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Abstract: In this work, we consider a system of coupled nonlinear second
order eigenvalue problems. Under suitable conditions, existence of positive
solutions are established, for determined eigenvalues, by the use of abstract
fixed-point.
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1. Introduction

The existence and multiplicity of positive solutions for nonlinear second order
BVP of ordinary differential equations have attracted many authors’ attention
and concern.

Johnny Henderson and H. Wang [6] considered a nonlinear second order
eigenvalue problem

u′′(t) + λa(t)f(u(t)) = 0, 0 < t < 1,
u(0) = u(1) = 0.

}

(1.)

They determined the value of λ (eigenvalue) for which there exist positive so-
lutions to the BVP(1).
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Ling Hu and Lianglong Wang [7] studied the existence of multiple positive
solutions for systems of nonlinear second order BVP.

−u′′(x) = f(x, v),
−u′′(x) = g(x, u),

αu(0) − βu′(0) = 0, γu(1) + δu′(1) = 0,
αv(0) − βv′(0) = 0, γv(1) + δv′(1) = 0.















(2.)

By the application of Krasnosel’skii [8] fixed-point theorem, the existence of
positive solutions of BVP (2) is established. Motivated by the works of [6]
and [7], this paper is concerned with the existence of positive solutions for the
coupled system of nonlinear second order eigenvalue problem

u′′(t) + λa(t)f(v(t)) = 0,
v′′(t) + µb(t)g(u(t)) = 0,
αu(0) − βu′(0) = 0, γu(1) + δu′(1) = 0,
αv(0) − βv′(0) = 0, γv(1) + δv′(1) = 0,















(3)

where f, g ∈ C([0, 1], IR+), a, b ∈ C([0, 1], IR+), α, β, γ, δ ≥ 0 and
ρ = αγ + βγ + αδ > 0.
A fixed-point theorem due to Krasnosel’skil [8] is applied to obtain positive
solution x s of the BVP(3), for each λ, µ belonging to an open interval.

2. Preliminary Notes

Obviously, (u, v) ∈ C2[0, 1]×C2[0, 1] is the solution of the BV P (3) if and only
if (u, v) ∈ C[0, 1]× C[0, 1] is the solution of the system of integral equations

u(t) = λ

∫ 1

0
G(t, s)a(s)f(v(s))ds

v(t) = µ

∫ 1

0
G(t, s)b(s)g(u(s))ds















(4)

where G(t, s) is the Green’s function defined as follows:

G(t, s) =











1

ρ
(γ + δ − γt)(β + αs), 0 ≤ s ≤ t ≤ 1,

1

ρ
(β + αt)(γ + δ − γs), 0 ≤ t ≤ s ≤ 1,
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The integral equation (4) can be transferred to the nonlinear integral equation

u(t) = λ

∫ 1

0
G(t, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds, t ∈ (0, 1) (5)

Lemma 2.1. ( see [1], [3], [4], [7]): - The Green’s function G(t, s) satisfies

(i) G(t, s) ≤ G(s, s), for 0 ≤ t, s ≤ 1,

(ii) G(t, s) ≥ M ·G(s, s), for
1

4
≤ t ≤

3

4
, 0 ≤ s ≤ 1,

where

M = min

{

γ + 4δ

4(γ + δ)
,

α+ 4β

4(α + β)

}

< 1.

The proof of this lemma is standard and omitted.

Definition 2.2. The values of λ, µ for which there exist positive solutions
to the BVP(3) are called eigenvalues and the corresponding solutions u(t) >
0, v(t) > 0 are called eigenfunctions.

Let B = C[0, 1] be a Banach space with norm ‖u‖ = max
0≤t≤1

|u(t)|. Define a

cone K in B by

K =

{

u ∈ B : u(t) ≥ 0 and min
1

4
≤t≤ 3

4

u(t) ≥ M‖u‖.

}

.

Define an integral operator A : K −→ B by

Au(t) = λ

∫ 1

0
G(t, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds, u ∈ K (6)

Lemma 2.3. ( see [7]) If the operator A is defined as in (6), then A :
K −→ K is completely continuous.

Proof. : For each u ∈ K, Au ≥ 0 since the functions G, a, b, f and g are
non-negative. Hence Au(t) ≥ 0. From lemma (1) and for u ∈ K,

Au(t) = λ

∫ 1

0
G(t, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds

≤ λ

∫ 1

0
G(s, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds
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By the non-negativity of the functions G, a, b, f and g, we have

‖Au‖ ≤ λ

∫ 1

0
G(s, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds (7)

Also, for u ∈ K and for
1

4
≤ t ≤

3

4
, we have

min
1

4
≤t≤ 3

4

Au = min
1

4
≤t≤ 3

4

λ

∫ 1

0
G(t, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds

≥ λM

∫ 1

0
G(s, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds

≥ M‖Au‖.

Hence, Au ∈ K and consequently A(K) ⊂ K.
Since the functions G, a, b, f and g are continuous, it follows that A : K −→ K
is completely continuous. This completes the proof.

From the above arguments, we know that the existence of positive solutions
of the BVP(3) is equivalent to the existence of positive fixed points of the
operator A in the cone K.

3. Main Results

We begin this section by stating the Krasnosel’skii fixed-point theorem which
is also given in ( [2], [5], [8] ) for it important in establishing our main result.

Theorem 3.1. Let B be a Banach Space and K ⊂ B be a cone in
B. Assume Ω1,Ω2 are open subsets of B such that 0 ∈ Ω1,Ω1 ⊂ Ω2. If
A : K ∩

(

Ω2\Ω1

)

−→ K is a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2,

then A has a fixed point in K ∩ (Ω2\Ω1).

Next, the following conditions are assumed true:

C1. f : [0,∞) −→ [0,∞) and g : [0,∞) −→ [0,∞) are continuous.

C2. a : [0, 1] −→ [0,∞) and b : [0, 1] −→ [0,∞) are continuous and
a(t) 6= 0, b(t) 6= 0 on any subinterval of [0, 1].
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C3. lim
u→0+

f(u)

u
= f

0
and lim

u→0+

g(u)

u
= g

0
.

C4. lim
u→∞

f(u)

u
= f

∞
and lim

u→∞

g(u)

u
= g

∞
.

Theorem 3.2. Assume that conditions C1, C2, C3 and C4 are satisfied
and let

(

M

∫ 3/4

1/4
G

(

1

2
, s

)

a(s)ds

)

f
∞

>

(
∫ 1

0
G(s, s)a(s)ds

)

f
0

and
(

M

∫ 3/4

1/4
G(r, r)b(r)dr

)

g
∞

>

(
∫ 1

0
G(r, r)b(r)dr

)

g
0
.

Then for each λ, µ satisfying

1
(

M

∫ 3/4

1/4
G(

1

2
, s)a(s)ds

)

f
∞

< λ <
1

(
∫ 1

0
G(s, s)a(s)ds

)

f
0

(8)

and
1

(

M

∫ 3/4

1/4
G(r, r)b(r)dr

)

g
∞

< µ <
1

(
∫ 1

0
G(r, r)b(r)dr

)

g
0

, (9)

there exists at least one positive solution (u, v) of the BVP (3) in K.

Proof. : Let λ, µ be given as in (8) and (9). Choose ε > 0 such that

1
(

M

∫ 3/4

1/4
G(

1

2
, s)a(s)ds

)

(f
∞
− ε)

≤ λ ≤
1

(
∫ 1

0
G(s, s)a(s)ds

)

(f
0
+ ε)

(10)
and

1
(

M

∫ 3/4

1/4
G(r, r)b(r)dr

)

(g
∞
− ε)

≤ µ ≤
1

(
∫ 1

0
G(r, r)b(r)dr

)

(g
0
+ ε)

(11)
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Now consider f
0
and g

0
: There exists a constant H1 > 0 such that

f(u) ≤ (f
0
+ ε)u, g(u) ≤ (g

0
+ ε)u, for 0 < u ≤ H1.

For u ∈ K with ‖u‖ = H1, we have

Au(t) = λ

∫ 1

0
G(t, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds.

‖Au‖ ≤ λ

∫ 1

0
G(s, s)a(s)(f

0
+ ε)µ

∫ 1

0
G(s, r)b(r)g(u(r))drds.

≤ λ

∫ 1

0
G(s, s)a(s)(f

0
+ ε)ds · µ

∫ 1

0
G(r, r)b(r)g(u(r))dr.

≤ λ

∫ 1

0
G(s, s)a(s)(f

0
+ ε)ds · µ

∫ 1

0
G(r, r)b(r)(g

0
+ ε)udr.

≤ λ

∫ 1

0
G(s, s)a(s)(f

0
+ ε)ds · µ

∫ 1

0
G(r, r)b(r)(g

0
+ ε) ·H1dr

≤ λ

∫ 1

0
G(s, s)a(s)(f

0
+ ε)ds · µ

∫ 1

0
G(r, r)b(r)(g

0
+ ε)‖u‖dr.

Using (10) and (11), we have

‖Au‖ ≤ ‖u‖.

If we set Ω1 = {u ∈ B : ‖u‖ < H1}, then

‖Au‖ ≤ ‖u‖, for u ∈ (K ∩ ∂Ω1).

Next, consider f
∞

and g
∞
: There exists a constant H2∗ > 0 such that

f(u) ≥ (f
∞
− ε)u and g(u) ≥ (g∞ − ε)u, for all u ≥ H2∗.

Let H2 = max{2H1,H2∗/M}.
Then for u ∈ K with ‖u‖ = H2, we have

min
1

4
≤t≤ 3

4

u(t) ≥ M‖u‖ ≥ H2∗ and

Au(12 ) = λ

∫ 1

0
G(

1

2
, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds.

≥ λ

∫ 3/4

1/4
G(

1

2
, s)a(s)(f

∞
− ε)µ

∫ 3/4

1/4
G(s, r)b(r)g(u(r))drds.

≥ λ

∫ 3/4

1/4
G(

1

2
, s)a(s)(f

∞
− ε)ds · µm

∫ 3/4

1/4
G(r, r)b(r)(g

∞
− ε)udr.
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≥ λ

∫ 3/4

1/4
G(

1

2
, s)a(s)(f

∞
− ε)ds · µM2

∫ 3/4

1/4
G(r, r)b(r)(g

∞
− ε)‖u‖dr.

≥ λM

∫ 3/4

1/4
G(

1

2
, s)a(s)(f

∞
− ε)ds · µM

∫ 3/4

1/4
G(r, r)b(r)(g

∞
− ε)‖u‖dr.

Using (10) and (11), we have
∣

∣

∣

∣

Au

(

1

2

)∣

∣

∣

∣

≥ ‖u‖.

Thus, ‖Au‖ ≥

∣

∣

∣

∣

Au

(

1

2

)
∣

∣

∣

∣

≥ ‖u‖ =⇒ ‖Au‖ ≥ ‖u‖.

If we set Ω2 = {u ∈ B : ‖u‖ < H2}, then ‖Au‖ ≥ ‖u‖, for u ∈ (K ∩ ∂Ω2).
By the first part of Theorem 1, it follows that the operator A has a fixed point
in K ∩ (Ω2\Ω1).

Theorem 3.3. Assume that conditions C1, C2, C3 and C4 are satisfied
and let

(

M

∫ 3/4

1/4
G

(

1

2
, s

)

a(s)ds

)

f
0
>

(
∫ 1

0
G(s, s)a(s)ds

)

f
∞

and
(

M

∫ 3/4

1/4
G(r, r)b(r)dr

)

g
0
>

(
∫ 1

0
G(r, r)b(r)dr

)

g
∞
.

Then for each λ, µ satisfying

1
(

M

∫ 3/4

1/4
G(

1

2
, s)a(s)ds

)

f
0

< λ <
1

(
∫ 1

0
G(s, s)a(s)ds

)

f
∞

(12)

and
1

(

M

∫ 3/4

1/4
G(r, r)b(r)dr

)

g
0

< µ <
1

(
∫ 1

0
G(r, r)b(r)dr

)

g
∞

, (13)

there exists at least one positive solution (u, v) of the bvp (3) in K.

Proof. Let λ, µ be given as in (12) and (13). Choose ε > 0 such that

1
(

M

∫ 3/4

1/4
G(

1

2
, s)a(s)ds

)

(f
0
− ε)

≤ λ ≤
1

(
∫ 1

0
G(s, s)a(s)ds

)

(f
∞
+ ε)

(14)
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and

1
(

M

∫ 3/4

1/4
G(r, r)b(r)dr

)

(g
0
− ε)

≤ µ ≤
1

(
∫ 1

0
G(r, r)b(r)dr

)

(g
∞
+ ε)

.

(15)
Consider f

0
and g

0
: There exists a constant H1 > 0 such that f(u) ≥ (f

0
− ε)u

and g(u) ≥ (g
0
− ε)u, for 0 < u ≤ H1.

For u ∈ K with ‖u‖ = H1, we have

Au(12) = λ

∫ 1

0
G(

1

2
, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds.

≥ λ

∫ 3/4

1/4
G

(

1

2
, s

)

a(s)(f
0
− ε)µ

∫ 3/4

1/4
G(s, r)b(r)g(u(r))drds.

≥ λ

∫ 3/4

1/4
G

(

1

2
, s

)

a(s)(f
0
− ε)ds · µM

∫ 3/4

1/4
G(r, r)b(r)(g

0
− ε)udr.

≥ λ

∫ 3/4

1/4
G

(

1

2
, s

)

a(s)(f
0
− ε)ds · µM2

∫ 3/4

1/4
G(r, r)b(r)(g

0
− ε)‖u‖dr.

≥ λM

∫ 3/4

1/4
G

(

1

2
, s

)

a(s)(f
0
− ε)ds · µM

∫ 3/4

1/4
G(r, r)b(r)(g

0
− ε)‖u‖dr.

Using (14) and (15), we have

∣

∣

∣

∣

Au

(

1

2

)
∣

∣

∣

∣

≥ ‖u‖.

Thus, ‖Au‖ ≥

∣

∣

∣

∣

Au

(

1

2

)
∣

∣

∣

∣

≥ ‖u‖ =⇒ ‖Au‖ ≥ ‖u‖.

If we set Ω1 = {u ∈ B : ‖u‖ < H1}, we have ‖Au‖ ≥ ‖u‖, for u ∈ (K∩∂Ω1).

Next, consider f∞ and g∞: Then there exists a constant H2∗ > 0 such
that f(u) ≤ (f

∞
+ ε)u and g(u) ≤ (g∞ + ε)u, for all u ≥ H2∗.

There are two cases:

Case 1: Suppose f and g are bounded. Then there exists a constant
N > 0, N0 > 0 such that f(u) ≤ N and g(u) ≤ N0, for 0 < u < ∞.

Let H2 = max .

{

2H1, λN

∫ 1

0
G(s, s)a(s)ds

}

. Then for u ∈ K and ‖u‖ = H2,
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we have

Au(t) = λ

∫ 1

0
G(t, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds.

‖Au‖ ≤ λ

∫ 1

0
G(s, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds.

≤ λ

∫ 1

0
G(s, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r) ·N0dr

)

ds.

≤ λ

∫ 1

0
G(s, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r) ·N0dr

)

ds.

≤ λ

∫ 1

0
G(s, s)a(s) ·Nds

≤ λN

∫ 1

0
G(s, s)a(s)ds.

≤ H2 = ‖u‖.

=⇒ ‖Au‖ ≤ ‖u‖.
If we set Ω2 = {u ∈ B : ‖u‖ < H2}, then ‖Au‖ ≤ ‖u‖, for u ∈ (K ∩ ∂Ω2).

Case 2: Suppose f and g are not bounded and let H2 ≥ max{2H1, H2∗}
be chosen such that H2∗ ≤ u ≤ H2. Then for u ∈ K with ‖u‖ = H2, we have

Au(t) = λ

∫ 1

0
G(t, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds.

‖Au‖ ≤ λ

∫ 1

0
G(s, s)a(s)f

(

µ

∫ 1

0
G(s, r)b(r)g(u(r))dr

)

ds.

≤ λ

∫ 1

0
G(s, s)a(s) (f

∞
+ ε)µ

∫ 1

0
G(s, r)b(r)g(u(r))drds.

≤ λ

∫ 1

0
G(s, s)a(s) (f

∞
+ ε) ds · µ

∫ 1

0
G(r, r)b(r)(g

∞
+ ε)u · dr.

≤ λ

∫ 1

0
G(s, s)a(s) (f

∞
+ ε) ds · µ

∫ 1

0
G(r, r)b(r)(g

∞
+ ε)‖u‖dr.

Using (14) and (15), we have ‖Au‖ ≤ ‖u‖.
If we set Ω2 = {u ∈ B : ‖u‖ < H2}, then ‖Au‖ ≤ ‖u‖ for u ∈ (K ∩ ∂Ω2).
Therefore, in either case,

‖Au‖ ≤ ‖u‖, for u ∈ (K ∩ ∂Ω2).

By the second part of Theorem 3.1, the operator A has a fixed point in K ∩
(Ω2\Ω1).
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