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OSCILLATION CRITERIA FOR THREE DIMENSIONAL

NONLINEAR CONFORMABLE FRACTIONAL DELAY

DIFFERENTIAL SYSTEM WITH FORCING TERMS

OGUNBANJO A.M, † ARAWOMO P.O

Abstract. In this paper, we study the oscillation of three dimensional non-
linear conformable delay differential system with forcing terms. By using gen-

eralized Riccati transformation, conformable derivatives and some inequality

based techniques, we obtain several oscillation criteria for the system. Fur-
thermore, an example is given to authenticate our results.

†Corresponding Author

1. Introduction

Research on the qualitative properties of solutions of differential equations which
includes the problems of oscillation and non-oscillation of solutions dated back to
the time of C. Sturm in 1836. Since that period, researchers have continued to
study the oscillation of differential equations [[5],[8],[24],[25],[27]] using different
approaches.

The theory of fractional calculus attracted many researchers in the last few
decades due to the applicability of fractional differential equations in science and
engineering [[1], [9]-[12]]; thus, researchers have developed interest in the study
of oscillation of the Caputo, Riemann-Liouville, modified Riemann-Liouville, and
conformable fractional differential equations [[2]-[4],[6],[7],[19]].

In [[17],[18]], oscillation and non-oscillation of two-dimensional differential sys-
tems were studied. Ogunbanjo and Arawomo also investigated the oscillation cri-
teria for a nonlinear conformable fractional differential system with a forcing term
[[20]]. Some authors have worked on the oscillation of three-dimensional differential
systems [[16],[23],[26]] using different methods.

However, to the best of our knowledge, little or no work has been done on the
oscillation of three-dimensional nonlinear fractional delay differential system using
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conformable fractional differential system with two or more forcing terms. Moti-
vated by these observations, we study the following fractional differential system:

Dα(x(t)) = p(t)g(y(σ(t)))
Dα(y(t)) = −q(t)υ(z(t)) + φ(t)

Dα(z(t)) = r(t)f(x(τ(t))) + ψ(t, x(t))
t ≥ t0; 0 < α < 1

 (1)

where Dα denotes the conformable fractional derivative of order α w.r.t t.
Now, we state some conditions that will be useful throughout this paper:

Λ1 - p(t) ∈ C2α([t0,∞),<+), q(t) ∈ Cα([t0,∞),<+), r(t) ∈ C([t0,∞),<+); p(t), q(t)
and r(t) are not identically zero on any interval of the form [T0,∞), where T0 ≥ t0,
q(t) and r(t) are positive and decreasing;
Λ2 - g ∈ Cα(<,<), yg(y) > 0, Dαg(y) ≥ l′ > 0, υ ∈ Cα(<,<), zυ(z) > 0,
Dαυ(z) ≥ m′ > 0, f ∈ Cα(<,<) and xf(x) > 0, for x 6= 0
Λ3 - σ(t) ≤ t, τ(t) ≤ t with Dασ(t) ≥ l > 0
Λ4-

∫∞
t0
sα−1 1

b(s)ds = ∞,
∫∞
t0
sα−1 1

a(s)ds = ∞, where b(t) = 1
q(t) , a(t) = 1

p(t) and

c(t) = ll′m′r(t); a(t), b(t) and c(t) are positive real valued continuous functions
with (tz)α−1 ≥ 1

Λ5 - φ(t)
q(t) ≤ ξ(t), f(x)

x(t) ≤ k , ψ(t,x(t))
x(t) ≤ γ(t). ξ(t) ∈ Cα([t0,∞),<+), ξ

′

∗(t), γ(t) ∈
C([t0,∞),<+) and k is a constant. ψ(t, x(t)) is a continuous function on [t0,∞) ×
<.

For a solution of system (1), we mean that it is a vector valued function χ(t) =
(x(t), y(t), z(t)) with T1 = min{τ(t1), σ(t1)} for some t1 ≥ t0 which has the property
that b(t)Dα(a(t)Dαx(t)) ∈ Cα([T1,∞),<) and the system (1) on [T1,∞).

The solution (x(t), y(t), z(t)) of system (1) will be called oscillatory if all the
components are oscillatory, otherwise it will be called nonoscillatory. The system
(1) is called oscillatory if all its solutions are oscillatory.

2. Preliminaries

In this section, we are supposed to explain the basic concept of conformable
fractional derivative, but we refer the readers who are not familiar with the concept
of conformable fractional derivatives and its properties to see [[13]-[15]].

3. Main Results

Here, we are concerned with the oscillation of system (1). Before this, we first
state and establish the following lemmas needed in proving our theorems.
Lemma 1. Suppose ψ′(t) ≤M and let

t1−αx(t) ≤ (t− T )3ψ′(t)a(t)Dαx(t)

Then,
x(t)

a(t)Dαx(t)
≤ (t− T )3M

t1−α

Lemma 2. Suppose p(t) ≤ 0 . Then, the first component x(t) of a nonoscillatory
solution (x(t), y(t), z(t)) of (1) is also nonoscillatory.

Proof. The proof follows from Lemma 7.2.1[[21]].
Lemma 3. Suppose that (Λ1) and (Λ4) holds. Then, there exists a t1 ≥ t0 3
either
(Λa)- x(t) > 0, Dαx(t) > 0, Dα(a(t)Dαx(t)) > 0 for t ≥ t1.
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or
(Λb)- x(t) > 0, Dαx(t) < 0, Dα(a(t)Dαx(t)) > 0 for t ≥ t1 holds.
Proof. Let x(t) be an eventually positive solution of (1) on [t0,∞). From (1) and
conditions Λ2 - Λ5, we arrived at

Dα[b(t)Dα[a(t)Dαx(t)]] + c(t)f(x) + k1ψ(t, x(t)))− k2ξ′(t) ≤ 0 (2)

where c(t) = ll′m′r(t), k1(t) = ll′m′ and k2(t) = ll′. k1(t) and k2(t) are functions.
From (2), we get

Dα[b(t)Dα[a(t)Dαx(t)]] ≤ 0 for t ≥ t0
The rest of the proof follows from Lemma 3.2 [[16]].
Lemma 4. Suppose that the conditions (Λ1) - (Λ5) hold. Assume also that Case
(Λb) of lemma 3 holds. If∫ ∞

t0

θα−1

a(θ)

(∫ ∞
θ

ηα−1

b(η)

∫ ∞
η

sα−1V (s)dsdη

)
dθ =∞ (3)

Then, limt→∞ x(t) = 0
Proof. Considering Case (Λb) of lemma 3. Since x(t) is positive and decreasing,
there exists a limt→∞ x(t) = µ ≥ 0. If µ > 0, and from (2), we have

Dα[b(t)Dα[a(t)Dαx(t)]

x(t)
≤ −c(t)f(x)

x(t)
− k1ψ(t, x(t)))

x(t)
+
k2ξ
′(t)

x(t)

which implies that

Dα[b(t)Dα[a(t)Dαx(t)]] ≤ −x(t)V (t)

where
ξ
′
(t)

x(t)
= ξ

′

∗(t) and V (t) = kc(t) + k1γ(t)− k2ξ
′

∗(t)

integrating the above inequality from t to ∞ twice w.r.t dαs , we have

−Dαx(t) ≥ µ

a(t)

∫ ∞
t

ηα−1

b(η)

∫ ∞
η

sα−1V (s)dsdη

integrating the above inequality once again from t0 to ∞ w.r.t dαs, we have

x(t0) ≥ µ
∫ ∞
t0

θα−1

a(θ)

(∫ ∞
θ

ηα−1

b(η)

∫ ∞
η

sα−1V (s)dsdη

)
dθ

which contradicts (3). Whence µ = 0 i.e x(t)→ 0 as t→∞
Now, we state and prove our main results.

Theorem 1. Suppose that the conditions (Λ1)-(Λ5) hold and ∃ a differentiable
function ρ : [t0,∞)→ (0,∞) such that

lim sup
t→∞

∫ t

t0

[
(s− T )3ρ(s)Φ(s)M

s2(1−α)
− s1−α(ρ′(s))2b(s)

4ρ(s)

]
ds =∞ (4)

then every solution of (1) is either oscillatory or limt→∞ x(t) = 0.
Proof. Suppose that (1) has a nonoscillatory solution (x(t), y(t), z(t)) on [t0,∞).
From lemma 2, x(t) is always nonoscillatory. Without loss of generality, we shall
assume that x(t) > 0 and x(τ(t)) > 0 for t ≥ T ≥ t0. Suppose also that case (Λa)
of lemma 3 holds for t ≥ t1.
Define

ω(t) = ρ(t)
b(t)Dα[a(t)Dαx(t)]

a(t)Dαx(t)
(5)
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Thus, ω(t) > 0, for t ≥ t1

Dαω(t) =
b(t)Dα[a(t)Dαx(t)]

a(t)Dαx(t)
Dαρ(t)+ρ(t)

Dα[b(t)Dα[a(t)Dαx(t)]]

a(t)Dαx(t)
−b(t)[D

α[a(t)Dαx(t)]

a(t)Dαx(t)
]2

(6)
using (2), (5), assumption Λ5 and lemma 1 respectively in (6), we have

ω′(t) ≤ ρ′(t)

ρ(t)
ω(t)− ρ(t)(t− T )3

t1−α
MΦ(t)− ω2(t)

t1−αρ(t)b(t)
(7)

where Φ(t) = k(t)c(t)− k1(t)γ(t)− k2(t)ξ
′

∗(t)
simplifying the above inequality and later integrating from t to t0, we get

ω(t) ≤ ω(t0)−
∫ t

t0

[
(s− T )3ρ(s)

s2(1−α)
MΦ(s)− s1−α(ρ′(s))2b(s)

4ρ(s)

]
ds

taking the lim sup as t→∞, we have

lim sup
t→∞

ω(t) ≤ −∞

which contradicts (4), the proof is complete.
Corollary 1. If conditions (Λ1)-(Λ5) hold such that (4) is replaced by

lim sup
t→∞

∫ t

t0

(s− T )3ρ(s)

s2(1−α)
MΦ(s)ds =∞ (8)

and

lim sup
t→∞

∫ t

t0

s1−α(ρ′(s))2b(s)

4ρ(s)
ds <∞ (9)

Then, every solution of (1) is either oscillatory or limt→∞ x(t) = 0.
In what follows, we introduce a class of functions G. Let

D0 = {(t, s) : t > s ≥ t0};D = {(t, s) : t ≥ s ≥ t0}
The function H ∈ C(D,<) is said to belong to the class G, if
Λ6 - H(t, t) = 0 for t ≥ t0; H(t, s) > 0 for (t, s) ∈ D0

Λ7 - H(t, s) has a continuous and non-positive partial derivative

∂H(t, s)

∂s
and h(t, s) =

∂H(t, s)

∂s
+H(t, s)

ρ′(s)

ρ(s)

Theorem 2. Suppose that the conditions (Λ1)-(Λ7) hold and ∃ a differentiable
function ρ : [t0,∞)→ (0,∞) such that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
(s− T )3H(t, s)ρ(s)Φ(s)M

s2(1−α)
− s1−αρ(s)b(s)h2(t, s)

4H(t, s)

]
ds =∞

(10)
Then every solution of (1) is either oscillatory or limt→∞ x(t) = 0.
Proof. Suppose that (1) has a nonoscillatory solution (x(t), y(t), z(t)) on [t0,∞).
Following the proof of Theorem 1, we obtain (7). Multiplying (7) by H(t, s) and
integrate from t0 to t, we get∫ t

t0

H(t, s)ω′(s)ds ≤
∫ t

t0

H(t, s)
ρ′(s)

ρ(s)
ω(s)ds−

∫ t

t0

H(t, s)
ρ(s)(s− T )3

s1−α
MΦ(s)ds

−
∫ t

t0

H(t, s)
ω2(s)

s1−αρ(s)b(s)
ds
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simplifying the above inequality, we arrive at∫ t

t0

[
(s− T )3H(t, s)ρ(s)Φ(s)M

s2(1−α)
− s1−αρ(s)b(s)h2(t, s)

4H(t, s)

]
ds ≤ H(t, t0)ω(t0)

dividing the inequality above by H(t, t0) and taking the lim sup as t→∞, we have

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
(s− T )3H(t, s)ρ(s)Φ(s)M

s2(1−α)
−s

1−αρ(s)b(s)h2(t, s)

4H(t, s)

]
ds ≤ ω(t0) <∞

which contradicts (10), the proof is complete.
Corollary 2. If conditions (Λ1)-(Λ7) hold such that (10) is replaced by

lim sup
t→∞

1

H(t, t0)

∫ t

t0

(s− T )3H(t, s)ρ(s)Φ(s)M

s2(1−α)
ds =∞ (11)

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

s1−αρ(s)b(s)h2(t, s)

4H(t, s)
ds <∞ (12)

Then, every solution of (1) is either oscillatory or limt→∞ x(t) = 0.
Let H(t, s) = (E(t)− E(s))β , such that

E(t) =

∫ t

t0

ds

e(s)
and lim sup

t→∞
E(t) =∞

for a positive constant β > 1. Then we have the following result.
Theorem 3. Suppose that the conditions (Λ1)-(Λ7) hold and ∃ a differentiable
function ρ : [t0,∞)→ (0,∞) such that

lim sup
t→∞

1

(E(t)− E(t0))β

∫ t

t0

(E(t)− E(s))βρ(s)×

[
(s− T )3Φ(s)M

s2(1−α)
− s1−αb(s)

4

(
β

e(s)(E(t)− E(s))
− ρ′(s)

ρ(s)

)2]
ds =∞ (13)

Then every solution of (1) is either oscillatory or limt→∞ x(t) = 0.
Proof. Following the proof of Theorem 1, we obtain (7). Multiplying (7) by
(E(t)− E(s))β and integrate from t0 to t, we get∫ t

t0

(E(t)−E(s))βρ(s)

[
(s− T )3Φ(s)M

s2(1−α)
− s

1−αb(s)

4

(
β

e(s)(E(t)− E(s))
−ρ
′(s)

ρ(s)

)2]
ds

≤ (E(t)− E(t0))βω(t0)

dividing the above inequality by (E(t)−E(t0))β and taking the lim sup as t→∞,
we arrive at

lim sup
t→∞

1

(E(t)− E(t0))β

∫ t

t0

(E(t)− E(s))βρ(s)×[
(s− T )3Φ(s)M

s2(1−α)
− s1−αb(s)

4

(
β

e(s)(E(t)− E(s))
− ρ′(s)

ρ(s)

)2]
ds ≤ ω(t0) <∞

which contradicts (13), the proof is complete.
Corollary 3. If conditions (Λ1)-(Λ7) hold such that (13) is replaced by

lim sup
t→∞

1

(E(t)− E(t0))β

∫ t

t0

(E(t)− E(s))βρ(s)
(s− T )3Φ(s)M

s2(1−α)
ds =∞ (14)
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and

lim sup
t→∞

1

(E(t)− E(t0))β

∫ t

t0

(E(t)−E(s))βρ(s)
s1−αb(s)

4

(
β

e(s)(E(t)− E(s))
−ρ
′(s)

ρ(s)

)2

ds <∞

(15)
Then, every solution of (1) is either oscillatory or limt→∞ x(t) = 0.
Example
In this section, we give example to show the relevance of our results.

Consider the system of fractional differential equations

D3/5(x(t)) = 2
√
t(y2( 3t

2 ) + 1)
D3/5(y(t)) = −t1/5z(t) exp(z(t)) + t1/4

D3/5(z(t)) = 6√
t
( x(t)
x2(t)+1 ) + 5x2(t)+3

t

0 < α = 3
5 < 1, t0 = 1

 (16)

By comparing (1) with (16), we deduce that

α = 3/5, p(t) = 2
√
t, q(t) = t1/5, σ(t) = 3t

2 ,
r(t) = 6√

t
, h(z(t)) = z(t) exp(z(t)), g(y(δ(t))) = y2( 3t

2 ) + 1,

φ(t) = t1/4, ψ(t, x(t)) = 5x2(t)+3
t , f(x(t)) = x(t)

x2(t)+1

 (17)

Also, we set

ρ(t) = 1, x(t) = t2

H(t, s) = (t− s)2, M = 7, z(t) = t

}
(18)

From (17) and (18), we get

Dα[h(z(t))] ≥ 5t2/5 = m′

Dα[g(y(σ(t)))] ≥ 2t2/5 = l′, ∂H(t,s)
∂s = −2(t− s)

Dα[σ(t))] ≥ 1.5t2/5 = l, ρ′(t) = 0, a(t) = 1/(2
√
t)

b(t) = 1/(t1/5), ψ(t,x)
x(t) ≤ 8t = γ(t)

φ(t)
q(t) < t = ξ(t), ξ′(t) = 1, ξ′(t)

x(t) = 1/t2 ≤ t = ξ
′

∗(t)
f(x(t))
x(t) ≤

t3

2 = k(t)


(19)

This implies that

c(t) = ll′m′r(t) = 90t−109/250, k1(t) = ll′m′ = 15t
8

125 , k2 = ll′ = 3t4/25

V (t) = Φ(t) = 45t2.56 + 120t1.06 − 3t1.2, h(t, s) = −2(t− s), h2(t, s) = 4(t− s)2
}

(20)
using condition Λ4,∫ ∞

t0

sα−1

a(s)
ds =

∫ ∞
1

s−2/5 × 2s1/2ds =

∫ ∞
1

2s1/10ds =∞

∫ ∞
t0

sα−1

b(s)
ds =

∫ ∞
1

s−2/5 × s1/5ds =

∫ ∞
1

s−1/5ds =∞

By substituting (19) and (20) into (3), we have∫ ∞
t0

θα−1

a(θ)

(∫ ∞
θ

ηα−1

b(η)

∫ ∞
η

sα−1V (s)dsdη

)
dθ

=

∫ ∞
1

2θ−2/5

1/(θ1/2)

(∫ ∞
θ

η−2/5

1/(η1/5)

∫ ∞
η

s−2/5(45s2.56 + 120s1.06 − 3s1.2)dsdη

)
dθ =∞
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because ∫ ∞
η

s−2/5(45s2.56 + 120s1.06 − 3s1.2)ds =∞

for η ≥ 1, and so equation (3) holds.
Also substituting (18) - (20) into the left hand side of (4), we have

lim sup
t→∞

∫ t

t0

[
(s− T )3ρ(s)Φ(s)M

s2(1−α)
− s1−αρ

′2(s)b(s)

4ρ(s)

]
ds

= lim sup
t→∞

∫ ∞
1

7(s− T )3(s−4/5)(45s2.56 + 120s1.06 − 3s1.2)ds

= lim sup
t→∞

∫ ∞
1

7(s− T )3(45s1.76 + 120s0.26 − 3s0.4)ds =∞

In corollary 1, (8) gives infinity and (9) gives zero.
In the same way, we substitute (17) - (20) into the left hand side of (10), we have

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
(s− T )3H(t, s)ρ(s)Φ(s)M

s2(1−α)
−s

1−αρ(s)b(s)h2(t, s)

4H(t, s)

]
ds = lim sup

t→∞

1

(t− 1)2

×
∫ ∞
1

[7(s− T )3(t− s)2(45s1.76 + 120s0.26 − 3s0.4)− s1/5]ds =∞

In corollary 2, (11) gives infinity and (12) is zero. These show that Theorem 1 and
Theorem 2 with their corollaries are satisfied. Hence, every solution of (16) is either
oscillatory or tends to zero since (3) holds.

Suppose

β = 2 and e(s) = 1, then E(t) = t. (21)

Substitute (18) - (21) into the left hand side of (13), we arrived at infinity. Similarly
in corollary 3, (14) gives infinity and (15) gives zero. These shows that Theorem 3
and its corollary are satisfied. Whence, every solution of (16) is either oscillatory
or tends to zero.
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