International Journal of Applied Mathematics

Volume 32 No. 3 2019, 479-489
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v32i3.9

HYERS-ULAM STABILITY OF A PERTURBED GENERALISED LIENARD EQUATION

Ilesanmi Fakunle ${ }^{1}$, Peter Odutola Arawomo ${ }^{2}$ §
${ }^{1}$ Adeyemi College of Education Department of Mathematics
Ondo, 351, NIGERIA
${ }^{2}$ University of Ibadan Department of Mathematics Ibadan, 200271, NIGERIA

Abstract

In this paper, we consider the Hyers-Ulam stability of a perturbed generalized Lienard equation, using a nonlinear extension of Gronwall-Bellman integral inequality called the Bihari integral inequality.

AMS Subject Classification: 26D15, 34K20, 39B82
Key Words: perturbed generalized Lienard equation, Bihari integral inequality, Hyers-Ulam stability

1. Introduction

Generalised Lienard equation has been considered by many researchers. These include: Kroopnick (see [10], [11]) who studied properties of solutions to a generalized Lienard equations with forcing term and also studied bounded $L^{p_{-}}$ solutions of generalized Lienard equation, Nkashama [13] considered periodically perturbed non conservative system of Lienard type. In 2014, Ogundare and Afuwape [15] studied conditions which guarantee boundedness and stability properties of solutions of generalized Lienard equations. However, none of these researchers have studied the Hyers-Ulam stability of the perturbed generalized
(C) 2019 Academic Publications
${ }^{\S}$ Correspondence author

Lienard equations of the form

$$
\begin{equation*}
u^{\prime \prime}+c(t) f(u(t)) u^{\prime}(t)+a(t) g(u(t))=P(t, u(t)) \tag{1}
\end{equation*}
$$

where $f \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), \quad g \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), \quad c, a \in C\left(\mathbb{I}, \mathbb{R}_{+}\right)$, for $\mathbb{R}_{+}=\left[t_{0}, \infty\right), \mathbb{I}=$ $\left(t_{0}, b\right)(b \leq \infty), \quad P \in C\left(\mathbb{I} \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$. In this paper, we shall consider Hyers-Ulam stability of (1) and also the case where $P(t, u(t))=0$.

The stability problem of functional equation started with the question concerning stability of group homomorphism proposed by Ulam [18] in 1940 during a talk before a Mathematical Colloquium at the University of Wincosin, Madison. In 1941, Hyers [7] gave a solution of Ulam's problem for the case of approximate additive mappings in the context of Banach spaces. The result obtained by Hyers opened up research in Hyers-Ulam stability. Rassias [16] in 1978 generalized the theorem of Hyers by considering the stability problem of the unbounded Cauchy differences

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) . t>0 \quad p \in[0,1) \tag{2}
\end{equation*}
$$

This phenomenon of the stability that was introduced by Rassias leads to Hyers-Ulam-Rassias stability (or the generalized Hyers-Ulam stability), see [8].

Thereafter, the result reported by Rassias was improved, see [14], [2], [5], [1], [17], [6], [19], [9].

2. Preliminaries

We present the following definitions, lemmas and theorems for subsequent use in this work.

Definition 1. Equation (1) is Hyers-Ulam stable, if there exists a constant $K>0$ and $\epsilon>0$ such that for $u(t) \in C^{2}\left(\mathbb{I}, \mathbb{R}_{+}\right)$, satisfying

$$
\begin{equation*}
\left|u^{\prime \prime}+c(t) f(u(t)) u^{\prime}(t)+a(t) g(u(t))-P(t, u(t))\right| \leq \epsilon, \tag{3}
\end{equation*}
$$

there exists a solution $u_{0}(t) \in C^{2}\left(\mathbb{I}, \mathbb{R}_{+}\right)$of the equation (1), such that $\mid u(t)-$ $u_{0}(t) \mid \leq K \epsilon$, where K is called Hyers-Ulam constant with initial condition

$$
\begin{equation*}
u(t)=u^{\prime}(t)=0 \tag{4}
\end{equation*}
$$

Theorem 2. (Generalized First Mean Value Theorem, [12]) If $f(t)$ and $g(t)$ are continuous in $\left[t_{0}, t\right] \subseteq \mathbb{I}$ and $f(t)$ does not change sign in the interval, then there is a point $\xi \in\left[t_{0}, t\right]$ such that $\int_{t_{0}}^{t} g(s) f(s) d s=g(\xi) \int_{t_{0}}^{t} f(s) d s$.

Definition 3. A function $\omega:[0, \infty) \rightarrow[0, \infty)$ is said to belong to a class S if:
i $\omega(u)$ is nondecreasing and continuous for $u \geq 0$.
ii $\left(\frac{1}{v}\right) \omega(u) \leq \omega\left(\frac{u}{v}\right)$ for all u and $v \geq 1$.
iii there exists a function ϕ, continuous on $[0, \infty)$ with $\omega(\alpha u) \leq \phi(\alpha) \omega(u)$ for $\alpha \geq 0$.

Lemma 4. (see [3], [4]) Let $u(t), f(t)$ be positive continuous functions defined on $a \leq t \leq b,(\leq \infty)$ and $K>0, M \geq 0$, further let $\omega(u)$ be a nonnegative nondecreasing continuous function for $u \geq 0$, then the inequality

$$
\begin{equation*}
u(t) \leq K+M \int_{a}^{t} f(s) \omega(u(s)) d s, \quad a \leq t<b \tag{5}
\end{equation*}
$$

implies the inequality

$$
\begin{equation*}
u(t) \leq \Omega^{-1}\left(\Omega(k)+M \int_{a}^{t} f(s) d s\right), a \leq t \leq b^{\prime} \leq b \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega(u)=\int_{u_{0}}^{u} \frac{d t}{\omega(t)}, \quad 0<u_{0}<u \tag{7}
\end{equation*}
$$

In the case $\omega(0)>0$ or $\Omega(0+)$ is finite, one may take $u_{0}=0$ and Ω^{-1} is the inverse function of Ω and t must be in the subinterval $\left[a, b^{\prime}\right]$ of $[a, b]$ such that

$$
\begin{equation*}
\Omega(k)+M \int_{a}^{t} f(s) d s \in \operatorname{Dom}\left(\Omega^{-1}\right) \tag{8}
\end{equation*}
$$

3. Main Result

The main results of this work are given in the following theorems.

Theorem 5. Let the functions a, f, c, g and P be as defined earlier such that $a(t) \geq \delta, a^{\prime}(t) \leq 0$ on \mathbb{I} with $f \in S$. Suppose that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} c(s) d s=M<\infty \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
G(u(t))=\int_{t_{0}}^{t} g(u(s)) d s<\infty \tag{10}
\end{equation*}
$$

then equation (1) is Hyers-Ulam stable with the Hyers-Ulam constant K given by

$$
\begin{equation*}
K=\frac{1}{\delta}(L+L A|u(\xi)|) \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} M\right) \tag{11}
\end{equation*}
$$

where Ω is as defined in (7).
Proof. It follows from inequality (3) that

$$
\begin{equation*}
-\epsilon \leq u^{\prime \prime}(t)+c(t) f(u(t)) u^{\prime}(t)+a(t) g(u(t)) u^{\prime}(t)-P(t, u(t) \leq \epsilon \tag{12}
\end{equation*}
$$

Multiplying (12) by $u^{\prime}(t)$, gives

$$
\begin{align*}
& -\epsilon u^{\prime}(t) \leq \\
& u^{\prime \prime}(t) u^{\prime}(t)+c(t) f(u(t))\left(u^{\prime}(t)\right)^{2}+a(t) g\left(u(t) u^{\prime}(t)-P(t, u(t)) u^{\prime}(t) \leq \epsilon u^{\prime}(t)\right. \tag{13}
\end{align*}
$$

Since $G(u(t))$ in (10) is nondecreasing, monotonic and belongs to class S, we have from (13) that

$$
\begin{align*}
& -\epsilon u^{\prime}(t) \leq \\
& u^{\prime \prime}(t) u^{\prime}(t)+c(t) f(u(t))\left(u^{\prime}(t)\right)^{2}+a(t) \frac{d}{d t} G(u(t))-P(t, u(t)) u^{\prime}(t) \leq \epsilon u^{\prime}(t) \tag{14}
\end{align*}
$$

Integrating (14) from t_{0} to t, we have

$$
\begin{align*}
& -\epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s \leq \frac{1}{2}\left(u^{\prime}(s)\right)^{2}+\int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2} d s \\
& \quad+\int_{t_{0}}^{t} a(s) \frac{d}{d s} G(u(s)) d s-\int_{t_{0}}^{t} P(s, u(s)) u^{\prime}(s) d s \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s \tag{15}
\end{align*}
$$

It follows that

$$
\begin{align*}
& \int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2} d s \\
& \tag{16}\\
& \quad+\int_{t_{0}}^{t} a(s) \frac{d}{d s} G(u(s)) d s-\int_{t_{0}}^{t} P(s, u(s)) u^{\prime}(s) d s \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s
\end{align*}
$$

Integrating (14) by parts, we have

$$
\begin{align*}
& \int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2} d s+a(t) G(u(t)) \\
& \quad-\int_{t_{0}}^{t} a^{\prime}(s) G(u(s)) d s-\int_{t_{0}}^{t} P(s, u(s)) u^{\prime}(s) d s \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s \tag{17}
\end{align*}
$$

that is

$$
\begin{align*}
a(t) G(u(t)) \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s & -\int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2} d s \\
& +\int_{t_{0}}^{t} a^{\prime}(s) G(u(s)) d s+\int_{t_{0}}^{t} P(s, u(s)) u^{\prime}(s) d s \tag{18}
\end{align*}
$$

Since $a^{\prime}(t) \leq 0$ and $a(t) \geq \delta$, we have

$$
\begin{align*}
& \delta G(u(t)) \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s-\int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2} d s \\
&+\int_{t_{0}}^{t} P(s, u(s)) u^{\prime}(s) d s \tag{19}
\end{align*}
$$

Taking the absolute value of both sides, we get

$$
\begin{align*}
& \delta|G(u(t))| \leq \epsilon \int_{t_{0}}^{t}\left|u^{\prime}(s)\right| d s+\int_{t_{0}}^{t} c(s) f(|u(s)|)\left(\left|u^{\prime}(s)\right|\right)^{2} d s \\
&+\int_{t_{0}}^{t}\left|P(s, u(s)) \| u^{\prime}(s)\right| d s \tag{20}
\end{align*}
$$

Suppose $\mid G\left(u(t)|\geq|u(t)|, \quad| P(t, u(t))|\leq A| u(t) \mid\right.$ and $\int_{t_{0}}^{t}\left|u^{\prime}(s)\right| d s \leq L$ for $L>$ 0 . It follows that

$$
\begin{align*}
|u(t)| \leq \frac{1}{\delta} \epsilon L+\frac{1}{\delta} \int_{t_{0}}^{t} c(s) f(|u(s)|)\left(\left|u^{\prime}(s)\right|\right)^{2} d s & \\
& \left.\left.+\frac{1}{\delta} A \int_{t_{0}}^{t} \right\rvert\, u(s)\right) \| u^{\prime}(s) \mid d s \tag{21}
\end{align*}
$$

By Theorem (2), for $t_{0}<\xi<t$, we have

$$
\begin{equation*}
|u(t)| \leq \frac{1}{\delta} \epsilon L+\frac{1}{\delta} \int_{t_{0}}^{t} c(s) f(|u(s)|)\left(\left|u^{\prime}(s)\right|\right)^{2} d s+\frac{1}{\delta} A u(\xi) \int_{t_{0}}^{t}\left|u^{\prime}(s)\right| d s \tag{22}
\end{equation*}
$$

This gives

$$
\begin{equation*}
|u(t)| \leq \frac{1}{\delta} \epsilon L+\frac{1}{\delta} L A|u(\xi)|+\frac{1}{\delta} \int_{t_{0}}^{t} c(s) f(|u(s)|)\left|u^{\prime}(t)\right|^{2} d s \tag{23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
|u(t)| \leq \frac{1}{\delta} \epsilon L+\frac{1}{\delta} L A|u(\xi)|+\frac{\left(\left|u^{\prime}(t)\right|\right)^{2}}{\delta} \int_{t_{0}}^{t} c(s) f(|u(s)|) d s \tag{24}
\end{equation*}
$$

Let $\left|u^{\prime}(t)\right| \leq \lambda$, for $\lambda>0$ this gives

$$
\begin{equation*}
|u(t)| \leq \frac{1}{\delta} \epsilon L+\frac{1}{\delta} L A|u(\xi)|+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) f(|u(s)|) d s \tag{25}
\end{equation*}
$$

Let us set

$$
\begin{equation*}
R=\frac{1}{\delta} \epsilon(L+L A|u(\xi)|) \text { and } \epsilon \geq 1 \tag{26}
\end{equation*}
$$

Using (26) and the fact $f \in S,(25)$ becomes

$$
\begin{equation*}
\frac{|u(t)|}{R} \leq 1+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) f\left(\frac{|u(s)|}{R}\right) d s \tag{27}
\end{equation*}
$$

Setting $\frac{|u(t)|}{R}=z(t)$, then (27) becomes

$$
\begin{equation*}
z(t) \leq 1+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) f(z(s)) d s \tag{28}
\end{equation*}
$$

Let $\omega(z(t))=f(z(t))$, By (7), we obtain

$$
z(t) \leq \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) d s\right)
$$

Substituting for $z(t)$, we have

$$
|u(t)| \leq R \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) d s\right)
$$

Replacing R by (26), we obtain

$$
|u(t)| \leq \epsilon \frac{1}{\delta}(L+L A|u(\xi)|) \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) d s\right)
$$

By (9), we have

$$
|u(t)| \leq \epsilon \frac{1}{\delta}(L+L A|u(\xi)|) \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} M\right)
$$

Hence,

$$
K=\frac{1}{\delta}(L+L A|u(\xi)|) \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} M\right) .
$$

Since,

$$
\left|u(t)-u_{0}(t)\right| \leq|u(t)| \leq K \epsilon .
$$

Therefore,

$$
\left|u(t)-u_{0}(t)\right| \leq K \epsilon .
$$

Example 6. Consider the equation

$$
u^{\prime \prime}(t)+(t+1)^{-2} u^{2} u^{\prime}+t^{4} u^{4}=2 u^{2}(t) .
$$

The equation is Hyers-Ulam stable by the conditions of Theorem 5.
Next we consider the case $P(t, u(t))=0$.
Theorem 7. Let all the conditions of Theorem 5 remain valid with

$$
P(t, u(t))=0 .
$$

Equation (1) is Hyers-Ulam stable with Hyers-Ulam constant defined as

$$
K=\frac{1}{\delta}(L)\left(\Omega(1)+\frac{\lambda^{2}}{\delta} M\right) .
$$

Proof. From inequality (3), we have

$$
\begin{equation*}
-\epsilon \leq u^{\prime \prime}(t)+c(t) f(u(t)) u^{\prime}(t)+a(t) g(u(t)) u^{\prime}(t) \leq \epsilon . \tag{29}
\end{equation*}
$$

Since

$$
P(t, u(t))=0,
$$

using equation (10), we have

$$
\begin{equation*}
-\epsilon \leq u^{\prime \prime}(t)+c(t) f(u(t)) u^{\prime}(t)+a(t) \frac{d}{d t} G(u(t)) \leq \epsilon . \tag{30}
\end{equation*}
$$

Multiplying (30) by $u^{\prime}(t)$, we obtain

$$
\begin{equation*}
-\epsilon u^{\prime}(t) \leq u^{\prime \prime}(t) u^{\prime}(t)+c(t) f(u(t))\left(u^{\prime}(t)\right)^{2}+a(t) \frac{d}{d t} G(u(t)) u^{\prime}(t) \leq \epsilon . \tag{31}
\end{equation*}
$$

Integrating (31) from t_{0} and t, we get

$$
\begin{aligned}
& -\epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s \leq \frac{1}{2} u^{\prime 2}(t) \\
& \quad+\int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2}+\int_{t_{0}}^{t} a(s) \frac{d}{d s}(G(u(s))) d s \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2} d s & \\
& +\int_{t_{0}}^{t} a(s) \frac{d}{d s} G(u(s)) d s \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s
\end{aligned}
$$

Integrating by part, we get

$$
\begin{aligned}
\int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2} d s & \\
& +a(t) G(u(t))-\int_{t_{0}}^{t} a^{\prime}(s) G(u(s)) d s \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s
\end{aligned}
$$

Since $a^{\prime}(t) \leq 0$ and $a(t) \geq \delta>0$, we obtain

$$
\begin{equation*}
\delta G(u(t)) \leq \epsilon \int_{t_{0}}^{t} u^{\prime}(s) d s-\int_{t_{0}}^{t} c(s) f(u(s))\left(u^{\prime}(s)\right)^{2} d s \tag{32}
\end{equation*}
$$

Taking the absolute value (32), we have

$$
\begin{equation*}
\delta|G(u(t))| \leq \epsilon \int_{t_{0}}^{t}\left|u^{\prime}(s)\right| d s+\int_{t_{0}}^{t} c(s) f(|u(s)|)\left(\left|u^{\prime}(s)\right|\right)^{2} d s \tag{33}
\end{equation*}
$$

Setting $\int_{t_{0}}^{t}\left|u^{\prime}(s)\right| d s \leq L$, for $L>0$, we obtain

$$
\begin{equation*}
|G(u(t))| \leq \frac{1}{\delta} \epsilon L+\frac{1}{\delta} \int_{t_{0}}^{t} c(s) f(|u(s)|)\left(\left|u^{\prime}(s)\right|\right)^{2} d s \tag{34}
\end{equation*}
$$

Suppose $|G(u(t))| \geq|u(t)|$, then (34) becomes

$$
\begin{equation*}
\frac{|u(t)|}{P} \leq 1+\frac{1}{\delta} \int_{t_{0}}^{t} c(s) f\left(\frac{|u(s)|}{P}\right)\left(\left|u^{\prime}(s)\right|\right)^{2} d s \tag{35}
\end{equation*}
$$

for

$$
\begin{equation*}
P=\frac{\epsilon}{\delta} L \tag{36}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
\frac{|u(t)|}{P} \leq 1+\frac{\left(\left|u^{\prime}(t)\right|\right)^{2}}{\delta} \int_{t_{0}}^{t} c(s) f\left(\frac{|u(s)|}{P}\right) d s \tag{37}
\end{equation*}
$$

Let $\left|u^{\prime}(t)\right| \leq \lambda$, using this in (3.31), we get

$$
\begin{equation*}
\frac{|u(t)|}{P} \leq 1+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) f\left(\frac{|u(s)|}{P}\right) d s \tag{38}
\end{equation*}
$$

Setting $\frac{|u(t)|}{P}=z(t),(37)$ becomes

$$
\begin{equation*}
z(t) \leq 1+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) f(z(s) d s \tag{39}
\end{equation*}
$$

Using Lemma 4 , for $\omega(z(t))=f(z(t))$ with Ω defined as in (7), we obtain

$$
z(t) \leq \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} \int_{t_{0}}^{t} c(s) d s\right)
$$

By (9), we have

$$
z(t) \leq \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} M\right)
$$

Substituting for $z(t)$, we have

$$
|u(t)| \leq P \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} M\right)
$$

Replacing P, with (36), we have

$$
|u(t)| \leq \frac{\epsilon}{\delta}(L) \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} M\right)
$$

where

$$
K=\frac{1}{\delta}(L) \Omega^{-1}\left(\Omega(1)+\frac{\lambda^{2}}{\delta} M\right)
$$

Therefore,

$$
\left|u(t)-u_{0}(t)\right| \leq|u(t)| \leq K \epsilon
$$

with condition (4).

Example 8. Consider the equation

$$
u^{\prime \prime}+t^{-2} u^{2} u^{\prime}+t^{-4} u^{2}=0, \text { for } t>0
$$

This equation is Hyers-Ulam stable by all the properties of Theorem 7.

Acknowledgments

The authors acknowledged all the reviewers of this paper for their corrective inputs that qualified its publication in this journal.

References

[1] C. Alsina and R. Ger, On some inequalities and stability result related to the exponential function, J. Inequl. Appl., 2 (1988), 373-380.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[3] I. Bihari, Researches the boundedness and stability of the solutions of nonlinear differential equations, Acta. Math. Acad. Sc. Hung., 7 (1957), 278-291.
[4] I. Bihari, A generalisation of a lemma of Bellman and its application to uniqueness problem of differential equations, Acta Math. Acad. Sc. Hung., 7 (1956), 71-94.
[5] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223-237.
[6] J. Huang and Y. Li, Hyers-Ulam stability of linear functional differential equations. J. Math. Anal. Appl., 426 (2015), 1192-1200.
[7] D.H. Hyers, On the stability of the linear functional equation, Proc. of the Nat. Acad. Sci. of the USA, 27, 222-224.
[8] A. Javadian, E. Sorouri, G.H. Kim, M. Eshaghi Gordji, Generalized HyersUlam stability of the second order linear differential equations, J. of Applied Math., 2011 (2011), Art. 10813137, 10 pp; doi 10.1155/2011/813137.
[9] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135-1140.
[10] A. Kroopnick, Properties of solutions to a generalised lienard equation with forcing term, Appl. Math. E-Notes, 8 (2008), 40-41.
[11] A. Kroopnick, Note on bounded L^{p}-solutions of generalized Lienard equation, Pacific J. Math., 94 (1981), 171-175.
[12] R.S. Murray, Schum's Outline of Theory and Problem of Calculus, SI (Metric) Edition, Internat. Edition (1974).
[13] Nkashama, Periodically perturbed non conservative systems of Lienard type, Proc. Amer. Math. Soc., 111 (1991), 677-682.
[14] M. Obloza, Hyers-Ulam stability of the linear differential equations, Rocznik Nauk, Dydakt-Dydakt. Prac. Mat. 13 (1993), 259-270.
[15] S.B. Ogundare and A.U. Afuwape, Boundedness and stability properties of solutions of generalized Lienard equation, Kochi J. Math., 9 (2014), 97-108.
[16] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. of the Amer. Math. Soc., bf 72, No 2 (1978), 297-300.
[17] S. Takahasi, T. Miura, and S. Miyajima, On the Hyers-UIam stability of the Banach space-valued differential equation $y^{\prime}=\lambda y$, Bull. of the Korean Math. Soc., 392 (2002), 309-315.
[18] S.M. Ulam, Problems in Modern Mathematics Science Editions, Chapter 6, Wiley, New York (1960).
[19] A. Zada, O. Shah, R. Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundeness of Cauchy problems, Appl. Math. Comput., 221 (2015), 512-518.

