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FOREWORD

It gives me great pleasure writing the foreword to this book. The book was 

written in recognition o f the immense contributions of one of Nigeria's 

foremost industrial engineers, respected teacher, mentor, and lover o f youth — 

Professor OI iver Charles-Owaba.

His commitment to the teaching and learning process, passionate pursuit o f  

research and demonstration o f excellence has prompted his colleagues and 

mentees to write this book titled -  Advancing Industrial Engineering in 

Nigeria through Teaching, Research and Innovation (A Festschrift in honour 

o f Professor O. E Charles-Owaba) as a mark of honour, respect and 

recognition for his personality and achievements.

Professor Charles-Owaba has written scores of articles and books while a lso  

consulting for a medley o f organisations. He has served as external exam iner 

to various programmes in the tertiary educational system. The topics 

presented in the book cover the areas of Production/Manufacturing 

Engineering, Ergonom ics/Hum an Factors Engineering, S ystem s 

Engineering, Engineering Management, Operations Research and Policy. 

They present the review o f the literature, extension of theories and real-life 

applications. These should find good use in the drive for national 

development.

Based on the above, and the collection of expertise in the various fields, the 

book is a fitting contribution to the corpus of knowledge in industria 

engineering. It is indeed a befitting gift in honour of erudite Professoi 

Charles-Owaba.

I strongly recommend this book to everyone who is interested in how w ork 

systems can be made more productive and profitable. It represents a 

resourceful compilation to honour a man who has spent the last forty years 

building up several generations of industrial engineers who are part o f  the 

process to put Nigeria in the rightful seat in the comity o f  nations. 

Congratulations to Professor Charles-Owaba, his colleagues and mentees for 
this festschrift.

ProfessorGodwin Ovuworie 

Department of Production Engineering 
University of Benin
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CHAPTER 12  

The Traveling Salesman Problem: Algorithms, Sub-tours and 

Applications  in Combinatorial Optimization 

V.O. Oladokun1, B.O. Odedairo1 and O.S. Atitebi1   
1Department of Industrial and Production Engineering, University of 

Ibadan, Ibadan, OYO 200284, Nigeria  

 

Abstract 

The importance of the traveling salesman problem (TSP) in 

combinatorial optimization and its application and adaptability to 

numerous real-life problems has led to the development of a wide range 

of algorithms. A major issue in the development of TSP algorithm 

involves how to handle the large number of subtour eliminating 

constraints which contribute to the exponential growth of computational 

time associated with TSP algorithms. In this chapter, basic concepts, 

development and many numerous research efforts of Professor O.E. 

Charles-Owaba on TSP were discussed; some of his works on the 

concept of the TSP set sequencing algorithm were highlighted.  

Keywords: Traveling Salesman Problem, Subtour, Machine setup 

problem, Set Sequencing Algorithm, Combinatorial optimization, 

Sequence dependent setup, Charles-Owaba 

 

 

 

1.0 Introduction 

The need to determine the minimum total length of the route while 

visiting every point once in a given set gives rise to the traveling salesman 

problem (TSP). The TSP is an important and popular problem in 

combinatorial optimization that has attracted a lot of interests in 

operations research, mathematics, computer science, engineering and 

other research areas (Ezugwu & Adewumi, 2017; Kieu, 2019; Oladokun 

& Charles-Owaba, 2011). TSP can be stated as: 

“Given N cities and the distance or cost between each pair of cities, a 

salesman starting in one city wishes to visit each of N-1 other cities once 

and only once and return to the starting point. In what order should he 
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visit the cities to minimize the total distance travelled?”  Mathematically, 

the problem can be stated as: Given a ‘cost (distance) matrix’ C = (C𝑖𝑗), 

where C𝑖𝑗 is the cost (distance) of traveling from city i to city j (i, j = 1, 

2, . . ., n), find a permutation (i1, i2, i1,….., i𝑛) of the integers from 1 

through n that minimizes the quantity  

𝐶𝑖1𝑖2
+ 𝐶𝑖2𝑖3

+ .  .  . +𝐶𝑖𝑛𝑖1
. 

 

Historically, the TSP has assumed many interesting names such as the 

laundry van problem, and the messenger problem. From a scheduling 

perspective, TSP is equivalent to the sequence-dependent single machine 

setup problem or simply referred to as machine setup problem (MSP).  

The TSP which was first formulated in the 1930s, came to prominence in 

the United States of America, in the 1950s, when solving a 33-city 

problem instance was used as a promotional contest by Soap Company 

for a price of $10,000.00.  

 

2.0 Traveling Salesman Problem and Applications 

The TSP as a combinatorial optimization problem has an associated 

decision problem that seeks to determine the cheapest cost route (i.e. 

route/distance) available to a salesman to visit a specified number of 

cities and return to the beginning city. This unique problem description 

of TSP has attracted numerous attention and research efforts from 

scientists across the globe. Apart from its theoretical importance, 

countless numbers of practical and interesting problems across several 

industries have been formulated as a TSP model within the context of 

optimization. The TSP is popular because of its practical relevance and 

application in many areas such as routing of vehicle, manufacturing and 

assembly of parts, manufacturing of electronic board manufacturing, 

scheduling of jobs in the production system, andgroup technology (GT) 

approach to manufacturing. The varied applications of the model remain 

the key motivating factor in the continued interests of many researchers 

in TSP. For example, in printed circuit boards (PCBs), the objective is to 

determine an optimal sequence for drilling circuit board holes considered 

as cities to be visited by drilling machine head (salesman) to reduce 

machine travel time or its associated cost (Grostchel, et al., 1991).  In 
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inventory order picking problem, a server or attendant (salesman) need 

to travel within the warehouse to collect a series of orders (cities) to 

minimise lead-time. Given the arrival of an order for a subset of items 

stored in a warehouse, an attendant/automated vehicle/server has to move 

strategically to collect these items before shipping it to customers. The 

objective here is to minimize the lead time of services to customers. Other 

applications include the sequencing of tasks on a weaving machine with 

set-up costs, the order spread elimination problem in cutting-stock model 

encountered in glass manufacturing, the problem of crystal orientation 

time reduction during the study of the atomic structure of crystals with x-

ray diffractometers, efficient manpower utilization associated with the 

rostering of duties in public transport system (Bard et al, 1994; Foulds 

and Hamacher, 1980; Keuthen, 2003; Ohno et al, 1999; Rajkumar & 

Narendran, 1996; Al-Haboub & Shorik, 1993; Madsen, 1988; Ferreir, 

1995). Also, there are research work that has emanated from the 

contributions of Professor Charles-Owaba to the traveling salesman 

problem. One is the simultaneous optimization of makespan (Cmax) and 

the number of tardy jobs (NT) in a single machine problem with 

sequence-dependent setup time as described in Oladokun et al (2011).  

Another interesting application of TSP is in the music industry where the 

problem of generating harmonious song-list was modeled as a single 

machine setup problem with accompanying solution software (Oladokun 

et al., 2011).   

 

2.1 The Single Machine Setup Problem 

In a general-purpose work facility, the set-up time is an interval of time 

between the end of a job’s processing and the beginning of the next 

available job. The machine setup can be sequence-dependent and 

sequence-independent. A schedule maps (or allocates) resources to tasks 

(or activities) over a specified period while a sequence involves the 

ordering of activities through machines or resources. The sequence-

dependent machine setup problem minimizes a pre-defined cost or time 

objective of re-setting a facility by determining the optimal sequence 

required to perform a set of N operations. For a single machine 

commissioned to process job i and j, the scheduling problem of 
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optimising the makespan, 𝐶𝑚𝑎𝑥 (or completion time) with sequence-

dependent machine setup times 𝑆𝑖𝑗 (j is processed immediately after i ) is 

the single machine setup problem (MSP). In MSP, the sequence of X 

(stations) parts being processed by a single machine to minimize 𝐶𝑚𝑎𝑥 

can be likened to the traveling salesman problem. In scheduling, the 

modeling structure of the TSP is also referred to as sequence-dependent 

MSP.  In many contexts, terms such as MSP and TSP are used 

interchangeably.   

 

In a static single machine scheduling scenario with no sequence-

dependent setup times, makespan minimization is a trivial problem 

because Cmax is the same irrespective of the sequence adopted. However, 

in many practical scheduling problems with sequence-dependent setup 

times, makespan becomes a function of the job sequence. A classical 

example of such a single facility problem is found in the mixing of 

different paints produced repeatedly on one machine in fixed sequence 

per production cycle. The setup time corresponds to the cleaning time of 

the machine between colours changes; this depends on the time required 

for the colour to be removed, and the start of production for the next 

colour. Another example is the group technology (GT) approach to 

manufacturing systems design using TSP set-up time reduction principle, 

this exploits the sequence dependency of set-up times of some part 

families (Charles–Owaba & Lambert, 1988; Karabat & Akkan, 2006). 

 

2.2.   Other Variants of TSP 

TSP can be categorised as symmetric and asymmetric. For the symmetric 

case, the distance (or equivalent cost) of travelling from the station (or 

city) i to station j is the same as travelling vice-versa (i.e. city j to city i) 

i.e. 𝐶𝑖𝑗  = 𝐶𝑗𝑖. However, the asymmetric TSP is more generic in that 

𝐶𝑖𝑗  ≠𝐶𝑗𝑖, and this portrays the real-life scenarios or problems such as 

when the to and fro trip fares are different for the pair of cities (Oladokun 

& Charles-Owaba, 2008). The TSP can also occur as cyclic when the 

salesman returns to the starting city or acyclic when the salesman stops 

at last city without ‘return home’ (Charles–Owaba, 2001). The Minimum 

Latency Problem (MLP) is another variation of the TSP, which aims to 
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minimize the sum of arrival times at vertices, or the sum of clients waiting 

time to receive service and other many practical applications (Silva et al, 

2012). The Time-Dependent TSP is a generalized TSP where the costs 

between pair of cities depend on their position in the sequence (Abeledo 

et al, 2013) while in the Time-Dependent TSP with Time Windows  

variant  the time dependence is captured by considering variable average 

travel speeds Montero et al 2017). There is another variant in the context 

of maritime transportation called the TSP with Draft Limits (TSPDL) that 

is modelled to account for restrictions on the port 

infrastructures (Battarra  et al,  2014).  

 

3.0 Solving Travelling Salesman Problem 

The TSP was infamous amongst scientists in early developmental years 

due to lack of scientific methodology for solving the problem. In TSP 

and other real-life instances of combinatorial problems, as soon as the 

number of cities increases, more computational resources will be 

required to solve the problem effectively and efficiently. Early solution 

approach includes a simple method of randomly chosen locations in the 

Euclidean plane as proposed in 1938 to a TSP application in farm survey, 

making a finite number of trials, with rules that may reduce the number 

of trials, and a modified assignment problem algorithm (Robinson, 

1949). The TSP camouflage its computational complexity with a 

deceptively easy to grasp definition and remains a very attractive and 

productive platform for developing and testing many combinatorial 

optimization procedures.  

 

The invention of the linear programming simplex algorithm ushered in a 

new world of possibilities when Dantzig et al (1954) formulated the TSP 

as an integer linear program and used the cutting plane method to find an 

optimal solution for a 49-city problem. There have been several 

adaptations of the LP algorithms for TSP, such as the use of dual LP 

algorithm for LP relaxations and max-flow algorithm for identifying 

violated sub tour inequalities of TSP model. There were applications of 

branch-and-bound algorithms that adopted an assignment problem 

(Eastman, 1958), the minimum spanning trees problem or similar 
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relaxations as lower bounds. The branch-and-bound algorithm by Little 

et al (1963) was one of the most popular implicit enumeration approaches 

for the TSP.  Other early exact algorithm approaches include dynamic 

programming algorithm (Bellman, 1960) and integer programming 

formulation solved with the Gomory's cutting-plane algorithm (Lambert, 

1960). For small problem size, exact methods have proven to be 

effective. However, in TSP and other real-life instances of combinatorial 

problems, as soon as the number of cities increases, more computational 

resources will be required to solve the problem effectively and 

efficiently.Several heuristics have also been developed and applied to 

solve the TSP (Hossam et al, 2018; Almufti et al, 2019).  Some of the 

widely known local optimization techniques and variants like simulated 

annealing, tabu search, neural networks, genetic algorithms and ant 

colony algorithm have adopted the TSP as a challenging playground for 

evolution and testing (Xu et al, 2018; Qaiduzzaman, et al., 2020; 

Rossman, 1958; Tian & Yang, 1993; Walshaw, 2002; Riera-Ledesma, 

2005). The cheapest-insertion heuristic (Karg &Thompson 1964), and 

the Lin k-opt heuristic (Lin, 1965) were some of the earliest heuristic 

approaches to the TSP.  A chronological review of the evolution of these 

algorithms and heuristics is contained in Oladokun and Charles-Owaba 

(2011).   

 

3.1 Computational Complexity 

A computational problem can be defined as a function f required to map 

each input x within a given domain to an output f (x) in a given range. 

Computational complexity considers the number of steps an algorithm 

needs to take to solve an instance of a problem (Oladokun, 2006; 

Oladokun & Owaba, 2011). Because the computer execution time 

required for solving a problem is a function of the number of 

computational steps, the performance of an algorithm is, therefore, 

measured as the maximum number of steps it requires for any instance of 

size N expressed as a function of N. A polynomial algorithm bounded by 

a polynomial function of instance size N is considered efficient, while an 

exponential algorithm bounded by an exponential function of instance 

size N is considered inefficient or computationally expensive (see Cook 
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et al, 1998; Garey & Johnson, 1979; Johnson & Papadimitriou, 1985; 

Walshaw, 2001; Walshaw, 2002; Saadani et al, 2005). Hence, a problem 

is considered easy if there is a polynomial-time algorithm to solve it and 

hard otherwise (Cook et al, 1998; Marcotte et al, 2004; Gamboa et al, 

2006). The TSP is classified as a hard combinatorial optimization 

problem with no polynomial-time optimizing algorithm (see Lawler et 

al, 1985; Applegate et al, 2004; Zhang, 2004). The TSP and its variants 

belong to a class of computationally complex problems called NP-

complete. The class of P and NP problems can be solved by a non-

deterministic polynomial (NP) time algorithm in polynomial time. This 

implies that if a polynomial-time algorithm is found for the TSP, it means 

all other NP-hard is solvable in polynomial time. This theoretical 

importance has been a key driver for the TSP research interests (Roberts 

& Flores, 1966; Fischetti & Toth, 1992; Dorigo & Gambardella, 1997; 

Applegate et al, 2004; Zhang 2004). 

 

3.2 Algorithms and Heuristics 

Like all other NP-hard discrete optimization problems, there are two 

classes of solution methods for the TSP problem: exact or optimization 

algorithms and heuristics also known as approximation algorithms. 

While exact algorithms are designed to contain a proof of optimality of 

the resulting solution; and have a mechanism to obtain the so called 

global optimal solution, they are computationally expensive and bounded 

by an exponential function of instance size N. TSP heuristics or 

approximation methods, on other hand, are designed to obtain a good 

solution without the confirmation of optimality and are mostly 

polynomial-time methods.  Many heuristics are modified exact 

algorithms designed by jettisoning their optimality mechanisms as trade-

off for achieving computational efficiency.  

 

Since the TSP is a discrete optimization problem with a finite number of 

possible solutions, though this number is an exponential function of the 

problem size N, the complete enumeration is guaranteed to yield an 

optimal solution. However exponential growth renders this approach not 

practicable for even 2-digit size problems. For instance, an explicit 
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enumeration algorithm running on the fastest computer would need about 

two days to find an optimal solution for a (N=20) problem size while for 

a (N=25) problem size the time grows to 400 centuries! Hence, practical 

algorithms are based on implicit enumeration which does not search 

through all solution space. Many existing algorithms are based on 

methods such as Integer Linear Programming method which formulate 

the TSP as a linear programming problem in zero-one variables and 

attempt to prove optimality using the concept of cutting planes.  The TSP 

has been solved using dynamic programming formulation, branch and 

bound algorithm. While these algorithms are not efficient for practical 

problems they have been the basis for very good non-optimizing 

heuristics. 

 

The Nearest Neighbour Algorithm is an example of such heuristics with 

easy to implement variations like multi-start approach Nearest Neighbour 

(see Johnson et al, 1997; Charles-Owaba  & Oladokun, 1999; Hurkens & 

Woeginger, 2004). There are insertion methods (Karg &Thompson, 

1964), the 2-opt and 3-opt heuristic which works as tour improvement 

methods using the deletion and replacement of 2 non-adjacent edges. The 

Lin-Kernighan k-opt method is a generalized implementation of the 2-

opt tour improvement method (Lin & Kernighan, 1973; Chandra et al, 

1999; Helsgaun, 2000). 

 

There are also search heuristics such as genetic algorithm, simulated 

annealing, and tabu search.  The genetic algorithm and many of its 

variations developed for the TSP are designed to mimic the biological 

evolution concepts that support the evolution of improved population 

of solutions. This improvement is achieved by mathematically 

mirroring evolution concepts such as survival of the fittest, crossover 

or reproduction, genetic mutation and migrations and similar 

evolution concepts (Charterjee et al. 1996; Johnson & McGeoh, 

1997). The tabu search is another popular general heuristic procedure 

used for the TSP. Tabu search solves the problem of infinite cycling 

associated with improving search procedure by forbidding some 

moves, ‘taboo moves’, that will return to immediately previously 
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visited point in the solution space (Radin, 1998; Kolohan & Liang, 

2000). Simulated annealing is a search technique that controls cycling 

by mimicking the annealing process for improving the strength of 

steel (Tian & Yang, 1993; Johnson & McGeoh, 1997; Radin, 1998). 

 

3.3 Feasibility and Sub tours in TSP Solutions  

Feasibility due to subtour occurrence is a major issue in the 

formulation of the TSP or similar permutation sequence problem. 

Design of subtour constraints is a major challenge in model and 

algorithm development for the TSP. While it is easy to understand 

subtours, crafting subtour elimination constraints remains a difficult 

and challenging task (Radin, 1998; Oladokun and Charles-Owaba, 

2011). Hence, theoretical principles for crafting these constraints 

within the context of algorithm development has been the thrust of 

many TSP works such as Crowder and Paderg(1980) which adopted 

a linear programming relaxation, Grötschel (1980) which used a 

cutting-plane algorithm with cuts involving sub tour inequalities, 

Hong (1972) used the Ford-Fulkerson max-flow algorithm for 

finding violated sub tour inequalities. In fact, the method for handling 

sub tour occurrences is what distinguishes one solution method from 

another and has influenced the various solution approaches. 

Meanwhile, the large number of sub tour elimination constraints, 

even for a modest number of points, makes the problem practically 

intractable.  

 

The enormous number of computations required to solve such system 

of equations does not allow for the direct utilization of the ILP for 

TSP. However, researchers have adopted the idea of using the ILP to 

find good lower bound for the TSP. This lower bound procedure can 

then be used for assessing the effectiveness of heuristics solutions. 

For example, for the 380 cities record-breaking work of Crowder and 

Paderg (1980), a linear programming relaxation was adopted. An 

integer-programming solver was used to carry out a branch-and-

bound search on the final linear programming relaxation. If the 
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solution found using this search does not produce a tour, the subtour 

inequalities violated by the solution obtained is added back again 

using cutting-plane algorithm (Grötschel,1980). Subtours constraints 

require huge computational efforts. One approach to minimize these 

efforts in heuristics procedures is to adopt TSP formulation with 

simpler constraints such as formulating the TSP as quadratic 

assignment problem (QAP) and some adaptations of improving 

search methods on the QAP formulation. Oladokun and Charles-

Owaba (2011) described some graph theoretic concepts for dealing 

with these sub tours constraints within the context of the set sequence 

algebra.   

 

4.0 The Set Sequencing Algorithm (SSA)  

Charles–Owaba (2001, 2002) proposed the set sequencing algorithm as 

a basis for the TSP solution. The set sequencing procedure describes a 

complete TSP sequence or tour as a set of N TSP matrix elements (links). 

The procedure then defines as the transformation of a known sequence 

(Si-1) to a new sequence (Si) by feasibly replacing a subset of its links (Lr) 

with an equal number (M) of candidate links (Lc) using a recursive 

function Va(Si) =Va(Si-1) +(Lr, Lc, M). Where Va(Si) and Va(Si-1) are 

the respective solution sequence values and (Lr, Lc, M) is the exact 

amount  Va(Si) is changed by the replacement operation. However, the 

original SSA had the challenge of feasibility; it sometimes results in 

infeasible solutions or subtours. The redesign of the SSA to develop a 

subtour-free set sequencing algorithm was the focus of a PhD thesis 

(Oladokun, 2006) supervised by Professor O.E Charles-Owaba in the 

Department of Industrial Engineering, University of Ibadan (see 

Oladokun & Charles-Owaba, 2011).  

 

While implicit enumeration algorithms and heuristics view the machine 

setup problem in terms of the individual sequences and are designed to 

search through N factorial possible sequences (Charles-Owaba, 2001).  

The set sequencing concept addresses the machine setup problem 

differently, by searching for optimal elements among N(N-1) TSP matrix 

elements. A set of candidate links are used to replace some or all of the 
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links of a given sequence to iteratively form improved sequences (Kwon 

et al, 2005). The SSA represents a major contribution of Professor O.E 

Charles-Owaba to the literature of the travelling salesman problem.   

 

5.0  Conclusion 

The traveling salesman problem has attracted quite a lot of interests for 

several decades evident by its wide practical applications such as routing, 

logistics, drilling, surveying, genetics, manufacturing, 

telecommunication, neuroscience, scheduling, to mention just a few. In 

scheduling, the traveling salesman problem or the sequence-dependent 

machine setup problem is an attempt to determine the minimum- total- 

length route while visiting every point once in a given set. In this chapter, 

the numerous research efforts of Professor Charles-Owaba to model and 

solve the different variants of the traveling salesman, such as the 

simultaneous optimization of makespan (Cmax) and the number of tardy 

jobs (NT) in a single machine problem, group technology (GT) approach 

to manufacturing systems design using TSP set-up time reduction 

principle, and graph theoretic concepts for dealing with sub tours 

constraints within the context of the set sequence algebra were 

highlighted.  

 

These research efforts were discussed by considering the single machine 

set-up problem (MSP) and other variants of TSP, the need to eliminate 

sub tour occurrences in the search for an optimal tour, which grows 

exponentially as the size of the problem grows. This difficulty brings to 

fore the concept of computational complexities, algorithms and heuristics 

available to solve TSP.  
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