POSITIVE SOLUTIONS FOR A COUPLED SYSTEM OF NONLINEAR SECOND ORDER EIGENVALUE PROBLEMS

Moses B. Akorede ${ }^{1}$, Peter O. Arawomo ${ }^{2} \S$
${ }^{1,2}$ Department of Mathematics
University of Ibadan
Ibadan, NIGERIA

Abstract

In this work, we consider a system of coupled nonlinear second order eigenvalue problems. Under suitable conditions, existence of positive solutions are established, for determined eigenvalues, by the use of abstract fixed-point.

AMS Subject Classification: 34L15
Key Words: eigenvalue problem, positive solutions, compact operator, fixedpoint, cone

1. Introduction

The existence and multiplicity of positive solutions for nonlinear second order BVP of ordinary differential equations have attracted many authors' attention and concern.

Johnny Henderson and H. Wang [6] considered a nonlinear second order eigenvalue problem

$$
\left.\begin{array}{rl}
u^{\prime \prime}(t)+\lambda a(t) f(u(t)) & =0,0<t<1, \tag{1.}\\
u(0)=u(1) & =0
\end{array}\right\}
$$

They determined the value of λ (eigenvalue) for which there exist positive solutions to the BVP(1).

Received: September 25, 2014
(c) 2015 Academic Publications, Ltd. url: www.acadpubl.eu
${ }^{\S}$ Correspondence author

Ling Hu and Lianglong Wang [7] studied the existence of multiple positive solutions for systems of nonlinear second order BVP.

$$
\left.\begin{array}{rl}
-u^{\prime \prime}(x) & =f(x, v) \tag{2.}\\
-u^{\prime \prime}(x) & =g(x, u) \\
\alpha u(0)-\beta u^{\prime}(0) & =0, \quad \gamma u(1)+\delta u^{\prime}(1)=0 \\
\alpha v(0)-\beta v^{\prime}(0) & =0, \quad \gamma v(1)+\delta v^{\prime}(1)=0
\end{array}\right\}
$$

By the application of Krasnosel'skii [8] fixed-point theorem, the existence of positive solutions of BVP (2) is established. Motivated by the works of [6] and [7], this paper is concerned with the existence of positive solutions for the coupled system of nonlinear second order eigenvalue problem

$$
\left.\begin{array}{l}
u^{\prime \prime}(t)+\lambda a(t) f(v(t))=0 \tag{3}\\
v^{\prime \prime}(t)+\mu b(t) g(u(t))=0 \\
\alpha u(0)-\beta u^{\prime}(0)=0, \quad \gamma u(1)+\delta u^{\prime}(1)=0 \\
\alpha v(0)-\beta v^{\prime}(0)=0, \quad \gamma v(1)+\delta v^{\prime}(1)=0,
\end{array}\right\}
$$

where $f, g \in C\left([0,1], \mathbb{R}_{+}\right), \quad a, b \in C\left([0,1], \mathbb{R}_{+}\right), \quad \alpha, \beta, \gamma, \delta \geq 0$ and $\rho=\alpha \gamma+\beta \gamma+\alpha \delta>0$.
A fixed-point theorem due to Krasnosel'skil [8] is applied to obtain positive solution x s of the $\operatorname{BVP}(3)$, for each λ, μ belonging to an open interval.

2. Preliminary Notes

Obviously, $(u, v) \in C^{2}[0,1] \times C^{2}[0,1]$ is the solution of the $B V P(3)$ if and only if $(u, v) \in C[0,1] \times C[0,1]$ is the solution of the system of integral equations

$$
\left.\begin{array}{l}
u(t)=\lambda \int_{0}^{1} G(t, s) a(s) f(v(s)) d s \tag{4}\\
v(t)=\mu \int_{0}^{1} G(t, s) b(s) g(u(s)) d s
\end{array}\right\}
$$

where $G(t, s)$ is the Green's function defined as follows:

$$
G(t, s)= \begin{cases}\frac{1}{\rho}(\gamma+\delta-\gamma t)(\beta+\alpha s), & 0 \leq s \leq t \leq 1 \\ \frac{1}{\rho}(\beta+\alpha t)(\gamma+\delta-\gamma s), & 0 \leq t \leq s \leq 1\end{cases}
$$

The integral equation (4) can be transferred to the nonlinear integral equation

$$
\begin{equation*}
u(t)=\lambda \int_{0}^{1} G(t, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s, t \in(0,1) \tag{5}
\end{equation*}
$$

Lemma 2.1. (see [1], [3], [4], [7]): - The Green's function $G(t, s)$ satisfies
(i) $G(t, s) \leq G(s, s)$, for $0 \leq t, s \leq 1$,
(ii) $G(t, s) \geq M \cdot G(s, s)$, for $\frac{1}{4} \leq t \leq \frac{3}{4}, 0 \leq s \leq 1$,
where

$$
M=\min \left\{\frac{\gamma+4 \delta}{4(\gamma+\delta)}, \frac{\alpha+4 \beta}{4(\alpha+\beta)}\right\}<1
$$

The proof of this lemma is standard and omitted.

Definition 2.2. The values of λ, μ for which there exist positive solutions to the $\operatorname{BVP}(3)$ are called eigenvalues and the corresponding solutions $u(t)>$ $0, v(t)>0$ are called eigenfunctions.

Let $B=C[0,1]$ be a Banach space with norm $\|u\|=\max _{0 \leq t \leq 1}|u(t)|$. Define a cone K in B by

$$
K=\left\{u \in B: u(t) \geq 0 \text { and } \min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq M\|u\| \cdot\right\} .
$$

Define an integral operator $A: K \longrightarrow B$ by

$$
\begin{equation*}
A u(t)=\lambda \int_{0}^{1} G(t, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s, u \in K \tag{6}
\end{equation*}
$$

Lemma 2.3. (see [7]) If the operator A is defined as in (6), then A : $K \longrightarrow K$ is completely continuous.

Proof. : For each $u \in K, A u \geq 0$ since the functions G, a, b, f and g are non-negative. Hence $A u(t) \geq 0$. From lemma (1) and for $u \in K$,

$$
\begin{aligned}
A u(t) & =\lambda \int_{0}^{1} G(t, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s
\end{aligned}
$$

By the non-negativity of the functions G, a, b, f and g, we have

$$
\begin{equation*}
\|A u\| \leq \lambda \int_{0}^{1} G(s, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \tag{7}
\end{equation*}
$$

Also, for $u \in K$ and for $\frac{1}{4} \leq t \leq \frac{3}{4}$, we have

$$
\begin{aligned}
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} A u & =\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} \lambda \int_{0}^{1} G(t, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
& \geq \lambda M \int_{0}^{1} G(s, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
& \geq M\|A u\|
\end{aligned}
$$

Hence, $A u \in K$ and consequently $A(K) \subset K$.
Since the functions G, a, b, f and g are continuous, it follows that $A: K \longrightarrow K$ is completely continuous. This completes the proof.

From the above arguments, we know that the existence of positive solutions of the $\operatorname{BVP}(3)$ is equivalent to the existence of positive fixed points of the operator A in the cone K .

3. Main Results

We begin this section by stating the Krasnosel'skii fixed-point theorem which is also given in ([2], [5], [8]) for it important in establishing our main result.

Theorem 3.1. Let B be a Banach Space and $K \subset B$ be a cone in B. Assume Ω_{1}, Ω_{2} are open subsets of B such that $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$. If $A: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \longrightarrow K$ is a completely continuous operator such that either
(i) $\|A u\| \leq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|A u\| \geq\|u\|, u \in K \cap \partial \Omega_{2}$, or
(ii) $\|A u\| \geq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|A u\| \leq\|u\|, \quad u \in K \cap \partial \Omega_{2}$, then A has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

Next, the following conditions are assumed true:
$C_{1} . f:[0, \infty) \longrightarrow[0, \infty)$ and $g:[0, \infty) \longrightarrow[0, \infty)$ are continuous.
$C_{2} . a:[0,1] \longrightarrow[0, \infty)$ and $b:[0,1] \longrightarrow[0, \infty)$ are continuous and $a(t) \neq 0, \quad b(t) \neq 0$ on any subinterval of $[0,1]$.
$C_{3} . \lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}=f_{0}$ and $\lim _{u \rightarrow 0^{+}} \frac{g(u)}{u}=g_{0}$.
$C_{4} . \lim _{u \rightarrow \infty} \frac{f(u)}{u}=f_{\infty}$ and $\lim _{u \rightarrow \infty} \frac{g(u)}{u}=g_{\infty}$.
Theorem 3.2. Assume that conditions C_{1}, C_{2}, C_{3} and C_{4} are satisfied and let

$$
\left(M \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s) d s\right) f_{\infty}>\left(\int_{0}^{1} G(s, s) a(s) d s\right) f_{0}
$$

and

$$
\left(M \int_{1 / 4}^{3 / 4} G(r, r) b(r) d r\right) g_{\infty}>\left(\int_{0}^{1} G(r, r) b(r) d r\right) g_{0}
$$

Then for each λ, μ satisfying

$$
\begin{equation*}
\frac{1}{\left(M \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s) d s\right) f_{\infty}}<\lambda<\frac{1}{\left(\int_{0}^{1} G(s, s) a(s) d s\right) f_{0}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\left(M \int_{1 / 4}^{3 / 4} G(r, r) b(r) d r\right) g_{\infty}}<\mu<\frac{1}{\left(\int_{0}^{1} G(r, r) b(r) d r\right) g_{0}} \tag{9}
\end{equation*}
$$

there exists at least one positive solution (u, v) of the $B V P(3)$ in K.

Proof. : Let λ, μ be given as in (8) and (9). Choose $\varepsilon>0$ such that

$$
\begin{equation*}
\frac{1}{\left(M \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s) d s\right)\left(f_{\infty}-\varepsilon\right)} \leq \lambda \leq \frac{1}{\left(\int_{0}^{1} G(s, s) a(s) d s\right)\left(f_{0}+\varepsilon\right)} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\left(M \int_{1 / 4}^{3 / 4} G(r, r) b(r) d r\right)\left(g_{\infty}-\varepsilon\right)} \leq \mu \leq \frac{1}{\left(\int_{0}^{1} G(r, r) b(r) d r\right)\left(g_{0}+\varepsilon\right)} \tag{11}
\end{equation*}
$$

Now consider f_{0} and g_{0} : There exists a constant $H_{1}>0$ such that $f(u) \leq\left(f_{0}+\varepsilon\right) u, g(u) \leq\left(g_{0}+\varepsilon\right) u$, for $0<u \leq H_{1}$.
For $u \in K$ with $\|u\|=H_{1}$, we have

$$
\begin{aligned}
& A u(t)=\lambda \int_{0}^{1} G(t, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
& \|A u\| \leq \lambda \int_{0}^{1} G(s, s) a(s)\left(f_{0}+\varepsilon\right) \mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r d s \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s)\left(f_{0}+\varepsilon\right) d s \cdot \mu \int_{0}^{1} G(r, r) b(r) g(u(r)) d r . \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s)\left(f_{0}+\varepsilon\right) d s \cdot \mu \int_{0}^{1} G(r, r) b(r)\left(g_{0}+\varepsilon\right) u d r . \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s)\left(f_{0}+\varepsilon\right) d s \cdot \mu \int_{0}^{1} G(r, r) b(r)\left(g_{0}+\varepsilon\right) \cdot H_{1} d r \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s)\left(f_{0}+\varepsilon\right) d s \cdot \mu \int_{0}^{1} G(r, r) b(r)\left(g_{0}+\varepsilon\right)\|u\| d r
\end{aligned}
$$

Using (10) and (11), we have

$$
\|A u\| \leq\|u\|
$$

If we set $\Omega_{1}=\left\{u \in B:\|u\|<H_{1}\right\}$, then

$$
\|A u\| \leq\|u\|, \text { for } u \in\left(K \cap \partial \Omega_{1}\right)
$$

Next, consider f_{∞} and g_{∞} : There exists a constant $H_{2 *}>0$ such that $f(u) \geq\left(f_{\infty}-\varepsilon\right) u$ and $g(u) \geq\left(g_{\infty}-\varepsilon\right) u$, for all $u \geq H_{2 *}$.
Let $H_{2}=\max \left\{2 H_{1}, H_{2 *} / M\right\}$.
Then for $u \in K$ with $\|u\|=H_{2}$, we have

$$
\begin{gathered}
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq M\|u\| \geq H_{2 *} \text { and } \\
A u\left(\frac{1}{2}\right)=\lambda \int_{0}^{1} G\left(\frac{1}{2}, s\right) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
\geq \lambda \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s)\left(f_{\infty}-\varepsilon\right) \mu \int_{1 / 4}^{3 / 4} G(s, r) b(r) g(u(r)) d r d s \\
\geq \lambda \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s)\left(f_{\infty}-\varepsilon\right) d s \cdot \mu m \int_{1 / 4}^{3 / 4} G(r, r) b(r)\left(g_{\infty}-\varepsilon\right) u d r
\end{gathered}
$$

$$
\begin{aligned}
& \geq \lambda \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s)\left(f_{\infty}-\varepsilon\right) d s \cdot \mu M^{2} \int_{1 / 4}^{3 / 4} G(r, r) b(r)\left(g_{\infty}-\varepsilon\right)\|u\| d r . \\
& \geq \lambda M \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s)\left(f_{\infty}-\varepsilon\right) d s \cdot \mu M \int_{1 / 4}^{3 / 4} G(r, r) b(r)\left(g_{\infty}-\varepsilon\right)\|u\| d r .
\end{aligned}
$$

Using (10) and (11), we have

$$
\left|A u\left(\frac{1}{2}\right)\right| \geq\|u\| .
$$

Thus, $\|A u\| \geq\left|A u\left(\frac{1}{2}\right)\right| \geq\|u\| \Longrightarrow\|A u\| \geq\|u\|$.
If we set $\Omega_{2}=\left\{u \in B:\|u\|<H_{2}\right\}$, then $\|A u\| \geq\|u\|$, for $u \in\left(K \cap \partial \Omega_{2}\right)$. By the first part of Theorem 1, it follows that the operator A has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

Theorem 3.3. Assume that conditions C_{1}, C_{2}, C_{3} and C_{4} are satisfied and let

$$
\left(M \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s) d s\right) f_{0}>\left(\int_{0}^{1} G(s, s) a(s) d s\right) f_{\infty}
$$

and

$$
\left(M \int_{1 / 4}^{3 / 4} G(r, r) b(r) d r\right) g_{0}>\left(\int_{0}^{1} G(r, r) b(r) d r\right) g_{\infty}
$$

Then for each λ, μ satisfying

$$
\begin{equation*}
\frac{1}{\left(M \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s) d s\right) f_{0}}<\lambda<\frac{1}{\left(\int_{0}^{1} G(s, s) a(s) d s\right) f_{\infty}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\left(M \int_{1 / 4}^{3 / 4} G(r, r) b(r) d r\right) g_{0}}<\mu<\frac{1}{\left(\int_{0}^{1} G(r, r) b(r) d r\right) g_{\infty}} \tag{13}
\end{equation*}
$$

there exists at least one positive solution (u, v) of the $b v p(3)$ in K.
Proof. Let λ, μ be given as in (12) and (13). Choose $\varepsilon>0$ such that

$$
\begin{equation*}
\frac{1}{\left(M \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s) d s\right)\left(f_{0}-\varepsilon\right)} \leq \lambda \leq \frac{1}{\left(\int_{0}^{1} G(s, s) a(s) d s\right)\left(f_{\infty}+\varepsilon\right)} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\left(M \int_{1 / 4}^{3 / 4} G(r, r) b(r) d r\right)\left(g_{0}-\varepsilon\right)} \leq \mu \leq \frac{1}{\left(\int_{0}^{1} G(r, r) b(r) d r\right)\left(g_{\infty}+\varepsilon\right)} \tag{15}
\end{equation*}
$$

Consider f_{0} and g_{0} : There exists a constant $H_{1}>0$ such that $f(u) \geq\left(f_{0}-\varepsilon\right) u$ and $g(u) \geq\left(g_{0}-\varepsilon\right) u$, for $0<u \leq H_{1}$.
For $u \in K$ with $\|u\|=H_{1}$, we have

$$
\begin{aligned}
A u\left(\frac{1}{2}\right) & =\lambda \int_{0}^{1} G\left(\frac{1}{2}, s\right) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
& \geq \lambda \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s)\left(f_{0}-\varepsilon\right) \mu \int_{1 / 4}^{3 / 4} G(s, r) b(r) g(u(r)) d r d s \\
& \geq \lambda \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s)\left(f_{0}-\varepsilon\right) d s \cdot \mu M \int_{1 / 4}^{3 / 4} G(r, r) b(r)\left(g_{0}-\varepsilon\right) u d r \\
& \geq \lambda \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s)\left(f_{0}-\varepsilon\right) d s \cdot \mu M^{2} \int_{1 / 4}^{3 / 4} G(r, r) b(r)\left(g_{0}-\varepsilon\right)\|u\| d r \\
& \geq \lambda M \int_{1 / 4}^{3 / 4} G\left(\frac{1}{2}, s\right) a(s)\left(f_{0}-\varepsilon\right) d s \cdot \mu M \int_{1 / 4}^{3 / 4} G(r, r) b(r)\left(g_{0}-\varepsilon\right)\|u\| d r
\end{aligned}
$$

Using (14) and (15), we have

$$
\left|A u\left(\frac{1}{2}\right)\right| \geq\|u\|
$$

Thus, $\|A u\| \geq\left|A u\left(\frac{1}{2}\right)\right| \geq\|u\| \Longrightarrow\|A u\| \geq\|u\|$.
If we set $\Omega_{1}=\left\{u \in B:\|u\|<H_{1}\right\}$, we have $\|A u\| \geq\|u\|$, for $u \in\left(K \cap \partial \Omega_{1}\right)$.
Next, consider f_{∞} and g_{∞} : Then there exists a constant $H_{2 *}>0$ such that $f(u) \leq\left(f_{\infty}+\varepsilon\right) u$ and $g(u) \leq\left(g_{\infty}+\varepsilon\right) u$, for all $u \geq H_{2 *}$.
There are two cases:

Case 1: Suppose f and g are bounded. Then there exists a constant $N>0, \quad N_{0}>0$ such that $f(u) \leq N$ and $g(u) \leq N_{0}$, for $0<u<\infty$.
Let $H_{2}=\max .\left\{2 H_{1}, \lambda N \int_{0}^{1} G(s, s) a(s) d s\right\}$. Then for $u \in K$ and $\|u\|=H_{2}$,
we have

$$
\begin{aligned}
A u(t) & =\lambda \int_{0}^{1} G(t, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
\|A u\| & \leq \lambda \int_{0}^{1} G(s, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) \cdot N_{0} d r\right) d s \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) \cdot N_{0} d r\right) d s \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s) \cdot N d s \\
& \leq \lambda N \int_{0}^{1} G(s, s) a(s) d s \\
& \leq H_{2}=\|u\|
\end{aligned}
$$

$\Longrightarrow\|A u\| \leq\|u\|$.
If we set $\Omega_{2}=\left\{u \in B:\|u\|<H_{2}\right\}$, then $\|A u\| \leq\|u\|$, for $u \in\left(K \cap \partial \Omega_{2}\right)$.
Case 2: Suppose f and g are not bounded and let $H_{2} \geq \max \left\{2 H_{1}, H_{2 *}\right\}$ be chosen such that $H_{2 *} \leq u \leq H_{2}$. Then for $u \in K$ with $\|u\|=H_{2}$, we have

$$
\begin{aligned}
& A u(t)=\lambda \int_{0}^{1} G(t, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
&\|A u\| \leq \lambda \int_{0}^{1} G(s, s) a(s) f\left(\mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r\right) d s \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s)\left(f_{\infty}+\varepsilon\right) \mu \int_{0}^{1} G(s, r) b(r) g(u(r)) d r d s \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s)\left(f_{\infty}+\varepsilon\right) d s \cdot \mu \int_{0}^{1} G(r, r) b(r)\left(g_{\infty}+\varepsilon\right) u \cdot d r \\
& \leq \lambda \int_{0}^{1} G(s, s) a(s)\left(f_{\infty}+\varepsilon\right) d s \cdot \mu \int_{0}^{1} G(r, r) b(r)\left(g_{\infty}+\varepsilon\right)\|u\| d r
\end{aligned}
$$

Using (14) and (15), we have $\|A u\| \leq\|u\|$.
If we set $\Omega_{2}=\left\{u \in B:\|u\|<H_{2}\right\}$, then $\|A u\| \leq\|u\| \quad$ for $u \in\left(K \cap \partial \Omega_{2}\right)$.
Therefore, in either case,

$$
\|A u\| \leq\|u\|, \text { for } u \in\left(K \cap \partial \Omega_{2}\right)
$$

By the second part of Theorem 3.1, the operator A has a fixed point in $K \cap$ $\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

References

[1] L. W. Cheng, F. H. Wong, C.C. Yeh, On the Existence of Positive Solutions of Non-linear Second Order Differential Equations, Proc. Amer. Math. Soc., 124 (4) (1996) , 1117-1126. http://dx.doi.org/10.1090/S0002-9939-96-03403-X
[2] K. Deimling, Non-linear Functional Analysis, Springer-Verlag, Berlin (1985). http://dx.doi.org/10.1007/978-3-662-00547-7
[3] P. W. Elow, J. Henderson, Positive Solutions for Higher Order Ordinary Differential Equations, Electronic J. Differential Equations, 3 (1995), 1-8.
[4] L. H., Erbe, H. Y. Wang, On the Existence of Positive Solutions of NonLinear Second Order Differential Equations, Proc. Amer. Math. Soc., 120 (1994), 743-748. http://dx.doi.org/10.1090/S0002-9939-1994-1204373-9
[5] D. Guo, L. Lakshmikantham, Non-liner Problems in Abstract Cones, Academic Press, New York (1988).
[6] J. Henderson, H. Wang, Positive Solutions for Non-linear Eigenvalue Problems, J. Math. Anal. App., 208 (1997), 252-259. http://dx.doi.org/10.1006/jmaa.1997.5334
[7] L. Hu, Lianglong Wang, Multiple Positive Solutions of Boundary Value Problems for Systems of Non-linear Second Order Differential Equations, J. Math. Anal. App., 335 (2007), 1052-1060. http://dx.doi.org/10.1016/j.jmaa.2006.11.031
[8] M. A. Krasnosel'skii, Positive Solutions of Operator Equations, Noordhoff, Groningen (1964).

