Moreover, hypotheses (i) and (ii) of Theorem 3.1 imply that

2a
Z x

0
hðnÞdn ¼ 2b�1

Z x

0
ðab� h0ðnÞÞhðnÞdnþ b�1h2ðxÞP ðab� cÞb�1d0x2 þ b�1h2ðxÞ: ð3:6Þ

On combining the inequalities (3.5) and (3.6), we obtain

V1 P ðab� cÞb�1d0x2 ð3:7Þ

for all x. Furthermore, V2 can be rewritten as

V2 ¼ XQ0XT ;

where X ¼ x y zð Þ;Q 0 ¼
ab aa a
ab aþ a2 a
a a 1

0
@

1
A and det Q0 = a2(b � a) > 0, since b � a > 0 (which follows from (3.3)). Thus

V2 P a2ðx2 þ y2 þ z2Þ ð3:8Þ

for all ðx; y; zÞ 2 R3 with a > 0. On gathering the inequalities (3.7) and (3.8), the lower inequality in (3.4) is obtained. Now to
obtain the upper inequality in (3.4), we proceed as follows. Since h(0) = 0, hypothesis (ii) of the Theorem 3.1 implies that
h(x) 6 cx for all x – 0. It follows from hypotheses (ii) and (iii) of the theorem that

V1 6 cðaþ 1Þx2 þ ðb1 þ cÞy2; ð3:9Þ
V2 6 aðaþ bþ 1Þx2 þ ðaþ aÞðaþ 1Þy2 þ ðaþ aþ 1Þz2: ð3:10Þ

On gathering the estimates (3.9) and (3.10), the upper inequality in (3.4) follows immediately. h

From (3.2) it is clear that V(0,0,0) = 0, the lower inequality in the inequalities (3.4) implies, V(x,y,z) > 0 as x2 + y2 + z2 – 0,
hence it follows that

Vðx; y; zÞ ! 1 as x2 þ y2 þ z2 !1: ð3:11Þ

Inequality (3.4) together with (3.11) established condition (i) of the Lemma 2.2.

Lemma 3.4. Under the hypotheses of the theorem, there are positive constants Di, (i = 2,3,4,5) such that if (x(t),y(t),z(t)) is any
solution of the system (1.2), then

3046 T.A. Ademola et al. / Applied Mathematics and Computation 216 (2010) 3044–3049

IB
ADAN U

NIV
ERSITY

 LI
BRARY



Author's personal copy

_V ð1:2Þ ¼
d
dt

VðxðtÞ; yðtÞ; zðtÞÞ 6 �ðD2x2 þ D3y2 þ D4z2Þ þ D5ðjxj þ jyj þ jzjÞjpðtÞj: ð3:12Þ

Proof. Along any solution (x(t),y(t),z(t)) of the system (1.2), it follows from the Eq. (3.2) that

_V ð1:2ÞðtÞ ¼ �axhðxÞ � ðaygðyÞ � y2h0ðxÞÞ þ aðgðyÞ � byÞ � ðaxþ ayþ zÞðf ðzÞ � azÞ þ ðaxþ ayþ zÞpðtÞ þ aYQ1YT ;

ð3:13Þ

where Y ¼ y zð Þ; Q1 ¼
a 1
1 0

� �
, and det Q1 ¼ �1. In view of hypotheses (i)–(iv), we have that

_V ð1:2ÞðtÞ 6 �
1
2
ad0x2 � 7

8
ðaþ ab� cÞy2 � 1

2
az2 �Wj þ ðaxþ ayþ zÞpðtÞ ðj ¼ 1;2;3Þ; ð3:14Þ

where

W1 ¼ a
1
4

d0x2 þ ðgðyÞ � byÞxþ 1
16a
ðaþ ab� cÞy2

� �
; ð3:15Þ

W2 ¼ a
1
4

d0x2 þ ðf ðzÞ � azÞxþ 1
4

z2
� �

; ð3:16Þ

W3 ¼ a
1

16a
ðaþ ab� cÞy2 þ ðf ðzÞ � azÞyþ a

4a
z2

� �
: ð3:17Þ

Using the Eqs. (3.15)–(3.17), and taking into consideration the following inequalities

ðgðyÞ � byÞ2 < d0ðaþ ab� cÞ
16a

y2; ð3:18Þ

ðf ðzÞ � azÞ2 < d0

4
z2; ð3:19Þ

ðf ðzÞ � azÞ2 < aðaþ ab� cÞ
16a2 z2; ð3:20Þ

we have that

W1 P
a

16
2

ffiffiffiffiffi
d0

p
jxj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ab� c

a

r
jyj

 !2

P 0 for all x; y; ð3:21Þ

W2 P
a
4

ffiffiffiffiffi
d0

p
jxj �

ffiffiffi
a
a

r
jzj

 !2

P 0 for all x; z; ð3:22Þ

W3 P
a

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ ab� c

a

r
jyj � 2

ffiffiffi
a
a

r
jzj

 !2

P 0 for all y; z: ð3:23Þ

On making use of the estimates (3.21)–(3.23) in (3.14), we obtain

_V ð1:2ÞðtÞ 6 �
1
2
ad0x2 � 7

8
ðaþ ab� cÞy2 � 1

2
az2 þmaxða; a;1Þðjxj þ jyj þ jzjÞjpðtÞj; ð3:24Þ

and this completes the proof of the Lemma 3.4. h

At last we shall now give the proof of the Theorem 3.1.

Proof of Theorem 3.1. Let (x(t),y(t),z(t)) be any solution of (1.2), then from (3.24), it follows that

_V ð1:2ÞðtÞ 6 d1ð3þ x2 þ y2 þ z2ÞjpðtÞj;

where d1 �max(a,a,1). Now, from the inequalities (3.4), we obtain

_V ð1:2ÞðtÞ � d2VðtÞjpðtÞj 6 d2jpðtÞj

where d2 ¼maxð3d1; d1D�1
0 Þ. Multiplying each side by the integrating factor exp �d2

R t
0 jpðlÞdlj

� �
, and integrate from 0 to t

to obtain

VðtÞ 6 Vð0Þed2P0 þ ed2P0 � 1 � d3ðx0; y0; z0Þ;

since V(0) = V(x0,y0,z0). In view of the inequalities (3.4) we have

x2 þ y2 þ z2
6 d4;

where d4 ¼ d3D�1
0 , this verifies the inequalities (3.1) with D � d1=2

4 . This completes the proof of the Theorem 3.1.
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Our next result is on the ultimate boundedness of solutions to the Eq. (1.2). h

Theorem 3.5. Suppose that a, b, b1, c, d0 are positive constants and that

(i) Conditions (i)–(iv) of the Theorem 3.1 hold;
(ii) for all ðx; y; zÞ 2 R3 and 0 6 t 2 Rþ there are nonnegative continuous functions p1(t) and p2(t) such that

jpðt; x; y; zÞj 6 p1ðtÞ þ p2ðtÞðjxj þ jyj þ jzjÞ and jxj þ jyj þ jzjP q ðq > 0; Þ ð3:25Þ

where sup
R tþ1

t p1ðlÞdl <1 and there is � > 0 such that 0 6 p2(t) < �.
Then the solution (x(t), y(t), z(t)) of (1.2) is uniformly ultimately bounded.

Proof of Theorem 3.5. Consider the equivalent system (1.2) and the Lyapunov function V(t) as defined in (3.2). If the
inequalities (3.4) hold for V(x,y,z), it follows that

Vðx; y; zÞ ! 1 as x2 þ y2 þ z2 !1: ð3:26Þ

From the inequalities (3.4) and relation (3.26), condition (i) of Lemma 2.2 is established.
Next, we shall show that condition (ii) of Lemma 2.2 holds for the system (1.2). To see this, conclusion of Lemma 3.4 can

be revised as follows

_V ð1:2ÞðtÞ 6 �minðD1;D2;D3Þðx2 þ y2 þ z2Þ þ D5ðjxj þ jyj þ jzjÞjpðt; x; y; zÞj

6 �d5ðx2 þ y2 þ z2Þ þ D5ðjxj þ jyj þ jzjÞ2p2ðtÞ þ D5ðjxj þ jyj þ jzjÞp1ðtÞ

6 �d5ðx2 þ y2 þ z2Þ þ 3D5ðx2 þ y2 þ z2Þp2ðtÞ þ
ffiffiffi
3
p

D5ðx2 þ y2 þ z2Þ1=2p1ðtÞ;

provided jxj + jyj + jzjP q. Using the inequalities (3.4), for all ðx; y; zÞ 2 R3 and 0 6 t 2 Rþ, we have that

_V ð1:2ÞðtÞ 6 � d5D�1
1 � 3D�1

2 D5p2ðtÞ
h i

Vðx; y; zÞ þ D5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3D�1

0 Vðx; y; zÞ
q

p1ðtÞ:

Let

p2ðtÞ ¼ lim sup
ðt;vÞ!ð1;1Þ

1
v

Z tþv

t
p1ðlÞdl < 3�1d5D�1

1 D2D�1
5 :

Thus, choose c ¼ d5D�1
1 ; k1ðtÞ ¼ 3D�1

2 D5p2ðtÞ; k2ðtÞ ¼ D5

ffiffiffiffiffiffiffiffiffiffiffi
3D�1

0

q
p1ðtÞ and b = 1/2, condition (ii) of Lemma 2.2 is established.

This completes the proof of the Theorem 3.5. h
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