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Abstract

Criteria for uniform asymptotic stability, boundedness, uniform ultimate boundedness
and asymptotic behaviour of solutions of the most general third order nonlinear differen-
tial equations with the restoring nonlinear terms depending explicitly on the independent
real variable t are established. The construction a complete Lyapunov function, Lya-
punov’s second method, the technique introduced by Antoisewicz [9] and the limit point
of Yoshizawa [29] are used to obtain the results. The most recent results of Ademola and
Arawomo [1, 2, 3, 4] and results on third order nonlinear differential equations which have
been discussed in [18] are particular cases of our results.

Keywords: Third order nonlinear differential equations; Uniform asymptotic stability;
Boundedness; Asymptotic behaviour of solutions

1 Introduction

The theory of differential equations of higher order have been recognized to
be invaluable tools in the modelling of many phenomena in various fields of

science and engineering. In particular, stability, boundedness and asymptotic
behaviour of solutions of nonlinear third order differential equations have in

the past and also recently been researched. See for instance Reissig et al, [18],
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Rouche et al, [19], Yoshizawa [29, 30] and the papers of Ademola and Ara-

womo [1, 2, 3, 4], Ademola et al, [5]-[7], Afuwape and Adesina [8], Chukwu [10],
Ezeilo [11]-[13], Ezeilo and Tejumola [14], Mehri and Shadman [15], Ogundare

[16], Qian [17], Swick [20, 21], Tejumola [22, 23], Tunç [24, 25], Yamamoto [26]-
[28]. These works were done with the aid of Lyapunov functions except in [7]

where frequency domain approach was used.
However, the problem of uniform asymptotic stability, boundedness, uni-

form ultimate boundedness and asymptotic behaviour of solutions where the

restoring nonlinear terms depend explicitly on the independent real variable
t remain unresolved. The aim of this article therefore is to establish criteria

for uniform asymptotic stability, boundedness, uniform ultimate boundedness
and asymptotic behaviour of solutions of the third order nonlinear differential

equation

...
x + f(t, x, ẋ, ẍ)ẍ+ g(t, x, ẋ) + h(t, x, ẋ, ẍ) = p(t, x, ẋ, ẍ) (1.1)

or its equivalent system

ẋ = y, ẏ = z, ż = p(t, x, y, z)− f(t, x, y, z)z − g(t, x, y)− h(t, x, y, z), (1.2)

where f, h, p ∈ C(R+ × R
3,R), g ∈ C(R+ × R

2,R), R+ = [0,∞) and R =

(−∞,∞). It is assumed that the functions f, g and p depend on the argument
shown and the derivatives: ∂f(t, x, y, z)/∂t = ft(t, x, y, z), ∂f(t, x, y, z)/∂x =

fx(t, x, y, z), ∂f(t, x, y, z)/∂y = fy(t, x, y, z), ∂f(t, x, y, z)/∂z = fz(t, x, y, z),
∂g(t, x, y)/∂t = gt(t, x, y), ∂g(t, x, y)/∂x = gx(t, x, y), ∂h(t, x, y, z)/∂t =
ht(t, x, y, z), ∂h(t, x, y, z)/∂x = hx(t, x, y, z), ∂h(t, x, y, z)/∂y = hy(t, x, y, z),

∂h(t, x, y, z)/∂z = hz(t, x, y, z), ∂
2h(t, x, y, z)/∂t∂x = htx(t, x, y, z) exist and

are continuous for all t, x, y and z. As usual, condition for uniqueness of solutions

will be assumed and the dots as elsewhere stand for differentiation with respect
to real variable t. Motivation for this study, comes from the works of Yamamoto

[26]-[28] and the recent works of Ademola and Arawomo [1, 2, 3, 4], where results
on uniform stability, uniform ultimate boundedness and asymptotic behaviour
of solutions were proved.

2 Some Preliminaries

Definition 1 (i) A function φ : R+ → R
+, continuous, strictly increasing with

φ(0) = 0 is said to be a function of class K for such function, we shall write
φ ∈ K.
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(ii) If in addition to (i) φ(r) → +∞ as r → ∞, φ is said to be a function of

class K∗.

The following lemmas are very important in the proof of the main results.
Consider the system of differential equations

dX

dt
= F (t, X), (2.1)

where X = X(t) is an n−vector. Suppose that F (t, X) is continuous in (t, X)

on R
+ ×D, D is a connected open set in R

n. Let C be the class of solutions of
(2.1) which remain in D.

Lemma 1 [30] Suppose that there exists a Lyapunov function V (t, X) defined

on R
+, ‖X‖ < H which satisfies the following conditions:

(i) V (t, 0) ≡ 0;

(ii) a(‖X‖) ≤ V (t, X) ≤ b(‖X‖), a, b ∈ K;

(iii) V̇(2.1)(t, X) ≤ −c(‖X‖) for all (t, X) ∈ R
+ ×D, where c ∈ K.

Then the trivial solution X(t) ≡ 0 of (2.1) is uniformly asymptotically stable.

Now consider the system (2.1) and suppose that F (t, X) is defined and contin-

uous on R
+ × R

n, we have the following lemma.

Lemma 2 [30] Suppose that there exists a Lyapunov function V (t, X) defined
on R

+, ‖X‖ ≥ ρ where ρ may be large, which satisfies the following conditions:

(i) a(‖X‖) ≤ V (t, X) ≤ b(‖X‖), a ∈ K
∗, b ∈ K;

(ii) V̇(2.1) ≤ −c(‖X‖) for all (t, X) ∈ R
+ × R

n, where c ∈ K.

Then the solutions of (2.1) are uniformly ultimately bounded.

Next, consider a system of differential equations

dX

dt
= F (t, X) +G(t, X). (2.2)

Let Q be an open set in R
n and suppose that F,G are continuous on R

+ × Q.
Moreover, suppose that X is continuous and bounded on R

+, that is, for a

compact set Q∗ ⊂ Q, X ∈ Q∗ for all t ∈ R
+, then we have

∫ ∞

0

‖G(t, X(t))‖dt < ∞. (2.3)
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Lemma 3 Suppose that F (t, X) of the system (2.2) is bounded for all t when

X belongs to an arbitrary compact set inQ.Moreover, suppose that there exists
a nonnegative Lyapunov function V (t, X) such that

V̇(2.2)(t, X) ≤ −W (X), (2.4)

where W (X) is positive definite with respect to a closed set Ω in the space Q.
Then every bounded solution of (2.2) approaches Ω as t → ∞.

3 Statement of Results

The main results in this paper are the following:

Theorem 1 In addition to the basic assumptions on the functions f, g, h and

p appearing in (1.2), suppose that a, a1, b, b0, b1, c, c0, δ, δ0 are positive constants
and for all t ≥ 0 :

(i) a ≤ f(t, x, y, z) ≤ a1 for all x, y and z;

(ii) b ≤ g(t, x, y)/y ≤ b1, gt(t, x, y)/y ≤ b0 for all x and y 6= 0;

(iii) h(t, 0, 0, 0) = 0, δ0 ≤ h(t, x, y, z)/x ≤ c, ht(t, x, 0, 0)/x ≤ δ for all x 6=

0, y, z and c < ab;

(iv) ht(t, 0, 0, 0) = 0, c0 ≤ htx(t, x, 0, 0) for all x;

(v) yfz(t, x, y, z) ≥ 0, hy(t, x, y, 0) ≥ 0, hz(t, x, 0, z) ≥ 0 for all x, y and z;

(vi) ft(t, x, y, 0) ≤ 0, gx(t, x, y) ≤ 0, yfx(t, x, y, 0) ≤ 0 for all x and y;

(vii)
∫∞

0 |p(t, x, y, z)|dt < ∞.

Then the solution (x(t), y(t), z(t)) of (1.2) is uniformly ultimately bounded.

Theorem 2 If in addition to the hypotheses of Theorem 1, g(t, 0, 0) =
p(t, 0, 0, 0) = 0, then the solution (x(t), y(t), z(t)) of (1.2) is uniformly bounded

and satisfy
lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0, lim
t→∞

z(t) = 0. (3.1)

Theorem 3 Under the hypotheses of Theorem 1, any solution (x(t), y(t), z(t))

of (1.2) with initial condition

x(0) = x0, y(0) = y0, z(0) = z0, (3.2)
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for t0 = 0 satisfies

|x(t)| ≤ D, |y(t)| ≤ D, |z(t)| ≤ D, (3.3)

for all t ≥ 0, where the constant D > 0 depends on a, b, c, c0, δ0 as well as on
t0 = 0, x0, y0, z0 and on the forcing term p appearing in (1.2).

If p(t, x, y, z) ≡ 0, Eq. (1.2) reduces to a particular case

ẋ = y, ẏ = z, ż = −f(t, x, y, z)z − g(t, x, y)− h(t, x, y, z), (3.4)

with the following result.

Theorem 4 If g(t, 0, 0) = 0 and hypotheses (i)-(vi) of Theorem 1 hold true,
then the trivial solution of (3.4) is uniformly asymptotically stable.

Corollary 1 (i) If p(t, x, y, z) = p(t) 6= 0, p : R+ → R, the results in Theorem
1, Theorem 2 and Theorem 3 hold true for the particular case

ẋ = y, ẏ = z, ż = p(t)− f(t, x, y, z)z − g(t, x, y)− h(t, x, y, z).

(ii) Under the hypotheses of Theorem 1 the solutions of (1.2) are ultimately
bounded and satisfies (3.3) for all t ≥ 0 with D independent of the initial data.

Remark 1 (i) If (1.1) is a constant coefficient differential equation
...
x +

aẍ + bẋ + cx = 0, then conditions (i)-(vii) of Theorem 1 reduces to the

Routh-Hurwitz conditions a > 0, ab > c and c > 0. To see this, we set
f(t, x, y, z) = a, g(t, x, y) = by, h(t, x, y, z) = cx and p(t, x, y, z) = 0.

(ii) The results of Qian [17], Yamamoto [26]-[28], Tunç [24] and the recent
works of Ademola and Arawomo [1, 2, 3, 4] and Ademola et al, [6, 7] are

particular case of these results. Besides, the main tools used in [17, 24, 26,
27] and [28] are incomplete Lyapunov functions. Moreover, the complete

Lyapunov functions used in [1]-[6] are special cases of the main tool used
in this investigation.

The main tool used in this paper is the continuously differentiable function
V = V (t, x, y, z) defined as

V = e−P∗(t)U (3.5a)

where

P∗(t) =

∫ t

0

|p(µ, x, y, z)|dµ (3.5b)
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and the function U = U(t, x, y, z) is defined by

2U = 2(α+ a)

∫ x

0

h(t, ξ, 0, 0)dξ + 4

∫ y

0

g(t, x, τ)dτ + 2βxz

+ 2(α+ a)yz + 2(α+ a)

∫ y

0

τf(t, x, τ, 0)dτ + 4yh(t, x, 0, 0)

+ bβx2 + βy2 + 2z2 + 2aβxy,

(3.5c)

where, as usual, α and β are positive constants satisfying

b−1c < α < a (3.5d)

and

0 < β < min{(ab− c)a−1, (ab− c)η−1
1 ,

1

2
(a− α)η−1

2 } (3.5e)

where

η1 := 1 + a+ δ−1
0

(

g(t, x, y)

y
− b

)2

and η2 := 1 + δ−1
0 [f(t, x, y, z)− a]2.

Remark 2 The inequalities in (3.5d) and (3.5e) hold true if b and c are replaced

by positive constants b0 and c0 respectively.

Next, we shall show that the function V and its time derivative satisfy

certain inequalities as discussed in the following lemma.

Lemma 4 Under the hypotheses of Theorem 1, there exist positive constants

D1 and D2 such that

D1(x
2(t) + y2(t) + z2(t)) ≤ V (t, x, y, z) ≤ D2(x

2(t) + y2(t) + z2(t)) (3.6a)

and

V (t, x(t), y(t), z(t))→ +∞ as x2(t) + y2(t) + z2(t) → ∞. (3.6b)

Furthermore, there exists a constant D3 > 0 such that along a solution
(x(t), y(t), z(t)) of (1.2)

V̇ (t, x, y, z) ≤ −D3(x
2(t) + y2(t) + z2(t)). (3.6c)
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Proof: Clearly V (t, 0, 0, 0) = 0, and since h(t, 0, 0, 0) = 0 for all t ≥ 0, the

function U defined in (3.5c) can be presented in the form

U = b−1

∫ x

0

[

(α+ a)b− 2hx(t, ξ, 0, 0)

]

h(t, ξ, 0, 0)dξ +
1

2
β(b− β)x2

+ 2

∫ y

0

(

g(t, x, τ)

τ
− b

)

τdτ + b−1(h(t, x, 0, 0) + by)2 +
1

2
(αy + z)2

+

∫ y

0

[(α+ a)f(t, x, τ, 0)− (α2 + a2)]τdτ +
1

2
βy2 +

1

2
(βx+ ay + z)2.

(3.7)

From the hypotheses of Theorem 1: hx(t, x, y, z) ≤ c for all x; h(t, x, 0, 0) ≥ δ0x
for all x 6= 0; g(t, x, y) ≥ by for all x, y 6= 0 and f(t, x, y, 0) ≥ a for all t ≥ 0, x, y

so that (3.7) becomes

U ≥
1

2
(αb− c+ ab− c)b−1δ0x

2 + b−1(δ0x+ by)2 +
β

2
(b− β)x2

+
1

2
[α(a− α) + β]y2 +

1

2
(αy + z)2 +

1

2
(βx+ ay + z)2.

(3.8)

By (3.5d) and (3.5e): αb > c; ab > c; a > α and b > β respectively, so that

the right hand side of (3.8) is positive definite, hence there exists a positive
constant δ1 = δ1(a, b, c, α, β, δ0) such that

U ≥ δ1(x
2 + y2 + z2) (3.9a)

for all t ≥ 0, x, y and z. Furthermore, (3.5b) and condition (vii) of the Theorem

1, imply the existence of a positive constant P0 such that

0 ≤ P∗(t) ≤ P0 (3.9b)

for all t ≥ 0.Using estimates (3.9) in (3.5a), we have

V ≥ δ2(x
2 + y2 + z2) (3.10a)

for all t ≥ 0, x, y and z, where δ2 = δ1e
−P0 > 0. From (3.10a), V (t, x, y, z) = 0

if and only if x2 + y2 + z2 = 0, V (t, x, y, z) > 0 if and only if x2 + y2 + z2 6= 0,
it follows that

V (t, x, y, z) → +∞ as x2 + y2 + z2 → ∞. (3.10b)

Moreover, applying f(t, x, y, 0) ≤ a1, g(t, x, y) ≤ b1y (y 6= 0), h(t, x, 0, 0) ≤ cx
(x 6= 0), the inequalities 2|x||y| ≤ x2+y2, 2|x||z| ≤ x2+z2 and 2|y||z| ≤ y2+z2,

in (3.5c) there exist positive constants η3 := (α + a + 2)c + (a + b + 1)β,
η4 := (α + a)(a1 + 1) + β(a+ 1) + 2(b1 + c) and η5 := α + β + 2 such that

U ≤ δ3(x
2 + y2 + z2) (3.11a)
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for all t ≥ 0, x, y and z where δ3 := 1
2
max{η3, η4, η5}. In view of (3.9b) and

(3.11a), (3.5a) yields
V ≤ δ3(x

2 + y2 + z2) (3.11b)

for all t ≥ 0, x, y and z.
Furthermore, let (x(t), y(t), z(t)) be any solution of (1.2). The derivative of

the function V with respect to t along a solution of (1.2) is

V̇(1.2) = −e−P∗(t)

[

U |p(t, x, y, z)| − U̇(1.2)

]

(3.12)

where P∗(t) and U are the functions defined by (3.5b) and (3.5c) respectively
and the derivative of the function U with respect to t along a solution of (1.2)

is defined as

U̇(1.2) =U1 + U2 + aβy2 + 2βyz + [βx+ (α + a)y + 2z]p(t, x, y, z)

− U3 − U4 − β

[

g(t, x, y)

y
− b

]

xy − β[f(t, x, y, z)− a]xz
(3.13)

where

U1 := (α+ a)

∫ x

0

ht(t, ξ, 0, 0)dξ + 2

∫ y

0

gt(t, x, τ)dτ + 2yht(t, x, 0, 0)

U2 := (α+ a)

∫ y

0

τft(t, x, τ, 0)dτ + 2y

∫ y

0

gx(t, x, τ)dτ

+ (α+ a)y

∫ y

0

τfx(t, x, τ, 0)dτ

U3 := [(α+ a)y + 2z][h(t, x, y, z)− h(t, x, 0, 0)]

+ (α+ a)yz[f(t, x, y, z)− f(t, x, y, 0)]

and

U4 := βxh(t, x, y, z) +

[

(α + a)
g(t, x, y)

y
− 2hx(t, x, 0, 0)

]

y2

+ [2f(t, x, y, z)− (α+ a)]z2

Since ht(t, 0, 0, 0) = 0, the right hand sides of U1 can be recast in the form
∫ x

0

[(α+ a)− 2b−1
0 htx(t, ξ, 0, 0)]ht(t, ξ, 0, 0)dξ + 2

∫ y

0

(

gt(t, x, τ)

τ
− b0

)

τdτ

+b−1
0

(

ht(t, x, 0, 0) + b0y

)2

.
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Now, since ht(t, x, 0, 0) ≤ δx for all x 6= 0, gt(t, x, y) ≤ b0y for all t ≥ 0, x, y 6= 0,

and c0 ≤ htx(t, x, 0, 0) for all t ≥ 0 and x, we have

U1 ≤
δ

2b0
[(α+ a)b0 − 2c0]x

2 + b−1
0 (δx+ b0y)

2.

In view of Remark 2, there exists a constant δ4 = δ4(a, b0, c0, α, δ) > 0 such that

U1 ≤ δ4(x
2 + y2 + z2)

for all t ≥ 0, x, y and z.
Furthermore, by hypothesis (vi) of Theorem 1, we have

U2 ≤ 0

for all t ≥ 0, x and y.
Also, by the mean value theorem, we have

U3 = (α+ a)y2hy(t, x, θ1y, 0) + 2z2hz(t, x, 0, θ2z) + (α+ a)yz2fz(t, x, y, θ3z) ≥ 0

0 ≤ θi ≤ 1 (i = 1, 2, 3, ), for all t ≥ 0, x, y 6= 0 and z 6= 0, but U3 = 0
when y = 0 = z. Finally, h(t, x, y, z) ≥ δ0x (x 6= 0), g(t, x, y) ≥ by and

hx(t, x, 0, 0) ≤ c for all x, and f(t, x, y, z) ≥ a for all t ≥ 0, x, y and z, we obtain

U4 ≥ βδ0x
2 + [(α+ a)b− 2c]y2 + (a− α)z2.

Using estimates Ui (i = 1, 2, 3, 4.) in (3.13), we obtain

U̇(1.2) ≤ δ4(x
2 + y2 + z2) + δ5(|x|+ |y|+ |z|)|p(t, x, y, z)| −

1

2
βδ0x

2

− [αb− c+ ab− c− β(1 + a)]y2 − (a− α− β)z2 −
1

4
βδ0x

2

− β

(

g(t, x, y)

y
− b

)

xy −
1

4
βδ0x

2 − β[f(t, x, y, z)− a]xz.

where δ5 = max{β, α+ a, 2}. This inequality, after completing the squares, can
be rearranged in the form

U̇(1.2) ≤ δ4(x
2 + y2 + z2) + δ5((|x|+ |y|+ |z|)|p(t, x, y, z)| −

1

2
βδ0x

2

−

{

ab− c− β

[

1 + a+ δ−1
0

(

g(t, x, y)

y
− b

)2]}

y2 − (αb− c)y2

−

{

1

2
(a− α)− β

[

1 + δ−1
0

(

f(t, x, ty, z)− a

)2]}

z2 −
1

2
(a− α)z2

−
1

4
βδ0

[

x+ 2δ−1
0

(

g(t, x, y)

y
− b

)

y

]2

−
1

4
βδ0

[

x+ 2δ−1
0 [f(t, x, y, z)− a]z

]2

.
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Using estimates (3.5d) and (3.5e) in this inequality, we obtain

U̇(1.2) ≤ −δ7(x
2 + y2 + z2) + δ5(|x|+ |y|+ |z|)|p(t, x, y, z)|, (3.14)

where δ6 = min{1
2
βδ0, αb − c, 1

2
(a− α)} > 0 chosen sufficiently large such that

δ7 = δ6 − δ4 > 0. On gathering estimates (3.9a) and (3.14) in (3.12), we have

V̇(1.2) ≤ −e−P∗(t)

[

δ1(x
2 + y2 + z2)− δ5(|x|+ |y|+ |z|)

]

|p(t, x, y, z)|

− δ7e
−P∗(t)(x2 + y2 + z2).

(3.15)

Choosing (x2 + y2 + z2)1/2 ≥ 31/2δ−1
1 δ5, using hypothesis (vii) of Theorem (1),

we have

V̇(1.2) ≤ −δ8(x
2 + y2 + z2), (3.16)

for all t ≥ 0, x, y and z, where δ8 = δ7e
−P∗(∞) > 0 is a constant. This completes

the proof of the lemma.

4 The Proof of The Main Results

Proof of Theorem 1: Let (x(t), y(t), z(t)) be any solution of (1.2). In view
of estimates (3.10), (3.11b) and (3.16), hypotheses of Lemma 2 are satisfied.

Hence by Lemma 2, all solutions of (1.2) are uniformly ultimately bounded.
This completes the proof of the theorem.

Proof of Theorem 2: Let (x(t), y(t), z(t)) be any solution of (1.2). We
shall show that all hypotheses of Lemma 3 hold true. Now, from (3.16)

V̇(1.2)(t, x, y, z) ≤ 0 for all t ≥ 0, x, y and z, thus from this inequality and
estimates (3.10) and (3.11b) the solutions of (1.2) are uniformly bounded (see
[30] Theorem 10.2 pp. 38-39).

Next, let W (X) = δ8(x
2 + y2 + z2), obviously W (X) ≥ 0 for all X = (x, y, z) ∈

R
3. Consider the set

Ω := {X ∈ R
3|W (X) = 0}.

From the continuity of W (X), the set Ω is closed and W (X) is positive definite

with respect to Ω and
V̇(1.2)(t, X) ≤ −W (X)

for all (t, X) ∈ R
+ × R

3.

Moreover, system (1.2) can be arranged in the form (2.2) where X = (x, y, z)T ,
F (t, X) = (y, z,−zf(t, x, y, z)− g(t, x, y)− h(t, x, y, z))T and G(t, X) =
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(0, 0, p(t, x, y, z))T . In view of condition (vii) of Theorem 1, estimate (2.3) holds.
From the continuity and boundedness of the functions f, g and h, the function

F (t, X) is bounded for all t ∈ R
+ when X belongs to any arbitrary compact

set in R
3. By Lemma 3 the solutions of (1.2) approaches Ω as t → ∞.

Next, we show that the set {(0, 0, 0)} is contained in Ω as t → ∞. SinceW (X) =
0 on Ω, we have x(t) = y(t) = z(t) = 0, and system (1.2) becomes

(ẋ, ẏ, ż)T = (0, 0,−g(t, 0, 0)− h(t, 0, 0, 0))T + (0, 0, p(t, 0, 0, 0))T. (4.1)

Since g(t, 0, 0) = h(t, 0, 0, 0) = p(t, 0, 0, 0) = 0, (4.1) has solution

(x(t), y(t), z(t))T = (K1, K2, K3)
T , (4.2)

where Ki (i = 1, 2, 3) is a constant. For (4.2) to remain in Ω as t → ∞ we must

have K1 = K2 = K3 = 0. Hence (3.1) follows.

Proof of Theorem 3: Let (x(t), y(t), z(t)) be any solution of (1.2), since

|x| ≤ 1 + x2, |y| ≤ 1 + y2 and |z| ≤ 1 + z2, estimate (3.15) becomes

V̇(1.2) ≤ δ5e
−P∗(t)[3 + (x2 + y2 + z2)]|p(t, x, y, z)|.

Using estimates (3.9b) and (3.10a) this inequality yields

V̇(1.2) − δ−1
2 δ5|p(t, x, y, z)|V ≤ 3δ5|p(t, x, y, z)|.

Solving this first order differential inequality using integrating factor
exp[−δ−1

2 δ5P∗(t)], we obtain

V (t, x, y, z) ≤ δ9 (4.3)

where δ9 = [V (t0, x0, y0, z0) + 3δ5P0] exp[δ
−1
2 δ5P0] > 0 is a constant. Using

estimate (4.3) in (3.10a) and the fact that |x| < ‖X‖2, X ∈ R
3, we have

|x(t)| ≤ δ10, |y(t)| ≤ δ10, |z(t)| ≤ δ10,

for all t ≥ 0, where δ10 = δ−1
2 δ9. This proves the theorem.

Proof of Theorem 4: The proof of this theorem is similar to the proof of
Theorem 2.1 in [7], hence it is omitted.

Example 1 Consider a particular case of (1.1) i.e the third order nonlinear
differential equation

...
x +

[

4 +

(

1 + t2 + |xẋ|+ exp

[

(1 + |ẋẍ|)−1

])−1]

ẍ

+ 5ẋ+

[

1 + exp

[

(1 + t)−1

]

+ |xẋ|

]−1

ẋ+ 2x

+ x

[

1 + exp

[

(1 + t+ |xẍ|ẋ2)−1

]]−1

= ẋ2

[

1 + t2 + x2 + ẋ2 + ẍ2

]−1

(4.4)
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or its equivalent system

ẋ = y, ẏ = z, ż = y2/(1 + t2 + x2 + y2 + z2)

−

[

4 +

[

1 + t2 + |xy|+ exp

[

(1 + |yz|)−1

]]−1]

z

−

[

5 +

[

1 + exp

[

(1 + t)−1

]

+ |xy|

]−1]

y

−

[

2 +

[

1 + exp

[

(1 + t+ |xz|y2)−1

]]−1]

x

(4.5)

Now, from (1.2) and (4.5), we obtain the following relations:

(a) the function

f(t, x, y, z) = 4 +
1

1 + t2 + |xy|+ exp[ 1
1+|yz|]

,

and we have the following inequalities:

(i) since 0 ≤ 1
1+t2+|xy|+exp[ 1

1+|yz| ]
≤ 1, for all t ≥ 0, x, y and z, this implies

that
4 ≤ f(t, x, y, z) ≤ 5

for all t ≥ 0, x, y and z, where a = 4 > 0 and a1 = 5 > 0;
(ii) the partial derivative of the function f with respect to t is

ft(t, x, y, z) =
−2t

[1 + t2 + |xy|+ exp[ 1
1+|yz|]]

2
≤ 0

for all t ≥ 0, x, y and z;
(iii) for x > 0, we have

yfx(t, x, y, z) =
−y2

[1 + t2 + |xy|+ exp[ 1
1+|yz|]]

2

for all t ≥ 0, x, y and z;
(iv) for z > 0,

yfz(t, x, y, z) =
y2 exp[(1 + |yz|)]

(1 + |yz|)2[1 + t2 + |xy|+ exp[ 1
1+|yz|]]

2
≥ 0

for all t ≥ 0, x, y and z;
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(b) the function

g(t, x, y) = 5y +
y

1 + exp[(1 + t)−1] + |xy|
,

(i) noting that 0 ≤ 1
1+exp[(1+t)−1]+|xy| ≤ 1 for all t ≥ 0, x and y, it follows

that

5 ≤
g(t, x, y)

y
≤ 6

for all t ≥ 0, x and y 6= 0 from where we have b = 5 > 0 and b1 = 6 > 0;
(ii) for x > 0, we have

gx(t, x, y) =
−y2

[1 + exp[(1 + t)−1] + |xy|]2
≤ 0

for all t ≥ 0, x and y;
(iii) also,

gt(t, x, y)

y
=

exp[(1 + t)−1]

(1 + t)2[1 + exp[(1 + t)−1] + |xy|]2

since,

0 ≤
exp[(1 + t)−1]

(1 + t)2[1 + exp[(1 + t)−1] + |xy|]2
≤ 1

for all t ≥ 0, x and y, it follows that

gt(t, x, y)

y
≤ 1

for all t ≥ 0, x and y 6= 0, where b0 = 1 > 0;

(c) the function

h(t, x, y, z) = 2x+
x

1 + exp[(1 + t+ |xz|y2)−1]
(4.6)

is defined with the following inequalities:
(i) since 0 ≤ 1

1+eu
≤ 1 for all t ≥ 0, x, y and z where u = 1

1+t+|xz|y2
, this

implies that
2 ≤ h(t, x, y, z)/x ≤ 3 (4.7)

t ≥ 0, x 6= 0, y and z. Also, from (4.7) we have

hx(t, x, y, z) ≤ 3
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for all t ≥ 0, x, y and z, where we have δ0 = 2 > 0 and c = 3 > 0 and

ab > c implies that 20 > 3;
(ii) it is also clear from (4.6) that h(t, 0, 0, 0) = 0 and

ht(t, x, y, z) =
xeu

[1 + t+ |xz|y2]2[1 + eu]2

so that
ht(t, 0, 0, 0) = 0

if x = y = z = 0;
(iii) also,

htx(t, x, 0, 0) =
ev

(1 + ev)2(1 + t)2

for all t ≥ 0, x where v =
1

1 + t
. Now since 0 < ev

(1+ev)2(1+t)2
< 1 for all

t ≥ 0, it follows that the constant c0 > 0 exists such that

htx(t, x, 0, 0, 0) ≥ c0

for all ≥ 0 and x.

(iv) furthermore,

hy(t, x, y, z) =
2x2|yz|eu

[1 + t+ |xz|y2]2[1 + eu]2
≥ 0

for all t ≥ 0, x, y and z,
(v) moreover,

hz(t, x, y, z) =
x2y2eu

[1 + t+ |xz|y2]2[1 + eu]2
≥ 0

for all t ≥ 0, x, y and z.
(vi) and

hx(t, x, 0, 0) = 2 +
1

(1 + ev)(1 + t)2

since 1
(1+ev)(1+t)2 ≤ 1 for all t ≥ 0, it follows that

hx(t, x, 0, 0) ≤ 3

for all t ≥ 0 and x where c = 3 > 0 as defined (c)(i)
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(d) Finally, for the function p(t, x, y, z), we have

p(t, x, y, z) =
y2

1 + t2 + x2 + y2 + z2
.

Clearly, p(t, 0, 0, 0) = 0 and it is not difficult to show that
∫ ∞

0

∣

∣

∣

∣

y2

1 + t2 + x2 + y2 + z2

∣

∣

∣

∣

dt < ∞.

Hence, all the assumptions of the theorems are satisfied and the conclusions
follow.
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