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Abstract. In this paper, Lyapunov direct method was employed. We
present criteria for all solutions x(t) its first and second derivatives of
the third order nonlinear non autonomous differential equations to con-
verge to zero as t → ∞. Sufficient conditions are also established for
the boundedness and uniform ultimate boundedness of solutions of the
equations considered. Our results revise, improve and generalize existing
results in the literature.

1 Introduction

Nonlinear differential equations of higher order have been extensively studied
with high degree of generality. In particular, boundedness, uniform bounded-
ness, ultimate boundedness, uniform ultimate boundedness and asymptotic
behaviour of solutions have in the past and also recently been discussed by
remarkable authors, see for instance Reissig et al. [18], Rouche et al. [19],
Yoshizawa [26] and [27] where the general results were discussed. Authors
that have worked on the qualitative behaviour of solutions of third order non-
linear differential equations include Ademola et al. [1, 2, 3, 4, 5, 6], Chukwu [7],
Ezeilo [8, 9, 10, 11, 12], Hara [13], Mehri and Shadman [14], Omeike [15, 16],
Qian [17], Swick [20, 21, 22], Tejumola [23] and Tunç [24, 25]. Complete and
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198 A. T. Ademola, P. O. Arawomo

incomplete Lyapunov functions were constructed and used by these authors
to establish their results. The nonlinear differential equations considered are
the types where the restoring nonlinear terms do not depend explicitly on the
independent real variable t, except in [1, 2, 4, 13] and [14] where the restoring
nonlinear terms depend or multiplied by functions of t.

Till now, according to our observation from the relevant literature, the prob-
lem of boundedness (where the bounding constant depends on the solutions
in question), uniform ultimate boundedness and asymptotic behaviour of so-
lutions of the nonlinear non autonomous third order differential equation con-
sidered, have so far remained open. In this paper therefore, using Lyapunov
direct method, a complete Lyapunov function was constructed and used to ob-
tain criteria for boundedness, uniform ultimate boundedness and asymptotic
behaviour of solutions of the third order nonlinear differential equation

x ′′′ +ψ(t)f(x, x ′, x ′′)x ′′ + φ(t)g(x, x ′) +ϕ(t)h(x, x ′, x ′′) = p(t, x, x ′, x ′′) (1)

or its equivalent system

x ′ = y, y ′ = z, z ′ = p(t, x, y, z) −ψ(t)f(x, y, z)z− φ(t)g(x, y) +ϕ(t)h(x, y, z)

(2)
in which p ∈ C(R+ × R

3,R); f, h ∈ C(R3,R); g ∈ C(R2,R); φ,ϕ,ψ ∈
C(R+,R); R = (−∞,∞); R

+ = [0,∞); the functions φ,ϕ,ψ, f, g, h and p de-
pend only on the arguments displaced explicitly. The derivatives ∂

∂x
f(x, y, z) =

fx(x, y, z),
∂
∂y
f(x, y, z) = fy(x, y, z), ∂

∂z
f(x, y, z) = fz(x, y, z),

∂
∂x
g(x, y) =

gx(x, y),
∂
∂x
h(x, y, z) = hx(x, y, z),

∂
∂y
h(x, y, z) = hy(x, y, z), ∂

∂z
h(x, y, z) = hz(x, y, z),

d
dt
ψ(t) = ψ ′(t), d

dt
φ(t) = φ ′(t) and d

dt
ϕ(t) = ϕ ′(t) exist and are continuous

for all x, y, z and t. As usual, condition for uniqueness will be assumed and
x ′, x ′′, x ′′′as elsewhere, stand for differentiation with respect to the indepen-
dent variable t. Motivation for this studies comes from the works of Hara [13],
Omeike [15, 16],Tunç [24, 25] and the recent work of Ademola and Arawomo
[4] where conditions for stability and uniform ultimate boundedness of solu-
tions of (1) were proved. Our results revise and improve the results in [4] and
extend the results in [13, 14, 15, 16, 24] and [25].

2 Preliminaries

Consider the system of the form

X ′(t) = F(t, X(t)) (3)
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Asymptotic behaviour of solutions 199

where F ∈ C(R+ × R
n,Rn) and R

n is the n−dimensional Euclidean space.

Definition 1 A solution X(t; t0, X0) of (3) is bounded, if there exists a β >
0 such that ‖X(t; t0, X0)‖ < β for all t ≥ t0 where β may depend on each
solution.

Definition 2 The solutions X(t; t0, X0) of (3) are uniformly bounded, if for
any α > 0 and t0 ∈ R

+, there exists a β(α) > 0 such that if ‖X0‖ < α

‖X(t; t0, X0)‖ < β for all t ≥ t0.

Definition 3 The solutions of (3) are uniformly ultimately bounded for bound
B if there exists a B > 0 and if corresponding to any α > 0 and t0 ∈ R

+, there
exists a T(α) > 0 such that if ‖X0‖ < α implies that ‖X(t; t0, X0)‖ < B for all
t ≥ t0 + T(α).

Definition 4 (i) A function φ : R
+ → R

+, continuous, strictly increasing
with φ(0) = 0, is said to be a function of class K for such function, we shall
write φ ∈ K.

(ii) If in addition to (i) φ(r) → +∞ as r → ∞, φ is said to be a function of
class K

∗ and we write φ ∈ K
∗.

The following lemmas are very important in the proofs of our results.

Lemma 1 [27] Suppose that there exists a Lyapunov function V(t, X) de-
fined on R

+, ‖X‖ ≥ ρ were ρ > 0 may be large which satisfies the following
conditions:

(i) a(‖X‖) ≤ V(t, X) ≤ b(‖X‖), a ∈ K
∗ and b ∈ K;

(ii) V ′
(3)(t, X) ≤ 0, for all (t, X) ∈ R

+ × R
n.

Then the solutions of (3) are uniformly bounded.

Lemma 2 [27] If in addition to assumption (i) of Lemma 1, V ′
(3)(t, X) ≤

−c(‖X‖), c ∈ K for all (t, X) ∈ R
+×R

n. Then the solutions of (3) are uniformly
ultimately bounded.

Let Q be an open set in R
n and Q∗ ⊂ Q. Consider a system of differential

equation
X ′(t) = F(t, X(t)) +G(t, X(t)) (4)

where F,G are defined and continuous on R
+ ×Q.
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200 A. T. Ademola, P. O. Arawomo

Definition 5 A scalar function W(X) defined for X ∈ Q is said to be positive
definite with respect to a set S, if W(X) = 0 for X ∈ S and if corresponding
to each ǫ > 0 and each compact set Q∗ in Q there exists a positive number
δ(ǫ,Q∗) such that

W(X) ≥ δ(ǫ,Q∗)

for X ∈ Q∗ −N(ǫ, S). N(ǫ, S) is the ǫ neighborhood of S.

Let Ω be a closed set in Q, we have the following lemma

Lemma 3 Suppose that there exist a nonnegative Lyapunov function V(t, X)

defined on R
+ ×Q such that

V ′
(4)(t, X) ≤ −W(X)

where W(X) is positive definite with respect to a closed set Ω in the space R
n.

Moreover suppose that F(t, X) of system (4) is bounded for all t when X belongs
to an arbitrary compact set in Q and that F(t, X) satisfies conditions:

(i) F(t, X) tends to a function H(X) for X ∈ Ω as t → ∞ and on any
compact set in Ω this convergence is uniform;

(ii) Corresponding to each ǫ > 0 and each Y ∈ Ω there exists a δ(ǫ, Y) > 0

and a T(ǫ, Y) > 0 such that if ‖X−Y‖ < δ(ǫ, Y) and t ≥ T(ǫ, Y), we have

‖F(t, X) − F(t, Y)‖ < ǫ.

Then every bounded solution of (4) approaches the largest semi-invariant set
of the system

X ′ = H(X), X ∈ Ω (5)

as t → ∞. In particular, if all solutions of (4) are bounded, every solution of
(4) approaches the largest semi-invariant set of (5) contained in Ω as t → ∞.

3 Statement of Results

We have the following results

Theorem 1 Further to the basic assumptions on the functions f, g, h, φ,ϕ
and ψ appearing in (2), suppose that a, a1, b, b1, c,δ0, ǫ,φ0, φ1, ϕ0,ϕ1, ψ0 and
ψ1, are positive constants such that for all t ≥ 0:
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Asymptotic behaviour of solutions 201

(i) a ≤ f(x, y, z) ≤ a1 for all x, y, z;

(ii) b ≤ g(x, y)/y ≤ b1 for all x, y 6= 0;

(iii) ψ0 ≤ ψ(t) ≤ ψ1, φ0 ≤ φ(t) ≤ φ1, ϕ0 ≤ ϕ(t) ≤ ϕ1;

(iv) h(0, 0, 0) = 0, δ0 ≤ h(x, y, z)/x for all x 6= 0, y and z;

(v) sup
t≥0

[|ψ ′(t)| + |φ ′(t)| + |ϕ ′(t)|] < ǫ;

(vi) gx(x, y) ≤ 0, yfx(x, y, z) ≤ 0, hx(x, 0, 0) ≤ c for all x, y and ab > c;

(vii) hy(x, y, 0) ≥ 0, hz(x, 0, z) ≥ 0, yfz(x, y, z) ≥ 0 for all x, y, z;

(viii)
∫∞

0
|p(t, x, y, z)|dt < ∞.

Then the solution (x(t), y(t), z(t)) of (2) is uniformly ultimately bounded.

Theorem 2 In addition to the assumptions of Theorem 1, g(0, 0) = 0, then
every solution (x(t), y(t), z(t)) (2) is uniformly bounded and satisfies

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0, lim
t→∞

z(t) = 0 (6)

Theorem 3 Suppose that a, b, c, δ0, ǫ, φ0, ϕ0, ϕ1 and ψ0 are positive con-
stants such that for all t ≥ 0 :

(i) assumptions (iv)-(viii) of Theorem 1 hold;

(ii) a ≤ f(x, y, z) for all x, y, z;

(iii) b ≤ g(x, y)/y for all x and y 6= 0;

(iv) φ0 ≤ φ(t), ϕ0 ≤ ϕ(t) ≤ ϕ1, ψ0 ≤ ψ(t).

Then any solution (x(t), y(t), z(t)) of (2) with initial conditions

x(0) = x0, y(0) = y0, z(0) = z0, (7)

satisfies

|x(t)| ≤ D, |y(t)| ≤ D, |z(t)| ≤ D, (8)

for all t ≥ 0, where the constant D > 0 depends on a, b, c, δ0, ǫ, φ0, ϕ0, ϕ1, ψ0

as well as on t0, x0, y0, z0 and on the function p appearing in (2).
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202 A. T. Ademola, P. O. Arawomo

If the function p(t, x, y, z) ≡ p(t) 6= 0, (2) reduces to

x ′ = y, y ′ = z, z ′ = p(t) −ψ(t)f(x, y, z)z− φ(t)g(x, y) +ϕ(t)h(x, y, z) (9)

where p ∈ C(R+,R), with the following results:

Corollary 1 If hypotheses (i)-(vii) of Theorem 1 hold true, and in addition∫∞
0

|p(t)|dt < ∞, then the solution (x(t), y(t), z(t)) of (9) is uniformly ulti-
mately bounded.

Corollary 2 If in addition to assumptions of Corollary 1, g(0, 0) = 0, then
every solution (x(t), y(t), z(t)) of (9) is uniformly bounded and satisfies (6).

Corollary 3 Suppose that a, b, c, δ0, ǫ, φ0, ϕ0, ϕ1 and ψ0 are positive con-
stants such that for all t ≥ 0 :

(i) assumptions (iv)-(vii) of Theorem 1 hold;

(ii) assumptions (ii)-(iv) of Theorem 3 hold;

(iii)
∫∞

0
|p(t)|dt < ∞.

Then every solution (x(t), y(t), z(t)) of (9) with initial conditions (7) satisfies
(8) for all t ≥ 0 where D > 0 is a constant depending on a, b, c, δ0, ǫ, φ0, ϕ0, ϕ1,

ψ0 as well as on t0, x0, y0, z0 and on the function p appearing in (9).

Remark 1 (i) The results in [5],[10]-[13] and [21] are special cases of The-
orem 1. Also, if φ(t) = ϕ(t) = ψ(t) ≡ 1, system (2) specializes to that
discussed by Ademola and Arawomo [3] (the generalization of the results
of Omeike [15] and Tunç [24]). Moreover, in [4] Ademola and Arawomo
studied stability and uniform ultimate boundedness of solutions of (2).
Theorem 1 revises Theorem 6 in [4]. In particular, the main tool used
in this investigation weaken the hypothesis on the function p compared
with the result in [4].

(ii) If f(x, y, z) ≡ p(t), g(x, y) ≡ g(y), h(x, y, z) ≡ h(x) and p(t, x, y, z) ≡
0 system (2) specializes to that discussed by Swick [22]. His result in
Theorem 1 is a special case of Theorem 2. Moreover, if f(x, y, z) ≡ a

a > 0 is a constant or p(t), g(x, y) ≡ yg(x) or g(y), p(t, x, y, z) ≡ e(t)

and ϕ(t) = ψ(t) ≡ 1 system (2) reduces to that discussed by Swick
[20]. Moreover, when p(t, x, y, z) ≡ 0 in (2) conditions under which all
solutions x(t), its first and second derivatives converge to zero as t → ∞
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Asymptotic behaviour of solutions 203

had been discussed by Ademola and Arawomo [4]. Furthermore, whenever
f(x, y, z) ≡ ψ(x, y) or ψ(x, y, z), h(x, y, z) ≡ 0 and p(t, x, y, z) ≡ p(t)

system (2) specializes to that studied by Omeike [16], Qian [17] and Tunç
[24]. Hence, Theorem 2 revises, improves and generalizes the results in
[4, 16, 17, 20] and [24].

(iii) The results of Ademola et al. [5], Mehri and Shadman [14] and Swick
[22] Theorem 5 are all special cases of Theorem 3.

The proofs of our results depend on the function V = V(t, x(t), y(t), z(t))

defined as

V = e−P∗(t)U (10a)

where

P∗(t) =

∫t

0

|p(µ, x, y, z)|dµ (10b)

and the function U ≡ U(t, x(t), y(t), z(t))

2U = 2(α+ aψ(t))ϕ(t)

∫x

0

h(ξ, 0, 0)dξ+ 4ϕ(t)yh(x, 0, 0)

+ 4φ(t)

∫y

0

g(x, τ)dτ+ 2(α+ aψ(t))ψ(t)

∫y

0

τf(x, τ, 0)dτ

+ 2z2 + βy2 + bβφ(t)x2 + 2aβψ(t)xy+ 2βxz+ 2(α+ aψ(t))yz

(10c)

where α and β are positive fixed constants satisfying

ϕ1c

φ0b
< α < ψ0a (10d)

and

0 < β < min

{

bφ0, (abψ0φ0 − cϕ1)η
−1
1 ,

1

2
(aψ0 − α)η−1

2

}

(10e)

where

η1 := 1+aψ1+δ
−1
0 ϕ−1

0 φ2
0

(

g(x, y)

y
−b

)2

and η2 := 1+δ−1
0 ϕ−1

0 ψ2
0[f(x, y, z)−a]2.

Remark 2 If t = 0 in (10b), (10a) coincides with (10c) and the main tool
used in [4].
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204 A. T. Ademola, P. O. Arawomo

Next, we shall show that (10) and its time derivative along a solution of (2)
satisfy some fundamental inequalities as presented in the following lemma.

Lemma 4 If all the hypotheses of Theorem 1 hold true, then for the function
V defined in (10) there exist positive constants D1 > 0, D2 > 0 such that

D1(x
2(t) + y2(t) + z2(t)) ≤ V(t, x, y, z) ≤ D2(x

2(t) + y2(t) + z2(t)) (11a)

and

V(t, x(t), y(t), z(t)) → +∞ as x2(t) + y2(t) + z2(t) → ∞. (11b)

Furthermore, there exists a finite constant D3 > 0 such that along a solution
of (2)

V ′ ≡
d

dt
V(t, x(t), y(t), z(t)) ≤ −D3(x

2(t) + y2(t) + z2(t)). (11c)

Proof. Since h(0, 0, 0) = 0, (10c) can be rearranged in the form

2U =
2ϕ(t)

bφ(t)

∫x

0

[(α+ aψ(t))bφ(t) − 2ϕ(t)hξ(ξ, 0, 0)]h(ξ, 0, 0)dξ

+ 4φ(t)

∫y

0

(

g(x, τ)

τ
− b

)

τdτ+ 2b−1φ−1(t)[ϕ(t)h(x, 0, 0) + bφ(t)y]2

+ 2

∫y

0

[(α+ aψ(t))ψ(t)f(x, τ, 0) − (α2 + a2ψ2(t))]τdτ

+ (αy+ z)2 + (βx+ aψ(t)y+ z)2 + β[bφ(t) − β]x2 + βy2.

In view of the hypotheses of Theorem 1 this equation becomes

U ≥
1

2

{

[(α+ aψ0)bφ0 − 2ϕ1c]b
−1φ−1

0 ϕ0δ0 + β(bφ0 − β)

}

x2

+
1

2

[

α(aψ0 − α) + β

]

y2 + b−1φ−1
0 [δ0ϕ0x+ bφ0y]

2

+
1

2
(αy+ z)2 +

1

2
(βx+ aψ0y+ z)2.

(12)

From (10d) and (10e) αbφ0 > cϕ1, abφ0ψ0 > cϕ1, aψ0 > α and bφ0 > β re-
spectively, so that the quadratic in the right hand side of the inequality (12) is
positive definite, hence there exists a positive constant λ0 = λ0(a, b, c, α, β, δ0,

φ0, ϕ0, ϕ1, ψ0) such that

U ≥ λ0(x
2 + y2 + z2) (13a)
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Asymptotic behaviour of solutions 205

for all t ≥ 0, x, y and z. From hypothesis (viii) of Theorem 1 and (10b) there
exists a constant P0 > 0 such that

0 ≤ P∗(t) ≤ P0 (13b)

for all t ≥ 0.Now, using (13) in (10a) we obtain

V ≥ δ1(x
2 + y2 + z2) (14a)

for all t ≥ 0, x, y and z, where δ1 := λ0 exp[−P0] > 0. This establishes the
lower inequality in (11a). From (14a), estimate (11b) follows immediately i.e

V(t, x, y, z) → +∞ as x2 + y2 + z2 → ∞. (14b)

Furthermore, h(0, 0, 0) = 0 implies that h(x, 0, 0) ≤ cx for all x 6= 0, using this
estimate, the hypotheses of Theorem 1 and the inequalities 2|xy| ≤ x2 + y2,

2|xz| ≤ x2 + z2 and 2|yz| ≤ y2 + z2, (10c) yields

U ≤ δ2(x
2 + y2 + z2) (15)

for all t ≥ 0, x, y and z, where δ2 := 1
2

max{λ1, λ2, λ3} > 0, λ1 = (2 + α +

aψ1)cϕ1 + (1 + aψ1 + bφ1)β, λ2 = (α + aψ1)(1 + a1ψ1) + (1 + aψ1)β +

2(b1φ1 + cϕ1) and λ3 = 2 + α + β + aψ1. Using estimates (13b) and (15) in
(10a), we obtain

V ≤ δ2(x
2 + y2 + z2) (16)

for all t ≥ 0, x, y and z. Thus by (16), the upper inequality in (11a) is estab-
lished.

Moreover, the derivative of V along a solution (x(t), y(t), z(t)) of (2), with
respect to t is given by

V ′
(2) = −e−P∗(t)

[

U|p(t, x, y, z)| −U ′
(2)

]

, (17)

where P∗(t) and U are the functions defined in (10b) and (10c) respectively
and the derivative of the function U with respect to t, along a solution of (2)
is after simplifying

U ′
(2) =

3∑

i=1

Ui −U4x
2 −U5y

2 −U6z
2 −U7

− βφ(t)

[

g(x, y)

y
− b

]

xy− βψ(t)[f(x, y, z) − a]xz

+ [βx+ [α+ aψ(t)]y+ 2z]p(t, x, y, z),

(18)IB
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206 A. T. Ademola, P. O. Arawomo

where:

U1 :=

[

2

∫y

0

g(x, τ)dτ+
1

2
bβx2

]

φ ′(t) +

[

[α+ aψ(t)]

∫x

0

h(ξ, 0, 0)dξ

+ 2yh(x, 0, 0) + ayz

]

ϕ ′(t) +

[

aϕ(t)

∫x

0

h(ξ, 0, 0)dξ+ aβxy

+ [α+ 2aψ(t)]

∫y

0

τf(x, τ, 0)dτ

]

ψ ′(t);

U2 := aβψ(t)y2 + 2βyz;

U3 := 2φ(t)y

∫y

0

gx(x, τ)dτ+ [α+ aψ(t)]ψ(t)y

∫y

0

τf(x, τ, 0)dτ;

U4 := βϕ(t)
h(x, y, z)

x
, (x 6= 0);

U5 := [α+ aψ(t)]φ(t)
g(x, y)

y
− 2ϕ(t)hx(x, 0, 0), (y 6= 0);

U6 := 2ψ(t)f(x, y, z) − [α+ aψ(t)]

and
U7 := ϕ(t)[[α+ aψ(t)]y+ 2z][h(x, y, z) − h(x, 0, 0)]

+[α+ aψ(t)]ψ(t)yz[f(x, y, z) − f(x, y, 0)].

In view of the hypotheses of Theorem 1, we have the following estimates for
Ui (i = 1, 2, · · · , 6) :

U1 ≤ ǫλ4(x
2 + y2 + z2)

for all t ≥ 0, x, y and z, where λ4 := max{λ41, λ42, λ43} > 0, λ41 := max{1
2
bβ, b1, 1},

λ42 := 1
2

max{(α + aψ1 + 2)c, a + 2c, a} and λ43 := 1
2

max{a(β + cϕ1), aβ +

(α+ 2aψ1)a1, 1};

U2 ≤ β[(1+ aψ1)y
2 + z2]

for all t ≥ 0, x and y;
U3 ≤ 0

for all t ≥ 0, x and y;
U4 ≥ βδ0ϕ0

for all t ≥ 0, x 6= 0, y and z;

U5 ≥ (α+ aψ0)bφ0 − 2cϕ1

for all t ≥ 0, x and y;
U6 ≥ aψ0 − α
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Asymptotic behaviour of solutions 207

for all t ≥ 0, x, y and z. Finally by the mean value theorem and the hypotheses
of Theorem 1, we have

U7 = [α+ aψ(t)]ψ(t)yz2fz(x, y, θ1z) + [α+ aψ(t)]ϕ(t)y2hy(x, θ2y, 0)

+2ϕ(t)z2hz(x, 0, θ3z) ≥ 0

for all t ≥ 0, x, y 6= 0 6= z where 0 ≤ θi ≤ 1 (i = 1, 2, 3), but U7 = 0 for
y = 0 = z. Using estimate Ui (i = 1, 2, · · · , 7) in (18), we obtain

U ′
(2) ≤ −

1

2
βδ0ϕ0x

2 − [(α+ aψ0)bφ0 − 2cϕ1 − β(1+ aψ1)]y
2

− (aψ0 − α− β)z2 −
1

4
βδ0ϕ0

[

x+ 2φ0ϕ
−1
0 δ−1

0

(

g(x, y)

y
− b

)

y

]2

+ βφ2
0δ

−1
0 ϕ−1

0

(

g(x, y)

y
− b

)2

y2 + βψ2
0δ

−1
0 ϕ−1

0

(

f(x, y, z) − a

)2

z2

−
1

4
βδ0ϕ0

[

x+ 2ψ0ϕ
−1
0 δ−1

0 (f(x, y, z) − a)z

]2

+ ǫλ4(x
2 + y2 + z2)

+ λ5(|x| + |y| + |z|)|p(t, x, y, z)|,

(19)

where λ5 = max{β,α+ aψ1, 2}. Since, β, δ0, ϕ0 are positive constants,

[x+ 2φ0ϕ
−1
0 δ−1

0

(

g(x,y)
y

−b

)

y]2 ≥ 0 and [x+ 2ψ0ϕ
−1
0 δ−1

0 (f(x, y, z) −a)z]2 ≥ 0

for all t ≥ 0, x, y and z, estimate (19) reduces to

U ′
(2) ≤ −

1

2
βδ0ϕ0x

2 − (αbφ0 − cϕ1)y
2 −

1

2
(aψ0 − α)z2

−

{

abφ0ψ0 − cϕ1 − β

[

1+ aψ1 + φ2
0δ

−1
0 ϕ−1

0

(

g(x, y)

y
− b

)2]}

y2

−

{
1

2
(aψ0 − α) − β

[

1+ψ2
0δ

−1
0 ϕ−1

0

(

f(x, y, z) − a

)2]}

z2

+ ǫλ4(x
2 + y2 + z2) + λ5(|x| + |y| + |z|)|p(t, x, y, z)|.

Applying estimates (10d), (10e) and choosing ǫ < λ−1
4 λ6 where

λ6 := min{1
2
βδ0ϕ0, αbφ0 − cϕ1,

1
2
(aψ0 − α)}, we obtain

U ′
(2) ≤ −λ7(x

2 + y2 + z2) + λ5(|x| + |y| + |z|)|p(t, x, y, z)|, (20)
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for all t ≥ 0, x, y and z, where λ7 := λ6 − ǫλ4 > 0. Now, using estimates (13a)
and (17), we find

V ′
(2) ≤ −e−P∗(t)

{

[λ0(x
2+y2 + z2) − λ5(|x| + |y| + |z|)]|p(t, x, y, z)|

+ λ7(x
2 + y2 + z2)

} (21)

for all t ≥ 0, x, y and z. Using condition (viii) of Theorem 1, noting the fact
that (|x|+|y|+|z|)2 ≤ 3(x2+y2+z2), and choosing (x2+y2+z2)1/2 ≥ 31/2λ−1

0 λ5,

estimate (21) becomes

V ′
(2) ≤ −δ3(x

2 + y2 + z2), (22)

for all t ≥ 0, x, y and z where δ3 = λ7 exp[−P∗(∞)]. (22) establishes estimate
(11c) of the lemma. This completes the proof of the lemma. �

Proof of Theorem 1. Let (x(t), y(t), z(t)) be any solution of (2), in view of
estimates (11) the hypotheses of Lemma 2 hold true. Thus, by Lemma 2, the
solution (x(t), y(t), z(t)) of (2) is uniformly ultimately bounded. �

Proof of Theorem 2. The proof of this theorem depends on the function
V defined in (10). First, by Lemma 4, and the hypotheses of Lemma 1 are
satisfied so that the solution (x(t), y(t), z(t)) of (2) is uniformly bounded.
Furthermore, the continuity and boundedness of the functions f, g, h,φ,ϕ and
ψ imply the boundedness of the function F(t, X) for all t when X belongs to
any compact set in R

3.

Next, from estimate (22), let W(X) := δ3(x
2 + y2 + z2), clearly W(X) ≥ 0, for

all X ∈ R
3. Consider the set

Ω := {X = (x, y, z) ∈ R
3|W(X) = 0}. (23)

The continuity of the functionW(X) implies that the setΩ is closed andW(X)

is positive definite with respect to Ω and

V ′
(2)(t, X) ≤ −W(X)

for all (t, X) ∈ R
+ × R

3. System (2) can be rewritten in the form

X ′ = F(t, X) +G(t, X)

where X = (x, y, z)T, F(t, X) = (y, z,−ψ(t)f(x, y, z)z−φ(t)g(x, y)−ϕ(t)h(x, y, z))T

and G(t, X) = (0, 0, p(t, x, y, z))T. Moreover, from the hypotheses of the theo-
rem we have F(t, X) tends to a function F(X), say, for all X ∈ Ω as t → ∞, and
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by (23) W(X) = 0 on Ω implies that x = y = z = 0. By system (2) and the
fact that h(0, 0, 0) = 0 = g(0, 0), the largest semi invariant set of X ′ = F(X)

X ∈ Ω as t → ∞ is the origin. Thus the hypotheses of Lemma 3 are satisfied
and (6) follows. This completes the proof of the theorem. �

Proof of Theorem 3. Let (x(t), y(t), z(t)) be any solution of (2). Under the
hypotheses of Theorem 3, estimates (14a) and (21) hold. To prove (8), since
λ0(x

2 + y2 + z2)|p(t, x, y, z)| ≥ 0, λ7(x
2 + y2 + z2) ≥ 0 for all t ≥ 0, x, y, z, the

fact that |x| ≤ 1+ x2, |y| ≤ 1+ y2 and |z| ≤ 1+ z2, estimate (21) becomes

V ′
(2) ≤ λ5e

−P∗(t)(3+ x2 + y2 + z2)]|p(t, x, y, z)|

for all t ≥ 0, x, y and z. Now, from estimates (14a) and (13b) this inequality
yields

V ′
(2) − δ−1

1 λ5|p(t, x, y, z)|V ≤ 3λ5|p(t, x, y, z)|.

Solving this first order differential inequality using integrating factor
exp[−δ−1

1 λ5P∗(t)] and estimate (13b), we have

V(t, x, y, z) ≤ λ8 (24)

for all t ≥ 0, x, y and z, where λ8 := [V(t0, x0, y0, z0)+3λ5P0] exp[δ−1
1 λ5P0] > 0

is a constant. From estimates (14a) and (24), estimate (8) follows for all t ≥ 0,
with D ≡ δ−1

1 λ8. This completes the proof of the theorem. �
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