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ABSTRACT 

Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles are components of 

personal care products whose continuous release into the environment may enhance 

co-exposure, with potential risks to the ecosystem. In vitro studies have shown their 

potential to induce genetic damage. However, there is dearth of information on in vivo 

induction of DNA and systemic damage, alongside their interactive effects. This study 

was designed to investigate genetic and systemic toxicity and mechanism of DNA 

damage by TiO2 and ZnO nanoparticles and their mixture in mice.  

Male Swiss mice ( =24.0±2.0g; n=80; 6-8 weeks old) were intraperitoneally exposed 

to distilled water (Control) and 9.4, 18.8, 37.5, 75.0 and 150.0 mg/kg concentrations of 

each of the nanoparticles and their mixture (1:1) for 5 days (5 mice/group) to assess 

micronucleus induction and cytomorphological abnormalities in the bone marrow of 

mice. Haematological parameters [Haemoglobin, Packed Cell Volume (PCV), Red 

Blood Cell (RBC) and White Blood Cell (WBC) counts] were assessed following 

standard procedures. Mechanism of DNA damage was evaluated by oxidative stress 

[Superoxide dismutase (SOD), reduced Glutathione and Malondialdehyde in the liver 

and kidney] parameters following standard methods. Sperm count, motility, 

abnormalities and concentrations of Luteinizing Hormone (LH), Follicle Stimulating 

Hormone (FSH) and Testosterone were evaluated in another group of mice 

( =30.0±2.0g; n=80; 11-15 weeks old), intraperitoneally exposed with the same 

nanoparticle concentrations (5 mice/group) at 35-day exposure. Liver, kidney and 

testis were sectioned for histopathological analysis. The Interaction Factor (IF) of 

nanoparticle mixture was calculated according to standard method. Data were analysed 

using descriptive statistics and ANOVA at α0.05.  

The nanoparticles and mixture induced micronuclei, but significant only for TiO2 

(16.8±2.1-53.3±18.5) compared with the control (3.7±0.9). Blebbed, target, 
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hyperchromic and hypochromic erythrocytes were the observed cytomorphological 

anomalies. The mixture exerted a significant reduction only in the WBC count. In the 

liver, there was a significant decrease in SOD (unit/mg protein) activities (1.3-1.5; 1.4-

2.0; and 1.2-1.6 fold for TiO2, ZnO and mixture, respectively), with increase in 

Malondialdehyde (nmol/mg protein) levels (1.1-1.7; 1.2-1.8; and 1.7-1.7 fold for TiO2, 

ZnO and mixture, respectively). In the kidney, there were significant alterations in 

SOD: 1.2-1.3; and 1.1-1.4 fold decrease for TiO2 and ZnO, respectively; and 1.3-2.0 

fold increase for the mixture. While Malondialdehyde levels increased (1.2-1.4; 1.4-

1.6; and 1.7-1.9 fold for TiO2, ZnO and mixture, respectively). Both organs showed 

alterations in reduced Glutathione levels (1.0-1.5 fold decrease for TiO2; 1.0-1.1 fold 

increase for ZnO and mixture) indicating systemic toxicity. A significant decrease in 

sperm count and motility; and increase in abnormalities (1.3-8.0; 1.2-2.6; 4.6-12.1 fold 

for TiO2, ZnO and mixture, respectively), with a concomitant decrease in the serum 

level of LH and increase in FSH and Testosterone were observed. Hepatocellular and 

spermatogenic cell necrosis and degeneration of tubular epithelial cells were observed. 

The IF indicated synergism.  

Titanium dioxide and zinc oxide nanoparticles and their mixture induced genomic and 

systemic damage in somatic and germ cells of mice; with the mixture synergistically 

evoking the highest toxic response. Oxidative stress might be one of the mechanisms 

of cytogenotoxicity.  

 

Keywords: Metal oxide nanoparticles, DNA damage, Germ and somatic cell 

mutation, Oxidative damage. 

Word count: 496 
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CHAPTER ONE 

INTRODUCTION 

Nanotechnology is a rapidly growing field of science that combines engineering with 

physics, chemistry and biology without any boundaries (Ray et al., 2009). In this field, 

atoms and molecules are being controlled, as well as dealing with structural materials 

within the range limit of 1 and 100 nanometer referred to as the nanoscale, where a 

nanometer (nm) is 10
-9

 meters or one billionth of a meter. Scientists are making materials 

in extraordinary ways by taking advantage of their peculiarities that occur within the 

natural size range. The physical and chemical properties such as colour, electrical 

conductivity, melting point, magnetic permeability, boiling point and optical properties at 

the nanoscale are altered as a result of their particle size (Boverhof and David, 2010). 

Thus, the physicochemical properties of a material at the nanoscale are significantly 

different from the same material at the bulk state (Ryu et al., 2014; Kim et al., 2014a). 

Therefore, new dimensions of materials, where size is taken into consideration are being 

opened by nanotechnology. Today, nanotechnology has reached a summit where atoms 

and molecules are individually manipulated and controlled by scientists and engineers 

with an outstanding level of accuracy (Hanley et al., 2009), making it one of the most 

important technologies in the world (Luther and Malanoswski, 2004).  

Nanotechnology encompasses the synthesis of nanomaterials and by definition in 

accordance with the European Union (2011), nanomaterials are defined as particles in 

agglomerate, aggregate, or unbound state in which more than 50% of the particles show 

one or more external dimensions at the nanoscale level of 1 – 100 nm. Nanoparticles 

(NPs) exist in one of two forms, as naturally occurring nanoparticles (NNPs) that exist in 

combustion by-products, volcanic eruptions, storm dust and forest fires; and engineered 

nanoparticles (ENPs), purposely synthesised to be utilised in applications (Yah et al., 

2012). The ENPs consist of the carbon based (carbon nanotubes, fullerenes, and
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graphenes), quantum dots (selenium and cadmium), and inorganic [metal (silver, 

manganese, iron, and copper) and metal oxide (titanium dioxide, copper oxide, zinc oxide, 

iron oxide, and silicon oxide,)] (Nam et al., 2014). One of the most unique 

physicochemical properties of NPs is their small size and large surface area to volume 

ratio with high reactivity potential (Shukla et al., 2011; Baek et al., 2012; Cho et al., 2013; 

El-Morshedi et al., 2014). Thus, this unique property makes them being extensively 

produced on a large scale by industries that use them. Therefore, occupational and 

environmental settings will enhance the probability of exposure due to increased 

production of these particles (Handy et al., 2008a; Wang et al., 2008a; Baek et al., 2012; 

Sharma et al., 2012a). Subsequently, this will become a great concern and importance to 

the scientists and the public considering their adverse effects (Li et al., 2010a; Shukla et 

al., 2011; Sharma et al., 2012a; 2012b). 

Recently, the application of NPs associated with their benefits and risks have been widely 

debated. Assessment of NPs in humans can be very difficult as these NPs are 

heterogeneous in nature. The extensive production of NPs does not give an accurate 

estimation on the release of NPs in the environment annually. As large amounts of these 

NPs are manufactured during industrial processes and nanotechnology, they become 

unavoidably released into the air, water and soil (Ghosh et al., 2010; Shi et al., 2013), with 

little or no environmental fate. The benthic organisms in the aquatic environment are 

contaminated with NPs in a process known as bioaccumulation, and are, therefore, fed by 

larger animals, thereby increasing the concentrations of NPs through the food chain in a 

process known as biomagnification (Begnum et al., 2009; Sharma et al., 2012a). The 

release of NPs into the aquatic body causing chronic behavioural alterations, organ 

pathologies, oxidative stress and mortality in aquatic organisms have been reported 

(Federici et al., 2007; Smith et al., 2007; Ramsden et al., 2009; 2013). 

The toxicokinetics (absorption, distribution, metabolism and excretion) of NPs are 

influenced by exposure routes, particle size, crystalline structure, agglomeration and 

surface properties (Fischer and Chan, 2007; Hanley et al., 2009; Baek et al., 2012; Choi et 

al., 2013; Cho et al., 2013). Absorption and distribution in toxicokinetics are critical steps 

following the deposition of NPs at the exposure site. Blood components such as white or 
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red blood cells, plasma proteins, dissolved nutrients, bioactive factors, platelets and 

coagulation factors as well as organs and tissues interact with NPs when they reach 

systemic circulation (Deng et al., 2009; Grissa et al., 2015; Setyawati et al., 2015). The 

toxicokinetics of NPs are highly influenced by the binding to the plasma proteins (Hagen 

et al., 2007; Setyawati et al., 2015). Translocation of NPs to the systemic circulation is 

accumulated in the liver, lymphatic tissues and other viscera (Shi et al., 2013).  

Titanium dioxide (TiO2) NPs and zinc oxide (ZnO) NPs are among the available metal 

oxide NPs utilised in the production of consumer products (Xue et al., 2011; Cho et al., 

2013; Ryu et al., 2014). They are widely used because of their unique properties such as 

photocatalysis, anticorrosion, semiconductive properties and ultraviolet adsorption. The 

toxicities of TiO2 and ZnO NPs have been investigated in in vivo models and mammalian 

cells (Sharma et al., 2009; Huang et al., 2009; Yuan et al., 2010; Li et al., 2010a; Cui et 

al., 2011; Ghosh et al., 2012). The genotoxic effects of TiO2 NPs have been demonstrated 

in plants and human lymphocytes (Ghosh et al., 2010; Tavares et al., 2014), Syrian 

hamster embryo fibroblasts (Rahman et al., 2002), human hepatoma HepG2 cells 

(Petkovic et al., 2011; Shukla et al., 2014), human keratinocytes (HaCaT) cells (Xue et 

al., 2011), mouse macrophages (Zhang et al., 2013), chinese hamster ovary (CHO) cells 

(Warheit et al., 2007a; Di Virgillio et al., 2010), human bronchial epithelial (BEAS 2B) 

cell (Falck et al., 2009), human epidermal (A431) (Shukla et al., 2011), human lung 

cancer (A549) cells (Srivastava et al., 2011; Srivastava et al., 2013) and human SHSY5Y 

neuronal cells (Valdiglesias et al., 2013).  

Likewise, the genotoxic effects of ZnO NPs have been demonstrated in vivo (Sharma et 

al., 2012a, Li et al., 2012, Cho et al., 2013; Choi et al., 2015, Ghosh et al., 2016) and in 

vitro in human negroid cervix carcinoma (HEp-2) cells (Osman et al., 2010), human liver 

(HepG2) cell (Sharma et al., 2012b), human hepatocytes (LO2) and human embryonic 

kidney (HEK293) cells (Guan et al., 2012), HEK293 and NIH3T3 cells (Demir et al., 

2014). Toxicity of ZnO NPs are suggestive of Zn
2+

 ions release (Franklin et al., 2007; 

Sayes et al., 2007; Landsiedel et al., 2010; Xia et al., 2011; Ryu et al., 2014), intracellular 

reactive oxygen species generation (Xia et al., 2008; Yang et al., 2009; Lin et al., 2009; 

Dimkpa et al., 2011) as well as membrane damage, intracellular Ca
2+

 influx and 
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mitochondrial dysfunction (Huang et al., 2010; Kocbek et al., 2010; Wu et al., 2010; 

Ahamed et al., 2011; Moos et al., 2011; Hsiao and Huang, 2011). 

Direct interactions between NPs and the DNA have been demonstrated recently in in vitro 

studies. However, the studies failed to consider the genotoxic mechanisms that arise from 

the intercellular processes. Altered synthesis of DNA repair proteins, depletion of 

antioxidants and indirect DNA damage are indications of the genotoxicity of NPs 

(Magdolenova et al., 2014). Nonetheless, even though there are disparities in recent 

literatures, evidence shows the genotoxicity of a variety of metal oxide NPs to cultured 

cell in vitro (Zhang et al., 2012). Firstly, the physical and chemical properties of NPs 

which include the crystalline structure, size, shape, surface properties and agglomeration 

determine the toxicity of NPs, as these are not comprehensively characterised (Akhtar et 

al., 2012). Secondly, inter-species differences in toxic effects are as a result of the 

toxicological animal model utilised for such evaluations, with no certainty in the 

prediction of human toxicity. Different results from various laboratories using the same 

cell line make prediction of nanotoxicity more difficult (Hanley et al., 2009). Thirdly, 

experimental conditions such as dose, exposure time and end point assay highly differ 

among laboratories, thereby making it difficult to meaningfully compare results. 

Nevertheless, the genotoxic potential of NPs at the in vivo level may not be easily 

compared with that of the in vitro, due to the pharmacokinetic factors, DNA repair 

proteins, physiological barriers to be absorbed and metabolism that occur under the in vivo 

conditions. Furthermore, concentrations of NPs utilised at the in vivo study may differ 

from the in vitro study. Likewise, novel distribution, clearance, immune response and 

metabolism patterns are essential in the in vivo study as a result of the interactions of NPs 

with the biological systems. 

1.1 Aim of the study 

This study aims at investigating in vivo, genetic and systemic toxicity of TiO2, ZnO NPs 

and their mixture using somatic and germ tissues/organs in mice. 
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1.2 Objectives of the study 

To achieve the aim, the study seeks to accomplish the following specific objectives: 

1. To determine the morphologies, hydrodynamic diameters and zeta potentials of 

TiO2, ZnO NPs and their mixture using transmission electron microscopy (TEM) 

and Dynamic Light Scattering (DLS); 

2. To assess the acute toxicity in mice treated with TiO2, ZnO NPs and their mixture; 

3. To assess DNA damage using the bone marrow micronucleus assay in mice treated 

with TiO2, ZnO NPs and their mixture; 

4. To assess sperm count and motility, morphology of the testes and measure steroid 

hormones such as luteinizing hormone (LH), follicle stimulating hormone (FSH) 

and testosterone in mice treated with TiO2, ZnO NPs and their mixture; 

5. To assess haematological parameters, liver and kidney function tests and lipid 

profile in mice treated with TiO2, ZnO NPs and their mixture; 

6. To assess the histopathology of the liver, spleen, kidney, heart, testes and brain in 

mice treated with TiO2, ZnO NPs and their mixture; and 

7. To determine the mechanism of DNA damage through measuring the activities of 

enzymatic antioxidants [superoxide dismutase (SOD) and catalase (CAT)] and 

non-enzymatic antioxidant [reduced glutathione (GSH)] and malondealdehyde 

(MDA) in mice treated with TiO2, ZnO NPs and their mixture. 

1.3 Hypotheses of the study 

H0: 1 TiO2, ZnO NPs and their mixture will not induce somatic DNA damage in mice. 

H0: 2 TiO2, ZnO NPs and their mixture will not induce germ cell toxicity in the mice. 

H0: 3 TiO2, ZnO NPs and their mixture will not induce systemic toxicity in mice. 
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H0: 4 TiO2, ZnO NPs and their mixture will not induce DNA damage through direct 

interaction with the genetic material and or indirectly via the production of 

intracellular reactive oxygen species (ROS). 

1.4 Justification of the study 

Several concerns are raised by the public and scientific researchers on the health and 

environmental implications with respect to the synthesis and application of TiO2 and ZnO 

NPs for biomedical, industrial and consumer products. Their ability to contaminate the 

environment and cause unanticipated deleterious changes is on the increase, hence 

immediate toxicological assessment, is required. 

There is paucity of information on nanotoxicity in Nigeria despite the fact that Nigerians 

are continually treated with TiO2 or ZnO NPs through natural and/or man made sources. 

For this reason, it is imperative to carry out toxicological assessment.   

Industrial sources (run offs, effluents and waste discharge) and non-industrial sources 

(consumer products, food packaging and additives) that directly contain individual forms 

of TiO2 or ZnO NPs may culminate in the environment (soil, water and air) as 

heterogeneous engineered NPs (Reeves et al., 2008). Therefore, it is foreseeable that both 

TiO2 and ZnO NPs may aggregate and interact in the environment as a result of large scale 

production from the nanotechnology industries. Due to their stability, persistency and non-

degradable nature, they may associate and interact with other NPs in solids or sediments, 

aggregate and penetrate either the food chain or different sources of drinkable water 

(Dobrzynska et al., 2014).  

Consequently, the co-existence of TiO2 and ZnO NPs in different parts of the body 

through the lymphatic or circulatory system from the site of exposure may induce short or 

long term genotoxic and cytotoxic effects. In addition, TiO2 and ZnO NPs may interact to 

induce synergistic, antagonistic or additive effects when they co-exist in the biological 

system of humans and other lower organisms. In particular, several researches have 

concentrated on the genotoxicity and cytotoxicity of either TiO2 or ZnO NPs, with no 
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existing studies on their co-existence. Thus, the toxicological assessment of the mixture of 

TiO2 and ZnO NPs in animal models in vivo is essential.  

The potential adverse health effects of the individual forms of TiO2 and ZnO NPs have 

been investigated extensively in in vitro studies (Sharma et al., 2012a; 2012b; Baek et al., 

2012; Morsy et al., 2016) but just a few exist on the in vivo genotoxicity studies. Hence, in 

vivo studies should be investigated to study the interaction of TiO2 and ZnO NPs with the 

biological system that will elicit immune responses, absorption of physiological barriers, 

metabolic patterns, interaction with DNA repair processes and serum proteins (Singh et 

al., 2013; Cho et al., 2013). 
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CHAPTER TWO 

LITERATURE REVIEW 

Nanotechnology is undoubtedly the most significant technology of the 21
st
 century. In 

2007, commercial and consumer products were estimated to have been worth $147 billion 

while it was predicted to reach $3 trillion by 2015 (Koedrith et al., 2014). In 2008, the 

funding in development and research of nanotechnology attained $18.2 billion worldwide, 

with Japan and the United States leading in this activity (Lux Research, 2004). 

Approximately €600 million per year was contributed by the EU Seventh Framework 

Programme to support research fundings. Likewise, over 600 nanotechnology industries 

are present in the United Kingdom (The Nanotechnology Knowledge Transfer Network, 

2009). 

Many solutions to problems in medicine, engineering, energy production and 

environmental sustainability are provided by nanotechnology (Kwon et al., 2014a). The 

exceptional properties of nanoparticles opportunities are explored and exploited by both 

government and investors in nearly every industrial and technological sector. There is the 

likelihood that significant quantities are released into the environment, as the number of 

nanotechnology grows with the nanomaterial types and applications (Sharma et al., 2012a; 

2012b; Kwon et al., 2014a). This, therefore, becomes pertinent in terms of the safety of 

the environment and human health (Zhang et al., 2012). The contamination of the aquatic 

environment with nanoparticles has become particularly vulnerable, as it serves as a 

plunge for other environment pollutants. Wastewater discharges, degradation and wear of 

products that contain nanoparticles and accidental release from factories are examples of 

common sources to the aquatic environment. The activities of nanoparticles in the 

environment, their absorption, circulation and causes on animal models are likely to occur 

due to their large surface area to mass ratio and extremely small size. 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

9 

 

2.1 Brief history of Nanotechnology 

Nanotechnology is defined as the organisation, manufacturing and utilisation of particles, 

system and structures at the nanoscale level (Williams et al., 2005). Nanomaterials are 

particles that are less than or equal to 100 nm in at least a single dimensional feature (Baek 

et al., 2012; Li et al., 2012; Shi et al., 2013; El-Morshedi et al., 2014; Jia et al., 2014). 

Figure 2.1 provides an illustration of a nanoscale definition compared with subcellular and 

cellular structures in the human body. Nanotechnology was adopted by Professor Norio 

Taniguchi of the Tokyo Science University, “On the Basic Concept of Nanotechnology”, 

which was communicated in 1974 at a Japanese Conference (Taniguchi, 1974). 

2.2 Applications of nanotechnology 

New material application has been invented by nanotechnology. In consumer products 

such as the frames of tennis rackets and motorcycle helmets, nanoparticles are added to 

them to make them stronger, lighter and durable. Nanoparticles are also applied to fabrics 

to prevent bacterial growth, wrinkling and staining. The application of nanoparticles on 

the surfaces of computer, camera display and windows make them anti-reflective and 

resistant to infrared light or ultraviolet and anti-fog (U.S. National Nanotechnology 

Initiative). 

The use of nanoparticles in medicine, also offers some endless possibilities such as 

building nanoparticles with antibodies that have high affinity and specificity in targeting 

tumour cells. Therefore, for drug delivery, small drug molecules can be encapsulated with 

nanoparticles forming micelles, which are transported to the desired location thereby 

reducing the side effects (Jain, 2010). In addition, early diagnosis of atherosclerosis is 

possible through the development of imaging techniques that measure the amount of 

antibody-nanoparticles that accumulate in plaques (Wickline et al., 2006). Also, the 

detection and cleaning up of organic solvents that pollute ground water with nanoparticles 

is underway in environmental sciences (Long et al., 2006). Environmentally friendly 

batteries and efficient solar cells are potentially been produced from nanoparticles (Tian et 

al., 2007). Table 2.1 gives a summary of the application of nanomaterials. 
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Figure 2. 1: A nanoscale showing the comparison between nanoparticles and biological 

components. Source: Ismail et al. (2016) 
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Table 2. 1: Applications of nanomaterials  

Nanomaterials Applications References 

Titanium 

dioxide (TiO2) 

NPs 

Osseointegration of artificial medical 

implants and bone, surface cleaning agents, 

as a photocatalyst, sunscreens, food 

packaging, therapeutics, biosensors, 

pigments, cosmetics, pharmaceuticals, 

paints, paper, inks, food colourant (E171), 

toothpastes, remediation of wastewater, 

plastics, ceramics and rubber. 

Huang et al., 2010; Di 

Virgilio et al., 2010; Sadiq 

et al., 2012; Catalan et al., 

2012; Tu et al., 2012; 

Dobrzynska et al., 2014; 

Demir et al., 2015; Grissa 

et al., 2015; Kansara et 

al., 2015. 

Aluminum 

oxide (Al2O3) 

NPs 

Catalyst, structural ceramics for 

reinforcements, polymer modification, 

functionalisation of textiles, heat transfer 

fluids, wastewater treatment, biosensors, 

biofiltration, antigen delivery for 

immunisation purposes, orthopedic 

materials, abrasives, wear-resistant 

coatings on propeller shafts of ships.  

Balasubramanyam et al., 

2009a; 2009b; Di Virgilio 

et al., 2010; Morsy et al., 

2016; Hashimoto and 

Imazato, 2015. 

Silicon dioxide 

(SiO2) NPs 

Cosmetics, varnishes, resin composites, 

additives to drugs, biomedical and 

biotechnological fields (biosensors), printer 

toners, DNA delivery, cancer therapy, drug 

delivery and enzyme immbolisation. 

Hashimoto and Imazato, 

2015; Sadek et al., 2016. 

Copper oxide 

(CuO) NPs 

Biocide properties, antimicrobial textiles, 

paints, plastics, heat transfer fluids, 

semiconductors and intrauterine 

contraceptive devices. 

Perreault et al., 2012; 

Akhtar et al., 2012; Zhang 

et al., 2016. 
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Nanomaterials Applications References 

Silver (Ag) NPs Toothpastes, textiles, household cleaning 

products, air cleaners, coating for 

refrigerators, wound infections, catheters, 

contraceptive devices, surgical instruments, 

cosmetics, dental alloys, bone prostheses, 

shampoo, nipples and nursing bottles, toys, 

deodorants, kitchen utensils, food packaging, 

water disinfection, biocides and bandages. 

Kim et al., 2008; Arora et 

al., 2009; Piao et al., 2011; 

Foldberg et al., 2011; 

Ghosh et al., 2012; Cho et 

al., 2013; Dobrzynska et 

al., 2014; Tomankova et 

al., 2015. 

Magnetitie NPs Cell separation, drug delivery systems, 

cancer diagnosis and treatment and magnetic 

resonance imaging contrast agent. 

Sadeghiani et al., 2005. 

Zinc oxide 

(ZnO) NPs 

Cosmetics, sunscreens, food additives, food 

packaging, fungicides in agriculture, 

anticancer drugs, biomedical imaging, 

semiconductors, as a photocatalyst, paints, 

ceramics, rubber, metallurgy additives, 

chemical fibres, shampoos and 

antiperspirants. 

Sharma et al., 2011; 2012a, 

2012b; Baek et al., 2012; Li 

et al., 2012; Akhtar et al., 

2012; Guan et al., 2012; 

Demir et al., 2014; Kwon et 

al., 2014a; Choi et al., 

2015; Namvar et al., 2015. 

Carbon 

Nanotubes 

(CNT) - multi 

walled 

(MWCNT) 

 

Single walled 

(SWCNT) 

Drug delivery systems, sensors, electronic 

devices, wastewater treatment, bone cell 

growth, high tensile strength, semi-

conductive electronic properties, cancer 

treatment, thermal and chemical stability. 

 

Electronics, optics, imaging, drug delivery, 

bone cell growth and cancer treatment 

Muller et al., 2008; 

Asakura et al., 2010; 

Patlolla et al., 2010; 

Thurnherr et al., 2011. 

 

 

Patlolla et al., 2016. 
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Nanomaterials Applications References 

Indium tin 

oxide (ITO) 

NPs 

Functional thin film material in display 

devices, dye-synthesised solar cells, liquid 

crystal displays and organic light-emitting 

diodes, optical devices such as camera 

lenses and optical functional material in 

energy-saving glass coating. 

Akyil et al., 2015 

Fullerenes Energy conversion and drug delivery in 

industrial and medical fields. 

Shinohara et al., 2009 

Cerium oxide 

(CeO) NPs 

As a fuel additive to promote combustion, 

ultraviolet-absorbing compound in 

sunscreen electrolyte in solid oxide fuel 

cells, polishing agent, and as a subcatalyst 

for automotive exhaust cleaning. 

Kumari et al., 2014. 

Iron oxide 

(Fe2O3) NPs 

Cell tracking, cell target, heat elements for 

hyperthermia, cancer therapy, magnetic 

resonance imaging, drug delivery, and 

tissue repair. 

Alarifi et al., 2014; Sarkar 

and Sil, 2014; Gaharwar 

and Paulraj, 2015; Silva et 

al., 2017. 

Europium 

hydroxide 

(EH) NPs 

Pro-angiogenic EH NPs could be 

developed as an alternative treatment for 

cardiovascular diseases, ischemic diseases 

and wound healing. 

Bollu et al., 2016a. 

Manganese 

oxide (MnO2) 

NPs 

Drug delivery, contrast agents for magnetic 

resonance imaging, wastewater treatment, 

ionisation-assisting reagent in mass 

spectroscopy and batteries. 

Singh et al., 2013. 
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Nanomaterials Applications References 

Platinum (Pt) 

NPs 

Catalysis, cosmetics manufacturing and the 

processing of dietary supplements. 

Yamagishi et al., 2013. 

Chitosan NPs As a carrier for oral peptide and protein 

drug delivery, dietary supplements, drug 

delivery and pharmaceutical and 

biomedical fields. 

Tao et al., 2011. 

Magnetic NPs Contrast agents in magnetic resonance 

imaging, drug delivery, tissue repairing, 

hyperthermia, detoxification of biological 

fluids, cell separation and drug targeting. 

Syama et al., 2014. 
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2.3 Nanoparticles 

Nanoparticles can be broadly defined as particles having one or more dimensional feature 

within a nanoscale of 1 and 100 nm (Magdolenova et al., 2014; Kim et al., 2014a; Sadek 

et al., 2016). They include metal oxides, metals, carbon nanotubes and quantum dots 

(Nam et al., 2014). Metal oxide NPs are utilised in the production of electronics (Chow et 

al., 2009), as catalysts (Sharghi et al., 2009), remediation of contaminated ground water 

(Zhang, 2003), pharmaceuticals (Sun et al., 2008), drug delivery (Choi et al., 2007), 

biomedical imaging (Qu et al., 2008), fuel cells (Du and Wang, 2009) and chemical 

sensors (Guerrini et al., 2009). Titanium dioxide (TiO2) and zinc oxide (ZnO) NPs are 

examples of metal oxide NPs widely utilised in consumer products, most importantly in 

cosmetics and personal care products. They are manufactured through the hydrolysis of 

the transition of metal ions (Masala and Seshadri, 2004). Silica (SiO2), an example of a 

non-metal NP is synthesised via carbondioxide laser-induced decomposition of silicon 

hydride in a gas flow reactor, sodium metal reduction of silica salts or nonpolar organic 

solvent with metal silicides, or top-down laser ablation and ultrasonic methods. SiO2 NPs 

are utilised in cancer therapy (Hirsch et al., 2003), for oligonucleotide synthesis (Zhao et 

al., 2009) and for anti-biofilm characteristics (Hetrick et al., 2009). 

2.3.1 Types of Nanoparticles 

2.3.1.1 Naturally occurring nanoparticles 

i. Volcanic eruptions:  

Particulate matter (nanoscale – microns) present in ash and gases are erupted into the 

atmosphere reaching heights of more than 18 000 meters (Figure 2.2A) (Buzea et al., 

2007). Up to 30 million tons of particulate matter are ejected in a single volcanic eruption, 

resulting into enormous particles being released into the atmosphere (Taylor, 2002). The 

upper troposphere and stratosphere in the atmosphere may accommodate volcanic 

eruptions resulting to the wide spread, and affecting the earth for several years. A major 

consequence of volcanic eruption is the scattering and blocking of the sun‟s radiation. 
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A 

B 

Figure 2. 2: Examples of naturally occurring events that contain nanoparticles. (A) 

Volcanic eruption that occurred in Japan (www.dailymail.co.uk); (B) Forest fire in 

Kenya (www.ecoforum.com). 
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ii. Forest Fires:  

Lightning strikes are the primary cause of forest fires. Particulate matter which includes 

nanoparticles that exceed the quality standards of the ambient air are increased during 

major fires that spread smoke and ash over several miles (Scown et al., 2010) (Figure 

2.2B). 

iii. Dust Storms:  

The main component of environmental dust storms is nanoparticles. Dust storms produce 

particles ranging between 100 nm to several microns, and can reach a concentration of 1 

500 particles / cm
3
 when in a range of between 100 and 200 nm (Buzea et al., 2007). 

iv. Organisms:  

Bacteria (30 - 700 nm) and viruses (10 - 400 nm) are smaller than a few microns (Buzea et 

al., 2007). No supply of energy is needed by nanoparticles to remain in a stable form since 

they are inorganic solids. They are able to transform, dissipate and interact with their 

environment via chemical reactions. Both uni- and multicellular organisms through 

intracellular and extracellular processes produce nanoparticles (Ahmad et al., 2005). 

2.3.1.2  Anthropogenic nanoparticles 

i. Cigarette smoke:  

Nanoparticles ranging from 10 nm to a maximum of 150 nm are usually present in tobacco 

smoke, which is a combustion product. (Figure 2.3A) (Ning et al., 2006). The 

environmental tobacco smoke is a complex composition consisting of over 100, 000 

chemical compounds and components (Ning et al., 2006).  

ii. Diesel and engine exhaust nanoparticles:  

The major primary source of diesel and automobile exhaust are the atmospheric nano- and 

microparticles in the urban areas (Figure 2.3B) (Westerdahl et al., 2005). For diesel 

engines, the size range of particles from the vehicle exhaust is between 20 and 130 nm  
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Figure 2. 3: Examples of anthropogenic sources of nanoparticles (A) Cigarette smoke 

(www.thesceneisdead.com); (B) Exhaust fumes from vehicles (www.telegraph.co.uk). 

 

http://www.thesceneisdead.com/
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while gasoline engines are between 20 and 60 nm. Diesel combustion by-products include 

carbon nanotubes (Evelyn et al., 2003), while, 20% of the particle mass constitute 

nanoparticles with diesel-generated particles taking more than 90% (Kittleson, 2001). 

iii. Indoor pollution:  

The indoor air pollution is 10 times greater than the out door pollution. Human activities 

generate a substantial amount of particulate matter indoors. Cleaning, smoking, cooking, 

and combustion (e.g. fire places and candles) are just a few examples of common indoor 

activities. Spores, cooking, dust mites, chemicals, textile fibres, skin particles, smoke from 

candles, and cigarettes are examples of indoor nanoparticles (Buzea et al., 2007). 

iv. Buildings demolition:  

When large buildings are demolished, high levels of concentrated nanoparticles are 

produced with diameter smaller than 10 microns (Stefani et al., 2005). At the site of 

demolition, wood, lead, paper, glass, respirable asbestos fibres and further toxic materials 

are mostly found, and travel several kilometers with the help of the dust cloud to 

neigbouring regions of the collapsed building (Stefani et al., 2005). 

v. Cosmetics:  

Many thousands of years in ancient Egypt, mineral powders and black soot have been 

utilised as cosmetics. Cosmetics which contain a large variety of nanoparticles have been 

extensively embraced by industries, however, these nanoparticles present in them can be 

absorbed into the deep layers that tend to protect the skin (Buzea et al., 2007). Also, 

synthetic peptides that instruct cells to regenerate are delivered into the skin as nutrients 

(Xiao et al., 2005). Nanoparticles help maintain a youthful appearance of the skin as a 

result of their antioxidant properties (Xiao et al., 2005). Cosmetic products such as creams 

contain functionalised fullerenes that have radical scavenging properties (Nohynek et al., 

2007). A large number of cosmetics and personal care products (such as toothpaste, soap, 

deodorants, body creams, shampoos and hair dandruff) (Figure 2.4) contain nanoparticles 

that can take up and reflect ultraviolet (UV) light due to their optical propeties (Nohynek 

et al., 2007).  
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Figure 2. 4: Example of cosmetics that contain nanoparticles. 

Source: Wilson Centre and Virgina Tech University. 

www.law.widener.edu/nanolaw 
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2.3.2 Classification of nanoparticles 

Classification can be done in a number of ways. Chemical composition is one of the broad 

ways of classifying nanoparticles (Buzea et al., 2007; Handy et al., 2008b). The 

classification includes: carbon-based structures [carbon nanotubes (CNT) and C60 

fullerenes], metal oxide nanoparticles (e.g. CuO, ZnO and TiO2) or semiconductor 

nanocrystals also known as quantum dots.   

Another way of classifying nanoparticles is based on their dimensionality (Buzea et al., 

2007; Krug and Wick, 2011). Nanoobjects and nanostructured materials are the two main 

types of nanoparticles according to the International Organisation for Standardisation 

(ISO). These include nanocrystalline materials (consist of nanosized crystalline grains 

within particles that may or may not be at the nanoscale dimensions), nanoporous 

materials (having nanosized pores with particles that may or may not be of the nanoscale 

dimesnions) and complex fliuds containing nanosized objects. Classification of 

nanoobjects into nanoplates, nanofibres and nanoparticles is based on the number of 

dimensions confined to the nanoscale range (Figure 2.5).  

Nanofilms, nanolayers and nanocoatings have one dimension confined to the nanoscale. 

Graphene is an example of a nanoplate consisting of sheets of graphite with electronic 

properties (Geim and Novoselov, 2007). Nanotubes, nanorods and nanowires belong to 

the nanofibres with two dimensions within the nanoscale and are widely used in the area 

of medicine (Bianco and Practo, 2003). Nanoparticles have all their three dimensions with 

the nanoscale and are often spehrical in shape (Ashby et al., 2009; Krug and Wick, 2011). 

2.3.3 Exposure routes of nanoparticles 

Government agencies and scientists are more concerned about the negative impact of 

nanotechnology on human health and ecosystem since there is lack of knowledge in these 

areas (Oberdorster et al., 2005; Owen and Handy, 2007; Klaine et al., 2008). The society 

benefits from nanotechnology applications in terms of general consumer products, health 

care and environment.  
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Figure 2. 5: The ISO definition of nanoobjects. The shape of nanoobjects reflects the 

number of dimensions confined to the nanoscale. Source: Krug and Wick (2011). 
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Due to the numerous applications of NPs in consumer products, the chances of human 

exposure through oral, inhalation and dermal may be significantly increased (Guan et al., 

2012; Kumar and Dhawan, 2013).  Human, plants and aquatic organisms may be treated 

with NPs through industrial (manufacturing, processing and packaging), usage (consumer 

products, cosmetics, medical applications) and via the envronment (polluted air, effluents, 

disposal and contaminated water) (Figure 2.6). Information on the behaviour of NPs in the 

environment, interactions with biotic and abiotic components or their potential toxic 

effects in living organisms is lacking. The levels of NPs in the various environmental 

compartments are not known and assessment to measure the NPs load is currently 

underway. 

2.3.3.1 Nanoparticles in the atmosphere 

There have been a number of studies on the atmospheric levels and the composition of 

nanoparticles suggesting a link between the respiratory health and nanoparticle exposure 

(Sioutas et al., 2005). Primary combustion products from motor vehicles and diesel 

engines are the major sources of NPs, which contribute 36 % particle numbers in the 

atmosphere (Shi et al., 2001). Nanoparticles have a long half-life in the atmosphere and 

can be transported to reasonable distances due to their small size. Organic compounds 

such as polycyclic aromatic hydrocarbons, oxidant gases and transition metals may be 

absorbed to the NPs surface, facilitating their co-transport (Oberdorster, 2001). Significant 

levels of particles are found in the indoor compared with the outdoor environment, with 

several studies reporting the chemical properties and concentrations of NPs indoor 

(Thatcher and Layton, 1995; Jones et al., 2000). The safety of workers in factories 

producing NPs has become a great concern, especially with the risk of the atmospheric 

movement of NPs out of the factory environment. Studies have also addressed the 

atmospheric transport and load of NPs (Boxall et al., 2007; Tsai et al., 2009). 

2.3.3.2 Nanoparticles in soils 

Mueller and Nowack (2008), proposed a modeling approach regarding the direct route of 

entry of Ag, TiO2 and CNT into the soil. It was suggested that the use of sprays, cleaning  
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Figure 2. 6: Exposure routes of nanoparticles. Potential release, exposure and uptake of NPs in 

the ecosystem (1) inhalation; (2) ingestion; (3) dermal penetration 

Source: Zhang et al. (2012) 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

25 

 

agents, and paints lead to the release and deposition of NPs into the soil through run-offs, 

which makes it a major consideration. Run-off from road surfaces, accidental release from 

factories, and degradation of products, and leaching of NPs to the soil through landfill are 

entry points through which NPs accumulate in the soil. Soil and ground water remediation 

technologies, application of plant protection products, application of fertilizers to 

agriculture, land that contain sewage sludge, excretion of drugs that contain NPs and 

through the NP deposition from the air are the main exposure routes of NP to the soil 

proposed by Boxall et al. (2007). 

Several potential implications of NP entry into the soil environment occur most especially 

on organisms dwelling in the soil. Terrestrial isopods (Jemec et al., 2008), earthworms 

(Scott-Fordsmand et al., 2008), nematodes (Wang et al., 2009) and soil bacterial 

communities (Johansen et al., 2008), are a few of the studies demonstrated to show the 

changes in the structure of their community. Various NP types in soils can affect the plant 

growth and agricultural produce such as seed germination inhibition (Lin and Xing, 2008), 

root elongation (Canas et al., 2008), accumulation and translocation within plant tissues 

(Zhu et al., 2008).  

2.3.4 Metal oxide nanoparticles 

Metal oxide NPs have been extensively utilised in the field of nanotechnology (as 

semiconductors and thermoelectrical materials), nanomedicine (as drug delivery systems 

for diagnosis and treatments) and in the decontamination of environmental pollutants 

(Seabra and Duran, 2015). Rapid production and utilisation of these metal oxide NPs have 

led to increased exposures in both human and the ecosystem. Metal oxide NPs include but 

not limited to Bismuth Trioxide (Bi2O3), Titanium dioxide (TiO2), Zinc oxide (ZnO), 

Aluminium oxide (Al2O3), Copper oxide (CuO, Cu2O), Iron oxide (Fe2O3, Fe3O4), Silica 

(SiO2), Tin oxide (SnO2) and Zirconia (ZrO2) NPs. Conservative markets estimated an 

increase in the production of metal oxide NPs from 270,041 tons in 2012 to 1,663,168 

tons by 2020 (Future Market Inc., 2013). Nam et al. (2014) reported that the production 

and utilisation of TiO2 NPs ranged from 7,800 tons to 38,000 tons per year in the USA, 

while 435 tons of TiO2 NPs was calculated to be produced in Switzerland per year 

(Piccinno et al., 2012).  
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2.3.4.1  Titanium dioxide nanoparticles 

Titanium (Ti) is one of the most widely distributed elements on earth, with an average 

concentration of 4 400 mgkg
-1 

(Shi et al., 2013). It has a high affinity for oxygen and, 

therefore, exists in the +4, +3 and +2 oxidation states, of which +4 is the most common 

oxidation state. TiO2 is referred to as titanic acid anhydride, titanic anhydride, titania, 

titanium white or titanium (IV) oxide (Shi et al., 2013). TiO2 is a white, fine, odourless, 

natural, thermally stable, non-silicate mineral oxide and nonflammable with a molecular 

weight of 79.9 gmol
-1

, boiling point of 2972 
o
C and melting point of 1843 

o
C (Iavicoli et 

al., 2012; Shi et al., 2013).  

Titanium dioxide NPs exist in one of the three forms: anatase, rutile and brookite (Sadiq et 

al., 2012; Cho et al., 2013; Chen et al., 2014) (Figure 2.7). Anatase has eight faced 

tetragonal dipyramids forming a sharp elongated point which makes it distinct from other 

polymorphs (Sadiq et al., 2012). Anatase is a stable form at the nanoscale level and has 

been shown to be more toxic than rutile (Sayes et al., 2006; Falck et al., 2009), which is 

thermally stable at the microscale level (Zhang et al., 2012). On the other hand, brookite is 

an impure form of both anatase and rutile forms. Most importantly, they possess 

anticorrosive and photocatalytic properties (Zhang et al., 2012). Their large surface area 

and crystallinity (anatase rather than rutile) increase the catalytic activity of TiO2 NPs 

(Magdolenova et al., 2014). Semiconductor photocatalysis, decontamination of waste 

water containing hazardous by-products from industries and solar cells are examples of 

some of the catalytic reactions used by TiO2 NPs (Zhang et al., 2012). 

The most important polymorphs in relation to the utilisation in consumer products are 

anatase and rutile (Shi et al., 2013; Cho et al., 2013; Chen et al., 2014). The photocatalytic 

activity of anatase TiO2 is reported to be approximately 1.5 times higher than the rutile 

form (Falck et al., 2009). It has been observed that the nanoscale anatase was 100 times 

more cytotoxic than the nanoscale rutile in human dermal fibroblast and human lung 

epithelial A549 cells (Sayes et al., 2006). It was suggested that the differences in the 

photocatalytic activity of anatase and rutile is due to the differential ability to generate 

ROS (Sayes et al., 2006). The inner structure size, surface characteristics and shape of 

rutile differ significantly from anatase (Andersson et al., 2011; Wang and Li, 2012). 
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Figure 2. 7: The crystal structures of A) rutile   B) anatase   C) brookite. 

http://ruby.colorado.edu/~smyth/min/tio2.html. 
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2.3.4.1.1 Uses of titanium dioxide nanoparticles 

Titanium dioxide (TiO2) NPs are broadly utilised in a variety of applications due to their 

brightness and high refractive index (Shi et al., 2013; Chen et al., 2014). Over 70% of the 

total production volume is accounted for by TiO2 NPs (Shi et al., 2013), with at least 36% 

present in food (Weir et al., 2012), making it one of the top five NPs utilised in consumer 

products (Shukla et al., 2011; Chen et al., 2014). Various properties of TiO2 NPs have 

been exploited in several applications. The particle size strongly influences the absorption 

property of TiO2 NPs, as they serve as either an oxidizing or reducing agent (Zhang et al., 

2012). Manipulation of TiO2 NPs through surface treatment is applicable to UV radiation 

absorption, pollutant degradation, protection of polymers and paint films from other 

chemical species degradation (Shi et al., 2013). Hence, they are widely utilised in 

sunscreens because they increase the sun protection factor thereby reflecting and 

absorbing UV light (Bondarenko et al., 2013). The photocatalytic property of TiO2 NPs 

decompose many organic matters in waste water, and also destroy both gram negative and 

positive bacteria (Yin et al., 2012; Iavicoli et al., 2012). In applications where low 

interaction with the surrounding matrix is desired, the rutile form of TiO2 NPs is often 

utilised while for photocatalytic applications, the anatase form of TiO2 NPs is employed 

(ED and DuPont, 2013).  

Titanium dioxide NPs are found in a variety of consumer products such as automotive 

products, printing inks, plastics, ointments, rubber, floor coverings, toothpaste, as food 

colourants (e.g. candies, sweets, coffee whitener) (Wang et al., 2007), confectionary 

(white sauces and dressings), powdered foods (Mikkelsen et al., 2011), absorbents, 

ceramics and mortar (Trouiller et al., 2009). They are also able to form different shades of 

colours such as grey and green when in combination with other pigments (Mikkelsen et 

al., 2011). In addition, windows, self-cleaning tiles, textiles and car mirrors for anti-

fogging purposes are other industrial applications of TiO2 NPs due to their photocatalytic 

effects (Shi et al., 2013). 

Advanced imaging and nanotherapeutics are useful tools investigated in nanomedicine 

using TiO2 NPs (Yuan et al., 2010). For example, photodynamic therapy can be 

accomplished with TiO2 NPs utilised as a potential photosensitizer. Novel treatments such 
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as atopic dermatitis, hyperpigmented skin lesion, acne vulgaris, recurrent condyloma 

accuminata and other dermatologic diseases are being treated with TiO2 NP-containing 

skin care products (Yuan et al., 2010; Montazer and Seifollahzade, 2011). 

2.3.4.1.2 Toxicity of titanium dioxide nanoparticles 

i.  Acute toxicity of titanium dioxide nanoparticles 

Wang et al. (2007) indicated that female mice treated with TiO2 NPs (25, 80 and 150 nm; 

5 g/kg bw) at a single oral administration showed no obvious acute toxicity. In contrast, 

mice treated with 25 and 80 nm TiO2 NPs showed high hepatic coefficients. In addition, 

there were significant alterations in the levels of aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), blood urea nitrogen (BUN), and lactate dehydrogenase (LDH), 

with hepatic and renal injury. No histopathological lesions were observed in the heart even 

with significant changes in the LDH levels in TiO2 NPs (25 and 80 nm) treated mice, with 

no anomalies in ovaries, spleen and lung. 

Li et al. (2008a) reported hemagglutination, abnormal sedimentation, and dose dependent 

hemolysis in erythrocytes treated with TiO2 NPs and not TiO2 FPs. Ma et al. (2009) 

reported liver toxicity in mice treated for 14 days with TiO2 NPs (5 nm; 5, 10, 50, 100 and 

150 mgkg
-1

). There was a significant alteration in the messenger RNA (mRNA) and 

inflammatory pathways such as macrophage migration inhibitory factor (MMIF), nuclear 

factor kappa-light-chain-enhancer of activated B cells (NK-kB), Tumour Necrotic Factor 

(TNFα), interleukin factor IL-1β, (IL)-6, IL-4, cross reaction protein, and IL-10 using the 

enzyme-linked immunosorbent assay (ELISA) and real-time quantitative-PCR (RT-PCR). 

TiO2 NPs anatase (5, 10, 50, 100 and 150 mgkg
-1

; 5 nm) intraperitoneally administered to 

mice for 14 days revealed pathological changes in the liver, kidneys and myocardium as 

well as significantly altering the levels of blood sugar, lipid, pseudocholinesterase, leucine 

acid peptide, ALT, total protein, albumin, uric acid and BUN (Liu et al., 2009a).  

ii. Sub-acute toxicity of titanium dioxide nanoparticles 

Bu et al. (2010) reported the effect of orally treated TiO2 NPs (0.16, 0.4 and 1.0 gkg
-1

) on 

the metabolomic analyses in urinalysis and serum. TiO2 NPs elevated the levels of 
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trimethylamine-N-oxide (TMAO), hippurate, taurine, citrate, histidine, alpha 

ketoglutarate, citrulline, phenyl acetylglycine (PAG) and acetate. The levels of 3-D-

hydroxybutyrate (3-D-HB), methionine, betaine, threonine, pyruvate, lactate, choline and 

leucine were elevated. There were reductions in glutamate, pyruvate, glutamine, 

methionine, glutathione and acetoacetate, as well as increases in choline, TMAO, 

creatinine, 3-D-HB, and phosphocholine as indicated in the metabolomics of the serum. In 

addition, the swelling of the mitochondria in the tissue of heart as well as elevated levels 

of LDH, CK and AST were induced by TiO2 NPs in the rats. Similar to the results 

obtained above, Eydner et al. (2012) also reported inflammatory changes in the lungs, β-

glucuronidase and leucopenia depletion after TiO2 NPs inhalation. TiO2 NPs (1 or 10 

mgkg
-1

) was intratracheally instilled in rats. LDH activity, malondialdehyde, total protein 

and leukocytes were significantly increased when treated with 10 mgkg
-1 

as correlated 

with the control. In addition, 10 mgkg
-1 

increased pulmonary inflammation in the lungs via 

histopathological examination.  

iii. Sub-chronic toxicity of titanium dioxide nanoparticles 

Bermudez et al. (2004) compared the pulmonary responses to aerosol concentrations of P-

25; 21 nm TiO2 NPs (0.5, 2.0 and 10 mg/m
3
) for 6 hours / day, 5 days / week for 13 weeks 

in female rats, mice and hamsters. All three groups of rodents revealed a dose dependent 

increase in lung burdens with significant differences of pulmonary responses among the 

species. Severe inflammatory responses were developed by rats than mice when the lung 

burden of TiO2 NPs was equivalent, resulting in fibro proliferative changes and 

progressive epithelial. Rodents treated with TiO2 NPs (10 mg/m
3
) exhibited impaired 

clearance of particles from the lung; where as the administration of doses did not affect the 

clearance of TiO2 NPs in hamsters.  

Another study by Warheit et al. (2006) compared 25 nm of TiO2 NPs and 100 nm of FPs 

(1 and 5 mgkg
-1

) with a variety of crystal structures, sizes and surface areas, which were 

treated via intratracheal instillation for 24 hours, 1 week and 3 months in rats. The lung 

inflammatory responses in both TiO2 NPs and FPs were almost the same despite the 30 

fold difference in the surface areas of TiO2 NPs and FPs. It was concluded that the particle 

size and surface area do not determine the toxicity of TiO2 particles through lung 
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instillation. It was suggested that the particle surface properties rather than the surface area 

was responsible for the toxicity of TiO2 NPs. In another study reported by Roursgaard et 

al. (2011), TiO2 NPs (rutile) and FPs (5, 50 and 500 µg) were intratracheally instilled once 

in mice for 3 months. At high doses, levels of neutrophils, total protein and interleukin – 6 

(IL-6) in BALF were elevated by TiO2 NPs and FPs. However, it was suggested that the 

cytotoxicity and inflammatory effects induced by TiO2 NPs to the lungs may be similar to 

those induced by the FPs of similar composition.  

iv. Chronic toxicity of titanium dioxide nanoparticles 

Studies on the chronic lung inhalation exposure of TiO2 FPs to pigs or rats reported 

pulmonary pathology which includes increased occurrences of pneumonia, squamous 

metaplasia (Baskerville et al., 1988), proliferation of pulmonary cells and responses 

(Warheit et al., 1996). Likewise, macrophage dysfunction (Warheit et al., 1997), alveolar 

epithelial metaplasia, fibroproliferative lesions (Bermudez et al., 2002) and accumulation 

of macrophages in interalveolar septa (Lee et al., 1985) have been reported in TiO2 NPs-

induced toxicity. Exposure of ICR mice to 5 - 6 nm of TiO2 NPs (2.5, 5 and 10 mgkg
-1

) 

for a period of 90 days via oral exposure resulted in severe spleen lesions with significant 

decreases in lymphocyte counts, platelets, immunoglobulin, haemoglobin and blood cells. 

In addition, notable increase in the levels of MMIF, IL-2, IL-4, IL-6, IL-8, IL-10, IL-1β, 

TNF-α, NF-kB, transforming growth factor-β (TGF-β), CYP1A1 expression, interferon-γ, 

Bax, cross-reaction protein and decrease in heat shock protein 70 (Hsp 70) and Bcl-2 

expression levels were also induced (Sang et al., 2012).  

v. Dermal toxicity of titanium dioxide nanoparticles 

Cosmetics and sunscreens contain TiO2 NPs that help protect skin from harmful UV 

radiation. Percutaneous absorption and ROS-mediated skin aging are potential risk of 

general skin exposure to these applications (Menzel et al., 2004; Lademann et al., 2006; 

Lademann et al., 2008; Wu et al., 2009). The first line of defense from the outside world 

is the skin. Transdermal drug delivery is facilitated by a narrow link of capillaries that 

surround the hair follicles (Nohynek et al., 2007). The orifices of the hair follicles contain 

1 % of applied TiO2 NPs, which are difficult to remove compared with that on the skin 
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surface (Lademann et al., 2006; Lademann et al., 2008). The percutaneous penetration of 

most extraneous substances is shielded by the stratum corneum (the topmost layer of the 

epidermis) (Yaar and Gilchrest, 2003), however, penetration of TiO2 NPs was shown in 

the stratum granulosum and stratum corneum in pigs (Menzel et al., 2004). So far, 

systemic toxicity has not occurred through the dermal exposure of TiO2 NPs. 

Most studies have reported that the outmost layer of the stratum corneum retain TiO2 NPs, 

with the epidermis containing little or no TiO2 NPs (Nohynek et al., 2007). Furthermore, 

no irritation or sensitisation of TiO2 NPs (80/20 anatase/rutile) (129.4 nm; 175, 550, 1750 

and 5000 mgkg
-1

) was found in mice for the local lymph node assays, irritation and acute 

dermal studies (Warheit et al., 2007a). ROS induction and skin aging were observed after 

the prolonged TiO2 NPs exposure in the presence of illumination (Wu et al., 2009). Only 

the adhesion of the cell-matrix and not cell viability were altered when human 

keratinocyte HaCaT cells were treated with TiO2 NPs (< 60 µg/mL) for 24 hours (Fujita et 

al., 2009). Chen et al. (2010) obtained decreased cell viability and increased ROS levels 

induced by photo-irradiation. The penetration and toxicity of TiO2 NPs were investigated 

via dermal exposure in both in vitro and in vivo studies (BALB/c hairless mice, domestic 

pig ears). No absorption of TiO2 NPs via the stratum corneum in the isolated porcine skin. 

In another study reported by Unnithan et al. (2011), serum biochemical alterations were 

observed in Wistar rat skin atopically treated with 20 nm of TiO2 NPs (14, 28, 42 and 56 

mgkg
-1

). Glutathione-S-transferase (GST) and Catalase (CAT) activities were depleted 

while LDH and lipid peroxidation (LPO) increased. ALT, AST, BUN and creatinine 

concentration increased with no histopathological alterations on the tissues. 

In contrast, Wu et al. (2009) observed that 4 nm and 60 nm of TiO2 NPs (24 mg of 5 % 

TiO2 NPs) penetrated via the horny layer and were located in the inner epidermal layer 

after topical application for 30 days in vivo. In addition, TiO2 NPs did not only absorb 

through the skin of hair mice after 60 days dermal exposure, but was also translocated, and 

induced several pathological lesions in major organs. Liu et al. (2006) treated mice at 1, 

24 or 48 hours with TiO2 NPs (1000, 2150, 4640 and 10 000 mgkg
-1

) and observed no 

irritation tests. Likewise, Warheit et al. (2007b) further demonstrated the effect of TiO2 
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NPs (129.4 nm; 80/20 anatase/rutile; 0, 5, 25, 50 and 100 %) dermally in rabbits and mice 

(CBA/JHsd) for 3 days of which no skin irritation was observed. 

vi. Neurotoxicity of titanium dioxide nanoparticles 

The high metabolic rate, numerous ROS targets and low capacity of cellular regeneration 

make the brain susceptible to oxidative stress (Zhang et al., 2012). The olfactory nerve is 

speculated to be the pathway through which NPs are intranasally transported (Dorman et 

al., 2004; Oberdorster et al., 2005; Elder and Oberdorster, 2006). Wang et al. (2008b) 

reported morphological alterations of the hippocampal neurons and olfactory bulb, 

oxidative stress and high accumulation of TiO2 NPs. However, a slight brain lesion was 

induced by TiO2 NPs via oral administration (Wang et al., 2007). The introduction of TiO2 

NPs via the olfactory bulb route resulted in the hippocampus being a main target, which 

displayed a translocation capacity in the CNS in a time-dependent manner after 

intranasally instilled (Wang et al., 2008b). The homeostatic disturbance of enzymes, trace 

elements, and neurotransmitter systems reduced the spatial recognition memory ability of 

mice treated with TiO2 NPs. A cascade of reactions such as excessive release of nitric 

oxide, reduced antioxidants, reduction of glutamic acid, lipid peroxidation, and the 

decrease in the activity of acetylcholinesterase activity with the presence of brain injury 

were induced when TiO2 NPs were translocated from the intraperitoneal cavity to the 

brain (Ma et al., 2010). The expression levels of TNF-α, IL-1β, Factor-kB-inducible 

kinase, NF-kB and IkB kinase were upregulated while IkB was down-regulated (Ma et al., 

2010).  

Hu et al. (2010b) reported that 5 nm anatase of TiO2 NPs (0, 5, 10 and 50 mgkg
-1

) 

intragastically instilled in ICR mice consecutively for 60 days significantly damaged the 

spatial recognition memory. Homeostasis of neurotransmitters, trace elements, and 

enzymes were distorted as well as significant alterations in the levels of K, Fe, Na, Zn, Mg 

and Ca. The activities of nitric oxide synthase (NOS), Ca
2+-

ATPase, Ca
2+/

Mg
2+

 ATPase, 

Na
+
/K

+
-ATPase, and acetylcholine esterase were also significantly inhibited. In addition, 

TiO2 NPs notably reduced the levels of monoamines neurotransmitters such as DOPAC, 

NE, 5-HT and its metabolite 5-HIAA and increased nitric oxide (NO), glutamate and 

acetylcholine. The effect of TiO2 NPs (100 mgkg
-1

) on the learning memory and the 
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hippocampal cell proliferation of the offsprings in pregnant rats (gestational day 2 to day 

21) via oral gavage was investigated. Impaired learning and memory, and cell 

proliferation in the hippocampus of the offspring were induced by TiO2 NPs 

(Mohammadipour et al., 2014). In another study reported by Cui et al. (2014), oxidative 

damage in the offspring brain and emotional behaviour in the adulthood were induced in 

TiO2 NPs prenatal exposure. The status of the antioxidant was damaged, lipids and 

oxidative DNA damage were significantly increased in the new pups. 

vii. Pulmonary toxicity of titanium dioxide nanoparticles 

The penetration of exogenous fine particles via the respiratory system in the body induces 

ROS by phagocytosis in the alveolar macrophages (Abidi et al., 1999). Enzymatic and 

non-enzymatic antioxidants in the alveolar macrophages scavenge ROS; however, these 

antioxidants are not sufficient to prevent pulmonary damage and oxidative stress (Repine 

et al., 1997). Oberdorster et al. (1994) observed particle size, persistence and lung injury 

in rats treated via inhalation to TiO2 NPs (20 and 250 nm) for 12 weeks. Greater 

pulmonary effects such as inflammation and lung injury were induced by the NPs rather 

than the FPs, indicating that their small size and larger surface area to mass ratio are major 

characteristics that conferred to the accumulation and NPs toxicity. Systemic and lung 

inflammation, platelet aggregation, and cardiac and pulmonary edema were induced by the 

acute exposure to TiO2 NPs rods and dots for 24 hours (Nemmar et al., 2008). Hepatic 

lesions, lymph nodule proliferation, systolic hypertension, splenic congestion, thrombus 

tachycardia, inflammation and oxidative stress were aggravated with TiO2 NPs coated 

with Fe. 

Liu et al. (2009b) reported that intratracheally instilled rats treated with TiO2 NPs (5, 21 

and 50 nm respectively) at 0.5, 5 or 50 mgkg
-1 

after 7 days revealed dose-dependent 

inflammatory lesions with histopathological examinations of the lung tissue. In addition, it 

was demonstrated that particle size was a function of pulmonary toxicity where 5 nm of 

TiO2 NPs was more severe than 21 and 50 nm TiO2 NPs. Also, Kobayashi et al. (2009) 

treated rats via intratracheal instillation to TiO2 NPs (19 and 28 nm; 5 mg/mL) every 24 

hours for 1 week; TiO2 NPs revealed a dose-dependent distribution. Liu et al. (2010a) 

treated rats with 5 and 200 nm of TiO2 NPs (0.5, 5 and 50 mgkg
-1

) via intratracheal 
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instillation to evaluate the alveolar macrophages. TiO2 NPs exposure led to alveolar 

macrophages dysfunction, cell structure damage, ultimately leading to 

immunosuppression in the rats. Oberdorster et al. (2000) treated rats and mice with 20 nm 

of TiO2 NPs and 250 nm of fine particles (FPs) via intratracheal instillation and observed 

significant pulmonary response through the significant increase of LDH activity, acid-

glucosidase and total protein in BALF. It was deduced that particle size was a function of 

the TiO2 NPs toxicity. Rossi et al. (2010) treated mice with 40 nm of silicon dioxide 

(SiO2)-coated rutile TiO2 NPs (10 mg/m
3
) via inhalation for 2 hours on 4 progressive days 

for 4 weeks. The exposure induced increased pulmonary neutrophil, neutrophil attracting 

chemokine (CXCL-1) and TNF-α in the tissues of the lungs. Contrastingly, the toxicity of 

TiO2 NPs was attributed to the SiO2 surface coating. Li et al. (2010b) treated mice via 

intratracheal instillation to 3 nm of TiO2 NPs (13.2 mgkg
-1

) once weekly for 4 weeks. 

After the 28 day exposure, the lung was damaged; it altered the absorptivity of the 

alveolar-capillary barrier. Through the systemic circulation, TiO2 NPs were translocated to 

the kidneys and liver, resulting into various degrees of tissue lesions. TiO2 NPs (0.1, 0.5 

and 1.0 mg/mL) were intratracheally administered to APOE -/- mice twice/week for 6 

weeks and induced dyslipidemia with atherosclerosis and plaque rupture (Hu et al., 

2010a).  

viii. Genotoxicity of titanium dioxide nanoparticles 

A study by Falck et al. (2009) showed that TiO2 NPs were genotoxic to human bronchial 

epithelial BEAS 2B cells. The cells treated with nanosized anatase (< 25 nm), SiO2 coated 

nanosized rutile (10 x 40 nm) and fine rutile (< 5 µm) at 1 – 100 µg/cm
2 

for 24, 48 and 72 

hours revealed that nanoanatase (after 48 and 72 hours) and fine rutile (after 24 and 48 

hours) induced DNA damage in a concentraion-dependent manner using the comet assay. 

Similarly, only nanosized anatase induced a significant increase in micronuclei frequency 

at 10 and 60 µg/cm
2 

after 72 hours exposure. It was concluded that uncoated nanosized 

anatase and fine rutile, and not SiO2 coated nanorutile were able to induce DNA damage. 

Only nanosized anatase was capable of slightly inducing micronuclei. Another study 

conducted by Kang et al. (2008) revealed that human peripheral blood lymphocytes 

treated with TiO2 NPs (25 nm; 20, 50 and 100 µg/mL) for 6, 12 and 24 hours induced 
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micronuclei frequency and DNA damage in a dose and time-dependent manner. However, 

the genotoxic effects were via TiO2 NPs induced intracellular generation of ROS.  

It was also observed in another study that Goldfish skin cells (GFSk-S1) treated with TiO2 

NPs alone (5 nm; 1, 10 and 100 µg/mL for 24 hours) or in combination with UVA (2.5 

J/m
2
 for 2 hours) had DNA damage using the alkaline comet assay (EndoIII and Fpg). 

TiO2 NPs alone induced significant increase in oxidative DNA damage in a concentration-

dependent manner represented by the increased levels of Fpg-sensitive sites, indicating 

oxidation of purine DNA bases. Similarly, UVA in combination with TiO2 NPs further 

caused a significant increase in oxidative DNA damage compared with TiO2 or UVA 

alone. It was observed that hydroxyl radical (
.
OH) and not singlet oxygen (

1
O2) was the 

most prominent radical generated by TiO2 NPs through the electron spin resonance 

reacting directly with the DNA or indirectly through membrane lipid peroxidation causing 

biological damage in combination with UVA irradiation (Reeves et al., 2008).  

Evaluation of TiO2 NPs genotoxicity was also carried out by Trouiller et al. (2009) who 

treated mice with Aeroxide P25 21 nm at 5, 100, 250 and 500 mgkg
-1 

for 5 days using 

DNA deletion, alkaline comet, micronucleus, oxidative DNA damage and γ-H2AX assays. 

TiO2 NPs significantly increased frequency of DNA deletions and double strand breaks. 

Similarly, there was a significant increase in micronuclei frequency, DNA double strand 

breaks and oxidative DNA damage at 500 mgkg
-1

. It was confirmed that TiO2 NP 

induction of genotoxicity, oxidative DNA damage and inflammation in mice may be due 

to the generation of hydroxyl radical activity, which can trigger ROS causing cellular 

damage via interaction with the biological membranes. 

In contrast to other studies that have shown positive genotoxicity of TiO2 NPs, 

Bhattacharya et al. (2009) treated human lung fibroblast (IMR-90) and human bronchial 

epithelial cells (BEAS-2B) to TiO2 NPs (< 100 nm) and observed that DNA damage as 

evaluated by the alkaline comet assay was not significant in IMR90-cells and BEAS-2B 

cells. However, 24 hours post treatment, TiO2 NPs (5 and 10 µg/cm
2
) induced DNA 

adduct formation in IMR-90 cells. Low frequency of genotoxic biomarkers in cells treated 

with TiO2 NPs may be related to the surface charge as TiO2 NPs were highly positively 

charged (+ 48.8 mV) while the ability to generate oxidative DNA adduct may be due to 
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the generation of ROS. Female mice treated with TiO2 NPs (19.7 – 101.0 nm) at 0, 1 and 3 

mg exhibited significant increase in micronuclei frequency in the peripheral blood at 48 

hours after intraperitoneal administration. In addition to the micronuclei frequency, there 

was a significant induction of urinary 8-OH-dG levels after 24 hours at 3 mg of TiO2 NPs 

but not in the liver DNA. Taken together, it was considered that TiO2 NPs and other metal 

oxide NPs (CuO, Fe2O3, Fe3O4 and Ag) were able to induce oxidative stress through the 

fenton reaction, interact with the mitochondrial membrane causing loss of the membrane 

potential, opening of the permeability transition pores and ROS production (Song et al., 

2012).  

Human peripheral blood lymphocytes were treated with Aeroxide P25 TiO2 NPs (20 nm) 

and normal TiO2 (1 µm) at 0, 1 and 5 µg/mL for 0 – 48 hours in the absence or presence 

of 365 nm UVA (0.5 J/cm
2
). The CBMN assay revealed that TiO2 NPs but not normal 

TiO2 induced a slight increase in micronuclei frequency, which was significantly 

increased at the highest concentration. Similarly, TiO2 NPs alone and TiO2 NPs + UVA 

caused a significant increase in DNA damage in a concentration-dependent manner (Kang 

et al., 2011). The genotoxicity observed in the results may be contributed to the fact that 

TiO2 NPs, which are photosensitizers, can generate ROS when absorbed by the UVA light 

causing cell death through the mitochondria-mediated apoptotic pathway.  It was observed 

that the detrimental effects of TiO2 NPs increased synergism with UVA irradiation.  

Shukla et al. (2011) investigated the genotoxicity of TiO2 NPs (0.008, 0.08, 0.8, 8 and 80 

µg/mL for 6 hours) in human epidermal cells (A431) using the Fpg-modified comet and 

CBMN assays. TiO2 NPs induced a significant increase in the DNA damage at 8 and 80 

µg/mL in the treated cells as evident by the comet assay through the olive tail moment and 

percentage tail DNA. Similarly, a significant increase in the micronuclei formation at 0.8, 

8 and 80 µg/mL was observed. It can be suggested that the production of excess 

intracellular ROS may have been responsible for the DNA damage and micronuclei 

formation, as it is known that TiO2 NPs generate ROS, leading to alterations of 

antioxidant enzymes causing oxidative stress and lipid peroxidation.  

Turkez (2011), treated human peripheral blood lymphocytes to TiO2 NPs (< 100 nm at 3, 

5 and 10 µM) and evaluated genotoxicity using SCE, MN and comet assays. Results 



IB
ADAN U

NIV
ERSITY LI

BRARY 

38 

 

revealed that TiO2 NPs induced SCE in a concentration-dependent manner. In addition, 

TiO2 NPs also caused a concentration-dependent increase (5 and 10 µM) in MN frequency 

at 72 hours exposure and strand breaks (0 to 10 µM). Sycheva et al. (2011) revealed that 

CBAB6F1 mice treated with TiO2 (33 nm and 160 nm) orally at 40, 200 and 1000 mgkg
-1

 

daily for 7 days showed that TiO2 NPs (33 nm) induced DNA strand breaks and 

micronuclei in the bone marrow cells and liver at 40 and 200 mgkg
-1 

while 160 nm 

induced DNA strand breaks and micronuclei in the bone marrow cells only. In addition, 

33 and 160 nm TiO2 NPs increased the mitotic index in the forestomach and colon 

epithelial cells.  

Ghosh et al. (2010), treated Nicotiana tabacum to TiO2 NPs (100 nm; 2, 4, 6, 8 and 10 

mM for 24 hours) and evaluated genotoxicity using the comet assay. TiO2 NPs caused a 

significant increase in DNA damage at 2 mM, which later decreased with increased 

concentrations. This may possibly be due to the agglomeration property of NPs, as the 

number of particle interaction increases with increased concentration, reducing the ability 

of free TiO2 NPs to interact with the plant system. In addition, DNA laddering also 

confirmed DNA fragmentation which was highest at 10 mM. The mechanism of TiO2 NP-

induced genotoxicity may have been due to the generation of hydroxyl radicals resulting 

to lipid peroxidation and oxidative stress. In contrast to studies that have reported 

genotoxicity of NPs in plant systems, Ramesh et al. (2014) reported that TiO2 NPs and 

MPs did not induce genotoxicity to Triticum aestivum at 250, 500, 1000 and 2000 mg/L as 

evident by the mitotic index and chromosome aberration assay. The negative effect of 

TiO2 NPs may possibly be due to the plant species used as genotoxicity which varies from 

species to species, the ability of TiO2 NPs to agglomerate at higher concentrations thereby 

reducing the amount of particles in the plant organisms. 

Chromosomal aberration assay was used by Catalan et al. (2012), to evaluate the 

genotoxicity of TiO2 NPs (< 25 nm; 6.25-300 µg/mL for 24, 48 and 72 hours) in human 

peripheral blood lymphocytes. TiO2 NPs induced a concentration-dependent significant 

chromosome and chromatid-type at 12.5, 100 and 300 µg/mL only at 48 hours. However, 

TiO2 NPs at any of the exposure time did not significantly affect the mitotic index. Sadiq 

et al. (2012) showed that B6C3F1 mice treated with 10 nm TiO2 NPs at 0.5, 5.0 and 50 
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mgkg
-1 

for three consecutive days showed no significant increase in the percentage MN-

reticulocytes across all concentrations. Similarly, phosphatidyl inositol glycan 

complementation group A gene (Pig-a) assay showed no increase in RBC
CD24- 

and 

RET
CD24-

 frequencies across all concentrations. However, the contradictory results of 

genotoxicity observed in this study may be attributed to the source of NP, experimental 

design, crystal forms of NPs, end point assay and experimental animal model used.  

Magdolenova et al. (2012) used the alkaline comet assay (-/+ Fpg) to assess DNA damage 

in TK6 human lymphoblast cells, Cos-1 monkey kidney fibroblasts and EUE human 

embryonic epithelial cells treated with TiO2 NPs (15-60 nm; 0.12, 0.6, 3, 15 and 75 

µg/cm
2
 for 2 and 24 hours) using two different dispersion protocols (DP): DP1 (5 mg TiO2 

NPs with 1 mL of 20 % FBS in PBS, sonicated for 15 minutes) and DP2 (20 mg TiO2 NPs 

with 10 mL of culture medium, sonicated for 3 minutes). Results showed that no 

significant increase in DNA damage (SB + Fpg) levels were found in TK6 cells treated 

with TiO2 NPs dispersed using DP1 after 2 and 24 hours. However, TiO2 NPs dispersed in 

DP2 only showed a significant increase in oxidised DNA damage at 75 µg/cm
2
 after 2 

hours, while 24 hours treatment with TiO2 NPs (DP2) did not show any significant 

increase in strand breaks and oxidised DNA damage. In addition, TiO2 NPs (DP2) induced 

a significant increase in strand breaks at 75 µg/cm
2 

after 2 and 24 hours but no significant 

induction in Fpg in Cos-1 cells. Also, EUE cells treated with TiO2 NPs (DP1) showed no 

significant induction in strand breaks after 2 hours but a significant increase at 75 µg/cm
2
 

after 24 hours. The varying results obtained in different cell types treated with TiO2 NPs 

(DP1 or DP2) may be attributed to properties such as dispersion method, surface area, 

crystal form, size, distribution, toxicity assay, cell types and exposure period, all of which 

can influence toxicity of NPs.  

Lindberg et al. (2012), showed that C57BL/6J mice treated with TiO2 NPs (21 nm; 0.8, 

7.2 and 28.5 mg/m
3
, 4hours per day) for five consecutive days via inhalation exhibited no 

significant induction of MNPCE or MNNCEs in the peripheral blood after 48 hours of last 

exposure. Similarly, no significant induction of DNA damage was observed across the 

three concentrations in the alveolar type II and clara cells, suggesting no genotoxic effects 

by TiO2 NPs. The negative genotoxicity results may have been due to the short exposure 
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duration. However, prolonged exposure duration may have increased the retention of TiO2 

NPs in the lungs thereby stimulating the inflammatory cells to induce systemic 

genotoxicity.  

Shukla et al. (2014), treated mice orally to TiO2 NPs (2-50 nm; 10, 50 and 100 mgkg
-1

) for 

14 consecutive days to evaluate the genotoxicity using the bone marrow micronucleus and 

modified alkaline comet assays. A significant increase in MN frequency was observed at 

100 mgkg
-1 

and a significant dose-dependent increase in strand break and oxidative DNA 

damage with or without fpg at 50 and 100 mgkg
-1

. This confirms the genotoxicity 

properties of TiO2 NPs, all of which may be attributed to the direct interaction of TiO2 

NPs with the DNA or secondarily through ROS generation. Dobrzynska et al. (2014) 

treated wistar rats intravenously to a single dose of TiO2 NPs (21 nm; 5 mgkg
-1

) and 

examined the genotoxic effect after 24 hours, 1 and 4 weeks using the micronucleus and 

comet assays. Results showed a significant induction of MN frequency in PCE after 24 

hours, which decreased with exposure time but was not significant. However, no 

significant induction of DNA damage in the bone marrow leukocytes across the exposure 

periods. The result may have been attributed to early DNA damage repair in the bone 

marrow of the treated rats and the ability of the reticuloenodthelial cells of the organs 

(liver and spleen) to phagocytose NPs leading to systemic clearance.  

Browning et al. (2014), evaluated the genotoxicity of TiO2 NPs (P25; 0 – 100 µg/cm
2
 for 

24 h) in primary human skin fibroblasts (BJ cells) and human skin fibroblast cells 

immortalised with hTERT (BJhTERT). It was observed that TiO2 NPs did not induce 

clastogenicity as measured by chromosomal aberration assay in the treated cells even 

though TiO2 NPs penetrated both the cellular and nuclear membranes. A consideration for 

the non-clastogenicity of TiO2 NPs in the cells may be due to the difference in cell lines 

and exposure time. The human skin fibroblast was immortalised with hTERT, which 

might have interfered with the mechanism. In addition, the exposure time might not be 

sufficient enough to induce clastogenicity; likewise the chromosomal aberration assay 

may not be sensitive enough to detect damage. It is also important to know that different 

cells respond differently to the same NPs when treated (Magdolenova et al., 2012; 

Tomankova et al., 2015). Human peripheral blood lymphocytes were treated with four 
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nanosized TiO2 (NM-102, NM-103, NM-104 and NM-105 at 2.5, 5, 15, 45, 125 and 256 

µg/mL for 30 hours). Using the CBMN assay, TiO2 NM-102 induced a significant 

increase of MNBC at 125 µg/mL, NM-103 at 5 and 45 µg/mL and NM-104 at 15 and 45 

µg/mL. However, no significant increase was induced by NM-105. The absence of a clear 

concentration-dependent response in the NMs may have been due to the increasing size of 

the agglomerates with dose and time. This will however, affect the cellular uptake of TiO2 

NPs by the lymphocytes, thereby resulting into no dose-response (Tavares et al., 2014).  

Kansara et al. (2015) treated human alveolar (A549) cell to TiO2 NPs at 25, 50, 75 and 

100 µg/mL for 6 hours. TiO2 NPs induced a significant concentration-dependent increase 

in MN frequency and strand breaks at 75 and 100 µg/mL. It is known that DNA damage 

was as a result of excess production of hydroxyl radicals by TiO2 NPs. The excess 

intracellular ROS generated may induce oxidative DNA damage leading to genetic 

instability and consequently cause carcinogenesis or cell death. Tomankova et al. (2015) 

treated NIH3T3 cell line (mouse fibroblasts), SVK14 (human keratinocytes) and BJ 

(human fibroblasts from fore skin) at IC50 concentrations (3234.4, 1744.1 and 5659.8 

mg/L) of TiO2 NPs (28 nm) and 1571.2, 508.6 and 2596.9 mg/L to Nanorutil (128 nm) for 

6 hours. TiO2 (28 nm) induced significant DNA damage in all cells with SVK14 cells as 

the most sensitive while NIH3T3 cells as the least sensitive. However, nanorutil caused a 

significant DNA damage in SVK14 and not in BJ or NIH3T3 cells. TiO2 NPs were more 

genotoxic than the nanorutil because of the particle size. It is known that the particle size 

is a fundamental factor to toxicity as small sized NPs facilitate penetration into the 

cytoplasm and nucleus to interact with macromolecules (Balasubramanyam et al., 2009a, 

b; Demir et al., 2015). SVK14, NIH3T3 and BJ cells responded differently to TiO2 NPs 

and nanorutile.  

Male rats were treated with TiO2 NPs (anatase, 5 - 12 nm) at 50, 100 and 200 mgkg
-1 

for 

60 days. A significant dose-dependent increase of MN frequency at 100 and 200 mgkg
-1 

and a decrease of percentage PCE at 200 mgkg
-1 

were observed. TiO2 NPs also induced a 

dose-dependent increase of strand breaks at 100 and 200 mgkg
-1

. The presence of a 

decrease in percentage PCE is an indication that TiO2 NPs reached the bone marrow cells 

and damaged hemosynthesis. Likewise, the presence of MN showed lagging acentric 
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chromosomes or chromatid fragments (Grissa et al., 2015). Demir et al. (2015), treated 

human embryonic kidney (HEK293) and mouse embryonic fibroblast (NIH3T3) cells to 

TiO2 NPs (21 and 50 nm) and microparticulate form of TiO2 at 10, 100 and 1000 µg/mL. 

TiO2 NPs induced a significant increase in MN frequency in HEK293 and NIH/3T3 at 

1000 µg/mL while none was induced in both cells by the microparticulate form. Similarly, 

there was a significant induction in DNA damage at 1000 µg/mL obtained with both TiO2 

NPs (21 and 50 nm) in both cells while the microparticulate form did not induce any 

significant DNA damage. When Fpg was used in detecting oxidised DNA damage, neither 

TiO2 NPs nor the microparticulate form induced a significant level of oxidative DNA 

damage. Using the soft-agar colony assay, TiO2 NPs also induced a significant increase in 

colony only at 1000 µg/mL while no colony was observed by the microparticulate form. 

From this study, it is important to know that exposure to high doses of NPs becomes a 

risk, as it can induce genotoxicity and mutagenicity. 

ix. Systemic toxicity of titanium dioxide nanoparticles 

TiO2 NPs (5 - 100 nm) have been reported to translocate across the air-blood-barrier 

(Geiser and Kreyling, 2010). Retention of TiO2 NPs in the lymphatic system, liver, and 

further organs and tissues when translocated to the blood has been reported. In another 

study, 20 - 30 nm of TiO2NPs (70/30 anatase/rutile) intravenously administered to rats 

was investigated for tissue distribution by Fabian et al. (2008). TiO2 NPs (5 mgkg
-1

) was 

intravenously injected once to rats and bioaccumulation was investigated at 1, 14 and 28 

days later. The liver showed the highest content of TiO2 NPs, followed by the kidneys, 

lung and spleen on day 1 post treatment. The liver retained TiO2 NPs throughout the 28 

days of the experiment. TiO2 NPs levels slightly decreased in the spleen from day 1 to 

days 14 and 28, with the lung and kidneys having similar results to the control levels by 

day 14.  

TiO2 NPs levels were not detected in the brain, plasma, blood cells or lymphnodes at day 

1 and days 14 and 28, suggesting the translocation and bioaccumulation of TiO2 NPs to 

the lung, spleen, kidneys and liver. In another study, Chen et al. (2009) demonstrated the 

intraperitoneal injection of 80 and 100 nm of TiO2 NPs (anatase; 0, 324, 648, 972, 1296, 

1944 and 2592 mgkg
-1

) in mice for 1, 2, 7 and 14 days exposure. TiO2 NPs 
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bioaccumulation levels were highest in the kidneys, liver, spleen and lung following a 

decreasing order at 1, 2, 7 and 14 days post treatment. Similarly, Liu et al. (2009a) 

intraperitoneally treated mice for 14 days to 5 nm of TiO2 NPs (anatase; 5, 10, 50, 100 and 

150 mgkg
-1

) to investigate the distribution of the TiO2 NPs. Accumulation was in the 

following order: liver > kidneys > spleen > lung > brain > heart. In the liver, 50 mgkg
-1 

of 

TiO2 NPs was higher compared with TiO2 NPs of the same dose in other tissues. Ma et al. 

(2010), reported that 5 nm of TiO2 NPs (anatase; 5, 10, 50, 100 and 150 mgkg
-1

) 

intraperitoneally administered to ICR mice for 14 consecutive days translocated to the 

brain inducing damage and oxidative stress. Similarly, Li et al. (2010b), treated mice with 

TiO2 NPs once a week for 4 weeks, which passed through the blood-brain barrier. Ferin et 

al. (1992) treated rats via a single intratracheal instillation or 12 weeks inhalation to TiO2 

NPs (12 and 21 nm) and TiO2 FPs (230 and 250 nm). Particle migration to the interstitium 

was related to the NP size, dose delivered and dose rate. Furthermore, TiO2 NPs (20 nm) 

at acute and sub-chronic inhalation studies demonstrated access to the pulmonary 

interstitium compared with TiO2 FPs (250 nm). 

x. Carcinogenicity of titanium dioxide nanoparticles 

Dankovic et al. (2007) demonstrated that TiO2 NPs (< 100 nm; 10 mg/m
3
) and TiO2 FPs 

(< 2.5 µm; 250 mg/m
3
) treated with rats for 2 years induced respiratory cancer at high 

concentrations. Heinrich et al. (1995) investigated the carcinogenic effect of 15 – 40 nm 

of TiO2 NPs. The authors reported TiO2 NPs to be tumourigenic at 10 mg/m
3
 in rats for 2 

years. The carcinogenic potential was more in TiO2 NPs compared with TiO2 FPs. Pott 

and Roller (2005) treated 21 – 25 nm of TiO2 anatase NPs or hydrophilic to female rats via 

intratracheal instillation once a week for 30 weeks. TiO2 anatase NPs or hydrophilic 

induced a greater significant occurrence of lung tumours (2 - 69.6 % of squamous cell 

epitheliomas/carcinomas and adenomas/carcinomas or their combination) compared with 

the controls (0 %). There was a significant induction of lung tumours (30-63.6 %) by 

anatase NPs compared with TiO2 hydrophilic NPs (6.7 %). TiO2-coated mica was 

investigated for its carcinogenic and toxicological properties by Bernard et al. (1990). 

Diets containing 0, 1.0, 2.0 and 5.0 % TiO2-coated mica were given to rats for 13 weeks; 
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there were no carcinogenic or toxicological effects even at 5.0% of the dietary 

concentrations.  

Xu et al. (2011) conducted the carcinogenic property of 20 nm of TiO2 NPs (rutile) on Ha-

ras proto-oncogene transgenic (Hras 128) rats (which are susceptible to skin cancer) 

treated twice weekly for 10 weeks to UV-B radiation. TiO2 NPs (100 mg/mL) was painted 

on the shaved area twice weekly prior to sacrifice. TiO2 NPs tumour-induction was not 

notably distinct from the controls of UV-B. However, it was proposed by the authors that 

skin carcinogenesis could not be induced by TiO2 NPs due to its lack of penetration to 

reach skin structures through the epidermis. This study was also supported by Newman et 

al. (2009) who reported no skin cancer as a result of the lack of penetration of TiO2 NPs 

into the undamaged part of the dermal tissue. Emphasis was made for further studies to 

stimulate UV exposure and sunburned skin, which are real-world conditions to evaluate 

the safety of TiO2 NPs in sunscreens. 

xi. Reproductive toxicity of titanium dioxide nanoparticles 

The reproductive and endocrine effects of 5-day orally treated rats to TiO2 NPs anatase 

were investigated by Tassinari et al. (2014). The spleen and ovaries contained increased 

levels of Ti; histopathological alterations were induced in the thyroid, adrenal medulla, 

adrenal cortex and ovarian granulosa. TiO2 NPs induced a reduction in T3 hormone and an 

elevation in testosterone levels in males. Male mice were orally treated for 90 consecutive 

days to TiO2 NPs so as to investigate the alterations in gene expression profiles of the 

testis (Gao et al., 2013). TiO2 NPs penetrated the blood testis barrier and accumulated 

therein, leading to histopathological lesions of the testis, alterations in sex hormones and 

increase in sperm malformations. Subsequently, there was up-regulation of 70 genes and 

down-regulation of 72 genes as indicated by microarray. The exposure of TiO2 (UV-titan) 

by inhalation and carbon black (Printex90) by intratracheal instillation were investigated 

in male reproduction following two generations.  

Reduction of sperm production counts and not daily sperm production in the F1 generation 

was affected by maternal particulate exposure. Lower sperm production was found in the 

fathers of F2 generation treated with Printex90 while sperm production in the males of the 
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F2 generation was not affected. Gao et al. (2012) treated female mice for 90 consecutive 

days to TiO2 NPs (10 mgkg
-1

) via oral administration to investigate gene-expressed 

characteristics and injury in the ovaries. TiO2 NPs induced ovarian damage as a result of 

accumulation of NPs in the ovaries, altered sex hormones, decreased pregnanacy rate or 

fertility and induced oxidative stress. There was up-regulation of 223 genes and down 

regulation of 65 genes in the ovaries. Pregnancy complications were observed in female 

mice intravenously injected with SiO2 NPs (70 nm) and TiO2 NPs (35 nm). SiO2 NPs and 

TiO2 NPs translocated and accumulated in the placenta, foetal liver and brain while 

smaller uteri and foetuses were also observed in the NPs treated mice compared with the 

control (Yamashita et al., 2011). The developmental and neurobehavioural effects of 

aerosolised powder of UV-titan L181 to maternal exposure via inhalation on gestation 

days 8 - 18 were investigated by Hougaard et al. (2010). Penetration of UV-titan in the 

lungs induced lung inflammation on day 5 when the cell counts of BAL fluid was 

assessed. Furthermore, moderate neurobehavioural alterations were displayed by the 

offsprings. 

2.3.4.2  Zinc oxide nanoparticles 

Zinc oxide (ZnO) NPs are white soluble inorganic compounds known as zinci oxicum, 

permanent white, oxydatum, ketozinc and oxozinc. They exist in one of two forms: the 

wurtzite and zinc blende structures, with the wurtzite structure been the most stable under 

ambient conditions (Figure 2.8) (Vaseem et al., 2010). Over 1.2 million tons of ZnO NPs 

are produced by more than 300 companies in the world (Kumar et al., 2015), thus making 

it the third highest producing NP globally. It has a molar mass of 81.40 gmol
-1

, boiling 

point of 2360
o
C and melting point of 1975

o
C. They possess a high refractive index with 

anticorrosive, antifungal and UV filtering properties. Nanowires, nanorods and 

nanoparticles are a few of the variety of morphologies in which ZnO can be synthesised 

into (Vaseem et al., 2010). 
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Figure 2. 8: The hexagonal wurtzite structure model of ZnO. The tetrahedral coordination 

of Zn-O is shown. Oxygen atoms are shown as larger white spheres while the Zn atoms 

are smaller brown spheres. Source: Vaseem et al. (2010). 
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2.3.4.2.1 Uses of zinc oxide nanoparticles 

Zinc oxide (ZnO) NPs are a highly functional material with high chemical reactivity, very 

strong oxidative material and corrosive resistance, photocatalytic and strong absorptive 

ability to UV rays (Guan et al., 2012). ZnO NPs are used in various categories in 

consumer products because of their electrical, optical, dermatological and antibacterial 

properties (Adamcakova-Dodd et al., 2014). They are utilised in the production of 

sunscreens, baby powders, antidandruff shampoos, fabric treatments for UV shielding 

(Osmond and McCall, 2010; Burnett and Wang, 2011), creams and ointments for treating 

skin diseases (Sharma et al., 2012a; 2012b), as additives in the manufacture of concrete 

and ceramics, food products such as breakfast cereals. Most importantly, they are essential 

for anticancer therapy, drug delivery (Zhang et al., 2011a), and fillers in orthopedic, dental 

implants (Srivastav et al., 2016) and as essential ingredients in almost all types of 

antifouling agents (IPPIC, 2012).  

2.3.4.2.2 Toxicity of zinc oxide nanoparticles  

i.  Acute toxicity of zinc oxide nanoparticles  

Toxicity of nano-ZnO or fine- ZnO particle mixture was assessed by Sayes et al. (2007). 

Cytotoxicity was induced at 24 hours and 1 week after instillation by both nano- and fine-

ZnO particles, though was not different from the controls instilled with PBS. Rats treated 

with nano- and fine ZnO particles had significant higher number of cells at the 24 hours 

time point compared with other time point. However, the instillation procedure led to a 

transient increase that diminished at the 1 week time point. Wang et al. (2017a) reported 

that ICR male mice intratracheally instilled with ZnO NPs (200, 400 and 800 µg/kg) 

showed bodyweight loss, total protein and hydroxyproline content in BALF. In addition, 

inflammatory and hyperplastic changes were observed in the lungs. Sarkheil et al. (2018) 

reported that Artemia franciscana nauplii exposed to ZnO NPs (1 – 30 mg/L) for 48  and 

96 hours did not induce any significant acute toxicity after 48 hours, but a significant 

increase in the immobilisation rate after 96 hours was observed.  
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ii. Sub-acute toxicity of zinc oxide nanoparticles  

Adamcakova-Dodd et al. (2014) reported an elevation of Zn
2+

 in the BAL fluid after 

exposure to ZnO NPs (3.5 mg/m
3
, 4 hours/day, 2 weeks), which returned to baseline 3 

weeks post treatment. No other toxic responses were observed except for an increase of 

macrophages in BAL fluid, IL-12 (p40) and MIP-1α. The toxicity of orally treated female 

Wistar rats to ZnO NPs (20 nm; 100, 200 and 400 mgkg
-1

) for 14 consecutive days was 

demonstrated by Shokouhian et al. (2013). There was a significant increase in IgG, TNF-α 

and IL-6 and a reduction in GSH level, as well as histopathological alterations in the 

lungs. Ben-Slama et al. (2015) demonstrated that male rats treated with ZnO NPs (10 

mg/kg) orally for 5 consecutive days showed significant alterations in the activities of 

ALT and AST. Hao et al. (2013) reported that juvenile carp (Cyprinus carpio) exposed to 

ZnO NPs and bulk-ZnO for 30 days showed significant hyper-bioaccumulation of 50 

mg/L of ZnO NPs in the liver and gills. 

iii. Sub-chronic toxicity of zinc oxide nanoparticles 

Park et al. (2014) treated Sprague Dawley rats via oral exposure to ZnO NPs (20 nm; 125, 

250 and 500 mgkg
-1

) to investigate toxicity. Anaemia-related factors, apoptosis, increased 

numbers of regenerative acinar cells in the pancreas and stimulated periductular lymphoid 

cell filtration were induced at 500 mgkg
-1 

of ZnO NPs. Retinal atrophy was observed at 

250 and 500 mgkg
-1

 while stomach lesions were observed at 125, 250 and 500 mgkg
-1

. 

Increased level of Zn was observed in a dose-dependent manner in the liver, kidney, 

intestines and plasma. In another study by Seok et al. (2013), male and female rats orally 

administered with ZnO NPs (67.1, 134.2, 268.4 and 536.8 mgkg
-
1) for 13 weeks 

demonstrated a significant decrease in the body weight at 536.8 mgkg
-1 

as well as 

significant alterations in the anaemia-related haematologic parameters with pancreatitis.  

Negatively and positively charged ZnO NPs (100 nm) (31.35, 125 and 500 mgkg
-1

) were 

treated with Sprague Dawley rats for 90 days. Significant changes in the haematological 

and biochemical analyses were induced at 500 mgkg
-1

 for the ZnO NPs with 

histopathological alterations in the pancreas, eye, stomach and prostrate gland tissues 

(Kim et al., 2014b). The pharmacokinetics and toxicokinetics of ZnO NPs (125, 250 and 
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500 mgkg
-1

) in a 90-day oral exposure in male and female rats were investigated by Chung 

et al. (2012). Toxicity potential was indicated by the elevated plasma concentrations 

compared with the normal levels. 

iv. Chronic toxicity of zinc oxide nanoparticles 

Growth reproduction and accumulation of zinc were investigated through the exposure of 

ZnO NPs and ZnCl2 on Daphnia magna in a 21-day chronic toxicity study. Extensive 

amounts of ZnO NPs dissolved in the medium resulting in the chronic effects on growth, 

reproduction and accumulation. It was however concluded by the authors that the 

dissolution property of ZnO NP is a contributing factor to the toxicological effects of ZnO 

NPs at the chronic level (Adam et al., 2014). Lopes et al. (2014) treated Daphnia magna 

to different particle sizes of ZnO NPs (30 nm and 80 - 100 nm) and ZnCl2 and investigated 

the effect of particle sizes on the immobilisation, feeding inhibition and reproduction of 

ZnO NPs compared with the ZnO microsized particles. At 30 nm of ZnO NPs, feeding 

activity and reproductive outcome were impaired, indicating that the particle size and 

dissolution properties are essential factors that contribute to the toxicity of ZnO NPs. 

The chronic effect of ZnO NPs on the culture media of Escherichia coli strain was 

reported by Dutta et al. (2013). Higher toxicity was exhibited at the minimum inhibitory 

concentration compared with the higher concentrations of the single exposure. Scanning 

Electron Microscopy (SEM) revealed cell wall deformation which confirmed membrane 

lipid peroxidation through the production of ROS that inhibited growth. Kool et al. (2011) 

treated Folsomia candida in the soil to ZnO NPs, non-nano ZnO and ZnCl2. Increase in 

soil concentration increased the zinc concentrations, in addition, a dose-dependent 

reduction in reproductive capability in the exposure to ZnO NPs, non-nano ZnO and 

ZnCl2 respectively was observed. It was concluded that Zn
2+

 ions and not the particle size 

contributed to the toxicity effects. In another study by Hooper et al. (2011), Eisenia veneta 

earthworm was exposed to soil and food dosed with uncoated ZnO NPs (< 100 nm) for 21 

days. In the measured traits, ZnCl2 showed more impact than ZnO NPs. In addition, E. 

veneta treated with ZnCl2 showed complete inhibition of the reproduction, and reduced 

immune activity compared with those treated with ZnO NPs. However, it was observed 
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through the scanning electron microscopy that E. veneta accumulated ZnO in the 

particulate form. 

v. Dermal toxicity of zinc oxide nanoparticles  

Studies have shown that sunscreens that contain ZnO NPs do not penetrate beyond the 

stratum corneum in a healthy skin (Filipe et al., 2009; Schilling et al., 2010). Gulson et al. 

(2010) demonstrated the topical application of ZnO NPs (19 nm and 100 nm) on the skin 

of healthy human volunteers for 5 days. 
68

Zn was used to prepare ZnO particles in order to 

distinguish it from the Zn present in the body. It was observed that approximately 0.1% of 

all Zn in the blood was 
68

Zn after the application of the sunscreen containing one of the 

two types of particles. The blood and urine contained a higher amount of 
68

Zn compared 

with the microsized particles. In another study, the dermal penetration of TiO2 and ZnO 

NPs was investigated in human volunteers using the punch biopsy analysis after in vivo 

application. Skin tape stripping was used in evaluating the localisation of TiO2 and ZnO 

NPs in damaged skin. Interestingly, Ti was not detected beyond the stratum corneum 

while Zn levels in the treated skin were similar to that of the non-treated skin (Filipe et al., 

2009). 

Monteiro-Riviere et al. (2011) reported the penetration of ZnO NPs (140 nm) only in one 

to two layers of the stratum corneum of UV-irradiated sunburned pig skin. In addition, 

Pasupuleti et al. (2012b) reported collagen loss as a result of the skin penetration of 

realistic doses of ZnO NPs (20 nm) 5 times/week for 28 days in rats. Meyer et al. (2011) 

reported apoptotic induction and p53 and phosphos-p38 upregulation in human dermal 

fibroblasts treated with ZnO NPs (23.5 nm). Moos et al. (2011) treated HaCaT human 

keratinocytes and SK Mel-28 human melanoma cells to ZnO NPs (8 – 10 nm) and ZnO 

particles (44 µm). No proinflammation occurred, however, there were changes in the 

chaperonin proteins, protein folding genes and metal metabolism as revealed by gene 

profiling. Kocbek et al. (2010) treated NCT2544 human keratinocytes to ZnO NPs (< 100 

nm, 10 µg/mL) for 3 months. The vesicles within the cytoplasm, particularly the early and 

late endosomes and amphesomes contained the NPs. ZnO NPs exposure induced ROS 

generation, loss of normal cell morphology, decreased mitochondrial membrane potential 

activity and cell cycle disturbance. Yazdi et al. (2010) treated primary human 
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keratinocytes to ZnO NPs (15 nm). Penetration of ZnO NPs affected the skin cells while 

apoptosis but not inflammatory response occurred after short term exposure. 

Subsequently, formation of tubular intercellular structures decreased mitochondrial 

membrane potential activity and increased ROS generation after long-term exposure. A 

90-day dermal toxicity of ZnO NPs was demonstrated in rats by Ryu et al. (2014). A dose-

dependent irritation was observed at the site of application. The liver, small intestine, large 

intestine and feaces showed increased concentrations of ZnO NPs. 

vi. Neurotoxicity of zinc oxide nanoparticles 

Information is limited on the neurotoxicity of ZnO NPs. Deng et al. (2009) investigated 

the neurotoxicity of ZnO NPs (10 – 200 nm) on mouse neutral stem cells (NSCs). There 

was a dose-dependent decrease in the cell viability studies as well as apoptosis detected by 

the transmission electron microscopy and flow cytometry. Han et al. (2011) reported that 

intraperitoneally treated ZnO NPs (20 – 80 nm; 4 mgkg
-1

) twice weekly for 8 weeks in rats 

altered the synaptic plasticity and changed spatial learning and memory ability. In another 

study by Darroudi et al. (2014), neuro2A cells treated with ZnO NPs showed a dose-

dependent toxicity from 6 µg/mL and above. 

vii. Pulmonary toxicity of zinc oxide nanoparticles 

Particles phagocytosed by alveolar macrophages migrate to the tracheobronchial region 

via the mucociliary escalator where they are either swallowed or coughed up. If either of 

these mechanisms fails, clearance will no longer be available once the particles have 

penetrated the interstitium, leading to inflammation and fibrosis of cells (Osmond and 

McCall, 2010). Transient increase in the concentration of Zn
2+

 ions may occur as a result 

of ZnO dissolution in the acidic environment of the lung lining fluid (Osmond and 

McCall, 2010). Warheit et al. (2009) treated rats via intratracheal instillation to fine size 

ZnO particles (3 µm; 1 and 5 mgkg
-1

) and ZnO NPs (300 nm; 1 and 5 mgkg
-1

) or 

inhalation to aerosols of 25 or 50 mg/m
3
 for 1 or 3 hours. The authors observed increased 

LDH, protein content, neutrophil content and transient inflammation. Lung inflammatory 

responses were substantially produced following the intratracheal instillation exposure to 

high-dose nano- and fine-ZnO particles (5 mgkg
-1

) at 24 hours, which followed minimal 
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neutrophils through a week. Similar studies by Cho et al. (2012) reported 

eosinophilic/fibrotic/granulomatous inflammation and eosinophils and neutrophils in BAL 

of rats treated via a single intratracheal instillation to ZnO NPs (10 nm). Xia et al. (2011) 

demonstrated that mice treated with ZnO NPs (20 nm) doped with iron exhibited reduced 

neutrophil counts, interleukin-6 and heme oxygenase (HO) expression as compared with 

the non-doped ZnO NPs.  

Wang et al. (2010) treated male Wistar rats via inhalation to ZnO NPs (20 nm; 2.5 mgkg
-

1
) twice daily for 3 days via inhalation, and observed high levels of Zn content in the liver 

tissues 12 hours post treatment. Activities of ALT, AST, LDH and CK were significantly 

reduced compared with the negative control group. Histopathological examination 

revealed liver and lung damage. George et al. (2010) treated BEAS-2B cells and 

RAW264.7 murine macrophages to ZnO NPs (20 nm) and observed induction of 

intracellular Ca
2+

 influx, lowering of the mitochondrial membrane potential and loss of 

membrane integrity when a cytotoxicity screening approach was used. Hsiao and Huang 

(2011) reported that A549 lung epithelial cells treated with ZnO NPs (32-95 nm) cores 

coated with TiO2 shell exhibited reduced mitochondrial activity, increased membrane 

damage as indicated by increased LDH level, IL-8 production and ROS generation. Huang 

et al. (2010) reported a concentration and time-dependent cytotoxicity in BEAS-2B cells 

treated with ZnO NPs (20 nm). Also, increased intracellular Ca
2+

 influx, LDH release and 

oxidative stress were reported. 

viii. Genotoxicity of zinc oxide nanoparticles 

Zinc oxide nanoparticles have been demonstrated to be genotoxic both in in vitro and in 

vivo test systems. Osman et al. (2010) evaluated the genotoxicity of ZnO NPs in human 

negrad cervix carcinoma HEp-2 cells using the cytokinesis block micronucleus (CBMN) 

and comet assays. Cells were treated with ZnO NPs (10, 20, 50 and 100 µg/mL) for 2 

hours (CBMN) and 4 hours (comet assay). A significant concentration-dependent increase 

in MN frequency was observed at 50 and 100 µg/mL and a significant concentration-

dependent increase in the percentage tail DNA at 20, 50 and 100 µg/mL. It is known that 

ROS plays a critical role in NP-induced DNA damage and excessive intracellular ROS 

generation may cause single and double- strand breaks, which may lead to carcinogenesis 
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due to incomplete DNA repair. It is also important to know that ZnO NPs can release free 

hydrated zinc ions (Zn
2+

) due to their solubility that may increase genotoxicity. Shaymurat 

et al. (2012) reported the phytotoxic and genotoxic effects of ZnO NPs (4 nm; 10, 20, 30, 

40 and 50 mg/L for 8, 16 and 24 hours) on Allium sativum. A significant decrease in the 

mitotic index and increase in chromosome aberration in a concentration- and time-

dependent manner were observed. It was concluded that ZnO NPs had the potential of 

inducing toxicity to the root cells by inhibiting DNA synthesis through the production of 

excess ROS that could cause membrane lipid damage resulting to lipid peroxidation 

(Kumar et al., 2015).  

According to Sharma et al. (2012a), male Swiss mice treated orally to ZnO NPs (30 nm, 5, 

50 and 300 mgkg
-1

) for 14 consecutive days showed a significant increase in oxidative 

DNA damage at 300 mgkg
-1 

for both olive tail moment (OTM) and percentage tail DNA 

in the liver cells. However, no significant increase in the DNA strand breaks in the kidney 

cells of the treated mice. Oxidative stress was proposed as the main mechanism of 

genotoxicity in ZnO NP-induced oxidative DNA damage in the liver cells. Excess ROS 

generation can result in several alterations to the DNA: DNA-protein crosslinks, oxidation 

of purine/pyrimidines and alkali labile sites and the like. Similar results were also obtained 

by Sharma et al. (2012b) when human hepatocarcinoma (HepG2) cells were treated with 

ZnO NPs (30 nm; 8, 14 and 20 µg/mL for 6 hours). The comet assay revealed a 

concentration-dependent increase in strand breaks and oxidative DNA damage at 14 and 

20 µg/mL for both olive tail moment and percentage tail DNA. Guan et al. (2012) treated 

human hepatocyte (LO2) and human embryonic kidney (HEK293) cells to ZnO NPs (50 

nm; 0, 5, 10, 25, 50, 75 and 100 µg/mL for 4, 12 and 24 hours). Comet assay showed a 

concentration-dependent increase in DNA strand breaks in both cell lines. Significant 

concentration-dependent increase was observed after 4 hours treatment at 75 and 100 

µg/mL; 50, 75 and 100 µg/mL after 12 hours and 25, 50, 75 and 100 µg/mL after 24 hours 

treatment in LO2 cells. In HEK 293 cells, a significant concentration-dependent increase 

was observed at 50, 75 and 100 µg/mL after 5, 10, 25, 50, 75 and 100 µg/mL after 12 

hours and 5, 10 25, 50, 75 and 100 µg/mL after 24 hours treatment.  
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Li et al. (2012) treated male mice orally to ZnO NPs (50 nm; 1.25, 2.5 and 5.0 g/kg) or 

ZnO MPs (> 100 nm) and evaluated genotoxicity after 24, 48 and 72 hours using the 

micronucleus assay. In addition, Salmonella typhimurium histidine auxotrophs (TA98, 

TA100, TA102, TA1535 and TA1537) were used in evaluating the mutagenicity of ZnO 

NPs and MPs. The percentages of PCE and MNPCE frequenies in ZnO NPs and MPs 

treated mice were not significantly different across all concentrations. Similarly, the Ames 

test showed no significant changes in the revertants at all concentrations of ZnO NPs and 

MPs treatments. The negative results in both genotoxicity and mutagenicity may be due to 

the sensitivity of the assay. ZnO NPs and MPs may have formed agglomeration that 

increased their particles sizes and prevented them from penetrating the bacterial cell wall 

because of its rigidity and permeability.  

Demir et al. (2014) evaluated the genotoxicity of ZnO NPs [(≤ 35 nm and 50 – 80 nm) and 

ZnO MPs at 10, 100 and 1000 µg/mL] in human embryonic kidney (HEK293) cells and 

mouse embryonic fibroblast (NIH3T3) cells using the micronucleus, soft-agar colony and 

comet assays (with or without Fpg and EndoIII). Results showed that ZnO NPs induced a 

significant concentration-dependent increase in the frequency of MN in binucleated cells 

at 100 and 1000 µg/mL in both cell lines while no significant induction of MN by the ZnO 

MPs was observed. Similarly, there was a significant concentration-dependent increase in 

the induction of percentage tail DNA damage at 100 and 1000 µg/mL in both cell lines. 

However, no genotoxic effect was observed in cells treated with ZnO MPs. In addition, a 

significant concentration-dependent increase in the frequency of oxidative DNA damage 

at 100 and 1000 µg/mL in both cells with Fpg (purines) and EndoIII (pyrimidines) lesions 

were observed respectively. The net oxidative damage for both Fpg and EndoIII showed 

no significant difference, indicating that oxidative damage of DNA was not one of the 

major mechanisms of ZnO NPs. The soft-agar colony assay, a technique that determines 

the potential ability of a chemical to induce carcinogenesis through cell transformation 

showed that ZnO NPs induced a significant dose-dependent anchorage-independent 

growth in both cell lines at 100 and 1000 µg/mL while ZnO MPs did not.  

Ghosh et al. (2016) reported the genotoxicity of ZnO NPs (85 nm; 0.2, 0.4 and 0.8 mg/L) 

on Vicia faba (chromosome aberration and MN assays) and Nicotiana tabacum roots and 
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leaves (comet assay). Results showed a significant decrease in mitotic index and increase 

in percentage chromosome aberrations and MN at all concentrations. The comet assay 

revealed a significant increase in percentage tail DNA damage in both roots and leaves of 

N. tabacum. However, DNA damage was higher in the roots than the shoots due to direct 

exposure to ZnO NP suspension. ZnO NP-induced genotoxicity in Vicia faba and N. 

tabacum may have been due to the free radicals directly interacting with the DNA or DNA 

proteins involved in cell division in the plant system. Fagopyrum esculentum (buckwheat) 

was treated with ZnO NPs (< 50 nm; 2000 and 4000 mg/L) and genotoxicity evaluated 

using random amplified polymorphic DNA (RAPD) assay with only four primers 

(OPA04, OPA08, OPB04 and OPB10). Results showed significant band changes at both 

concentrations. Changes in the genetic pattern induced by ZnO NPs resulted in genomic 

instability which may be due to large deletions or mutations (Lee et al., 2013). 

ix. Systemic toxicity of zinc oxide nanoparticles 

Esmaeillou et al. (2013) reported that mice treated orally to ZnO NPs (333 mgkg
-1

) for 5 

days exhibited a significant increase in LDH indicative of cell damage, increase in the 

activities of ALT and AST indicative of hepatocellular injury and a decrease in HDL 

level. It was concluded that within a period of 5 days, that ZnO NPs are able to induce an 

imbalance in lipid metabolism. Pasupuleti et al. (2012a) also reported altered ALT, AST, 

PLT, HCT, Ca
2+

 and MCV in rats treated with ZnO NPs (5.0 mgkg
-1

) via oral gavage for 

14 days compared with ZnO MPs. Li et al. (2012) reported that ZnO NPs (2.5 g/kg) 

intraperitoneally administered to mice were absorbed within 30 minutes after dosing into 

circulation and accumulated therein in the liver, spleen and kidney. Intraperitoneally 

administered ZnO NPs were present in the serum for 72 hours and spread to the heart, 

lung and testes while orally treated ZnO NPs exhibited higher absorptivity and tissue 

biodistribution compared with ZnO MPs. It was concluded that liver toxicity induced by 

ZnO NPs was as a result of its absorption, biodistribution and clearance.  

Baek et al. (2012) reported an increase in Zn concentration after 24 hours of 

administration in a dose-dependent manner in rats orally treated ZnO NPs (20 nm and 70 

nm). The liver, lung and kidney bioaccumulated ZnO NPs after 72 hours with majority of 

the NPs eliminated in the feaces. Najafzadeh et al. (2013) reported a significant decrease 
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in ALP and creatinine concentration in lamb treated with ZnO NPs for 25 days. 

Histopathological examination revealed cell swelling, multifocal interstitial nephritis and 

eosinophilic necrosis of the hepatocytes. Also, Wang et al. (2008a) treated mice orally to 

ZnO NPs (20 and 120 nm) to investigate their toxicological impact. The ZnO NPs 

accumulated in the liver, heart, spleen, pancreas and bone. There was a little difference in 

the biochemical and pathological effects between 20 nm and 120 nm ZnO NPs. Mice 

treated with ZnO NPs (120 nm) had histopathological lesions in the heart, spleen, gastric 

and liver in a dose-dependent way while mice treated with 20 nm ZnO NPs had less 

pathological damage in the spleen, pancreas and liver in a dose-dependent manner. 

Shrivastava et al. (2014a), reported increased ROS levels which altered the antioxidant 

enzyme activities, induced oxidative stress in the erythrocytes, liver and brain of male 

mice treated with TiO2, ZnO and Al2O3 NPs (500 mgkg
-1

) for 21 consecutive days. In 

addition, TiO2, ZnO and Al2O3 NPs induced neurotoxicity in the brain through the 

increase in dopamine and norepinephrine levels in the cerebral cortex.  

Amara et al. (2014) reported the accumulation of ZnO NPs and/or ZnCl2 solution in the 

liver and kidney when treated with Wistar rats intraperitoneally for 10 days. AST activity 

and uric acid concentration increased with a decrease in creatinine. It was concluded by 

the authors that the possible toxic effect of ZnO NPs and ZnCl2 injected solution may be 

due to the release of Zn
2+

 ion and accumulation in the target organs. Umrani and Paknikar 

(2014) treated streptozotocin-induced Type 1 and 2 diabetic rats to ZnO NPs (1, 10 and 30 

mgkg
-1

) via oral exposure to demonstrate the antidiabetic activity of ZnO NPs. Glucose 

tolerance, higher serum insulin (70 %), reduced blood glucose (29 %), nonesterified fatty 

acids (40 %) and reduced triglycerides (48 %) were reduced by ZnO NPs. The liver, 

adipose tissue and pancreas had elevated levels of zinc levels indicating ZnO NPs 

absorption. Pasupuleti et al. (2012a) treated rats orally to ZnO NPs (20 nm) and ZnO MPs. 

ALT and AST activities were significantly increased in a dose-dependent manner 

compared with those treated with ZnO MPs. In addition to these, histopathological 

alterations were observed in the liver, pancreas, heart and stomach of rats treated with 

lower doses of ZnO NPs compared withthose treated with ZnO MPs. 
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x. Carcinogenicity of zinc oxide nanoparticles 

Information is limited on the carcinogenicity of ZnO NPs. The tumour promoting activity 

of nanoZnO was investigated by Xu et al. (2014). Human c-Ha-ras proto-oncogene 

transgenic (Hras) rats were orally treated with drinking water containing 0.2 % N-nitrobis 

(2-hydroxypropyl) amine (DHPN) for 2 weeks and then treated with 0.5 mL of 250 or 500 

µg/mL nanoZnO particles. Using the initiating promoting protocol, DHPN-induced lung 

carcinogenesis was not promoted by nanoZnO particles, a dose dependent induction of 

epithelial hyperplasia of terminal bronchioles was observed. 

xi. Reproductive toxicity of zinc oxide nanoparticles 

Jo et al. (2013) reported reduction in numbers and body weights of born/live pups, 

increased foetal reasorptions and biodistribution of ZnO NPs in the tissues of dams, liver 

and kidney of the pups when rats were treated with ZnO NPs (< 100 nm; 500 mgkg
-1

) 2 

weeks before mating at postnatal day 4. In another study, the spontaneous delivery, 

pregnancy rates, birth numbers, survival rates and neurology development in pregnant rats 

and their offsprings in rats treated with ZnO NPs were investigated by Zhang et al. (2008). 

It was observed that neurology and spatial memory of the offsprings were affected, 

pregnancy rates were lower and birth numbers were insignificant. Pregnant dams and 

embryo foetal development was investigated after Sprague Dawley rats were treated with 

positively charged ZnO NPs (20 nm; 0, 100, 200 and 400 mgkg
-1

) over a gestational 

period of 5 – 19 days. There was a significant reduction in the body and liver weights, 

with increase in adrenal gland weight in the dams at 400 mgkg
-1 

as well as reduced food 

intake at 200 and 400 mgkg
-1

. The number of implantation sites, dead foetuses, 

resorptions, placenta weight and litter size showed no treatment-related difference. In 

contrast, foetal weights were significantly decreased after 400 mgkg
-1

 administration but 

the foetal tissues had no significant difference in the Zn content (Hong et al., 2014). 
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2.4 Effects of physicochemical properties on titanium dioxide and zinc oxide 

nanoparticle-induced genotoxicity 

Many conflicting results on the genotoxicity of titanium dioxide and zinc oxide 

nanoparticles are been published despite the fact that a large number of the genotoxicity 

studies of NPs are increasing. Several studies lack the detailed characterisation of NPs in 

the testing media in spite of the fact that different media and treatment conditions alter the 

properties of NPs, resulting in the difficulty of comparing results (Stone et al., 2009; Som 

et al., 2010; Dusinska et al., 2011). In order to assess the toxic effects of NPs, many 

different NPs characteristics are taken into consideration (Figure 2.9). Many adverse 

health effects are attributed to the physiochemical properties of NPs which are a strong 

link to their biological activity (VegaVilla et al., 2008). The most important role exhibited 

by the physicochemical properties of NPs is still not known. However, it is believed that 

these properties including chemical composition, size, shape, crystal structure, surface 

area, solubility, surface chemistry, purity of the NPs and aggregation status in the medium 

are important in determining the adverse effects of NPs in the biological system (Hansen 

et al., 2007; Stone et al., 2010). 

2.4.1 Size and surface area 

NPs exhibit a small size and large surface area to mass ratio compared with their bulk 

counterparts. As the particle size decreases, the number of atoms exponentially increases 

(Magdolenova et al., 2014), thus, making them significantly reactive in biological 

systems. Larger particles of the same chemical composition have a lower surface energy 

and are less toxic in contrast to their NPs (Chan, 2006). NPs are able to disperse 

throughout the body, penetrate in the blood brain- and testis-barriers, capable of 

penetrating individual cells and interacting with biomolecules on the surface of the cells as 

well as within (McNeil, 2005; Chan, 2006). 

The possibility of size dependent genotoxicity has been tested by different sizes of NPs 

(Barnes et al., 2008). The effect of different sizes of TiO2 particles (anatase-10 nm, 20 nm, 

200 nm, > 200 nm and rutile- 200 nm) on the induction of DNA damage was investigated 

by Gurr et al. (2005). TiO2 NPs (10 nm and 20 nm) induced a higher potency of oxidative  
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Figure 2. 9: Effects of physiochemical properties on nanoparticles induced genotoxicity. 

Source: Koedrith et al. (2014). 
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stress in the absence of photoactivation compared with 200 nm and > 200 nm sized TiO2 

particles. Different kinetic particles of substances are produced by different particle sizes, 

which enhance or reduce toxicokinetics (uptake, distribution, metabolism and elimination) 

(Nohynek et al., 2008). It is important to know that the physicochemical properties of NPs 

change with decrease in particle size vis-à-vis their hardness, magnetic characteristics, 

chemical reactivity, electrical conductivity, and biological activity (Karlsson et al., 2008). 

The surface area of nanoparticles is directly related to their size, with larger surface area to 

smaller NP sizes. The number of free radicals and transient metal area increases, thus, 

enhancing the possible interaction of NPs with the cells. A direct association between the 

surface area of NPs and ROS formation was observed by Li et al. (2011). There was a 

size- dependent induction of DNA damage and ROS formation thus, making the surface 

area an important factor. 

2.4.2 Surface properties 

Surface chemistry and charge as well as other surface properties are significant factors that 

determine the genotoxicity of NPs. Binding of molecular, chemical and biological entities 

to NPs occur as a result of surface modifications (McNeil, 2005). A study carried out by 

Landsiedel et al. (2010) showed no induction of genotoxicity in lung cells of rats treated 

via inhalation to triethoxycaprylylsilane-coated ZnO NPs (30-200 nm). Different 

behaviour of NPs in solutions occurs as a result of the different surface chemistry they 

exhibit. Coated NPs disperse readily in surrounding medium as compared with uncoated 

NPs that agglomerate. Dissolution or aggregation of NPs in a medium is determined by 

the surface charge, which can also affect the biocompatibility and influence the 

penetration into biological barriers (McNeil, 2005). Studies have confirmed that the 

cytotoxicity and genotoxicity of NPs are influenced by the surface modifications. The 

surrounding medium often alters the characteristics of NPs. Adsorption of biomolecules 

such as polysaccharides, proteins and lipids often modify the surface of NPs in the 

biological environment, thereby forming a „biomolecular corona‟ with the NPs surface, 

which is relatively stable (Monopoli et al., 2011). Thus, different results may occur when 

the same NPs are dispersed in different experimental conditions. 
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2.4.3 Coatings 

Dispersion of NPs in aquatic media or biological compatibility or NP embedding into inert 

matrices is accomplished by the addition of surface coatings to NPs. However, negative 

implications on their biological effects have been reported. Yoshida et al. (2009a) reported 

the negative toxicity of tetramethylammonium hydroxide-coated ZnO NPs on Salmonella 

typhimurium strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2uvrA (-) 

with and without S9 metabolic activation. Another study by Singh et al. (2007) 

demonstrated that TiO2 NPs modified on the surface by methylation had no inflammatory 

effects on the lung epithelial cells, but the surface area of TiO2 NPs induced a dose 

dependent toxicity. 

2.4.4 Agglomeration 

An important feature that influences the behaviour and impact of NPs on genotoxicity is 

the agglomeration. Agglomerated NPs cannot penetrate into the mitochondria and nucleus 

unlike unagglomerated NPs that are distributed within the cell (Dhawan et al., 2009). 

Shukla et al. (2011) demonstrated that human skin epidermal cells internalised small sized 

TiO2 NPs (30 – 100 nm) in the cytoplasm, vesicles and nucleus, compared with the larger 

sized particles (> 500 nm) that remained outside the cells. The surface charge (hydrophilic 

or hydrophobic) and interactions with the medium such as medium pH, salinity and 

protein content determine the dissolution or agglomeration of NPs. The cytotoxicity and 

genotoxicity of NPs are highly dependent on their agglomeration, as dispersion or 

agglomeration state brings about different outcomes of NPs (Magdolenova et al., 2012). 

2.4.5 Solubility 

The increase or decrease in the bioavailability of NPs in the biological system is highly 

dependent on their solubility; it is a key factor in the assessment of NPs. Their structure or 

presence of reactive groups in their surfaces determine their solubility. Soluble forms of 

NPs such as ZnO and FeO produce ions that are toxic with greater cytotoxicity compared 

with the insoluble forms such as CeO and TiO2 (Franklin et al., 2007; Zhang et al., 2012). 
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2.4.6 Photochemistry 

The toxicity of NPs can be influenced by UV radiation. ROS are generated in aqueous 

media when TiO2 and ZnO NPs are treated with UV light due to their photocatalytic 

activities. TiO2 and ZnO NPs illuminated by sunlight inhibited the growth of Bacillus 

subtilis and E. coli in the culture media. Adams et al. (2006) reported cell structure 

damage as seen in human skin fibroblasts cells treated in the presence of UV radiation as 

compared with those kept in the dark. UV radiation and TiO2 concentration in the 

exposure of medium induced significant amount of the hydroxylation of guanine bases in 

calf thymus DNA. Vevers and Jha (2008) reported a significant increase in the toxicity 

and DNA strand breaks in rainbow trout gonadal tissue cells treated with UVA radiation 

in combination with TiO2 NPs as compared with the cells treated with TiO2 NPs only. 

2.5 Conditions influencing the genotoxicity of titanium dioxide and zinc oxide 

nanoparticles 

2.5.1 Preparation of nanoparticles 

Solvents used in dispersing or dissolving NPs can influence their genotoxic effects and 

properties. Toxicity of NPs or their biological responses can be influenced by factors such 

as pH, salinity, temperature, water hardness and presence of dissolved or natural organic 

particles (Handy et al., 2008a; Vevers and Jha, 2008). Therefore, different solvents such 

as culture medium, water, phosphate buffered saline (PBS) and normal saline may 

influence NPs behaviour differently, as these can affect their uptake, cellular penetration 

and toxic response. 

The effects of different solvents such as tissue culture medium, PBS or water on well 

characterised TiO2 NPs were examined by Ververs and Jha (2008). In the medium, 

biomolecules such as protein surround NPs, forming a „protein corona‟, which could 

influence the genotoxicity potential of the NPs (Gonzalez et al., 2010). Often times, 

agglomeration is prevented through the addition of proteins such as FBS or BSA to 

stabilise the NPs. The formation of a „protein corona‟ may help disperse the NPs better in 

the medium. Another important factor that can contribute to agglomeration reduction is 
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sonication. Magdolenova et al. (2012) reported that sonication of TiO2 NPs suspension 

may trigger ROS generation through the oxidation of Ti surface atoms. 

2.5.2 Concentration of nanoparticles 

An essential aspect that affects the cytotoxicity and genotoxicity potential of NPs is their 

concentration (Magdolenova et al., 2014). The exposure of NPs to humans should mimic 

the concentrations that are utilised in in vitro experiments. Due to the particle‟s small size 

and quantity present in consumer products, it is quite technically challenging to determine 

the quantification of NPs in the air, water and soil. Van der Waal‟s forces are weak 

hydrogen bonds that are present in NPs, which initiates agglomeration when they are in 

their dry form or in suspension. Furthermore, agglomeration occurs when the 

concentration of NPs exceeds a certain limit, thereby affecting the bioavailability of the 

NPs into the cell leading to false negative and false positive results. 

2.5.3 Physical and chemical agents  

The presence of chemical (polycyclic aromatic hydrocarbons) or physical (UV irradiation) 

agents can alter the toxicological responses of NPs (Vevers and Jha, 2008). Studies 

reported that ZnO or C60 NPs in the presence of irradiation were able to generate ROS 

(Shinohara et al., 2009; Hackenberg et al., 2011). The genotoxic effects of TiO2 and ZnO 

NPs under visible light and UV irradiation inducing phototoxicity have been investigated 

(Guo et al., 2008; Ma et al., 2014). 

2.5.4 Cell type 

The type of cell utilised can affect the genotoxicity of NPs (Dusinska et al., 2012). 

Metabolic activities in cell types such as epithelial, connective, neural and macrophages 

vary differently (Ververs and Jha, 2008). The variation in cell surface receptors, 

antioxidants, DNA repair capabilities, metabolic pathways, and presence of different 

enzymes/hormones may induce cell lines of the same or different tissue origin to be more 

or less susceptible to NP exposure. With a particular cell type, the behaviour, fate and 

interaction of NPs may be affected by these aforementioned factors. In addition, different 
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cell lines may interact with NPs separately due to their varying forms of phagocytosis, 

cytoplasmic inclusion properties and internalisation. 

2.5.5 Bioavailability and uptake of nanoparticles 

One of the major factors that provide information on the adverse effects on the cellular 

system is the uptake and availability of NPs to cells and tissues. The interaction of NPs 

with the surrounding medium, behaviour and bioavailability determines the fate of NPs. 

Electrostatic, hydrogen bonding and hydrophobic interactions enable the adsorption of 

proteins on NPs surface, which ultimately affects the dispersity, uptake and bioavailability 

of NPs (Kumar et al., 2011). 

The physicochemical properties such as size, surface charge, surface area and reactivity 

are usually altered when NPs agglomerate or aggregate. Besides protein, factors such as 

salt ions, hydrophobic surfactant and polar groups on the NPs surface can also influence 

aggregation. Understanding the behaviour and toxicity of NPs is an important step through 

the detection of internalised NPs. The transmission electron microscopy (TEM), scanning 

electron microscopy (SEM), confocal and fluorescence microscopy, reflection-based 

imaging and flow cytometry are the commonly used methods for assessing the uptake of 

NPs in cells (Shukla et al., 2011; Shukla et al., 2013; Sharma et al., 2012b). 

2.6 Mechanisms of titanium dioxide and zinc oxide nanoparticle-induced 

genotoxicity 

The interaction of NPs with the genetic material (direct) or NP-induced ROS damage and 

release of metal ions from soluble NPs (indirect) may induce genotoxicity (Barnes et al., 

2008). Secondary genotoxicity can be as a result of NP-elicited inflammatory responses by 

phagocytes (neutrophils and macrophages) that produce ROS to attack DNA (Stone et al., 

2009). Direct interaction with the DNA can occur when NPs cross the cell membrane and 

diffuse across the nuclear membrane to reach the nucleus or via the nuclear pore 

complexes. Di Virgilio et al. (2010) observed that large aggregates of TiO2 NPs deformed 

the nucleus as revealed by TEM in the Chinese Hamster Ovary cells (CHOK1). Cellular 

vesicles were formed due to the aggregated TiO2 NPs that affected the shape of the 
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nucleus. Mitotic process, segregation of chromosomes and normal functioning of the 

mitotic spindle and its components may unfavorably be affected when the nuclear shape is 

deformed. 

Depending on the phase of the cell cycle, NPs may interact directly with the DNA 

organised in chromatin or chromosomes, once they penetrate the nuclear pore to gain 

access to the nucleus or during the mitotic process (Magdolenova et al., 2014). DNA 

replication and transcription of DNA to RNA can be influenced when NPs interact to bind 

with DNA molecules during the interphase. Chemical binding to DNA molecules can be 

affected when NPs mechanically disturb the mitotic process, inducing aneugenic or 

clastogenic effect. Likewise, mitotic spindle apparatus, centrioles or their associated 

proteins can interact indirectly with NPs to induce an aneugenic effect. Loss or gain of 

chromosomes in the daughter cells is an implication of the NPs interference with the 

mitotic apparatus. Huang et al. (2009) reported abnormal multipolar spindle formation, 

chromosomal alignment and segregation during anaphase and telophase at long term 

exposure to TiO2 NPs. The function of protein kinases such as regulation of cell cycle 

events - DNA replication and cell division can be compromised when NPs interact. The 

mitotic checkpoint PLK1 protein responsible for cytokinesis and contractile ring 

formation was deregulated by TiO2 NPs (Huang et al., 2009). Aneuploidy or 

micronucleated cells can also occur through cytokinesis disturbance. Huang et al. (2009) 

reported ROS production, increased micronucleueated cells and ERK signaling activation 

in cells treated with TiO2 NPs. 

Reactive oxygen species arising from the surface of NPs can also be another contributing 

factor to indirect genotoxicity. Oxidative DNA damage can be induced through NP 

generated ROS in cells. Free radicals were generated by SiO2, ZnO and TiO2 NPs in 

aqueous suspensions (Sharma et al., 2009; Barillet et al., 2010; Shukla et al., 2011). 

Potential consequences may occur when free radicals interact with cellular biomolecules 

such as DNA, protein and lipids. DNA strand breaks (single and double) and purine and 

pyrimidine-derived oxidised base lesions may occur when ROS attacks the DNA. 

Mispairing in DNA replication resulting in mutation is a major consequence of DNA base 

lesions which can initiate the process of carcinogenesis (Cooke et al., 2003). ROS and 
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oxidative stress led to oxidative DNA damage and micronucleus formation in human skin 

cells treated with TiO2 NPs (Shukla et al., 2011, 2013). In addition, DNA damage can be 

induced through toxic ions released from soluble NPs. Fenton-type reaction can produce 

intracellular ROS through the release of certain transition metal ions such as Fe
2+,

 Ag
+
, 

Cu
+
, Mn

2+
, Cr

5+
 and Ni

2+
 from NPs (Kruszewski et al., 2011). 

Cellular organelles like the mitochondria and inflammatory cells (macrophages and 

neutrophils) can be damaged by affecting their functions when NPs interfere with them. 

ROS are generated by mitochnodria and neutrophils in response to stress. Kocbek et al. 

(2010) reported decreased mitochondrial activity, loss of cell morphology and 

disturbances in cell cycle in keratinocytes treated with ZnO NPs. TEM analysis revealed 

that early and late endosomes and amphisomes contained ZnO NPs. Trouiller et al. (2009) 

reported oxidative DNA damage and inflammatory responses in mice treated with TiO2 

NPs. A possible explanation for the genotoxicity observed may be due to the activation of 

the phagocytes. Accumulation of ROS and inhibition of antioxidants can potentially lead 

to DNA damage (Barillet et al., 2010). Reduced glutathione, increased lipid peroxidation 

and reduced antioxidant enzymes such as glutathione reductase and superoxide dismutase 

were induced by TiO2 NPs in vitro (Shukla et al., 2011). In addition, Sharma et al. (2011) 

reported ROS generation and glutathione and superoxide dismutase depletion in ZnO NP-

induced cytotoxicity and genotoxicity in vitro. 

2.7 Review of methods 

2.7.1 Characterisation of nanoparticles using the transmission electron microscopy  

The biological behaviour of NPs is determined by the surface interaction between them 

and biological substances; essential factors such as the particle size, size distribution and 

shape must be studied for possible toxicological explanations (Kwon et al., 2014b). 

Furthermore, it is known that a major reason for NP‟s toxicity is their large surface area 

resulting from their small size (Baek et al., 2012). Thus, before toxicological evaluations, 

it is highly recommended to analyse the particle size, shape and size distribution. 

Generally, OECD WPMN‟s guidelines suggest the analysis of NPs using the scanning 
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electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray 

diffraction (XRD), which is also supported by material scientists (Zhong et al., 2012).  

The transmission electron microscopy is a type of electron microscope that uses electron 

beams (at a high resolution) focused on the sample to provide structural and chemical 

images of the sample (Smith, 2015; Su, 2017). These images are produced when the 

electrons interact with the atoms in the material (Kwon et al., 2014b). Several studies have 

utilised TEM to evaluate the particle morphology and size (Xu et al., 2008; Baek et al., 

2012; Kim et al., 2012). The TEM and SEM are found to be the most recommended tools 

in evaluating the particle size and shape, since they have direct accessibility to the NPs 

(Kwon et al., 2014b). 

2.7.2  The Micronucleus assay 

In the 19
th

 century, Howell and Jolly recognised the micronucleus (MN) as a small 

inclusion in the blood of cats and rats as well as the peripheral blood of aneamic patients. 

Afterwards, the MN was referred to as the Howell-Jolly body (Hayashi, 2016). In 1970, a 

test method was developed by Boller and Schmid, (1970) to assess the frequency of MN 

induction in erythrocytes during haematopoiesis by using the peripheral blood cells and 

bone marrow tissue of Chinese Hamster treated with trenimon, an alkylating agent. Till 

the mid 1970‟s, researchers had successfully explained the basis of the MN assay (Heddle, 

1973; Schmid, 1975). In 1976, the human cultured lymphocyte was tested using the MN 

assay by Countryman and Heddle, (1976). However, Fenech and Morley, (1985) modified 

the protocol by introducing cytochalasin B.  

In 1980, MN was detected in the mouse peripheral erythrocytes by MacGregor et al. 

(1980). The peripheral blood of rats and humans do not contain the MN because the 

spleen rapidly and effectively removes the MN from the blood. Conversely, the MN is 

present in the peripheral blood of mice. The acute effect of any chemical can be evaluated 

using the MN assay in the bone marrow while the chronic effect can be evaluated in the 

peripheral blood erythrocytes because the MN are still present in the mature cells up to 

their life span (Hayashi, 2016). In 1983, the fluorescent dyes: acridine orange and hoechst 

332568 were introduced by Hayashi et al. (1983) and MacGregor et al. (1983) 
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respectively in identifying the MN. These contributed to the accuracy of the results of 

micronucleated erythrocytes over time. 

Some International Organisations such as the Organisation for Economic Cooperation and 

Development (OECD) and the Collaborative Study Group for the Micronucleus Test 

(CSGMT) in the 1980s developed test guidelines for assessing the probable genotoxic 

effects of chemicals of which the MN assay has gained a wide recognition. Since 1984 till 

now, the CSGMT, which is a representative of the Environmental Mutagen Society, has 

evaluated and reported several factors that can influence the test results. Such studies 

include sex-related difference (the Collaborative Study Group, 1986), difference between 

intraperitonal and oral exposures (Hayashi et al., 1989), aging of mice (Morita et al., 

1997), using the rat peripheral blood (Wakata et al., 1998) and targets to other 

erythropoietic tissues (Suzuki et al., 2005 and Hamada et al., 2015). These trials have 

contributed valuably to the standardisation of the test protocol and guidelines. 

The micronuclues test is one of the numerous in vivo genotoxicity tests utilised in 

assessing the risk of cancer. Other tests such as the alkaline comet assay, gamma-H2AX, 

chromosome aberration assay, and bacterial reverse test are used in evaluating the 

consequence of cancer (Kang et al., 2013). A number of chromosomal aberrations are 

present in cancer tissues (Keen-Kim et al., 2008) and accumulations of genetic damage as 

well as genome instability are crucial steps in the initiation of cancer (Stratton et al., 

2009). Genotoxic agents or carcinogens may exert their properties through abnormal cell 

growth, altered gene expression, and destruction of normal cell functioning (Pratheepa et 

al., 2008). Therefore, with the aim of assessing the risk of cancer, the genetic damage is 

evaluated using the in vivo MN assay. 

Recently, several studies have shown that increased frequency of MN is an indication of 

cancer risk, thus it is an immediate biomarker for detecting the process of carcinogenesis 

(Bonassi et al., 2006; Murgia et al., 2008). The continual survival of a cell with modified 

DNA and abnormal genome might lead to latent cancer cells or give rise to cancer 

(Weisburger and Williams, 1981). Several studies have shown strong positive correlation 

between MN frequency and cancer development (Duffaud et al., 1999; Iarmarcovai et al., 
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2008), thus suggesting that increased frequency of MN is associated to the early process of 

carcinogenesis (Bonassi et al., 2011). 

The in vivo MN assay has advantage over the in vitro assay, as the in vivo assay considers 

the pharmacokinetics of chemicals, which are absolutely absent in the in vitro assays 

(Sasaki et al., 2002; Benigni et al., 2012). However, the in vitro assay provides a 

preliminary screening on a chemical while the in vivo genotoxicity assay provides 

comprehensive biological and physiological effects of the chemical (Brendler-Schwaab et 

al., 2005). Genotoxic and mutagenic effects of chemicals are detected by the MN assay as 

they induce DNA fragments bound with small membranes called the MN (Fenech et al., 

1999; Fenech, 2000; Fenech, 2007). The micronucleus is briefly described as a small 

structure of between 1/20 and 1/5 of the main nucleus, which are cytoplasmic chromatin-

containing bodies from whole chromosome loss and chromatid/chromosome fragments 

that were not included in the daughter nuclei at anaphase of mitosis (Krishna and Hayashi, 

2000). 

When undamaged chromosomes move to the spindle poles during anaphase, these 

chromatid and chromosome fragments may lag behind. In the telophase, the regular 

daughter nuclei are produced by the normal chromosomes while the lagging chromosomes 

are incorporated in the daughter cells with a significant portion becoming the secondary 

nuclei (Figure 2.10). In principle, the MN assay can detect chemicals that are capable of 

inducing clastogenicity (chromosome and chromatid breakage) and aneugenicity 

(inhibition of mitotic apparatus) (Savage, 1988).  

The micronuclei formation is generally accepted through four major mechanisms: 1) Loss 

of acentric chromosome fragments and acentric chromatid fragments leading to structural 

aberrations. 2) Loss of whole chromosomes resulting to numerical aberrations. 3) Lagging 

chromosomes from chromosomal breakage and exchange, tangled chromosomes or 

inactive centromere leading to structural aberrations. 4) Apoptosis (Savage, 1988; 

Mateuca et al., 2006; Fenech, 2007; Fenech, 2010). Micronuclei analysis is particularly 

suitable in the erythrocytes; the nucleus is extruded during the maturation of the 

erythroblast to the PCE, which makes micronuclei detection easy (Chatterjee et al., 2010). 

The two cell types: the polychromatic erythrocytes (PCE) and the normochromatic 
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Figure 2. 10: The process of erythropoiesis in vivo; (b) the mechanism of micronucleus 

formation in the polychromatic erythrocytes (PCEs) and normochromatic erythrocytes 

(NCEs). Also, classification of kinetochore-positive (K+) and kinetochore-negative (K−) 

erythrocytes. N, nucleus; PEB, proerythroblast; MN, micronucleus  

Source: Krishna and Hayashi (2000). 
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erythrocytes (NCE), which are present in the bone marrow, spleen and blood 

compartments, stain differently using the giemsa stain. The PCE (larger, immature 

erythrocyte, basophilic, contains RNA and stains blue purple) are synthesised in the bone 

marrow (major hematopoietic) tissue, hence, used for the micronucleus assay. The 

peripheral blood of other species can be used for micronucleated PCE (MNPCE) as 

evidence has shown the inability of the spleen to remove micronucleated erythrocytes. In 

addition, the micronulceated NCE (smaller, contain haemoglobin, acidophilic and stains 

light pink) (MNNCE) can be used as an endpoint when the life span of the erythrocytes 

does not exceed the period of the treated animals. The principal endpoint of the assay is 

the frequency of micronucleated erythrocytes. Mutagenicity can be assessed using the in 

vivo micronucleus assay as it considers in vivo metabolism, pharmacokinetics and DNA-

repair processes, which differ among genetic endpoints, tissues and species. 

In the in vivo test, the mouse is the preferred rodent as the micronucleated cells induced by 

clastogens and aneugens, are formed in the bone marrow and detected in the peripheral 

blood while the micronucleated erythrocytes are selectively eliminated by the spleen of 

rats, thus, making it a less sensitive test. Intraperitoneal injection or oral gavage is given to 

test animals. After chemical administration, appropriate time is required for the increase in 

the number of micronucleated erythrocytes to rise to a significant level through adsorption 

and metabolism of the chemical, extrusion of the erythroblast nucleus, and completion of 

the erythroblast cell cycle. The cytotoxicity index is calculated as the ratio of PCE to the 

total erythrocytes (TE) (Krishna and Hayashi, 2000). Chromosomal aberration is induced 

when a test chemical increases the frequency of micronucleated PCE; however, molecular 

cytogenetic techniques such as immunofluorescent CREST-staining or fluorescence in situ 

hybridisation with pancentromeric DNA probes can be used to distinguish between 

absence (clastogenic) and presence (aneugenic) of chromosomes. 

2.7.3 Sperm morphology assay 

Spermatozoa are the end products of the differentiation and maturation process of germ 

cells, which proliferate and divide meiotically, given rise to specialised haploid cells for 

reproduction (De Boer et al., 2015). The spermatozoon can be distinguished by having 

three distinctive parts: the head, midpiece and tail (Figure 2.11). The head is oval shaped  
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Figure 2. 11: Schematic composition of a late stage elongating spermatid contents.   

Source: De Boer et al. (2015).  
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with more than one-third of its acrosomal cap covering its surface. The length of the head 

is between 3 and 5 µm and the width between 2 and 3 µm. The head has a distinct hook, 

which is essential during its transportation to fertilizing the egg. The hook allows the 

attachment of the sperm to the walls of the oviductal isthmus (Suarez, 1987; Smith and 

Yanagimachi, 1990). The midpiece is approximately 7 to 8 µm long and aligned 

longitudinally to the axis of the head while the tail is at least 45 µm long, uncoiled with a 

regular outline (Sun et al., 2006).  

The genetic information that determines the shape and the function of the spermatozoon is 

located in the head (Beatty, 1970). Therefore, any alterations in the genetic material of the 

sperm are reflected by changes in its morphology (De Boer et al., 2015). Abnormalities of 

the spermatozoa are categorised as defects in the head, midpiece or tail. Defects in the 

head include but not limited to amorphous, short hook, no hook, double heads, wrong-

angled hook as well as the combination of any of these. Also, midpiece defects include 

thin or thick midpiece having no mitochondria sheath and any of these combinations while 

the tail defects include folded and multiple tails and any of these combinations. Numerical 

and structural chromosome abnormalities are common aberrations that can occur in the 

genetic material of the spermatozoa (Martin et al., 1994). Aneuploidies and polyploidies 

are the types of numerical abnormalities that arise as a result of a missing or meiotic non-

disjunction of extra chromosome(s) while the duplication of chromosomes results in 

polyploidies. Chromosome breaks, gaps, translocations, inversions, deletions and acentric 

fragments are examples of structural abnormalities. It has been reported that fertile men 

have a frequency of 1-2 % of numerical chromosome abnormalities and a frequency of 7-

17 % of structural chromosome abnormalities (Martin, 2003). 

The mechanism involved in the alterations of the structure of the spermatid at compaction 

and elongation was explained by Kierszenbaum and Tres (2004). There are four elements 

involved in the modeling of the sperm head; (i) the stacked F-actin-containing hoops 

generate contractile forces in the Sertoli cell, connecting to the elongated spermatid 

nucleus at the apical region, (ii) the molecular characteristics of acrosome formation, (iii) 

formation of the acroplaxome/PNT from the assemblage of the subacrosomal cytoskeletal 
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plate and (iv) the relationship between the manchette (a microtubular/actin-containing 

structure and the acrosome-acroplaxome (Figure 2.11) 

One of the most important structures of the sperm head is the manchette (Figure 2.11). 

The development of the manchette begins in step 8 of the spermatogenic cycle, which 

degenerates in step 12 and completely disappears in step 16 (Figure 2.12). It originates at 

the acute side in the perinuclear ring. Asides the function of shaping the nucleus, it is also 

involved in the transportation of the nuclear effluents (chromatin metabolism) 

(Kierszenbaum, 2001; 2002b) through the nuclear pores beneath the acrosome (Fawcett 

and Chemes, 1979). Precursor-protamine 2 (pre-P2) and protamine 1 (Prm1/P1) and 

transition proteins 1, 2 (Tnp1, 2) largely contribute to the chromatin remodeling, which 

are supplied to the nucleus. In addition to these functions, the intramanchette transport 

also traffic tail components (Kierszenbaum et al., 2011).  

Sperm head morphology abnormalities may occur as a result of deletions in the Y 

chromosome (Ward and Burgoyne, 2006), azh mutations (Mendoza-Lujambio et al., 2002; 

Ward, 2005), genetic manipulation (Adham et al., 2001; Cho et al., 2003; Luo et al., 

2012), and changes in the regulation of the epigenetics of the paternal genome in mice. In 

addition, environmental toxicants can also increase the changes in the sperm head 

morphology (Wyrobek and Bruce, 1975). Consequently, the sperm head morphology was 

developed to screen potential carcinogenic chemicals that have the ability of inducing 

spermatogenic dysfunction (Wyrobek et al., 1983). 

The sperm head morphology became a standard test described by WHO for fertility 

clinics. Thus, normal assessment of spermatozoa is the basis for the morphology 

guidelines provided by WHO. Previous studies have indicated the correlation between 

sperm morphology and sperm functions (Liu and Baker, 1990; 1992). The percentage of 

sperm abnormalities are assessed by visually scoring the smears made from the sperms of 

the cauda epididymis of chemically treated mice (Wyrobek and Bruce, 1975). In addition, 

Esterhuzien et al. (2000) reported that evaluation of the sperm morphology, particularly 

the acrosome configuration, provides the necessary information for the „sperm fertilizing 

ability‟. Furthermore, Menkveld et al., (2003) demonstrated the binding of the zona 

pellucida and sperm cells‟ viability is highly correlated to the sperm morphology.  
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Figure 2. 12: Stages of the cycle of the mouse seminiferous epithelium.  

Source: Russel et al. (1991). 
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Over the years, testicular damage and infertility in mammals have been diagnosed using 

the semen analysis (Amelar, 1966). The quality of the sperm production is measured 

directly using the sperm test in animals that are chemically treated. The genetic basis of 

induced sperm abnormalities in treated mice have been over emphasised in several studies 

that have evaluated the ability of chemicals to induce sperm abnormalities as well as their 

genetic consequences (Wyrobek and Bruce, 1975; Wyrobek et al., 1983; Brinkworth, 

2000; Braydich-Stolle et al., 2005). Genetic damage of the germ cell is a reflection of 

some changes in the sperm morphology. Before the pre-meiotic stage of spermatogenesis, 

only DNA synthesis occurs, therefore no other changes occur in the sperm head, making it 

extremely stable. 

Recently, a lot of focus is on the analysis of DNA damage of the sperm, which is an 

indicator of sperm quality (Franken and Oehninger, 2012). The single and double DNA 

strand breaks, oxidation of purines, inter- and intrastrand crosslinkage and DNA-protein 

cross links are examples of common sperm DNA damage identified (Aitken and de Luliis, 

2007; 2010). Several assays such as the comet (Hughes et al., 1996), terminal 

deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) (Gorczyca et 

al., 1993), DNA breakage detection-FISH (Fernandez et al., 2005), chromatin structure 

assay (Evenson et al., 1991) and chromatin dispersion test (Fernandez et al., 2003) are the 

various tests utilised in identifying and quantifying DNA damage in sperms. 

Advantages 

1. The assay has the ability of identifying germ cell mutagens. 

2. The potential adverse effects of exogenous toxicants on sperm production can 

easily be assessed by the assay. 

3. It is quite simple, inexpensive, and less invasive and relatively rapid compared 

with other short term in vivo assays. 

4. It is specific to carcinogenicity 
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5. Irrespective of the experimental model, exposure dose, route and duration, it has 

been found adaptable. 

Disadvantages 

1. False positive responses may be elicited through factors such as alterations in body 

temperature and infection. 

2. No clear understanding on the consequences of mutation - induced sperm-shape 

abnormalities. 

3. Insensitivity of the toxicants may occur due to the different strains of mice used. 

2.7.4  Sperm count and motility 

Sperm count and motility are vital criteria for the examination of male infertility. Low 

sperm count, abnormal sperm motility and function are causes that mostly contribute to 

male infertility worldwide (Jamsai and O‟Bryan, 2011). However, evaluation of motility 

and count assessments has extensively been reviewed by the WHO 2010 manual. The 

ability of the spermatozoon to deliver correctly its chromosome to the ovum is measured 

indirectly through seminal analysis. In achieving this, the number, motility and 

morphology of the spermatozoa must be accurately produced in order for them to go 

through the cervix, uterus until they bind to the zona pellucida and under go nuclear 

decondensation (Vasan, 2011). However, defects in any of these complex processes may 

lead to male infertility.  

Determination of sperm count is mostly done using an improved Neubauer 

haemocytometer. The sperm count is defined as the number of spermatozoa per unit 

volume (Franken and Oehninger, 2012). A microscopic examination of the freshly 

collected spermatozoa is reported in millions per millilitre (Vasan, 2011). According to 

the WHO manual 2010, the normal value of the sperm count is usually greater than 20 

million/mL (normozoospermia). Therefore, any value that falls below the reference value 

is referred to as oligozoospermia while no spermatozoa present in the ejaculate is referred 

to as azoospermia. 
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The motility of spermatozoa determines the passage through the cervical mucus (Vasan, 

2011). The WHO manual 2010 classified motility into four categories namely: rapidly 

progressive (class a) (forward speed of at least 25 µms
-1

), slow progressive (class b) 

(forward at a speed of less than 25 µms
-1

), non-progressive (class c) move slowly at a 

speed less than 5 µms
-1 

and immotile (class d) that do not make any movement at all but 

appear dead (Sikka and Hellstrom, 2016). Spermatozoa with head and tail are only scored 

during motility. A normal suspension usually should contain more than 50 % of the sum 

of the rapidly progressive and slow progressive. However, when the immotile 

spermatozoa exceed 50 %, sperm vitality test should be carried out (Vasan, 2011).When 

the sperm concentration and percentage of progressively motile spermatozoa are below the 

reference limit, it is referred to as oligoasthenozoospermia while the percentage of the 

progressively motile spermatozoa below the reference limit is referred to as 

asthenozoospermia. 

2.7.5  Male reproductive hormones  

The anterior pituitary gland contains the gonadotroph cells which secrete the luteinizing 

hormone (LH). In males, it is referred as the interstitial cell-stimulating hormone (ICSH) 

(Louvet et al., 1975). The leydig cells in the testis are stimulated by the LH to produce 

testosterone, and LH also acts synergistically with follicle stimulating hormone (FSH). LH 

exists as a heterodimer glycoprotein that is not covalently related, with each of the 

monomeric unit consisting of one alpha and one beta subunit. The beta subunit of LH has 

120 amino acids and provides its specific biological action (Jiang et al., 2014). 

In males, the gonadotropin-releasing hormone (GnRH) regulates LH release in the 

pituitary gland, which acts on the leydig cells in the testis to produce testosterone. 

Subsequently, the enzyme 17β-hydroxysteroid dehydrogenase which is regulated also by 

LH converts androstenedione to testosterone (steroid hormone primarily involved in 

spermatogenesis) (Guyton and Hall, 2006). The hypothalamus releases GnRH which 

stimulates the release of LH when the testosterone level is low. Subsequently, as the 

testosterone level increases, there is a negative feedback mechanism on the hypothalamus 

and pituitary gland which inhibits GnRH and LH release respectively. Within the 

menopausal period, high level of LH is expected. Patients with polycystic ovarian 
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syndrome, testicular failure, premature menopause and Turner syndrome usually have 

relatively elevated LH levels. Low levels of LH are seen in patients with hypogonadism, 

hyperprolactinemia and hypothalamic suppression. 

The Follicle Stimulating Hormone (FSH) is another glycoprotein polypeptide secreted in 

the anterior pituitary gland where the gonadotroph cells are located. It is involved in the 

reproductive process, growth, development and pubertal maturation of the body. It has 

both alpha and beta subunits. The beta subunit has 111 amino acids which gives its 

specific biological function (Jiang et al., 2012). The germ cells in both male and female 

are stimulated by FSH. In males, the FSH also stimulates the sertoli cells to secrete 

androgen-binding proteins (ABPs). The anterior pituitary gland regulates the secretion of 

ABPs via a negative feedback mechanism.  

Primary spermatocytes are stimulated by FSH to undergo first meiotic division to give rise 

to the secondary spermatocytes. It is also responsible for the formation of connections 

between the sertoli cells that form the blood-testis barrier. High levels of FSH are 

expected in the menopausal period, but are abnormal in the reproductive period. 

Premature ovarian failure (premature menopause), testicular failure, subfertility/infertility 

and Turner syndrome may lead to high FSH levels. Hypogonadism, polycystic ovarian 

syndrome, hypothalamic suppression and hyperprolactinemia often occur due to low FSH 

levels. 

Testosterone is the principal hormone in males, which belongs to the androgen family. It 

is primarily secreted in the testicles of males and in an insignificant amount in females. In 

males, the major roles of testosterone include: development of the testis and prostate, 

increase muscle and bone marrow, broadened chest and presence of hair growth 

(Mooradian et al., 1987). The hormone is notably lower in females than in males, which is 

7-8 times greater (Torjesen and Sandnes, 2004) and decreases gradually as men age. It is 

responsible for the normal development of spermatozoa, gene activation in sertoli cells 

stimulate spermatogonia differentiation, controls physical and cognitive energy and 

supports muscle tropism. The most significant amount of testosterone is produced in the 

testes. Testicular dysfunction or hypothalamic pituitary dysfunction can induce low levels 

of testosterone (hypotestosteronism) while high levels of testotsterone 
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(hypertestosteronism) may occur as a result of leydig cell hypertrophy or increase in 

steroid biosynthesis. 

2.7.6 Kidney and Liver Function Tests 

i. Blood Urea Nitrogen 

The maintenance of physiological homeostasis is required by a healthy kidney (Dalton, 

2010). Blood Urea Nitrogen (BUN) is one of the most commonly measured parameters to 

evaluate renal function. Urea is the main end product of the metabolism of nitrogen-

containing substances formed in the liver and excreted by the kidneys (Baum et al., 1975). 

Increase or decrease in serum urea nitrogen has their clinical implications in the body 

system. The rates of synthesis and excretion determine the concentration of urea in body 

fluids. The protein in fate or tissue breakdown of urea is correlated with the rate of 

synthesis. Increased protein catabolism increases the urea synthesis, which relatively 

increases its concentration. Excess ingestion of exogenous protein or tissue protein 

breakdown in wasting diseases may also increase urea concentrations. The glomerular 

capillaries filter urea which is excreted into the tubular lumens while the blood urea 

concentration may increase as a result of decreased filtration. In case of low BUN levels, 

severe hepatic disease can lower the urea concentration since urea is synthesised in the 

liver (Gallagher and Seligson, 1962). Patients with severe liver disease (liver cirrhosis) 

with no protein intake as a result of severe anorexia elicited from liver disease or low-

protein diet will markedly have low BUN level (Baum et al., 1975). Low BUN levels may 

also occur as result of urea cycle enzyme deficiencies (Jurado and Mattix, 1998).  

ii. Creatinine 

Creatinine is primarily a metabolite of the muscle which is excreted by the kidneys (Baum 

et al., 1975). It is also produced from creatine and phosphocreatine metabolism in the 

skeletal muscle (Traynor et al., 2006; Dabla, 2010). Serum creatinine is ideal for 

measuring acute or chronic kidney disease and glomerular filtration rate (GFR) of the 

kidney. The serum concentration of creatinine increases as the GFR declines (Dalton, 

2010). Unlike the BUN, it has been found to be a more sensitive index. In addition, where 
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urea undergoes tubular reabsorption, creatinine is not reabsorbed but secreted by the 

tubules and freely filtered at the glomerulus (Traynor et al., 2006; Dabla, 2010). Reduced 

levels of serum creatinine may be suggestive of reduced muscle mass, which may lead to 

the depletion of creatinine production in individuals that have renal diseases. Increased 

level of serum creatinine is an indication of severe renal damage (Baum et al., 1975). 

iii. Bilirubin 

Bilirubin is formed as a result of the breakdown of haemoglobin that is synthesised in the 

reticuloendothelial system (Limdi and Hyde, 2003; Gowda et al., 2009). It is released as 

unconjugated bilirubin and transported to the liver. It is not soluble in water and thus 

cannot be eliminated via the urine. It is secreted into the bile and gut, once it is conjugated 

to bilirubin glucuronide in the liver (Limdi and Hyde, 2003) by the enzyme UDP-

glucuronyltransferase (Gowda et al., 2009). Subsequently, it is also broken down by 

intestinal flora into urobilinogen where some are reabsorbed and eliminated by the liver 

into the intestinal tract or via the kidney into the urine. The residue is thereafter excreted 

as stercobilinogen in the stool.  

Serum bilirubin occurs in unconjugated form (indirect) and conjugated form (direct). It is 

mostly in the unconjugated form, which maintains equilibrium between synthesis and 

hepatobiliary excretion. The normal values of the serum total bilirubin range between 2 

and 21 µmol/L (Gowda et al., 2009), with direct and indirect bilirubin being 8 µmol/L and 

12 µmol/L respectively. Excessive production of bilirubin may be as a result of increased 

hemolysis (jaundice), muscle injury, erythropoietic dysfunction and haematoma resorption 

(Limdi and Hyde, 2003). Indirect bilirubin makes more than 85 % of the total bilirubin 

and occurs when there is an excessive production of bilirubin or hepatic uptake defects or 

inherited diseases (e.g. Gilbert‟s syndrome) and this is referred to as unconjugated 

hyperbilirubinaemia (Gowda et al., 2009). Increased levels of conjugated bilirubin may 

occur in hepatocellular damage or ischemic liver injury (Gowda et al., 2009). However, 

low serum bilirubin may occur as a result of incomplete extrahepatic obstruction due to 

biliary canaliculi or parenchymal liver diseases (Daniel and Marshal, 2007). 
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iv. Aminotransferases 

The well known and measured indicators of hepatic disease are the aminotransferases 

(formerly referred as transaminases) (Reichling and Kaplan, 1988; Limdi and Hyde, 

2003). Aspartate aminotransferase (AST) or serum glutamate oxaloacetate transaminase 

and alanine aminotransferase (ALT) or serum glutamate pyruvate transaminase are the 

most important biomarkers for hepatocellular necrosis (Gowda et al., 2009). Both ALT 

and AST are involved in gluconeogenesis where they catalyse the transfer of α-amino 

groups of alanine or aspartic acid to the α-keto group of ketoglutaric acid forming pyruvic 

acid and oxaloacetic acid respectively (Reichling and Kaplan, 1988; Limdi and Hyde, 

2003). 

Alanine aminotransferase is a purely cytosolic enzyme available in the kidney, liver, heart 

and muscle and with higher concentrations in the liver (Reichling and Kaplan, 1988; 

Limdi and Hyde, 2003; Gowda et al., 2009). AST is a cytosolic and mitochondrial 

enzyme, available in the kidneys, cardiac muscle, liver, brain, lungs, skeletal muscle, 

pancreas, leucocytes and red cells (Limdi and Hyde, 2003). Most of the activity of AST in 

the mammalian liver is considered to be the mitochondrial isoform (Rechling and Kaplan, 

1988) while that of the serum AST activity (approximately 80 %) is of the cytosolic 

isoform. 

Patients with all types of liver diseases such as viral hepatitis, toxin-induced liver damage 

(Gowda et al., 2009), ischemic liver injury, and all types of acute and chronic hepatitis, 

infections, congestion from acute and chronic heart failure, cirrhosis, alcoholic liver 

disease, and metastatic carcinoma and granulomatous exhibit high levels of AST and ALT 

(Reichling and Kaplan, 1988). Hepatocellular injury and exposure to hepatotoxins due to 

drug induction elicits high levels of aminotransferases. However, aminotransferase 

reduction does not imply recovery, but may be due to massive destruction of liver cells 

with little or no liver cell to sustain life (Reichling and Kaplan, 1988). Subsequently, 

lower-than-normal ALT activity have been utilised as a biomarker for increased risk of 

mortality and frailty (Ramaty et al., 2014). The development of frailty (muscle wastage or 

sarcopenia) in later life and the risk of developing a disease and dying at an early age are 

signs that are predicted by the lower-than-normal ALT activity. In addition, lower-than-
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normal ALT activity are also found in patients that suffer from end-stage renal disease 

(Ramaty et al., 2014). 

The ratio of AST to ALT is of clinical importance than the individual assessment of each 

enzyme (Gowda et al., 2009). The ratio identifies cirrhotic patients with 81.3 % sensitivity 

and 55.3 % specificity and progressively increases once the liver function is impaired 

(Giannini et al., 2003). Patients with advanced liver fibrosis and chronic hepatitis C 

infection usually have a value greater than 1. However, a value greater than 2 and 3 is an 

indication of alcoholic or severe liver disease (Reichling and Kaplan, 1988). 

v. Gamma glutamyl transferase 

Gamma glutamyl transpeptidase also known as Gamma glutamyl transferase (GGT) is a 

microsomal enzyme present in both liver and biliary epithelial cells (Gowda et al., 2009). 

One of its functions is to catalyse the transfer of gamma glutamyl group from one peptide 

to another across the cell membrane (Reichling and Kaplan, 1988; Gowda et al., 2009). It 

is expressed in many tissues like the kidney, liver, spleen, pancreas, brain and heart. The 

level of serum GGT significantly increases in patients with hepatobiliary and pancreatic 

disease. Examples of other conditions that would bring about raised GGT activity include: 

renal failure, myocardial infarction, diabetes, chronic obstructive pulmonary disease, 

hyperthyroidism, obesity, dystrophica myotonica, anorexia, alcoholism and Gullian barre 

syndrome (Limdi and Hyde, 2003; Gowda et al., 2009). In addition, drugs such as 

barbiturates, carbamazepine and phenytoin may also raise the levels of serum GGT. 

Antioxidants such as lycopene, α-carotene, β-carotene and β-cryptoxanthin are inversely 

related to increased levels of GGT; hence, it can be used as a marker for oxidative stress 

(Koenig and Seneff, 2015). 

vi. Albumin 

It is the most abundant, negatively charged plasma protein, primarily synthesised in the 

liver (Garcovich et al., 2009). Approximately 10 – 15 g/day of albumin is synthesised in a 

healthy adult with about 60 % localised in the extracellular space (Hankins, 2006). 

Albumin is involved in the following functions such as: maintaining colloid oncotic 

pressure (COP), transporting of substrates, free radical scavenging, coagulation, buffering 
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capacity and wound healing (Mazzaferro et al., 2002; Hankins, 2006). A number of 

factors such as urinary and gastrointestinal losses affect Albumin concentration (Limdi 

and Hyde, 2003). Increase or decrease in albumin concentration may occur depending on 

the disease state. Most times, increased level of serum albumin is clinically insignificant; 

however, dehydration can bring about increased albumin concentration. On the other 

hand, increased protein loss through wounds, burns, liver disease and malnutrition can 

bring about decreased levels of serum albumin (analbuminemia). Increased catabolism, 

decreased synthesis or a combination of both can also lead to analbuminemia (Hankins, 

2006). Inflammatory processes (chronic inflammatory disorder and acute-phase responses) 

are a major cause of decreased albumin. The severity, prognosis of total hepatic function, 

acute hepatitis or cirrhosis does not correlate with Albumin concentration (Limdi and 

Hyde, 2003; Hankins, 2006). Excessive excretion of albumin in the urine suggests the 

inability of the proximal tubular cells to reabsorb albumin; hematuria or proximal tubular 

damage (Horne et al., 1991). 

2.7.7 Lipid Profile 

i. Total cholesterol 

The most important steroid hormone synthesised by animals is the cholesterol (Razin and 

Tully, 1970), which is required in maintaining the integrity of the structural membrane and 

fluidity of the cells (Razin and Tully, 1970). The hepatic cells in humans synthesise the 

largest amount of cholesterol. Other functions of cholesterol include intracellular 

transport, nerve conduction, cell signaling processing, and lipid rafts formation in plasma 

membrane (Incardona and Eaton, 2000). Several biochemical pathways such as vitamin D 

synthesis, adrenal gland hormones (aldosterone and cortisol), all steroid hormones, and 

sex hormones (progesterone, testosterone and estrogens) utilise cholesterol as a precursor 

molecule (Hanukoglu, 1992; Payne and Hales, 2004).  

Hypercholesterolemia or dyslipidemia is as a result of increased cholesterol level in the 

blood (Durrington, 2003). No clinical signs are induced by hypercholesterolemia, 

indicating that it is asymptomatic; however, atherosclerosis (hardening of the arteries) can 

occur as a result of the prolonged elevation of serum cholesterol, which results in the 
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production of artrial atheromatous plaques. The consequence results in the constriction of 

the arteries or clot formation and obstruction of blood flow which may lead to the rupture 

of the smaller arteries (Finn et al., 2010). Subsequently, coronary artery blockage as well 

as blockage of the artery supplying the brain can induce heart attack and stroke 

respectively. A combination of environmental (obesity, diet and stress) and genetic factors 

(polygenic, familial and familial combined hyperlipidemia) can bring about 

hypercholesterolemia (Calderon et al., 1999; Bhatnagar et al., 2008). Other conditions 

such as diabetes mellitus type 2, nephrotic syndrome, hypothyroidism, anorexia nervosa, 

cushing‟s syndrome and medications (thiazide, glucocorticoids and retinoic acid) also 

elevate cholesterol levels (Bhatnagar et al., 2008). 

Low cholesterol levels do not have any clinical significance; however, it becomes a great 

concern when it falls far below the normal value (120 mg/dL). Hypocholesterolemia exists 

in the primary [genetic mutations resulting to hypobetalipoproteinemia and 

abetalipoproteinemia (Welty, 2014) and tangier disease (Bektas et al., 2008)] and 

secondary (anaemia, infection, inflammation, malabsorption, hyperthyroidism and 

leukemias) forms (Oztas, 2016). It has been established through clinical and experimental 

studies that changes in cholesterol breakdown may be correlated with tumour development 

and carcinogenesis (Silvente-Poirot and Poirot, 2012). In order to continue the tumour 

proliferation, migration and metastatic activities of cancer cells, the metabolic 

requirements are significantly increased (Warburg, 1956). Therefore, membrane synthesis 

and cell division required for cancer development ultimately alter the regulation of 

cholesterol transport and metabolism (Silvente-Poirot and Poirot, 2012). 

ii. Triglycerides 

Carbohydrates and free fatty acids are utilised by the liver to synthesise triglycerides (Cox 

and Garcia-Palmieri, 1990). Abnormal concentrations (increase or decrease) of 

triglycerides may occur due to several conditions. Hypertriglyceridemia (elevated 

triglyceride) may be a contributing factor to a high incidence of obesity, cardiovascular 

disease, type 2 diabetes mellitus, metabolic syndrome and acute pancreatitis (Hodis et al., 

1996). Exogenous (dietary fat) and endogenous (liver) are the two main sources of plasma 

triglycerides (Yuan et al., 2007). Hypertriglyceridemia are classified into primary and 
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secondary. Primary hypertriglyceridemia include familial chylomicronemia (primary 

mixed hyperlipidemia type 5 and hyperlipoproteinemia type 1) which are distinguished by 

chylomicrons 12-14 h post fasting. Hepatosplenomegaly, eruptive xanthomata and lipemia 

retinalis are some of the clinical features of both primary mixed hyperlipidemia and 

familial chylomicronemia. Contrastingly, secondary hypertriglyceridemia are usually 

associated with metabolic disorders which include obesity, diabetes (Lemieux et al., 

2000), alcohol, renal disease (Kaysen and de Sain-van der Velden, 1999), pregnancy 

(Warth et al., 1975), nonalcoholic fatty-liver disorder (Clark, 2006; Farrell and Larter, 

2006) and medications (e.g. antiretroviral drugs) (Calza et al., 2004). 

iii. High-density lipoproteins 

High-density lipoproteins (HDL) consist of lipid (phospholipids, free cholesterol, 

cholesteryl esters and triglycerides) and protein (apoA-I and apoA-II) (Mendoza et al., 

1976; Sich et al., 1998). HDL are involved in the reverse cholesterol transport system 

were they transport additional cholesterol from the tissues (fibroblasts and macrophages) 

to the liver (El Khoury et al., 2014). HDL2 and HDL3 are two subclasses of HDL, of 

which HDL2 has been connected with coronary artery disease. Hypoalphalipoproteinemia 

(reduced HDL- levels) has more clinical significance than hyperalpalipoproteinemia; 

considering the fact that it is significantly correlated with increased risk of coronary heart 

disease. Several factors such as genetic diseases (abetalipoproteinernia, tangier disease 

and dyslipoproteinemia), obesity, cigarette smoking, physical inactivity, oral 

contraceptives, cholesterol reducing diets and thiazide diuretics decrease the levels of 

HDL-cholesterol. Conversely, elevated HDL-cholesterol (hyperalphalipoproteinemia) is 

correlated with low risk of CHD. However, genetic (dominant or polygenic inheritance) or 

secondary (regular exercise, biliary cirrhosis and estrogen administration) factors can 

contribute to elevated HDL levels (Kakafika et al., 2008; Bermudez et al., 2008).  

2.7.8  Oxidative stress biomarkers for systemic toxicity 

Nanoparticles of various sizes, chemical composition, surface properties have been 

reported to attack the mitochondria, which are the organelles where redox reactions take 

place (Alarifi et al., 2014). NPs may alter the production of ROS and antioxidants, 
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resulting into oxidative stress. The mechanism of NP-induced toxicity is not clearly 

understood but it is presumed that oxidative stress is a major mechanism of nanotoxicity 

(Syama et al., 2014; Reddy et al., 2015; Niska et al., 2015; Ferreira et al., 2015). 

Oxidative stress occurs when there is an imbalance between the production of free radicals 

and antioxidants (Reddy et al., 2015). ROS are produced in the mitochondria during 

oxidative metabolism (Niska et al., 2015) and are eliminated by both endogenous and 

exogenous antioxidants (Pourhamzeh et al., 2016). ROS consist of reduced oxygen 

metabolites such as superoxide anions, hydroxyl radical, hydrogen peroxide, and singlet 

oxygen (Syama et al., 2014). Antioxidants (enzymatic and non-enzymatic) play important 

roles in cellular maintenance (Huang et al., 2010; Niska et al., 2015). Examples of 

antioxidant enzymes include superoxide dismutase, catalase while non-enzymatic 

antioxidant includes reduced glutathione. ROS are also involved in intracellular signal 

transduction (Yoshikawa and Naito, 2002). Conversely, excessive increase in ROS levels 

can induce modifications in the DNA, proteins, as well as the polyunsaturated fatty acids 

in cell membrane lipids (Sarkar and Sil, 2014). 

i. Superoxide dismutase 

The first line of enzymatic defence against free radicals is superoxide dismutase (SOD) 

(Niska et al., 2015). In eukaryotes and other mammals, SOD exhibits three isoenzymes 

which include SOD1 or Cu/Zn SOD localised in the cytosol, SOD2 or Mn SOD localised 

in the mitochondria and the extracellular SOD significantly expressed in kidney, fat 

tissues and lungs. In the inner mitochondrial membrane, electrons leak from the electron 

transport chain, which is acquired by molecular oxygen to form superoxide anion (O2
-
) 

(Niska et al., 2015). SOD catalyses the dismutation of superoxide radical (O2
-
) to 

hydrogen peroxide (H2O2) and singlet oxygen (Abdelhalim et al., 2015). The superoxide 

anion is not as reactive as the hydroxyl radical and is found within a particular 

environment where it is synthesised as a result of its inability to diffuse through the lipid 

membranes. In addition, superoxide anion and hydrogen peroxide can be converted to 

hydroxyl radical (OH
.
) through the fenton reaction.  
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ii. Catalase 

Catalases (CAT) are dominantly localised in the peroxisomes of mammalian cells. They 

catalyse the decomposition of one molecule of H2O2 into two molecules of water and one 

molecule of oxygen. Oxidation of transition metals produces highly reactive OH
. 

from 

H2O2. Without the catalase to convert H2O2, metabolic processes in cell and tissues as well 

as the DNA macromolecule, will be significantly damaged inducing mutations that can 

initiate cancer process. 

iii. Lipid peroxidation 

Unsaturated fatty acids (cell membrane components) are oxidised in a chain reaction 

process known as lipid peroxidation. The free radical chain reaction proceeds when the 

hydrogen atom is removed from the fatty acid molecule. Radicals such as hydroxyl, 

hydroperoxyl, lipid peroxyl and alkoxyl are involved in the removal of hydrogen atoms 

from lipid molecules. The chain initiation reaction is a process in which lipids generate 

lipid radicals (L
.
) after the hydrogen atom removal (Yoshikawa and Naito, 2002). Lipid 

peroxyl radical (LOO
.
) are generated when the lipid radical (L

.
) reacts spontaneously with 

oxygen thus, the LOO
.
 attacks another lipid in order to remove hydrogen atom forming a 

lipid hydroperoxide (LOOH) and a new lipid radical (L
.
).This reaction continues and 

thereafter, accumulates lipid peroxide. An important and accepted biomarker for 

evaluating lipid peroxidation is the malondialdehyde, which is a secondary aldehydic 

product of lipid peroxidation. 

iv. Glutathione  

Glutathione (GSH) is an important intracellular antioxidant that is abundantly found in 

both plants and animals (Pompella et al., 2003). It contains the thiol group (-SH) that 

plays a role in cellular defense and aminoacids: L-glutamic acid, L-cysteine, and glycine 

are involved in the synthesis of GSH (Lu, 2009). GSH exists in one of two states: the 

reduced (GSH) and oxidised (GSSG). In the reduced state, a reducing proton is donated to 

other unstable molecules such as the reactive oxygen species by the thiol group of 

cysteine. Glutathione becomes reactive in donating a proton and forms glutathione 

disulphide (GSSG) with another reactive glutathione. However, the flavoenzyme 
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glutathione reducatse (GR) reduces oxidised GSSG to GSH in a NADPH-dependent 

manner (Couto et al., 2013). 

An important indicator of cellular toxicity is the ratio of reduced glutathione to oxidised 

glutathione (Pastore et al., 2001). Reduced GSH accounts for over 90 % of the total 

glutathione while less than 10 % is in the oxidised state (GSSG) in the human body. 

Glutathione, an endogenous antioxidant is involved in a number of functions which 

include neutralising ROS and free radicals; maintaining vitamins C and E (both 

endogenous antioxidants) in their reduced forms; involved in DNA synthesis and repair, 

amino acid transport, protein synthesis, and enzyme activation. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Laboratory Animal 

Male Swiss mice (Mus musculus) were bred throughout the period of this study at the 

Department of Zoology, University of Ibadan. Mice of 6 - 8 weeks (24.0 ± 2.0 g) and 11 - 

15 weeks old (30.0 ± 2.0 g) were used for the bone marrow micronucleus and sperm 

morphology assays, respectively. Standard laboratory animal feeds (pelleted mouse cubes) 

were obtained commercially and fed to the mice with drinking water ad libitum. They 

were housed in 12 hours light / 12 hours dark cycle, with appropriate temperature and 

relative humidity. All procedures involving the use of mice were in compliance with 

laboratory animal ethics (CIOMS, 1985; ILAR, 2011) and approved by the Animal Care 

and Use Research Ethics Committee (ACUREC) University of Ibadan, Oyo State 

(approval number: UI-ACUREC/App/2015/005; Appendix I ). 

3.2 Nanoparticles and preparation 

Titanium dioxide and zinc oxide nanoparticles were procured from Sigma Aldrich, St. 

Louis, USA with the following specifications: 

Zinc oxide (ZnO); Average Particle Size: < 100 nm; Surface Area: 15 - 25 m
2
/g; and 

Colour: white; Chemical Abstract Service number: 1314-13-2. 

Titanium dioxide (TiO2, anatase); Average Particle Size: < 25 nm; Specific Surface Area: 

45 m
2
/g; Colour: white; Chemical Abstract  Service number: 1317-70-0. 
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Nanopowdered Titanium dioxide and Zinc oxide were suspended in distilled water. Stock 

doses of TiO2, ZnO NPs and their mixture (1:1) respectively were prepared in distilled 

water using an ultrasonic water bath (Bandelin, Sonorex digitec, Germany) to break up 

particle aggregates in which ultrasound energy was applied to break the intermolecular 

interactions for 10 minutes at 60 W (3 minutes pulse on and 30 seconds pulse off at room 

temperature). The nanoparticles and their mixture were further vortexed for 5 minutes to 

disperse the particles. NPs were freshly prepared prior to animal exposure. 

3.3 Physicochemical characterisation using Transmission Electron Microscopy 

and Dynamic Light Scattering 

3.3.1 Dispersion protocol of titanium dioxide, zinc oxide nanoparticles and their 

mixture 

Both nanoparticles and their mixture were dispersed according to the protocol of 

Georgantzopoulou et al. (2013; 2016). In brief, the stock solutions of TiO2, ZnO NPs and 

their mixture were prepared by suspending 2 mg of each of the NPs and their mixture in 1 

mL of sterile MilliQ water. NP suspensions were sonicated in a sonication bath 3 times 3 

minutes with 30 seconds pause in between using a UP 200S probe ultrasonicator 

(Hielscher, Germany). The resulting suspensions were further vortexed for 5 minutes to 

obtain uniform samples. 

3.3.2 Morphologies of titanium dioxide and zinc oxide nanoparticles 

The shapes of TiO2 and ZnO NPs were determined using the TEM according to 

Georgantzopoulou et al. (2016). One milligram each of the NPs were first suspended in 

1.5 mL of ethanol and sonicated for a minute. The suspension was dropped on a 

conventional TEM copper mesh grid with a carbon film as the carrier. Digital images were 

produced using the TEM (FEI Tecnai G2 F20) at an accelerating voltage of 120 kV and 

recorded in the bright-field mode using Gatan Ultrascan 2k x 2k CCD camera. 
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3.3.3  Size distribution of titanium dioxide, zinc oxide nanoparticles and their 

mixture 

The particle size distribution, zeta (δ) potential and polydispersity of TiO2, ZnO NPs and 

their mixture were obtained by DLS using Zetasizer Nano Series instrument (Malvern 

Instruments Ltd, UK) (Cambier et al., 2018). The particles were prepared according to the 

dispersion protocol. The He-Ne laser beam (5 mW, λ= 633 nm) was used in irradiating the 

samples with red light and the back scattering mode (detected at 173
o
) to detect the 

intensity of the light scattered by the moving particles after irradiation. The following 

were taken into consideration during analyses: the viscosity (cP) of distilled water 

(0.8872); refractive index of distilled water (1.330); refractive indexes of TiO2 (2.61), 

ZnO NPs (2.00) and their mixture (2.61) with a general absorption of 0.01. Disposable 

cuvettes were used in measuring both NPs and their mixture at a temperature of 25
o
C, 

which was maintained within 0.1
o
C. Data represent the calculated mean distribution from 

three independent repetitions for TiO2, ZnO NPs and their mixture, respectively. The zeta 

potentials of TiO2, ZnO NPs and their mixture were also carried out in triplicates of 12 

sub-runs each. Data were presented as the calculated mean and standard deviation from 

three independent repetitions for TiO2, ZnO NPs and their mixture respectively.  

3.4 Acute toxicity for the genetox bioassay 

Preliminary screening was carried out to determine the appropriate dose range for testing 

the NPs and their mixture for the micronucleus assay and reproductive toxicity. Acute 

toxicity test was carried out according to OECD guidelines 420 (OECD, 2008) for testing 

chemicals for the determination of lethal dose 50 (LD50). Four male mice (6 - 8 weeks old) 

per dose were treated intraperitoneally to fixed doses of 150 and 300 mgkg
-1

 of TiO2 and 

ZnO NPs and their mixture and observed for changes in fur, eyes and mucous membranes, 

salivation, coma, lethargy, diarrhoea, convulsion, tremors. Mortality of the mice within 24 

hours was recorded while living animals were observed for 14 days before termination of 

the study. The percentage net body weight (bw) of mice was computed as: 
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Final bw of mice on sacrifice day (g) – Initial bw of mice prior to treatment (g) X 100 

        Initial bw of mice prior to treatment (g) 

3.5 Treatment groups and experimental design  

One hundred and seventy male mice (5 mice per group) were used for the micronucleus 

assay. Two exposure periods were considered, 5 and 10 days. The mice were 

intraperitoneally adminsitered with 0.5 mL of five doses (9.38, 18.75. 37.50, 75.00 and 

150.00 mgkg
-1

) at 24 hours interval for each administration. For the 10- day exposure 

period, mice were treated for 5 consecutive days and observed for another 5 days to assess 

DNA repair. Negative control mice were injected intraperitoneally with distilled water 

while the positive control mice were treated with 20 mgkg
-1

 of cyclophoshamide 

(Endoxan
TM

 Mfg Lic. No. 186. Frankfurt am Main, Germany) 24 hours prior to sacrifice.  

3.5.1 Blood collection 

Without anaesthesising, the mice were manually restrained by using the thumb and the 

forefinger to apply pressure just behind the eye, pulling back the skin to protrude the 

eyeball. The microhaematocrit capillary tube (70 mL) was inserted directly and firmly in 

the medial canthus (inner corner of the eye) of the mice. Peripheral blood (1 mL) was 

collected in Ethylene Diamine Tetracaetic Acid (EDTA) and plane bottles respectively 

prior to sacrifice. Treated mice were sacrificed 6 hours after the last administration 

through cervical dislocation. 

3.5.2 Urine collection 

Mice were orally administered with 0.1 mL of tap water to induce urination. The one-

handed method was used in restraining the mice. The tails of the treated mice were 

secured with the pinkie finger while the same hand was placed over the back to scruff 

them. On the last day of treating the mice with titanium dioxide, zinc oxide nanoparticles 

and their mixture, 0.2 mL of pure urine samples without faeces were collected 6 hours 

post treatment in clean plane bottles when the treated mice were held and lightly stroked 

on the belly. 
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3.6 Bone marrow preparation  

Mouse bone marrow erythrocyte micronucleus test as described by Schmid (1975) and 

modified by Alimba and Bakare (2016) were used for the bone-marrow cell micronucleus 

preparations. The two femoral bones were harvested and freed of adherent tissues using a 

pair of scissors and forceps. By gentle traction, the distal epiphyseal portion was torn off 

together with the rest of the tibia and the surrounding muscles. A pair of scissors was 

utilised in shortening the proximal ends of the fermur until a visible opening was made. 

Using a 1 mL syringe, the cells of the bone marrow was aspirated with 1 mL Foetal 

Bovine Serum (FBS) (Sigma Aldrich, Germany) into eppendorf tubes. The bone marrow 

cells were dislodged properly by carefully agitating them using the micropipette. The 

suspended cells were spun for 5 minutes at 2000 rpm after which the FBS was aspirated. 

The eppendorf tube was briefly agitated using a fresh micropipette tip to disperse the 

clumps. The FBS (1 mL) was added again, mixed properly and spun for 5 minutes at 2000 

rpm. 

Fifty microlitres (0.05 mL) of FBS was added to the pellets and the cells were carefully 

mixed by aspiration into the capillary part of a fresh micropipette tip. For each animal, 

five thin smears were made by placing 10 µL of bone marrow suspension on the end of 

the slide and spread by pulling the suspension behind a polished cover glass held at an 

angle of 45
o
 towards the end of the slide making a distance of 4 - 5 cm. The slides were 

allowed to dry overnight, fixed for 2 minutes with 70 %  methanol and then allowed to dry 

completely. Fixed slides were stained with 0.4 % May-Grunwald solution for 3 minutes in 

coplin jars, immediately stained again in 1:1 0.4 % May-Grunwald/distilled water (v/v) for 

3 minutes and then rinsed thoroughly in distilled water to remove excess stains. Slides 

were dried completely over night and then counter stained in 5 % Giemsa (w/v) for 5 

minutes, rinsed thoroughly in distilled water and air dried overnight at room temperature. 

Slides were dipped in xylene, mounted with 2 drops of Dibutyl Phthalate Xylene (DPX) 

mountant and screened, at 400X magnification, for regions of suitable technical quality, 

where the cells are well spread, undamaged and perfectly stained. The mature erythrocytes 

(NCE) stained light pink and blue-purple in the polychromatic erythrocytes (PCE). From 

each mouse, 1000 cells were examined and PCE cells with micronucleus (MNPCE) were 
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evaluated at 1000X magnification using the light microscope (Micromaster, Fisher 

Scientific, China). Only PCE with homogeneous blue/grey colour were scored while PCE: 

NCE ratio was used as an index of cytotoxicity (Krishna and Hayashi, 2000). 

Micronucleus with PCE was recognised by their characteristic size, round shape and dark 

blue colour. The same observer scored all slides blindly.  

3.7 Assessment of organ weights 

The liver, kidney, brain, spleen and heart of mice treated with TiO2, ZnO NPs and their 

mixture at the 5- and 10- day exposure periods were excised and rinsed with 1.15 % 

potassium chloride (KCl). Morphology such as organ colour change was in comparison 

with the group of mice that received distilled water. The organs were blotted dry with a 

whatman filter paper and weighed to determine their absolute organ weights. The organ to 

the body weight ratio (relative organ weights) was computed as the percentage of organ 

(g) (wet weight) to body weight (g). 

3.8 Haematological analysis  

Blood collected into EDTA bottles through the retro orbital sinus of the mice treated with 

both NPs and their mixture at the 5- and 10- day exposure periods was used to determine 

the haematological indices: Red Blood Cell count (RBC) count, Haemoglobin content 

(Hb), percentage Haematocrit (Ht), Mean Corpuscle Haemoglobin Concentration 

(MCHC), Mean Corpuscle Volume (MCV), Mean Corpuscle Haemoglobin (MCH), 

platelets, total white blood cell count (WBC) count and differentials (lymphocytes, 

neutrophils, monocytes, eosinophils and basophils) (Cheesbrough, 2005). 

3.9 Histopathological analysis 

Histopathological evaluation of the liver, kidney, spleen, brain and heart were performed 

according to standard procedures. Portions of these organs were cut and fixed in 10% 

neutral buffered formalin solution for histopathological assessment. The formalin 

preserved tissues were immersed in paraffin wax, sectioned into 4 µm thickness and 

arranged on clean microscope slides. Haematoxylin-eosin (H & E) stains were used on the 

slides and observed using a light microscope at a magnification of 400X.  
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3.10 Biochemical assays 

3.10.1 Clinical biochemistry 

Urine samples collected into plane bottles were assayed for the levels of albumin and 

creatinine. Blood samples earlier collected was centrifuged at 3000 rpm for 10 minutes to 

obtain clear sera and used to determine the activities of aspartate aminotransferase (AST), 

alanine aminotransferase (ALT) and Gamma Glutamyltransferase (GGT); concentrations 

of total bilirubin (TB), albumin (ALB), Blood Urea Nitrogen (BUN), creatinine (CREA), 

and triglyceride (TRI); and levels of Total Cholesterol (TCHOL) and high density 

lipoprotein (HDL) were assessed using the Randox Diagnostic Kits following the 

manufacturer‟s instructions. 

i. Assay of Aminotransferases activities 

Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) enzyme activities 

were determined according to Reitman and Frankel (1957) protocol. The complex formed 

between pyruvate hydrazone and 2, 4-dinitrophenylhydrazine was measured to give the 

ALT value. Likewise, the complex formed between oxaloacetate hydrazone and 2, 4-

dinitrophenylhydrazine was measured to give the AST value. 

Preparation of working reagents and protocol (See Appendix 3) 

ii. Assay of Gamma Glutamyl transferases activity 

Gamma Glutamyl transferases (γ-GT) was determined according to Szasz (1969) protocol. 

The γ-GT in the sample converted L-γ-glutamyl-3-carboxy-4-nitroanilide in the presence 

of glycylglycine to 5-amino-2-nitrobenzoate.  

Preparation of working reagents and protocol (See Appendix 3) 

iii. Determination of Bilirubin concentration 

The colourimetric method described by Jendrassik and Grof (1938) was employed. A blue 

coloured complex was formed when sulphanilic acid in alkaline medium reacted with 
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direct bilirubin. Total bilirubin was determined by the reaction of diazotised sulphanilic 

acid, which released albumin bound bilirubin in the presence of caffeine. 

Preparation of working reagents and protocol (See Appendix 3) 

iv. Determination of Albumin concentration 

Albumin concentration was determined according to the method of Dumas et al. (1997). 

The measurement was based on the binding of albumin to Bromocresol green (BCG). 

Preparation of working reagents and protocol (See Appendix 3) 

v.  Determination of Urea concentration 

Urea concentration was determined according to Weatherburn (1967) protocol. In the 

presence of urease, urea was hydrolysed to ammonia in the serum. Berthelot‟s reaction 

was used to measure ammonia photometrically.  

Preparation of working reagents and protocol (See Appendix 3) 

vi. Determination of Creatinine concentration 

Creatinine concentration was determined by Bartels and Bohmer (1972) protocol. A 

coloured complex was formed when picric acid reacts with creatinine. A direct proportion 

was formed between the creatinine concentration and amount of the complex formed in 

the solution. 

Preparation of working reagents and protocol (See Appendix 3) 

vii. Determination of Cholesterol level 

Cholesterol concentration was determined according to Trinder (1969) protocol. 

Enzymatic hydrolysis and oxidation was used in determining the assay. The presence of 

phenol and peroxidase in hydrogen peroxide and 4-aminoantipyrine formed 

Quinoneimine. 

Preparation of working reagents and protocol (See Appendix 3) 
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viii. Determination of High-density lipoprotein level 

The precipitation of chylomicron fractions and low density lipoproteins (LDL) was 

achieved through the inclusion of phosphotungstic acid. After centrifuging the mixture, 

the cholesterol in the HDL fraction was determined in the supernatant. 

Preparation of working reagents and protocol (See Appendix 3) 

ix. Determination of Triglycerides concentration  

Triglyceride concentration was determined according to Tietz (1990) protocol. The 

enzymatic hydrolysis with lipases determined the triglycerides. The principle is based on 

the production of quinoneimine from 4-aminophenazone, hydrogen-peroxide, and 4- 

chloropenol under peroxidase as a catalyst Jacobs and VanDemark (1960), Trinder (1969), 

Koditschek and Umbreit (1969). 

Preparation of working reagents and protocol (See Appendix 3) 

3.10.2 Oxidative stress parameters  

Liver, kidney and testis of the mice treated with TiO2, ZnO NPs and their mixture for the 

5- and 10- day exposure periods were used to evaluate the oxidative stress parameters. The 

organs were rinsed in 1.15 % KCl to remove any red blood cell clot and homogenised in 6 

volumes of cold phosphate buffer (0.1 M, pH 7.4) to obtain the homogenates respectively. 

Centrifugation of the homogenate was carried out at 10 000 rpm for 15 minutes at 4
o
C to 

obtain the post mitochondrial fraction (PMF). The PMF was stored at -20
o
C until use. 

3.10.2.1 Determination of protein concentration 

The protocol of Gornal et al. (1949) was used in determining the protein concentrations of 

the homogenised samples. The precipitation of Cu
2+

 ions as cuprous oxide was prevented 

by adding potassium iodide. 
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Principle 

A coloured complex was formed between the proteins and the cupric ions found in the 

Biuret reagent containing CuSO4, KI and sodium potassium tartarate. A standard BSA 

curve was used in calibrating the procedure.  

Preparation of working reagents and standard curve (See Appendix 3) 

3.10.2.2 Assay of Superoxide Dismutase Activity 

The SOD activity was evaluated according to the method of Mistra and Fridovich (1972). 

Principle  

The basis of this assay was the inhibition of the autoxidation of epinephrine at pH 10.2 by 

SOD. The generation of superoxide radical via xanthine oxidase reaction induced 

adenochrome. The increased oxidation of epinephrine yielded adenochrome per 

superoxide with increased pH and epinephrine concentration (Valerino and Cormack, 

1971).  

Preparation of working reagents and procedure (See Appendix 3) 

3.10.2.3 Assay of Catalase Activity 

The method of Claiborne (1985) was used in determining the catalase activity. 

Principle 

This activity was determined as catalase splits hydrogen peroxide while the absorbance 

was observed at 240 nm. Since no absorbance maximum for hydrogen peroxide, its 

concentration correlated well at 240 nm. The extinction coefficient used was 0.3436 mM
-

1
cm

-1
 (Noble and Gibson, 1970). 

Preparation of working reagents and procedure (See Appendix 3) 
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3.10.2.4 Determination of Reduced Glutathione level 

The method of Beutler et al. (1963) was used in determining the level of reduced 

glutathione (GSH). 

Principle 

The bulk of cellular non-protein sulfhydryl group form most of the reduced form of 

glutathione. The reaction between sulfhydryl compounds and Ellman‟s reagent [5‟, 5‟-

dithiobis-(2-nitrobenzoic acid)] produced a stable yellow colour absorbed at 412 nm. In 

the test sample, there was a direct proportion of the reduced glutathione level and the 

complex absorbed at 412 nm. 

Preparation of working reagents and procedure (See Appendix 3) 

3.10.2.5 Assessment of lipid peroxidation 

Lipid peroxidation was determined as described by Rice-Evans et al. (1986).  

Principle 

An end product of lipid peroxidation, which was malondialdehyde, reacted with 2-

thiobarbituric acid (TBA) to generate a chromophore (pink colour), which absorbed at a 

maximum wavelength of 532 nm when produced on heating in an acidic pH.  

Preparation of working reagents and procedure (See Appendix 3) 

3.11 Germ cell toxicity 

Eighty five male mice (11 – 15 weeks old) (five mice per group) were treated with TiO2, 

ZnO NPs and their mixture at five doses (9.38, 18.75. 37.50, 75.00 and 150.00 mgkg
-1

) 

each with positive and negative controls, respectively. Negative control animals were 

treated intraperitoneally to distilled water while positive control mice were treated with 

cyclophoshamide (20 mgkg
-1

). Mice were treated with 0.5 mL of the nanoparticles‟ 

suspension for 5 consecutive days at a 24 hour interval. The experiment lasted for 5 weeks 

(35 days) from the first injection, since it takes 34.5 days for the completion of 
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spermatogenesis (Bartke et al., 1974). Cervical dislocation was used in sacrificing the 

animals and their cauda epididymes taken out and minced with a pair of scissors in a petri 

dish containing 1 mL of physiological saline (isotonic medium) to release the sperm 

(forming the sperm suspension). 

3.11.1 Determination of Sperm Motility  

Sperm motility was carried out using a fixed volume of the spermatozoa suspension (10 

µL) placed on a clean glass slide and covered with a 22 x 22 mm cover slip. It was left to 

stabilise for 1 minute. The examination was carried out using 400X magnification to 

classify 200 spermatozoa into rapid progressive motility, slow progressive motility, non-

progressive motility and immotility. The average of both left and right cauda was 

determined for the motility. According to WHO (2010), sperm motility should be 50% or 

more motile (rapid and slow progessive motility) or 25% or more with rapid progressive 

motility.  

3.11.2 Determination of Sperm Count  

Sperm count was determined from both the left and right cauda, using the 

haemocytometer method. A 1:10 dilution (5 µL of sperm suspension + 45 µL of normal 

saline) was made in a dish. The properly mixed suspension (10 µL) was transferred to the 

chamber of the haemocytometer. This was done by carefully touching the edge of the 

cover glass with the pipette tip and allowing the haemocytometer to fill by capillary 

action. The chamber was allowed to stand for 10 minutes in a humid chamber to prevent 

drying out. The spermatozoa were counted in 5 squares out of 25 squares (each of the 25 

square is ruled into 16 boxes) at 400X magnification. 

Sperm concentration/ mL = dilution factor x count in 5 squares x 0.05x10
6  

3.11.3 Determination of Sperm Abnormality 

Four hundred and fifty microliter (450 µl) of the sperm suspension combined with 50 µl of 

1% Eosin Y aqueous resulting into a 9:1, [(normal saline solution + semen): eosin Y stain] 

was placed on a wash glass. After 45 minutes, sperm solution was placed on a microscope 
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slide. Using another slide held obliquely to the first (approximately 45° angle), it was 

touched against the drop of sample (away from the frosted end). After the droplet spread 

along the junction of the slide, the second slide was gently pulled away from the drop 

along the length of the first slide. The prepared smears were then allowed to dry over 

night. The preparation was observed with oil immersion under the bright light microscope 

(Micromaster, Fisher Scientific, China). Six slides were prepared from each mouse and 

1000 sperm cells scored per animal (Wyrobek and Bruce, 1975; Alabi and Bakare, 2011). 

3.11.4 Determination of testicular weight and histopathological examination 

The testes were blotted dry with a whatman filter paper and weighed to determine their 

absolute weights. Histopathological evaluation of the testis was performed according to 

standard procedures. The bouin preserved tissues were fixed in paraffin wax, sectioned 

into 4 µm thickness and placed on clean microscope slides. Haematoxylin and Eosin 

chemicals were used in staining the slides and thereafter observed using a light 

microscope. 

3.11.5 Luteinizing Hormone, Follicle Stimulating Hormone and Testosterone assays 

Blood collected through the retro orbital sinus of the mice treated with TiO2, ZnO NPs and 

their mixture for 35 days was spun for 10 minutes at 3000 rpm and the sera assessed for 

the concentrations of Luteinizing Hormone (LH), Follicle Stimulating Hormone (FSH) 

and Testosterone. An enzyme linked immunosorbent assay (ELISA) system was employed 

in quantifying the concentrations of LH (mIU/mL), FSH (mIU/mL) and Testosterone 

(ng/mL) using the Calbiotech kits (Spring Valley, CA, USA) at the Department of 

Veterinary Surgery and Reproductive Unit of the Faculty of Veterinary Medicine, 

University of Ibadan. 

i. Principles of Luteinizing Hormone and Follicle Stimulating Hormone assays 

The LH ELISA kit (LH231F) and FSH ELISA kit (FS232F) were solid phased assays that 

used streptavidin/biotin method. The samples and Anti-LH/Anti-Biotin conjugate or Anti-

FSH/Anti-Biotin conjugate, respectively were added to the wells coated with streptavidin. 

LH or FSH in the serum formed a sandwich between specific antibodies labelled with 
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biotin and horse radish peroxidase (HRP). Unbound protein and HRP conjugate were 

washed off with the wash buffer. Upon the addition of the substrate, they were read at 450 

nm using an ELISA reader. The colour intensity was proportional to the concentrations of 

LH or FSH in the serum. 

Working reagent and procedure (See Appendix 3) 

ii. Principle of Testosterone assay  

The testosterone ELISA kit (TE187S) was based on the antagonistic reaction between 

testosterone and the HRP conjugate in the serum for a certain volume of mouse anti-

Testosterone. Endogenous testosterone in the standard and samples competed with a fixed 

number of HRP-labeled testosterone for a number of testosterone antibody specific to the 

binding sites during incubation. The immunologically bound testosterone peroxidase 

conjugated to the well decreased as the testosterone concentration in the sample increased. 

The wells were washed while the unbound testosterone peroxidase conjugate also washed 

away. The development of a blue colour was visible after the addition of TMB reagent and 

incubation for 15 minutes at room temperature. The addition of a stop solution further 

stopped the colour development, and the absorbance was read using an ELISA reader at 

450 nm. 

Working reagent and procedure (See Appendix 3) 

3.12 Statistical analyses 

Probit analysis (SPSS 20.0) (IBM SPSS Statistics for Windows, Version 20.0 Armonk, 

NY: IBM Corp) was used in determining LD50 of TiO2, ZnO NPs and their mixture. Body 

weight (g), absolute (g) and relative (%) organ weights of the treated mice were 

statistically compared with the mice treated with distilled water using one way ANOVA 

followed by Dunnett post-hoc test. Frequencies of MNPCEs of the micronucleus assay 

were calculated and the PCE: NCE ratio served as a function of the cytotoxicity index. For 

both 5- and 10- day exposure periods, the significance of frequencies of the micronuclei at 

the different dose levels was in comparison with their corresponding groups of mice 

treated with distilled water using one-way ANOVA followed by Dunnett test. Two-way 
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ANOVA with Bonferoni test was used in analysing the differences between the 5- and 10- 

day exposure periods where nanoparticles treatments and exposure periods served as 

factors. 

For the sperm parameters and reproductive hormonal assay (LH, FSH and Testosterone), 

the one-way ANOVA followed by a Dunnett test was used in analysing their frequencies 

in comparison at different dose levels against the group of mice treated with distilled 

water. Haematological and biochemistry parameters of the different doses were in 

comparison with the mice treated with distilled water. SOD, CAT, GSH and MDA were 

analysed using two-way ANOVA with Bonferoni test where nanoparticles treatments and 

exposure periods served as factors. Analyses were performed using GraphPad Prism 

version 5.01 for Windows, GraphPad Software, San Diego California, USA and IBM 

Statistical Package for Social Sciences (SPSS) version 20 at 0.05 level of significance. 

Effects of the mixture of TiO2 NPs and ZnO NPs, known as interaction factor (IF), were 

calculated according to Katsifis et al. (1996) and Demir et al. (2014) as follows: 

IF = TZ – T – Z + C 

SEIF= √ (SETZ)
2
+ (SET)

2
+ (SEZ)

2
+ (SEC)

2 

Where TZ is mean of the mixture of TiO2 NPs and ZnO NPs, T is the mean of TiO2 NPs, 

Z is the mean of ZnO NPs and C is the mean of the mice treated with distilled water. SEIF 

is the standard error of the interaction factor, SETZ is the standard error of the mixture of 

TiO2 NPs and ZnO NPs. SET is the standard error of TiO2 NPs, SEZ is the standard error of 

ZnO NPs and SEC is the standard error of the mice treated with distilled water. A negative 

IF value represented antagonism, a positive IF value represented synergism while a zero 

IF value represented additivity.   
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CHAPTER FOUR 

RESULTS 

4.1 Physicochemical characterisation using Transmission Electron Microscopy 

and Dynamic Light Scattering 

The physicochemical characteristics of TiO2, ZnO NPs and their mixture are presented in 

Figure 4.1. The TEM revealed spherical and irregular shapes for the TiO2 NPs and ZnO 

NPs, respectively (Figure 4.1 Ai-ii).  

Both NPs and their mixture showed larger hydrodynamic diameters (mean size 

distribution) than the particle sizes of TiO2 (< 25 nm) and ZnO NPs (< 100 nm) (Figure 

4.1 B (i)-B (iii)). The hydrodynamic diameters of TiO2, ZnO NPs and their mixture were 

1492 nm, 482.7 nm and 882.8 nm respectively indicating that the aqueous medium 

(MilliQ water) had an influence on the sizes of both NPs and their mixture. TiO2 and ZnO 

NPs formed agglomerates, which were 60 and 5 times larger, respectively, than their 

particle sizes. These further corroborated the results of the polydispersity index (PDI) 

values of TiO2, ZnO NPs and their mixture with 0.822, 0.649 and 0.729, respectively. 

Therefore, the results of the polydispersity index indicated that the distribution of both 

NPs and their mixture consisted of heterogenous samples in the aqueous medium. 

The zeta potential values of TiO2, ZnO NPs and their mixture in the aqueous medium 

were +17.2 ± 3.52 mV, +21.4 ± 3.45 mV and +14.7 ± 5.25 mV (Figure 4.1 C (i) - C (iii)) 

respectively. Normally, the stability of a dispersed NP occurs when the zeta potential is 

higher than + 30 mV or lesser than – 30 mV. However, values obtained for the zeta 

potential revealed that TiO2 NPs and their mixture were less stable while ZnO NPs were 

closely stable in the aqueous medium. 
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Figure 4. 1: Particle characterisation of TiO2, ZnO NPs and TiO2 + ZnO NPs. (A) TEM images of (i) TiO2 NPs < 25 nm and 

(ii) ZnO NPs < 100 nm. Scale bar: 100 nm. (B) Hydrodynamic size and (C) δ potential determination of the different NPs: (i) 

TiO2 NPs, (ii) ZnO NPs and (iii) TiO2 + ZnO NPs. 
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4.2 Acute toxicity of TiO2, ZnO NPs and their mixture in Mus musculus 

Table 4.1 shows the percentage net body weight of mice treated with TiO2, ZnO NPs and 

their mixture. No significant differences were observed in the percentage body weight of 

mice treated with 150 mgkg
-1

 of  both NPs and their mixture. In contrast, a significant (p < 

0.001) reduction in the percentage body weight of mice treated with 300 mgkg
-1

 of ZnO 

NPs in comparison with the mice treated with distilled water was observed. Mortality was 

not seen in mice treated with 150 and 300 mgkg
-1

 of TiO2 NPs; 150 mgkg
-1

 of ZnO NPs 

and their mixture.  

Table 4.2 shows the various clinical signs exhibited by mice treated with NPs and their 

mixture. Animals treated with 300 mgkg
-1

 of TiO2 NPs had severe clinical signs that 

included excess mucus secretion at the anus (Figure 4.2). Mice treated with 150 mgkg
-1

 of 

ZnO NPs showed signs of toxicity such as severe mucus secretion at the anus, and 

diarrhoea during the first few hours after exposure (Figure 4.2). When the dose of ZnO 

NPs was increased to the 300 mgkg
-1

, one mouse died less than 24 hours after 

administration while another died 8 days later. Partial paralysis was observed in 2 mice 2 

hours post treatment, however, this partial paralysis was reversed after 24 hours in one of 

them. Severe mucus discharge, abscesses in the fore and hind limbs and hard scrotum 

were observed in this group (Figure 4.2). Severe weight loss was observed in 25 % of the 

mice treated with ZnO NPs through out the 14 day exposure suggesting that the organs 

weights may have been affected also. The calculated LD50 for ZnO NPs was 299.9 mgkg
-1

.  
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Table 4. 1: Percentage net body weights of mice treated with titanium dioxide, zinc 

oxide nanoparticles and their mixture for 14 days  

 

Doses  

(mgkg
-1

) 

Negative  

Control 

TiO2 NPs ZnO NPs Mixture 

150.00 19.99 ± 3.93 16.61 ± 7.94 17.85 ± 3.97 20.15 ± 2.87 

300.00 19.99 ± 3.93 6.02 ± 2.37 -31.42± 12.88
***

 - 
*** 

p < 0.001 in comparison with mice treated distilled water. Negative control (NC) = 

Distilled water
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Table 4. 2: Clinical signs of acute toxicity observed in mice treated with titanium dioxide, zinc oxide nanoparticles and their 

mixture  

 

Doses 

(150 / 300 

mgkg
-1

) 

Dullness Moribund Active 

Movement 

Feeding Diarrhoea Mucus 

Discharge 

Aggressive 

Behaviour 

Calmness Bright 

coloured 

eyes 

Swollen 

Limbs 

TiO2 NPs  -/+ -/- +/- +/+ +/+ +/++ +/+ -/- +/+ -/+ 

ZnO NPs -/+ -/++ +/- +/- +/++ +/++ +/++ -/- +/+ +/+ 

Mixture  - - + + + + - + + - 

+: represents presence of mild clinical signs. 

++: represents presence of severe clinical signs. 

–: represents absence of clinical signs. 
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Figure 4. 2: Representatives of some clinical signs of acute toxicity. Mice treated with 300 mgkg
-1 

of TiO2 NPs exhibited 

severe mucus discharge 96 hours post treatment (A); mice treated with 150 mgkg
-1 

of ZnO NPs exhibited severe stool 2 

hours post treatment (B); mild mucus discharge 24 hours post treatment (C); and those treated with 300 mgkg
-1

 of ZnO NPs 

exhibited swollen penis 12 days post treatment (D); hard scrotum (E); and abscesses in both fore and hind limbs (F) 10 days 

post treatment. 
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4.3. Micronuclei induced by titanium dioxide, zinc oxide nanoparticles and their 

mixture in mice for 5 and 10 days 

The frequencies of micronucleus induced in the bone marrow cells of mice treated with 

TiO2, ZnO NPs and their mixture are presented in Figures 4.3 – 4.8. The frequency of 

micronucleated polychromatic erythrocyte (MNPCE) (Figure 4.9) in mice treated with 

TiO2 NPs at doses of 9.38, 18.75, 37.50, 75.00 and 150.00 mgkg
-1

 for 5 days was 16.75 ± 

2.14, 20.25 ± 1.89, 30.00 ± 2.31, 31.33 ± 5.55 and 36.00 ± 9.29 respectively. A dose-

dependent increase was found in the frequency of MNPCEs, which was significant at 

18.75 (p < 0.05), 37.50 (p < 0.01), 75.00 (p < 0.01) and 150.00 mgkg
-1

 (p < 0.001) when 

in comparison with mice treated with distilled water (3.67±0.88). For  the 10-day exposure 

period, the frequency of MNPCEs observed in the mice was 4.25 ± 1.03, 6.33 ± 0.88, 8.67 

± 1.45, 9.25 ± 0.63 and 22.00 ± 1.53 corresponding to the respective doses. However, 

there was a significant increase only at the 150 mgkg
-1

 (p < 0.001) in comparison with the 

mice treated with distilled water (7.00 ± 1.16). Consequently, there was a significant 

difference between the 5- and 10- day exposure periods of MNPCE induced at the 9.38 (p 

< 0.05), 18.75 (p < 0.05), 37.50 (p < 0.001), 75.00 (p < 0.001) and 150.00 mgkg
-1

 (p < 

0.05) of TiO2 NPs administered to the mice (Figure 4.3).  

The percentage PCE: NCE in mice treated with TiO2 NPs at the doses of 9.38, 18.75, 

37.50, 75.00 and 150.00 mgkg
-1

 for 5 days was 99.21 ± 4.18, 88.20 ± 11.75, 81.85 ± 8.75, 

55.79 ± 7.06 and 39.22 ± 6.32 respectively. Statistical analysis showed a significant 

decrease of PCE at 9.38 (p < 0.05), 18.75 (p < 0.01), 37.50 (p < 0.01), 75.00 (p < 0.001) 

and 150.00 mgkg
-1

 (p < 0.001) in comparison with the mice treated with distilled water 

(151.7 ± 19.88). For the 10-day exposure period, there was a 178.9 ± 26.87, 70.52 ± 7.49, 

64.02 ± 9.94 and 61.01 ± 8.24 reduction of PCEs in the mice treated with 18.75, 37.50, 

75.00 and 150.00 mgkg
-1

, except for 9.38 mgkg
-1

 (223.8 ± 26.98) that showed no 

signifanct increase. A significant decrease was observed only at 37.50 (p < 0.001), 75.00 

(p < 0.001) and 150 mgkg
-1

 (p < 0.001) when in comparison with the mice treated with 

distilled water (188.7 ± 16.65). Furthermore, significance was observed between the 5- 

and 10- day exposure period of percentage PCE: NCE at the 9.38 mgkg
-1

 (p < 0.001) and 

18.75 (p < 0.001) of TiO2 NPs administered to the mice (Figure 4.4).  
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The frequency of MNPCE in mice treated with ZnO NPs at the doses of 9.38, 18.75, 

37.50, 75.00 and 150.00 mgkg
-1 

for 5 days was 3.00 ± 1.00, 5.50 ± 1.19, 7.00 ± 0.58, 6.75 

± 0.63 and 5.00 ± 1.53 respectively. For the 10- day exposure period, the frequcency of 

MNPCEs observed in the mice was 2.75 ± 0.75, 4.75 ± 0.48, 5.00 ± 0.71, 6.00 ± 0.71 and 

8.00 ± 1.16 corresponding to the respective doses. A decrease was observed across all 

treatment groups, with a statistical significance (p < 0.05) only at the 9.38 mgkg
-1 

in 

comparison with mice treated with distilled water (Figure 4.5). 

The percentage PCE: NCE in mice treated with ZnO NPs at the doses of 9.38, 18.75, 

37.50, 75.00 and 150.00 mgkg
-1

 for 5- days was 173.4 ± 17.45, 142 ± 13.47, 117 ± 8.95, 

160.3 ± 8.54 and 37.10 ± 14.18. Statistical analysis showed a significant decrease (p < 

0.001) of PCE only at the 150.00 mgkg
-1 

in comparison with the mice treated with distilled 

water (151.7 ± 19.88). For the 10- day exposure period, there was a 94.91 ± 19.87, 108.3 ± 

34.53, 157.7 ± 33.82, 226.7 ± 44.81 and 219.4 ± 75.03 reduction of PCEs in the mice 

treated with the respective doses. Subsequently, significance was observed between the 5- 

and 10- day exposure periods of PCE: NCE at the 150 mgkg
-1

 (p < 0.01) of ZnO NPs 

administered to the mice (Figure 4.6).  

The frequency of MNPCE in mice treated with the mixture at the doses of 9.38, 18.75, 

37.50, 75.00 and 150.00 mgkg
-1

 for 5 days was 2.67 ± 0.33, 1.00 ± 0.00, 0.75 ± 0.25, 0.50 

± 0.29 and 0.75 ± 0.25, respectively. There was no significant decrease (p > 0.05) at tested 

doses in comparison with the mice treated with distilled water. For the 10- day exposure 

period, the frequency of MNPCEs observed in the treated mice was 7.33 ± 0.88, 11.33 

±1.33, 10.33 ± 1.45, 8.67 ± 0.88 and 8.67 ± 0.88 corresponding to the respective doses. 

Significance was observed between the 5- and 10- day exposure period of MNPCE 

induction at the 9.38 (p < 0.05), 18.75 (p < 0.001), 37.50 (p < 0.001), 75.00 (p < 0.001) 

and 150 mgkg
-1

 (p < 0.001) of their mixture administered to the mice (Figure 4.7).  

The percentage PCE: NCE in mice treated with the mixture at the doses of 9.38, 18.75, 

37.50, 75.00 and 150.00 mgkg
-1

 for 5 days was 110 ± 25.84, 232.2 ± 15.96, 226.7 ± 41.79, 

192.8 ± 43.02 and 132 ± 16.7. For the 10- day exposure period, there was a 91.21 ± 7.98, 

44.18 ± 16.60, 75.27 ± 15.03, 42.47 ± 9.60 and 111.3 ± 31.04 reduction of PCEs in the 

treated mice corresponding to the respective doses. Statistically, there was no significant 
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difference across all doses except at the 9.38 mgkg
-1

 where there was a slight decrease in 

comparison with the mice treated with distilled water for the 5- day exposure period. In 

contrast, a significant decrease was observed at 9.38 (p < 0.01), 18.75 (p < 0.001), 37.50 

(p < 0.001), 75.00 (p < 0.001) and 150.00 mgkg
-1

 (p < 0.05) in comparison with the mice 

treated with distilled water at the 10-day exposure period. Consequently, significance 

between the 5- and 10- day exposure period of PCE: NCE was shown at the doses of 

18.75 (p < 0.001), 37.50 (p < 0.001) and 75.00 (p < 0.001) administered to the mice 

(Figure 4.8). 

4.3.1 Cytomorphological alterations induced by titanium dioxide, zinc oxide 

nanoparticles and their mixture in the bone marrow cells of mice. 

Morphological changes detected in the bone marrow cells in mice treated with TiO2, ZnO 

NPs and their mixture are presented in Figure 4.10. The majority of the erythrocytes 

observed were normochromic normocytic with very few blebbed NCEs at the 9.38 mgkg
-1

 

of TiO2 NPs; microcytic normochromic with few hypochromic NCEs and blebbed NCEs 

at the 18.75 mgkg
-1

 of TiO2 NPs. Microcytic normochromic with few hypochromic and 

normocytic NCEs were observed in mice treated at the 37.50 mgkg
-1

 of TiO2 NPs. In 

addition, microcytic normochromic and few macrocytic NCEs and blebbed NCEs were 

observed in the bone marrow cells in mice treated at 75.00 mgkg
-1

 of TiO2 NPs. NCEs 

observed were dimorphic having a combination of macrocytic and microcytic NCEs, with 

hyperchromic and blebbed NCEs at 150.00 mgkg
-1

 of TiO2 NPs. Normochromic 

normocytic NCEs were observed at 9.38, 18.75 and 37.50 mgkg
-1

 of ZnO NPs. 

Normochromic, microcytic with few hyperchromic and macrocytic NCEs were observed 

at 75.00 and 150.00 mgkg
-1

 of ZnO NPs.  
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Figure 4. 2: Frequency of MN induction in the bone marrow cells of mice treated with 

TiO2 NPs at 5- and 10-days.  

NC = distilled water, CYP = cyclophosphamide (positive control). Data represents mean ± 

SE (n=4).  

a 
p < 0.05, 

b 
p < 0.01 and 

c
 p < 0.001 in 5-days exposure 

§ 
p < 0.05 and 

§§§ 
p < 0.001 in 10-days exposure 

# 
p < 0.05 and 

###
 p < 0.001 for the comparison between 5- and 10-days exposures 
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Figure 4. 3: Percentage PCE: NCE in the bone marrow cells of mice treated with TiO2 

NPs at 5- and 10-days.  

NC = distilled water, CYP = cyclophosphamide (positive control). Data represents mean ± 

SE (n=4).  

a 
p < 0.05, 

b 
p < 0.01 and 

c 
p < 0.001 in 5-days exposure 

§§§
 p < 0.001 in 10-days exposure 

### 
p < 0.001 for the comparison between 5- and 10-days exposures 
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Figure 4. 4: Frequency of MN induction in the bone marrow cells of mice treated with 

ZnO NPs at 5- and 10-days.  

NC = distilled water, CYP = cyclophosphamide (positive control). Data represents mean ± 

SE (n=4).  

c 
p < 0.001 in 5-days exposure 

§ 
p < 0.01 and 

§§ 
p < 0.01 in 10-days exposure 

### 
p < 0.001 for the comparison between 5- and 10-days exposures 
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Figure 4. 5: Percentage PCE: NCE in the bone marrow cells of mice treated with ZnO 

NPs at 5- and 10-days.  

NC = distilled water, CYP = cyclophosphamide (positive control). Data represents mean ± 

SE (n=4).  

b 
p < 0.01 and 

c 
p < 0.001 in 5-days exposure 

## 
p < 0.01 for the comparison between 5- and 10-days exposures 
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Figure 4. 6: Frequency of MN induction in the bone marrow cells of mice treated with 

TiO2 and ZnO NPs at 5- and 10-days.  

NC = distilled water, CYP = cyclophosphamide (positive control). Data represents mean ± 

SE (n=4).  

c 
p < 0.001 in 5-days exposure 

§ 
p < 0.05 in 10-days exposure 

# 
p < 0.05 and 

### 
p < 0.001 for the comparison between 5- and 10-days exposures 
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Figure 4. 7: Percentage PCE: NCE in the bone marrow cells of mice treated with TiO2 

and ZnO NPs at 5- and 10-days.  

NC = distilled water, CYP = cyclophosphamide (positive control). Data represents mean ± 

SE (n=4).  

§ 
p < 0.05, 

§§ 
p < 0.01 and 

§§§ 
p < 0.001 in 10-days exposure 

# # # 
p < 0.001 for the comparison between 5- and 10-days exposures 
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Figure 4. 8: Bone marrow cells stained with May-Grunwald and Giemsa stains. NCE: 

normochromatic erythrocyte, PCE: polychromatic erythrocyte, MNPCE: micronucleated 

polychromatic erythrocyte, Bi-MNPCE: bi-micronucleated polychromatic erythrocyte and 

MNNCE: micronucleated normochromatic erythrocyte. 
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Figure 4. 9: Bone marrow cells stained with May-Grunwald and Giemsa stains showing 

cytomorphological alterations. A: blebbed PCE; B: target NCE; C: hyperchromic 

macrocytic NCEs; D: hypochromic NCE.   
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4.3.2 Interactive effects of titanium dioxide and zinc oxide nanoparticles for 5 and 

10 days  

The interaction factors (IF) for the frequency of MNPCE and percentage PCE: NCE is 

presented in Table 4.3. An antagonistic effect at all doses was obtained in the MNPCE and 

a synergistic effect at all doses except the 9.38 mgkg
-1

 for the percentage PCE: NCE of the 

bone marrow cells of the mice for the 5- day exposure period. However, a synergistic 

effect was obtained at doses of the 9.38 to 75.00 mgkg
-1

 and an antagonistic effect at 

150.00 mgkg
-1

 in the frequency of MNPCE while an antagonistic effect was observed at 

9.350; 18.75 and 75.00 mgkg
-1

 and a synergistic effect at 37.50 and 150.00 mgkg
-1

 for the 

10- day exposure period. 

4.4 Systemic toxicity induced by titanium dioxide, zinc oxide nanoparticles and 

their mixture in mice for 5 and 10 days  

4.4.1 Macroscopic examinations and gross pathology in treated mice  

All mice in the treated groups appeared to be in good health and behaved no differently 

from the negative control. After sacrifice, it was observed that both NPs and their mixture 

were found to have agglomerated around the organs within the abdominal cavity at doses 

of 37.50, 75.00 and 150.00 mgkg
-1

 (Figure 4.11). However, little or no residues of 

agglomerated NPs were present around these organs of the treated mice for the 10- day 

exposure. 

Gross pathology of the liver and spleen in the mice treated with TiO2, ZnO NPs and their 

mixture are presented in Figures 4.12 and 4.13.The liver is reddish brown in colour with a 

shiny surface (Figure 4.12A) while the spleen is highly vascularised and appears dark red 

in colour (Figure 4.13A). The liver and spleen of the mice treated with TiO2 NPs at the 5- 

and 10- day exposure periods were macroscopically normal across tested doses. However, 

mice treated with 150.00 mgkg
-1

 of ZnO NPs for 5 days showed that their livers were pale 

in colour with accentuated lobular pattern (Figure 4.12B) while their spleens were 

abnormally enlarged having lymphoid follicles (Figure 4.13B). Subsequently, mice treated 

with 9.38 – 75.00 mgkg
-1

 of ZnO NPs at the 5- and 10- day exposures did not show any 

abnormal macroscopic appearance of the organs. 
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Table 4. 3: Interaction factor (IF) of titanium dioxide and zinc oxide nanoparticles 

calculated using the MNPCE and percentage PCE: NCE in mice for 5 

and 10 days  

 

EXPOSURE 

PERIODS 

5 DAYS 10 DAYS 

Doses 

(mgkg
-1

) 

MNPCE 

IF ± SEIF 

% PCE: NCE 

IF ± SEIF 

MNPCE 

IF ± SEIF 

% PCE: NCE 

IF ± SEIF 

9.38 -13.41 ± 2.54 -10.91 ± 37.21 7.33 ± 1.93 -38.80 ± 38.26 

18.75 -21.08 ± 2.40 153.70 ± 31.14 7.25 ± 2.03 -54.32± 49.67 

37.50 -32.58 ± 2.55 179.55± 47.94 3.66 ± 2.46 35.75 ± 41.27 

75.00 -33.91 ± 5.66 128.41 ± 48.67 0.42 ± 1.74 -59.55 ± 49.76 

150.00 -36.58 ± 9.46 207.38 ± 30.25 -14.33 ± 2.41 19.58 ± 83.30 
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Also, mice treated with 9.38 - 37.50 mgkg
-1

 of their mixture at both 5- and 10- days did 

not show any  macroscopic abnormalities except at the 75.00 mgkg
-1

 for the 10- day 

exposure which induced a massive tumour in the liver (Figure 4.12C) and a small spleen 

with dark red colouration (Figure 4.13C). 

4.4.2 Absolute and relative organ weights of mice treated with titanium dioxide, 

zinc oxide nanoparticles and their mixture  

The absolute and relative organ weights of the liver, kidneys, spleen, brain and heart of 

treated mice for 5 and 10 days are presented in Tables 4.4 – 4.13. Generally, mice treated 

with TiO2, ZnO NPs and their mixture for the 5- day exposure period did not show any 

significant (p > 0.05) reduction in the absolute liver weights except at the 37.50 and 

150.00 mgkg
-1

 of TiO2 NPs; and 75.00 mgkg
-1

 of their mixture, which showed increased 

weights in comparison with the mice treated with distilled water. A significant (p < 0.01) 

reduction was observed only at the 150.00 mgkg
-1

 of the mixture. Likewise, a significant 

(p < 0.05) reduction of the relative liver weight was observed only at the 75.00 and 150.00 

mgkg
-1

 of ZnO NPs; and 18.75 mgkg
-1

 of their mixture in comparison with the mice 

treated with distilled water (Table 4.4). 

TiO2 and ZnO NPs administered to the mice did not induce significant (p > 0.05) 

reduction of both absolute and relative spleen weights except at the 75.00 mgkg
-1

 of TiO2 

NPs compared with mice treated with distilled water for the 5- day exposure period. 

However, a significant reduction was observed at the 9.38 (p < 0.01), 18.75 (p < 0.01) and 

37.50 mgkg
-1

 (p < 0.001) of their mixture for the absolute spleen weights; at the 9.38 (p < 

0.01), 18.75 (p < 0.01), 37.50 (p < 0.001) and 75.00 mgkg
-1

 (p < 0.05) of their mixture for 

the relative spleen weights of the treated mice (Table 4.5). For the 5- day exposure period, 

mice treated with both NPs and their mixture exhibited a significant (p < 0.01) increase in 

the absolute kidney weight at the 37.50 and 150.00 mgkg
-1

 of TiO2 NPs; at the 75.00 and 

150.00 mgkg
-1

 of ZnO NPs; and at the 75.00 mgkg
-1

 of their mixture. However, a 

significant increase of relative kidney weight was observed only at the 75.00 (p < 0.01) 

and 150.00 mgkg
-1

 (p < 0.05) of ZnO NPs administered to the mice compared with those 

treated with distilled water (Table 4.6).  
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Figure 4. 10: Mouse treated with distilled water (A); mice showing residues of agglomerated 150 mgkg
-1 

of TiO2 NPs (yellow arrow) 

(B); 75 mgkg
-1 

of ZnO NPs (C); 150.00 mgkg
-1

 of ZnO NPs (D) 150.00 mgkg
-1 

of their mixture (E) after 5- days exposure. 
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Figure 4. 11: Gross pathology of the liver of treated mice. Liver of mouse treated with 

distilled water (A); mouse treated with 150 mgkg
-1 

of ZnO NPs after 5 days showing 

discolouration of the liver with accentuated lobular pattern (B); mouse treated with 75.00 

mgkg
-1 

of their mixture after 10- days showing a liver with a tumour (C). Scale bar: 1.05 x 

10
8
 nm. 
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Figure 4. 12: Gross pathology of the spleen of treated mice. Spleen of mouse treated with 

distilled water (A); abnormal enlargement of the spleen with lymphoid follicles (B) in 

mouse treated with ZnO NPs (150.00 mgkg
-1

) after 5 days exposure. Abnormally 

darkened spleen (C) of mouse treated with their mixture (75.00 mgkg
-1

) after 10 days 

exposure. Scale bar: 1.35 x 10
8
 nm. 
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TiO2, ZnO NPs and their mixture induced no significant (p > 0.05) decrease in the 

absolute weights of the brain of the treated mice except at the 75.00 mgkg
-1

 of ZnO NPs 

that caused a significant (p < 0.05) reduction in comparison with the mice treated with 

distilled water. In addition, no significant (p > 0.05) decrease in the relative brain weight 

was observed across tested doses in mice treated with both NPs and their mixture except at 

the 9.38 mgkg
-1

 of TiO2 NPs and ZnO NPs, and 150 mgkg
-1

 of their mixture (Table 4.7). 

For the 5- day exposure period, TiO2 NPs administered to the mice did not induce a 

significant (p > 0.05) increase in the absolute weight of the heart at the 18.75, 37.50 and 

150.00 mgkg
-1

 and a decrease at the 9.38 and 75.00 mgkg
-1

; ZnO NPs induced no 

significant (p > 0.05) decrease  at the 9.38, 18.75 and 37.50 mgkg
-1

 and an increase at the 

75.00 and 150.00 mgkg
-1

; and their mixture induced no significant increase at the 9.38 and 

75.00 mgkg
-1

 and a decrease at the 18.75, 37.50 and 150.00 mgkg
-1 

in comparison with the 

mice treated with distilled water. Likewise, no significant (p > 0.05) reduction of the 

relative heart weights was observed across tested doses except at the 37.50 and 150.00 

mgkg
-1

 of TiO2 NPs; at the 75.00 and 150.00 mgkg
-1

 of ZnO NPs; and at the 9.38 and 

150.00 mgkg
-1

 of their mixture, which induced no significant (p > 0.05) increase in 

comparison with the mice treated with distilled water (Table 4.8).  

For the 10- day exposure period, mice treated with TiO2 NPs exhibited a significant (p < 

0.05) reduction in the absolute liver weight only at the 37.50 and 150.00 mgkg
-1

 in 

comparison with the mice treated with distilled water. In addition, a significant reduction 

in the relative liver weight was observed only at the 75.00 mgkg
-1

 (p < 0.01) of TiO2 NPs; 

and 9.38 (p < 0.001), 18.75 (p < 0.001), 37.50 (p < 0.01), 75.00 (p < 0.05) and 150.00 (p < 

0.05) mgkg
-1

 of their mixture in comparison with the mice treated with distilled water 

(Table 4.9). Mice treated with both NPs and their mixture exhibited no significant (p > 

0.05) reduction in the absolute spleen weight across tested doses except at the 37.50 mgkg
-

1
 (p < 0.01) of TiO2 NPs, which showed a significant reduction in comparison with mice 

treated with distilled water. Also, a significant (p < 0.05) reduction in the relative weight 

of the spleen was observed only at the 37.50 and 150.00 mgkg
-1

 of TiO2 NPs; 9.38 mgkg
-1

 

of ZnO NPs; and 75.00 mgkg
-1

 of their mixture in the treated mice in comparison with 

mice treated with distilled water (Table 4.10). 
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TiO2 NPs administered to mice induced no significant reduction (p > 0.05) in the absolute 

kidney weight across all doses; no significant (p > 0.05) decrease at the 18.75 and 37.50 

mgkg
-1

 while an increase at the 9.38, 75.00 and 150.00 mgkg
-1

 of their mixture. In 

contrast, no significant (p > 0.05) increase at the 9.38, 18.75, 37.50 and 150.00 mgkg
-1

 and 

a decrease at the 75.00 mgkg
-1 

of ZnO NPs in comparison with the mice treated with 

distilled water was observed. Subsequently, TiO2, ZnO NPs and their mixture also induced 

no significant (p > 0.05) reduction in the relative kidney weight across all doses except at 

the 37.50 mgkg
-1

 of TiO2 NPs; and 18.75 and 37.50 mgkg
-1

 of ZnO NPs that showed 

increase in comparison with the mice treated with distilled water (Table 4.11). TiO2, ZnO 

NPs and their mixture administered to mice induced no significant (p > 0.05) reduction in 

the absolute weights of the brain across tested doses in comparison with the mice treated 

with distilled water. In addition, no significant (p > 0.05) reduction in the relative brain 

weight was observed across tested doses except at the 18.75 mgkg
-1

 of both ZnO NPs and 

their mixture that showed significance (p < 0.05) in comparison with the mice treated with 

distilled water (Table 4.12). 

TiO2 NPs administered to mice induced no significant (p > 0.05) decrease in the absolute 

heart weight across tested doses except at the 150.00 mgkg
-1

 that showed an increase; ZnO 

NPs induced no significant (p > 0.05) increase at the 18.75, 37.50 and 150.00 mgkg
-1

 

while a decrease at the 9.38 and 75.00 mgkg
-1

; and their mixture induced no significant (p 

> 0.05) increase across all the doses. Similarly, both NPs and their mixture administered to 

the mice induced no significant (p > 0.05) reduction of the relative heart weight across all 

the doses except at the 75.00 mgkg
-1

 of their mixture that induced no significant (p > 0.05) 

increase in comparison with the mice treated with distilled water (Table 4.13).  
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Table 4. 4: Absolute and percentage relative liver weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 5 days. 

Data represent Mean ± SEM (n=5). * p < 0.05 and ** p < 0.01 in comparison with the 

mice treated with distilled water. Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control).  

TiO2 NPs 

Doses (mgkg
-1

) Absolute liver weight (g) Relative liver weight (%) 

NC 1.32 ± 0.07 6.07 ± 0.34 

9.38 1.14 ± 0.05 6.00 ± 0.28 

18.75 1.21 ± 0.09 5.47 ± 0.56 

37.50 1.56 ± 0.08 5.75 ± 0.27 

75.00 1.29 ± 0.10 5.85 ± 0.51 

150.00 1.35 ± 0.19 5.14 ± 0.91 

CYP 1.30 ± 0.14 6.34 ± 0.59 

ZnO NPs 

NC 1.32 ± 0.07 6.07 ± 0.34 

9.38 1.19 ± 0.04 5.66 ± 0.17 

18.75 1.32 ± 0.08 5.65 ± 0.27 

37.50 1.22 ± 0.06 5.58 ± 0.27 

75.00 1.07 ± 0.10 4.65 ± 0.33* 

150.00 1.15 ± 0.11 4.62 ± 0.31* 

CYP 1.30 ± 0.14 6.34 ± 0.59 

Mixture  

NC 1.32 ± 0.07 6.07 ± 0.34 

9.38 1.31 ± 0.03 5.73 ± 0.20 

18.75 1.14 ± 0.05 4.61 ± 0.10* 

37.50 1.18 ± 0.09 4.98 ± 0.18 

75.00 1.39 ± 0.08 5.12 ± 0.32 

150.00 0.97 ± 0.06** 5.10 ± 0.45 

CYP 1.30 ± 0.14 6.34 ± 0.59 
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Table 4. 5: Absolute and percentage relative spleen weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 5 days. 

Data represent Mean ± SEM (n=5). * p < 0.05, ** p< 0.01 and *** p < 0.001 in 

comparison with the mice treated with distilled water. Negative control (NC) = distilled 

water, CYP = cyclophosphamide (positive control). 

 

TiO2 NPs 

Doses (mgkg
-1

) Absolute spleen weight (g) Relative spleen weight (%) 

NC 0.22 ± 0.03 1.02 ± 0.14 

9.38 0.11 ± 0.01 0.59 ± 0.06 

18.75 0.15 ± 0.03 0.74 ± 0.12 

37.50 0.20 ± 0.04 0.72 ± 0.14 

75.00 0.23 ± 0.06 1.04 ± 0.31 

150.00 0.22 ± 0.02 0.83 ± 0.04 

CYP 0.16 ± 0.02 0.79 ± 0.06 

ZnO NPs 

NC 0.22 ± 0.03 1.02 ± 0.14 

9.38 0.18 ± 0.04 0.85 ± 0.19 

18.75 0.20 ± 0.02 0.88 ± 0.12 

37.50 0.21 ± 0.04 0.95 ± 0.17 

75.00 0.17 ± 0.03 0.76 ± 0.12 

150.00 0.15 ± 0.04 0.58 ± 0.12 

CYP 0.16 ± 0.02 0.79 ± 0.06 

Mixture  

NC 0.22 ± 0.03 1.02 ± 0.14 

9.38 0.11 ± 0.01** 0.50 ± 0.05** 

18.75 0.12 ± 0.02** 0.48 ± 0.07** 

37.50 0.10 ± 0.01*** 0.43 ± 0.04*** 

75.00 0.17 ± 0.02 0.63 ± 0.11* 

150.00 0.16 ± 0.02 0.82 ± 0.09 

CYP 0.16 ± 0.02 0.79 ± 0.06 
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Table 4. 6: Absolute and percentage relative kidney weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 5 days. 

Data represent Mean ± SEM (n=5). * p < 0.05 and ** p < 0.01 in comparison with the 

mice treated with distilled water. Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

 

TiO2 NPs 

Doses (mgkg
-1

) Absolute kidney weight (g) Relative kidney weight (%) 

NC 0.29 ± 0.02 1.31 ± 0.09 

9.38 0.30 ± 0.02 1.61 ± 0.13 

18.75 0.31 ± 0.02 1.38 ± 0.13 

37.50 0.43 ± 0.05** 1.58 ± 0.17 

75.00 0.29 ± 0.01 1.32 ± 0.06 

150.00 0.41 ± 0.02** 1.55 ± 0.11 

CYP 0.31 ± 0.02 1.54 ± 0.10 

ZnO NPs 

NC 0.29 ± 0.02 1.31 ± 0.09 

9.38 0.30 ± 0.02 1.44 ± 0.06 

18.75 0.33 ± 0.03 1.39 ± 0.11 

37.50 0.33 ± 0.01 1.49 ± 0.03 

75.00 0.39 ± 0.02** 1.73 ± 0.08** 

150.00 0.43 ± 0.05** 1.73 ± 0.17* 

CYP 0.31 ± 0.02 1.54 ± 0.10 

Mixture 

NC 0.29 ± 0.02 1.31 ± 0.09 

9.38 0.32 ± 0.01 1.40 ± 0.02 

18.75 0.31 ± 0.01 1.25 ± 0.05 

37.50 0.35 ± 0.03 1.52 ± 0.21 

75.00 0.39 ± 0.02** 1.41 ± 0.02 

150.00 0.28 ± 0.01 1.47 ± 0.06 

CYP 0.31 ± 0.02 1.54 ± 0.10 
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Table 4. 7: Absolute and percentage relative brain weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 5 days. 

Data represent Mean ± SEM (n=5). * p < 0.05 in comparison with the mice treated with 

distilled water. Negative control (NC) = distilled water, CYP = cyclophosphamide 

(positive control). 

TiO2 NPs 

Doses (mgkg
-1

) Absolute brain weight (g) Relative brain weight (%) 

NC 0.40 ± 0.02 1.85 ± 0.11 

9.38 0.38 ± 0.02 1.98 ± 0.10 

18.75 0.36 ± 0.03 1.75 ± 0.22 

37.50 0.38 ± 0.04 1.41 ± 0.15 

75.00 0.33 ± 0.02 1.48 ± 0.08 

150.00 0.42 ± 0.02 1.61 ± 0.18 

CYP 0.39 ± 0.01 1.91 ± 0.16 

ZnO NPs 

NC 0.40 ± 0.02 1.85 ± 0.11 

9.38 0.40 ± 0.00 1.89 ± 0.04 

18.75 0.39 ± 0.01 1.69 ± 0.07 

37.50 0.40 ± 0.01 1.84 ± 0.09 

75.00 0.34 ± 0.02* 1.50 ± 0.12 

150.00 0.39 ± 0.01 1.59 ± 0.11 

CYP 0.39 ± 0.01 1.91 ± 0.16 

Mixture 

NC 0.40 ± 0.02 1.85 ± 0.11 

9.38 0.39 ± 0.01 1.70 ± 0.04 

18.75 0.38 ± 0.01 1.52 ± 0.03 

37.50 0.40 ± 0.02 1.67 ± 0.04 

75.00 0.41 ± 0.01 1.51 ± 0.13 

150.00 0.38 ± 0.03 1.98 ± 0.13 

CYP 0.39 ± 0.01 1.91 ± 0.16 
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Table 4. 8: Absolute and percentage relative heart weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 5 days. 

Data represent Mean ± SEM (n=5). * p < 0.05 and ** p< 0.01 in comparison with the 

mice treated with distilled water. Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

TiO2 NPs 

Doses (mgkg
-1

) Absolute heart weight (g) Relative heart weight (%) 

NC 0.11 ± 0.00 0.52 ± 0.01 

9.38 0.08 ± 0.01 0.43 ± 0.03 

18.75 0.13 ± 0.01 0.48 ± 0.07 

37.50 0.14 ± 0.01 0.53 ± 0.03 

75.00 0.11 ± 0.00 0.50 ± 0.02 

150.00 0.16 ± 0.02 0.62 ± 0.08 

CYP 0.13 ± 0.01 0.65 ± 0.03 

ZnO NPs 

NC 0.11 ± 0.00 0.52 ± 0.01 

9.38 0.11 ± 0.01 0.52 ± 0.01 

18.75 0.11 ± 0.01 0.48 ± 0.03 

37.50 0.11 ± 0.00 0.49 ± 0.02 

75.00 0.13 ± 0.01 0.59 ± 0.04 

150.00 0.14 ± 0.01 0.56 ± 0.03 

CYP 0.13 ± 0.01 0.65 ± 0.03* 

Mixture 

NC 0.11 ± 0.00 0.52 ± 0.01 

9.38 0.12 ± 0.00 0.53 ± 0.03 

18.75 0.11 ± 0.01 0.45 ± 0.02 

37.50 0.10 ± 0.01 0.44 ± 0.02 

75.00 0.14 ± 0.01 0.52 ± 0.02 

150.00 0.11 ± 0.00 0.59 ± 0.02 

CYP 0.13 ± 0.01 0.65 ± 0.03** 
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Table 4. 9: Absolute and percentage relative liver weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 10 days. 

Data represent Mean ± SEM (n=5). * p < 0.05, ** p < 0.01 and *** p< 0.001 in 

comparison with the mice treated with distilled water. Negative control (NC) = distilled 

water, CYP = cyclophosphamide (positive control). 

TiO2 NPs 

Doses (mgkg
-1

) Absolute liver weight (g) Relative liver weight (%) 

NC 1.48 ± 0.04 6.21 ± 0.21 

9.38 1.31 ± 0.09 5.43 ± 0.36 

18.75 1.28 ± 0.07 5.33 ± 0.22 

37.50 1.12 ± 0.05* 5.80 ± 0.38 

75.00 1.18 ± 0.05* 4.11 ± 0.61** 

150.00 1.37 ± 0.06 5.35 ± 0.244 

CYP 0.98 ± 0.11*** 5.41 ± 0.20 

ZnO NPs 

NC 1.48 ± 0.04 6.21 ± 0.21 

9.38 1.36 ± 0.12  5.10 ± 0.38 

18.75 1.62 ± 0.12 5.38 ± 0.371 

37.50 1.60 ± 0.08 5.51 ± 0.13 

75.00 2.00 ± 0.85 7.42 ± 0.25 

150.00 1.39 ± 0.10 4.47 ± 0.18 

CYP 0.98 ± 0.11 5.41 ± 0.20 

Mixture 

NC 1.48 ± 0.04 6.21 ± 0.21 

9.38 1.22 ± 0.06 4.56 ± 0.20*** 

18.75 1.29 ± 0.03 4.53 ± 0.15*** 

37.50 1.24 ± 0.02 4.70 ± 0.12** 

75.00 1.48 ± 0.07 5.16 ± 0.27* 

150.00 1.55 ± 0.01 5.16 ± 0.29* 

CYP 0.98 ± 0.11*** 5.41 ± 0.20 
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Table 4. 10: Absolute and percentage relative spleen weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 10 days. 

Data represent Mean ± SEM (n=5). * p< 0.05 and ** p< 0.01 in comparison with the mice 

treated with distilled water. Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

TiO2 NPs 

Doses (mgkg
-1

) Absolute spleen weight (g) Relative spleen weight (%) 

NC 0.24 ± 0.04 1.01 ± 0.16 

9.38 0.14 ± 0.03 0.59 ± 0.11 

18.75 0.18 ± 0.04 0.80 ± 0.18 

37.50 0.10 ± 0.01** 0.50 ± 0.07* 

75.00 0.16 ± 0.03 0.62 ± 0.12 

150.00 0.14 ± 0.01 0.55 ± 0.06* 

CYP 0.11 ± 0.02* 0.59 ± 0.11 

ZnO NPs 

NC 0.24 ± 0.04 1.01 ± 0.16 

9.38 0.12 ± 0.02 0.43 ± 0.05* 

18.75 0.15 ± 0.03 0.51 ± 0.10 

37.50 0.17 ± 0.03 0.59 ± 0.09 

75.00 0.21 ± 0.11 0.76 ± 0.34 

150.00 0.12 ± 0.01 0.37 ± 0.02 

CYP 0.11 ± 0.02 0.59 ± 0.11 

Mixture 

NC 0.24 ± 0.04 1.01 ± 0.16 

9.38 0.16 ± 0.03 0.68 ± 0.10 

18.75 0.16 ± 0.02 0.57 ± 0.06 

37.50 0.15 ± 0.01 0.58 ± 0.04 

75.00 0.20 ± 0.03 0.53 ± 0.07* 

150.00 0.21 ± 0.05 0.71 ± 0.19 

CYP 0.11 ± 0.02* 0.59 ± 0.11 
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Table 4. 11: Absolute and percentage relative kidney weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 10 days. 

Data represent Mean ± SEM (n=5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

 

TiO2 NPs 

Doses (mgkg
-1

) Absolute kidney weight (g) Relative kidney weight (%) 

NC 0.37 ± 0.02 1.53 ± 0.07 

9.38 0.34 ± 0.02 1.43 ± 0.06 

18.75 0.32 ± 0.04 1.33 ± 0.14 

37.50 0.30 ± 0.03 1.55 ± 0.08 

75.00 0.36 ± 0.01 1.45 ± 0.08 

150.00 0.34 ± 0.01 1.32 ± 0.05 

CYP 0.29 ± 0.03 1.63 ± 0.07 

ZnO NPs 

NC 0.37 ± 0.02 1.53 ± 0.07 

9.38 0.39 ± 0.03 1.46 ± 0.11 

18.75 0.47 ± 0.01 1.57 ± 0.10 

37.50 0.49 ± 0.02 1.69 ± 0.08 

75.00 0.35 ± 0.06 1.36 ± 0.10 

150.00 0.47 ± 0.05 1.51 ± 0.12 

CYP 0.29 ± 0.03 1.63 ± 0.07 

Mixture 

NC 0.37 ± 0.02 1.53 ± 0.07 

9.38 0.37 ± 0.02 1.38 ± 0.07 

18.75 0.36 ± 0.01 1.26 ± 0.02 

37.50 0.30 ± 0.07 1.15 ± 0.27 

75.00 0.40 ± 0.01 1.39 ± 0.07 

150.00 0.43 ± 0.02  1.42 ± 0.06 

CYP 0.29 ± 0.03 1.63 ± 0.07 
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Table 4. 12: Absolute and percentage relative brain weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 10 days. 

Data represent Mean ± SEM (n=5). * p< 0.05 in comparison with the mice treated with 

distilled water. Negative control (NC) = distilled water, CYP = cyclophosphamide 

(positive control). 

TiO2 NPs 

Doses (mgkg
-1

) Absolute brain weight (g) Relative brain weight (%) 

NC 0.42 ± 0.01 1.78 ± 0.04 

9.38 0.41 ± 0.02 1.70 ± 0.09 

18.75 0.42 ± 0.05 1.76 ± 0.14 

37.50 0.39 ± 0.01 2.01 ± 0.06 

75.00 0.40 ± 0.01 1.55 ± 0.05 

150.00 0.37 ± 0.01 1.45 ± 0.04 

CYP 0.39 ± 0.01 2.22 ± 0.16* 

ZnO NPs 

NC 0.42 ± 0.01 1.78 ± 0.04 

9.38 0.41 ± 0.01 1.55 ± 0.06 

18.75 0.38 ± 0.02 1.26 ± 0.10* 

37.50 0.41 ± 0.00 1.42 ± 0.05 

75.00 0.39 ± 0.02 1.56 ± 0.08 

150.00 0.41 ± 0.00 1.32 ± 0.02 

CYP 0.39 ± 0.01 2.22 ± 0.16* 

Mixture 

NC 0.42 ± 0.01 1.78 ± 0.04 

9.38 0.38± 0.02 1.44 ± 0.06 

18.75 0.38 ± 0.03 1.33 ± 0.12* 

37.50 0.37 ± 0.03 1.38 ± 0.11 

75.00 0.42 ± 0.01 1.47 ± 0.05 

150.00 0.41 ± 0.02 1.39 ± 0.09 

CYP 0.39 ± 0.01 2.22 ± 0.16* 
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Table 4. 13: Absolute and percentage relative heart weight in mice treated with 

titanium dioxide, zinc oxide nanoparticles and mixture for 10 days.  

Data represent Mean ± SEM (n=5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

 

TiO2 NPs 

Doses (mgkg
-1

) Absolute heart weight (g) Relative heart weight (%) 

NC 0.13 ± 0.01 0.56 ± 0.03 

9.38 0.11 ± 0.01 0.47 ± 0.02 

18.75 0.13 ± 0.00 0.54 ± 0.03 

37.50 0.11 ± 0.01 0.56 ± 0.02 

75.00 0.12 ± 0.00 0.48 ± 0.01 

150.00 0.14 ± 0.01 0.53 ± 0.03 

CYP 0.10 ± 0.01 0.54 ± 0.02 

ZnO NPs 

NC 0.13 ± 0.01 0.56 ± 0.03 

9.38 0.13 ± 0.00 0.48 ± 0.01 

18.75 0.15 ± 0.02 0.50 ± 0.05 

37.50 0.16 ± 0.01 0.56 ± 0.01 

75.00 0.12 ± 0.02 0.48 ± 0.03 

150.00 0.15 ± 0.01 0.48 ± 0.02 

CYP 0.10 ± 0.01 0.54 ± 0.02 

Mixture 

NC 0.13 ± 0.01 0.56 ± 0.03 

9.38 0.14 ± 0.01 0.53 ± 0.03 

18.75 0.14 ± 0.01 0.49 ± 0.02 

37.50 0.15 ± 0.01 0.55 ± 0.04 

75.00 0.16 ± 0.01 0.57 ± 0.02 

150.00 0.15 ± 0.01 0.50 ± 0.03 

CYP 0.10 ± 0.01 0.54 ± 0.02 
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4.4.3 Haematological effects induced by titanium dioxide, zinc oxide nanoparticles 

and their mixture in mice for 5 and 10 days 

The erythrocytes and their indices in the treated mice for 5 and 10 days are presented in 

Figures 4.14 – 4.34. For the 5- day exposure period, mice treated with TiO2 NPs did not 

induce any significant (p > 0.05) decrease in the PCV (Figure 4.14), Hb (Figure 4.15) and 

RBC (Figure 4.16) at tested doses in comparison with the mice treated with distilled 

water. However, a significant (p < 0.001) decrease in MCHC (Figure 4.17) was observed 

at tested doses; and a significant increase (p < 0.05) in MCV (Figure 4.18) at tested doses 

except at the 75.00 mgkg
-1

 of TiO2 NPs in comparison with the mice treated with distilled 

water. In addition, no significant (p > 0.05) reduction in MCH (Figure 4.19) was observed 

at the 9.38, 75.00 and 150.00 mgkg
-1

, and no significant (p > 0.05) increase at the 18.75 

and 37.50 mgkg
-1

 of TiO2 NPs in comparison with the mice treated with distilled water. 

Likewise, platelets were not significantly (p > 0.05) decreased at the 9.38 and 18.75 mgkg
-

1
 and significantly increased at the 37.50, 75.00 and 150.00 mgkg

-1
 of TiO2 NPs in 

comparison with the mice treated with distilled water.  

For the 10- day exposure period, mice treated with TiO2 NPs exhibited no significant (p > 

0.05) increase in the PCV (Figure 4.14), Hb (Figure 4.15) and MCHC (Figure 4.17) at 

tested doses. Subsequently, there was a significant (p < 0.001) increase in the RBC (Figure 

4.16) at the 9.38 and 18.75 mgkg
-1

; a significant (p < 0.001) decrease in the MCV (Figure 

4.18); decrease in the MCH (Figure 4.19) at the 9.38 and 18.75 mgkg
-1

 and a decrease in 

platelets (Figure 4.20) at the 150.00 mgkg
-1

 of TiO2 NPs in comparison with the mice 

treated with distilled water. Consequently, significant difference between the 5- and 10- 

day exposure periods for mice treated with TiO2 NPs was observed at 37.50 mgkg
-1

 (p < 

0.05) for PCV; 37.50 (p < 0.05) and 150.00 mgkg
-1 

(p < 0.05) for Hb; 9.38 (p < 0.001) and 

18.75 mgkg
-1 

(p < 0.001) for RBC; 150 mgkg
-1 

(p < 0.01) for MCHC; 9.38 (p < 0.001) and 

18.75 mgkg
-1 

(p < 0.001) for MCV and MCH; and 37.50 (p < 0.05) and 150 mgkg
-1 

(p < 

0.001) for platelets. 

For the 5- day exposure period, ZnO NPs did not induce a significant (p > 0.05) increase 

in the PCV (Figure 4.21), Hb (Figure 4.22), and RBC (Figure 4.23) at tested doses. A 

significant (p < 0.01) decrease was recorded in the MCHC (Figure 4.24) at tested doses; 
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and a significant decrease in the MCV (Figure 4.25) at the 18.75 and 150.00 mgkg
-1

 of 

ZnO NPs in comparison with the mice treated with distilled water was observed. In 

addition, MCH (Figure 4.26) was not significantly (p > 0.05) decreased at the 9.38 and 

75.00 mgkg
-1

; increased at the 18.75, 37.50 and 150.00 mgkg
-1

 while the platelets (Figure 

4.27) decreased at tested doses except at the 9.38 and 150.00 mgkg
-1

 of ZnO NPs in 

comparison with the mice treated with distilled water. For the 10- day exposure period, 

mice treated with ZnO NPs exhibited a significant (p < 0.05) increase in the PCV (Figure 

4.21), Hb (Figure 4.22) and RBC (Figure 4.23) only at 9.38 mgkg
-1 

in comparison with the 

mice treated with distilled water. Consequently, a significant difference between the 5- 

and 10- day exposure periods for mice treated with ZnO NPs was observed only at 75.00 

mgkg
-1

 (p < 0.01) for platelets. 

For the 5- day exposure period, the mixture did not induce a significance (p > 0.05) in the 

PCV (Figure 4.28), Hb (Figure 4.29), RBC (Figure 4.30), MCH (Figure 4.33) and platelets 

(Figure 4.34) at tested doses. A significant (p < 0.01) decrease in the MCHC (Figure 4.31) 

at tested doses; and a significant (p < 0.05) increase in MCV (Figure 4.32) at the 75.00 

and 150.00 mgkg
-1 

of their mixture in comparison with the mice treated with distilled 

water were observed. For the 10- day exposure period, there was a significant (p < 0.05) 

increase in PCV (Figure 4.28), Hb (Figure 4.29) and RBC (Figure 4.30) at the 75.00 

mgkg
-1

 of their mixture in comparison with the mice treated with distilled water. 

Consequently, a significant difference between the 5- and 10- day exposure periods for 

mice treated with their mixture was observed only at 75.00 mgkg
-1

 (p < 0.01) for platelets. 

The WBC and their differentials in the treated mice for 5 and 10 days are presented in 

Figures 4.35 – 4.52. For the 5- day exposure period, mice treated with TiO2 NPs did not 

show any significant (p > 0.05) increase in the WBC count (Figure 4.35), monocytes 

(Figure 4.38) and lymphocytes (Figure 4.36) at tested doses while no significant (p > 0.05) 

decrease in the neutrophils (Figure 4.37), eosinophils (Figure 4.39) and the neutrophil to 

lymphocyte ratio (Figure 4.40) at tested doses in comparison with the mice treated with 

distilled water were observed. For the 10- day exposure period, TiO2 NPs did not induce 

any significance (p > 0.05) in the WBC (Figure 4.35), lymphocytes (Figure 4.36), 

neutrophils (Figure 4.37), neutrophil to lymphocyte ratio (Figure 4.40), monocytes (Figure 
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4.38) and eosinophils (Figure 4.39) across all doses in comparison with the mice treated 

with distilled water. Consequently, a significant difference between the 5- and 10- day 

exposure periods for mice treated with TiO2 NPs was observed only at 9.38 mgkg
-1

 (p < 

0.05) for lymphocytes, neutrophils and neutrophil to lymphocyte ratio. 

For the 5- day exposure period, mice treated with ZnO NPs did not show any significance 

(p > 0.05) in the WBC count (Figure 4.41), lymphocytes (Figure 4.42), neutrophils (Figure 

4.43), monocytes (Figure 4.44), eosinophils (Figure 4.45), and neutrophil to lymphocyte 

ratio (Figure 4.46) at tested doses in comparison with the mice treated with distilled water. 

However, for the 10- day exposure period, there was a significant decrease in the WBC 

count (Figure 4.41) only at the 37.50 (p < 0.05) and 75.00 (p < 0.01) mgkg
-1

 of ZnO NPs 

in comparison with the mice treated with distilled water.  

Mice treated with the mixture of the NPs for the 5- day exposure revealed significant (p < 

0.001) decrease in the WBC count (Figure 4.47) only at the 37.50, 75.00 and 150.00 

mgkg
-1 

in comparison with the mice treated with distilled water while for the 10- day 

exposure, a significant (p < 0.05) decrease in the WBC count (Figure 4.47) was observed 

only at the 9.38 and 18.75 mgkg
-1

 of their mixture in comparison with the mice treated 

with distilled water. For the 5 and 10 day periods, no significance (p > 0.05) was observed 

in the lymphocytes (Figure 4.48), neutrophils (Figure 4.49), monocytes (Figure 4.50), 

eosinophils (Figure 4.51) and neutrophil to lymphocyte ratio (Figure 4.52) of mice teated 

with the NP mixture compared with mice treated with distilled water. Consequently, a 

significant difference between the 5- and 10- day exposure periods for mice treated with 

the NP mixture was observed only at 9.38 (p < 0.001), 75.00 (p < 0.05) and 150.00 mgkg
-1

 

(p < 0.01) for the WBC count. 
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Figure 4. 13: Frequency of Packed Cell Volume (%) count in mice treated with TiO2 NPs 

for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

§ 
p < 0.05 for the comparison between 5- and 10-day exposures 
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Figure 4. 14: Frequency of Haemoglobin (g/dL) concentration in mice treated with TiO2 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

§ 
p < 0.05 for the comparison between 5- and 10-day exposures 
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Figure 4. 15: Frequency of Red Blood Cells (x 10
6
 µL) count in mice treated with TiO2 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

***
p < 0.001 in 10-days exposure  

§§§ 
p < 0.001 for the comparison between 5- and 10-day exposures 
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Figure 4. 16: Frequency of Mean Cell Haemoglobin Concentration (g/dL) in mice treated 

with TiO2 NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 and 

### 
p<0.001 in 5-days exposure.

 

§§ 
p < 0.01 and 

§§§ 
p < 0.001 for the comparison between 5- and 10- day exposures 
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Figure 4. 17: Frequency of Mean Cell Volume (fL) in mice treated with TiO2 NPs for 5- 

and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) =distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 and 

## 
p < 0.01, in 5-days exposure. 

*** 
p < 0.001 in 10- days exposure 

§§§ 
p < 0.001 for the comparison between 5- and 10-day exposures 
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Figure 4. 18: Frequency of Mean Cell Haemoglobin (pg) in mice treated with TiO2 NPs 

for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

*** 
p < 0.001 in 10-days exposure 

§§§ 
p < 0.001 for the comparison between 5- and 10-day exposures 
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Figure 4. 19: Frequency of Platelet count in mice treated with TiO2 NPs for 5- and 10- 

days.  

Data represent mean ± SEM (n = 5). Negative control (NC) =distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 in 5-days exposure 

** 
p < 0.01 in 10-days exposure 

§ 
p < 0.05 and 

§§§ 
p < 0.001 for the comparison between 5- and 10-day exposures 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

150 

 

 

 

N
C

9.
38

18
.7

5

37
.5

0

75
.0

0

15
0.

00
C

Y
P

0

10

20

30

40

50
5 DAYS 10 DAYS

*

ZnO Nanoparticles (mg/kg)

P
C

V
 (

%
)

 

Figure 4. 20: Frequency of Packed Cell Volume (%) in mice treated with ZnO NPs for 5- 

and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) =distilled water, CYP = 

cyclophosphamide (positive control). 

* 
p < 0.05 in 10-days exposure 
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Figure 4. 21: Frequency of Haemoglobin concentration (g/dL) in mice treated with ZnO 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) =distilled water, CYP = 

cyclophosphamide (positive control). 

** 
p < 0.01 in 10-days exposure 
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Figure 4. 22: Frequency of Red Blood Cell count (x 10
6
 µL) in mice treated with ZnO 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

* 
p < 0.05 in 10- days exposure 
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Figure 4. 23: Frequency of Mean Cell Haemoglobin Concentration (g/dL) in mice treated 

with ZnO NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). NC = distilled water, CYP = cyclophosphamide 

(positive control). 

##
p < 0.01 and 

###
p<0.001 in 5-days exposure 

§§§ 
p < 0.001 for the comparison between 5- and 10-day exposures 
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Figure 4. 24: Frequency of Mean Cell Volume (fL) in mice treated with ZnO NPs for 5- 

and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 in 5-days exposure 
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Figure 4. 25: Frequency of Mean Cell Haemoglobin (pg) in mice treated with ZnO NPs 

for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 26: Frequency of Platelets in mice treated with ZnO NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

### 
p<0.001 in 5- days exposure 

** 
p < 0.01 in 10-days exposure 

§§ 
p < 0.01 for the comparison between 5- and 10- day exposures 
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Figure 4. 27: Frequency of Packed Cell Volume (%) in mice treated with TiO2 and ZnO 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

* 
p < 0.05 in 10-days exposure 
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Figure 4. 28: Frequency of Haemoglobin concentration (g/dL) in mice treated with TiO2 

and ZnO NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

* 
p < 0.05 in 10-days exposure 
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Figure 4. 29: Frequency of Red Blood Cell count (x 10
6
 µL) in mice treated with TiO2 

and ZnO NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

* 
p < 0.05 in 10-days exposure 
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Figure 4. 30: Frequency of Mean Cell Haemoglobin Concentration (g/dL) in mice treated 

with TiO2 and ZnO NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) =distilled water, CYP = 

cyclophosphamide (positive control). 

## 
p < 0.01 and 

### 
p<0.001 in 5-days exposure 

§§§ 
p < 0.001 for the comparison between 5- and 10-day exposures 
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Figure 4. 31: Frequency of Mean Cell Volume (fL) in mice treated with TiO2 and ZnO 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 in 5-days exposure 
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Figure 4. 32: Frequency of Mean Cell Haemoglobin (pg) in mice treated with TiO2 and 

ZnO NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 33: Frequency of Platelets in mice treated with TiO2 and ZnO NPs for 5- and 

10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

## 
p < 0.01 in 5-days exposure 

§§  
p < 0.01 for the comparison between 5- and 10- day exposures 
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Figure 4. 34: Frequency of White Blood Cells count (x 10
3
 µL) in mice treated with TiO2 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 in 5-days exposure 
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Figure 4. 35: Frequency of Lymphocytes (%) in mice treated with TiO2 NPs for 5- and 

10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

§ 
p < 0.05 for the comparison between 5- and 10- day exposures 
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Figure 4. 36: Frequency of Neutrophils (%) in mice treated with TiO2 NPs for 5- and 10- 

days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

1
p < 0.05 for the comparison between 5- and 10-days exposures 
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Figure 4. 37: Frequency of Monocytes (%) in mice treated with TiO2 NPs for 5- and 10- 

days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 38: Frequency of Eosinophils (%) in mice treated with TiO2 NPs for 5- and 10- 

days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 39: Frequency of Neutrophil/Eosinophil in mice treated with TiO2 NPs for 5- 

and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

§ 
p < 0.05 for the comparison between 5- and 10-days exposures 

 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

170 

 

 

 

N
C

9.
38

18
.7

5

37
.5

0

75
.0

0

15
0.

00
C

Y
P

0

2000

4000

6000

8000

10000
5 DAYS 10 DAYS

##

*

**
**

§§

ZnO Nanoparticles (mg/kg)

W
B

C
 (

x
 1

0
3
 µ

L
)

 

Figure 4. 40: Frequency of White Blood Cells count (x 10
3
 µL) in mice treated with ZnO 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

## 
p < 0.01 in 5-days exposure 

* 
p < 0.05 and 

** 
p < 0.01 in 10-days exposure. 

§§ 
p < 0.01 for the comparison between 5- and 10- day exposures 
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Figure 4. 41: Frequency of Lymphocytes (%) in mice treated with ZnO NPs for 5- and 

10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 42: Frequency of Neutrophils (%) in mice treated with ZnO NPs for 5- and 10- 

days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 43: Frequency of Monocytes (%) in mice treated with ZnO NPs for 5- and 10- 

days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 44: Frequency of Eosinophils (%) in mice treated with ZnO NPs for 5- and 10- 

days.  

Data represent mean ± SEM (n = 5). Negative control (NC) =distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 45: Frequency of Neutrophil/Lymphocyte in mice treated with ZnO NPs for 5- 

and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 46: Frequency of White Blood Cells count (x 10
3
 µL) in mice treated with TiO2 

and ZnO NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

## 
p < 0.01 and 

### 
p<0.001 in 5-days exposure 

* 
p < 0.05, 

** 
p < 0.01 and 

*** 
p < 0.001 in 10-days exposure. 

§ 
p < 0.05, 

§§ 
p < 0.01 and 

§§§ 
p < 0.001 for the comparison between 5- and 10-day 

exposures 
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Figure 4. 47: Frequency of Lymphocytes (%) in mice treated with TiO2 and ZnO NPs for 

5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 48: Frequency of Neutrophils (%) in mice treated with TiO2 and ZnO NPs for 5- 

and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

 

 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

179 

 

 

 

N
C

9.
38

18
.7

5

37
.5

0

75
.0

0

15
0.

00

C
Y

P

0

1

2

3

4
5 DAYS 10 DAYS

TiO2  and ZnO NPs (mg/kg)

M
O

N
O

C
Y

T
E

S
 (

%
)

 

Figure 4. 49: Frequency of Monocytes (%) in mice treated with TiO2 and ZnO NPs for 5- 

and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 50: Frequency of Eosinophils (%) in mice treated with TiO2 and ZnO NPs for 5- 

and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 51: Frequency of Neutrophils/Lymphocyes in mice treated with TiO2 and ZnO 

NPs for 5- and 10- days.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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4.4.4 Histopathological alterations induced by titanium dioxide, zinc oxide 

nanoparticles and their mixture in the organs of mice 

Histopathological alterations of the liver 

The liver of the mice that received distilled water showed closely packed hepatic plates for 

5 and 10 days exposure periods. However, the liver histopathology of mice treated with 

TiO2, ZnO NPs and their mixture showed foci of vacuolar change of centrilobular 

hepatocytes and peri-portal hepatocytes, moderate to mild Kupffer cell hyperplasia with 

dark brown pigments, single cell hepatocellular necrosis, large megalocytes, multiple foci 

of mild thinning of hepatic plates, foci of dense aggregates of mononuclear inflammatory 

cells around the portal tracts, epitheloid macrophages and foci of mild thinning of hepatic 

cords resulting in dilated sinusoids (Figure 4.53). 

Histopathological alterations of the kidney 

The kidney histopathology of the mice that received distilled water for 5 and 10 days 

exposure periods indicated normal architecture of the glomeruli, tubules and renal 

interstitium. In contrast, the kidney histopathology of mice treated with TiO2, ZnO NPs 

and their mixture at both 5- and 10- day exposure periods showed sloughing off of tubular 

epithelial cells, degeneration of the tubular epithelial cells, congestion of interstitial blood 

vessels, dilated tubules with increased luminal width and intraluminal casts (Figure 4.54). 

Histopathological alterations of the spleen 

The spleen histopathology of the mice that received distilled water for 5 and 10 days 

exposure periods showed distinct lymphoid follicles / closely-packed periarteriolar 

lymphoid sheath (PALS). Congestion of splenic sinuses and sinusoids, numerous foci of 

pigment-laden macrophages [haemosiderosis], antigenic stimulation and lymphoid 

proliferation, distinct mantle zones and atrophic spleen with wrinkled capsule were 

observed at the various doses of TiO2, ZnO NPs and their mixture administered to mice 

(Figure 4.55). 
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Histopathological alterations of the heart  

The histopathology of the heart of mice treated with distilled water evinced normal 

cardiomyocytes for 5 and 10 days exposure periods. Degeneration of cardiomyocytes with 

loss of striations, congestion of coronary blood vessels, necrotic cardiomyocytes (pyknotic 

nucleus and eosinophilic cytoplasm), vacuolar change, detachment of cardiomyocytes, 

increase in connective tissue (fibroblast nuclei), aggregates of inflammatory mononuclear 

cells especially around blood vessels and cytoplasmic vacuolations were observed in mice 

treated with TiO2, ZnO NPs and their mixture (Figure 4.56). 

Histopathological alterations of the brain 

The Histopathology of the brain of mice treated with distilled water showed normal 

appearance of the neurons, glial cells and neuropil for 5 and 10 days exposure periods. 

However, multiple foci of aggregates of glial cells [gliosis] in the neuropil, foci of 

neuronal necrosis, accumulation of inflammatory cells around the meningeal blood 

vessels, swelling of the endothelial cells of the cerebral blood vessels, shrunken neurons 

with loss of nuclei, degenerate neurons with angular cell bodies, congestion of cerebral 

blood vessels, swollen endothelial cells lining the blood vessels, increased numbers of 

satellite cells (satelitosis), vacuolation of the neuropil and large neuronal bodies were 

observed mice treated with TiO2, ZnO NPs and their mixture (Figure 4.57). 
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Figure 4. 52: Sections of the liver of mice treated with distilled water (A); 18.75 mgkg
-1

 

of the mixture for the 5- day exposure (B); 37.50 mgkg
-1

 of TiO2 NPs for the 5- day 

exposure (C); 37.50 mgkg
-1

 of TiO2 NPs for the 10- day exposure (D). Lesions observed 

are: aggregates of mononuclear inflammatory cells (yellow arrow), single-cell 

hepatocellular necrosis (black arrow), dilated sinusoids (blue arrow), kupffer cell 

hyperplasia (red arrow), large hepatocytes (megalocytes) (green arrow) and vacuolar 

change of the hepatocytes (blue box). Magnification: 400X. 
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Figure 4. 53: Sections of the kidney of mice treated with distilled water (A); 150.00 

mgkg
-1

 of TiO2 NPs for the 5- day  exposure (B); 150.00 mgkg
-1

 of TiO2 NPs for the 10 

day exposure (C); 75.00 mgkg
-1

 of ZnO NPs for the 10 day exposure (D). Lesions 

observed are: moderate sloughing off of the tubular epithelial cells (black arrow), 

eosinophilic tubular casts (yellow arrow), congestion of interstitial blood vessels (green 

arrow), aggregates of mononuclear inflammatory cells (white arrow) and degeneration of 

tubular epithelial cells (blue arrow). Magnification: 400X. 
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Figure 4. 54: Sections of the spleen of mice treated with distilled water (A); 75.00 mgkg
-1

 

of TiO2 NPs for the 5- day  exposure (B); 9.38 mgkg
-1

 of ZnO NPs for the 5- day  

exposure (C); 75.00 mgkg
-1

 of ZnO NPs for the 5- day  exposure (D); 150.00 mgkg
-1

 of 

TiO2 NPs for the 10 day exposure (E). Lesions observed are: distinct lymphoid 

follicles/PALS (yellow arrow), prominent germinal centres (black stars), distinct mantle 

zones (white arrow), atrophic spleen with wrinkled capsule (green arrow), haemosiderosis 

(red arrow) and congestion of splenic cords and sinusoids (thick blue arrow). 

Magnification: 100X. 
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Figure 4. 55: Sections of the heart of mice treated with distilled water (A); 37.50 mgkg
-1

 

of ZnO NPs for the 5- day exposure (B); 37.50 mgkg
-1

 of their mixture for the 10- day 

exposure (C); 37.50 mgkg
-1

 of TiO2 NPs for the 10- day exposure (D); 75.00 mgkg
-1

 of 

their mixture for the 10- day exposure (E). Various lesions observed are: degeneration of 

cardiomyocytes with loss of striations and foci of vacuolar change (blue arrow), 

congestion of coronary blood vessels (yellow arrow), degenerate and necrotic 

cardiomyocytes (black arrow) with small pyknotic nucleus and eosinophilic cytoplasm, 

increase in the connective tissue (fibroblast nuceli) (red arrow) and loss of striations and 

aggregates of mononuclear inflammatory cells (thick blue arrow). Magnification: 400X. 
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Figure 4. 56: Sections of the brain of mice treated with distilled water (A); 75.00 mgkg
-1

 

of ZnO NPs for the 5- day exposure (B); 75.00 mgkg
-1

 of their mixture for the 5- day 

exposure (C); 150.00 mgkg
-1

 of their mixture for the 5- day exposure (D); 75.00 mgkg
-1

 of 

their mixture for the 10- day exposure (E). Various lesions observed are: necrotic and 

degenerated neurons (black arrow), accumulation of inflammatory cells (yellow arrow), 

swelling of the endothelial cells of the cerebral blood vessels (thick blue arrow) and 

aggregates of glial cells (box), vacuolation of neuropil (red arrows), numerous satellite 

cells (white arrows) surrounding the large neuronal bodies (yellow star). Magnification: 

400X.  
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4.4.5 Biochemical alterations induced by titanium dioxide, zinc oxide nanoparticles 

and their mixture in the serum and urine of mice 

Figures 4.58 – 4.60 show the results of the serum ALT activity in mice treated with TiO2, 

ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, TiO2 NPs 

administered to mice induced a significant (p < 0.01) increase in the serum ALT activity 

(Figure 4.58) at 18.75, 37.50, 75.00 and 150.00 mgkg
-1 

in comparison with the mice 

treated with distilled water while at the 10-day exposure period, there was a significant (p 

< 0.05) reduction in the serum ALT activity (Figure 4.58) at tested doses in comparison 

with the mice treated with distilled water. Consequently, a significant difference between 

the 5- and 10- day exposure periods for mice treated with TiO2 NPs was observed at 9.38 

(p < 0.001), 18.75 (p < 0.01), 37.50 (p < 0.001), 75.00 (p < 0.001) and 150.00 mgkg
-1

 (p < 

0.05). 

Similarly, mice treated with ZnO NPs for the 5- day exposure period exhibited a 

significant (p < 0.001) increase in the serum ALT activity (Figure 4.59) at tested doses in 

comparison with the mice treated with distilled water. For the 10- day exposure period, a 

significant (p < 0.05) reduction in the serum ALT activity (Figure 4.59) was observed at 

tested doses in comparison with the mice treated with distilled water. A significant 

difference between the 5- and 10- day exposure periods for mice treated with ZnO NPs 

was observed at 9.38 (p < 0.001), 18.75 (p < 0.001), 37.50 (p < 0.001), 75.00 (p < 0.001) 

and 150.00 mgkg
-1

 (p < 0.001).  

For the 5- day exposure period, mice treated with their mixture exhibited an increase in 

the serum ALT activity (Figure 4.60), which was significant (p < 0.001) only at the 18.75 

and 75.00 mgkg
-1

 in comparison with the mice treated with distilled water while for the 

10- day exposure period, a significant (p < 0.001) reduction in the serum ALT activity 

(Figure 4.60) of the treated mice was observed at tested doses in comparison with the mice 

treated with distilled water.  

Figures 4.61 – 4.63 show the results of the serum AST activity in mice treated with TiO2, 

ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, TiO2 NPs 

induced a significant (p < 0.05) increase in the serum AST activity (Figure 4.61) of the 
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treated mice across all doses in comparison with the mice treated with distilled water 

while for the 10- day exposure period, an increase in the serum AST activity (Figure 4.61) 

in the treated mice was observed at tested doses but significant (p < 0.05) only at the 9.38 

and 18.75 mgkg
-1

 of TiO2 NPs in comparison with the mice treated with distilled water. 

Consequently, a significant difference between the 5- and 10- day exposure periods for 

mice treated with TiO2 NPs was observed only at 150.00 mgkg
-1

 (p < 0.001). Mice treated 

with ZnO NPs for both 5 and 10 days, exhibited a significant (p < 0.05) increase in the 

serum AST activity (Figure 4.62) at tested doses in comparison with the mice treated with 

distilled water. Consequently, a significant difference between the 5- and 10- day 

exposure periods for mice treated with ZnO NPs was observed at 18.75 (p < 0.05), 37.50 

(p < 0.05), 75.00 (p < 0.01)and 150.00 mgkg
-1

 (p < 0.001). 

Similarly, their mixture administered to mice for the 5- day exposure period induced a 

significant (p < 0.05) increase in serum AST activity (Figure 4.63) at tested doses while 

for the 10- day exposure period, an increase in the serum AST activity (Figure 4.63) was 

observed at tested doses but significant (p < 0.001) only at the 9.38 mgkg
-1

 of their 

mixture in comparison with the mice treated with distilled water. Consequently, a 

significant difference between the 5- and 10- day exposure periods for mice treated with 

the NP mixture was observed only at 150.00 mgkg
-1

 (p < 0.001). 

Figures 4.64 – 4.66 show the results of the ratio of the AST/ALT activity in mice treated 

with both NPs and their mixture for the 5 and 10 days. For the 5- and 10- day exposure 

periods, mice treated with TiO2 NPs exhibited no significant (p > 0.05) increase in the 

AST/ALT activity (Figure 4.64) at tested doses in comparison with the mice treated 

distilled water. However, the treatment of mice with ZnO NPs for the 5- day exposure 

period induced no significant (p > 0.05) reduction in the AST/ALT activity (Figure 4.65) 

in comparison with the mice treated with distilled water. In contrast to the 10- day 

exposure period, a dose-dependent increase in the AST/ALT activity (Figure 4.65) was 

observed in the treated mice, which was significant (p < 0.05) only at the 150.00 mgkg
-1

 of 

ZnO NPs in comparison with the mice treated with distilled water. Subsequently, a 

significant difference between the 5- and 10- day exposure periods was observed at the 

18.75 (p < 0.05), 37.50 (p < 0.05) and 150.00 (p < 0.01) mgkg
-1

 of ZnO NPs. For the 5- 
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day exposure period, the mixture of both NPs administered to mice induced an increase in 

the AST/ALT activity (Figure 4.66) at tested doses, which was significant only at the 9.38 

(p < 0.01) and 75.00 (p < 0.05) mgkg
-1

 while for the 10- day exposure, there was a 

significant (p < 0.05) increase in AST/ALT activity (Figure 4.66) at tested doses except at 

the 37.50 mgkg
-1

 of their mixture in comparison with the mice treated with distilled water. 

Subsequently, a significant difference between the 5- and 10- day exposure periods was 

observed at only 9.38 (p < 0.05) mgkg
-1

 of the NP mixture. 

Figures 4.67 – 4.69 show the results of the serum GGT activity in mice treated with TiO2, 

ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, mice treated 

with TiO2 NPs exhibited a reduction in the serum GGT activity (Figure 4.67) at the 9.38 

and 18.75 mgkg
-1

, while an increase was observed at the 37.50, 75.00 and 150.00 mgkg
-1

. 

Subsequently, a significant increase in the serum GGT activity was observed only at the 

37.50 (p < 0.01) and 150.00 (p < 0.05) mgkg
-1

 of TiO2 NPs in comparison with the mice 

treated with distilled water. For the 10- day exposure period, TiO2 NPs induced an 

increase in the serum GGT activity (Figure 4.67) at tested doses except at the 150.00 

mgkg
-1

, which was lower than the value of the mice treated with distilled water. In 

addition, significant (p < 0.01) increase was noted at the 18.75 mgkg
-1

 of TiO2 NPs in 

comparison with the mice treated with distilled water. A comparison between the 5- and 

10- day exposure periods showed a significant difference only at the 18.75 (p < 0.001) 

mgkg
-1

 of TiO2 NPs.  

Mice treated with ZnO NPs for the 5 days exhibited an increase in the serum GGT activity 

(Figure 4.68) at tested doses, which was significant only at the 37.50 (p < 0.001) and 

75.00 (p < 0.05) mgkg
-1

 of ZnO NPs in comparison with the mice treated with distilled 

water. The serum GGT activity showed a plateau at the 37.50 mgkg
-1

 with a gradual 

decrease in the activity of GGT with increase in doses. For the 10- day exposure period, 

the serum GGT activity (Figure 4.68) in the experimental mice decreased at the 9.38 and 

18.75 mgkg
-1

; and increased at the 37.50, 75.00 and 150.00 mgkg
-1

, which was only 

significant (p < 0.05) at the 37.50 mgkg
-1

 of ZnO NPs in comparison with the mice treated 

with distilled water. A comparison between the 5- and 10- day exposure periods showed a 

significant difference only at the 150.00 (p < 0.01) mgkg
-1

 of ZnO NPs.  
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Figure 4. 57: Serum ALT activity in mice treated with TiO2 NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 58: Serum ALT activity in mice treated with ZnO NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 59: Serum ALT activity in mice treated with TiO2 and ZnO NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 60: Serum AST activity in mice treated with TiO2 NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 61: Serum AST activity in mice treated with  ZnO NPs at the 5- and 10- day 

exposure periods. 

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 62: Serum AST activity in mice treated with TiO2 and ZnO NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 63: Serum AST/ALT activity in mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 64: Serum AST/ALT activity in mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 65: Serum AST/ALT activity in mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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The mixture of both NPs administered to mice for the 5- day exposure period induced a 

significant (p < 0.01) increase in the serum GGT activity (Figure 4.69) at tested doses 

while at the 10-day exposure period, a significant (p < 0.05) increase in the serum GGT 

activity (Figure 4.69) was also observed at the 9.38, 18.75 and 37.50 mgkg
-1 

of their 

mixture in comparison with the mice treated with distilled water. 

Figures 4.70 – 4.72 show the results of the serum total bilirubin concentration in mice 

treated with TiO2, ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure 

period, mice treated with TiO2 NPs exhibited an increase in the concentration of serum 

total bilirubin (Figure 4.70) at tested doses, which was significant (p < 0.01) only at the 

150.00 mgkg
-1 

in comparison with the mice treated with distilled water. For the 10- day 

exposure period, there was no significant (p > 0.05) reduction in the serum total bilirubin 

concentration (Figure 4.70) at the 18.75 and 150.00 mgkg
-1

 while an increase at the 9.38, 

37.50 and 75.00 mgkg
-1

of TiO2 NPs in comparison with the mice treated with distilled 

water.  

For the 5- day exposure period, mice treated with ZnO NPs exhibited a significant 

reduction in the serum total bilirubin concentration (Figure 4.71) only at the 9.38 (p < 

0.001) and increase at the 37.50 (p < 0.01) and 75.00 (p < 0.05) mgkg
-1 

in comparison 

with the mice treated with distilled water. For the 10- day exposure period, mice treated 

with ZnO NPs exhibited a dose-dependent increase in the serum total bilirubin 

concentration (Figure 4.71) which was significant only at the 75.00 (p < 0.05) and 150.00 

(p < 0.01) mgkg
-1

 in comparison with the mice treated with distilled water. A significant 

(p < 0.001) difference between the two exposure periods for 5- and 10- days was noted at 

the 9.38, 18.75 and 150.00 mgkg
-1

 of ZnO NPs. Mice treated with their mixture for 5 and 

10 days exhibited a significant (p < 0.001) increase in the serum total bilirubin 

concentration (Figure 4.72) at tested doses in comparison with their corresponding groups 

of mice treated with distilled water. A comparison between the 5- and 10- day exposure 

periods showed a significant difference at the 9.38 (p < 0.001) and 18.75 (p < 0.01) mgkg
-

1
 of their mixture.  

Figures 4.73 – 4.75 show the results of the serum direct bilirubin concentration in mice 

treated with TiO2, ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure 
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period, mice treated with TiO2 NPs exhibited a dose-dependent increase in the serum 

direct bilirubin concentration (Figure 4.73), which was significant (p < 0.05) only at the 

37.50, 75.00 and 150.00 mgkg
-1

 in comparison with the mice treated with distilled water. 

For the 10- day exposure period, TiO2 NPs administered to mice induced an increase in 

the serum direct bilirubin concentration at tested doses with significance (p < 0.05) at the 

18.75 mgkg
-1 

in comparison with the mice treated with distilled water. A comparison 

between the 5- and 10- day exposure periods showed a significant (p < 0.001) difference 

only at the 150.00 mgkg
-1

 of TiO2 NPs. Mice treated with ZnO NPs for the 5- day 

exposure period exhibited no significant (p > 0.05) reduction of serum direct bilirubin 

concentration (Figure 4.74) at the 9.38 and 37.50 mgkg
-1

 and an increase at the 18.75, 

75.00 and 150.00 mgkg
-1

 in comparison with the mice treated with distilled water.  

In contrast, ZnO NPs administered to mice for the 10- day exposure period, induced a 

significant (p < 0.001) increase in the serum direct bilirubin concentration (Figure 4.74) at 

tested doses in comparison with the mice treated with distilled water. A comparison 

between the two exposure periods, 5- and 10- days showed a significant (p < 0.001) 

difference at tested doses of ZnO NPs. The mixture of  both NPs administered to mice at 

the 5- and 10- day exposure periods induced a significant (p < 0.001) increase in the serum 

direct bilirubin concentration at tested doses in comparison with the mice treated with 

distilled water. 
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Figure 4. 66: Serum GGT activity in mice treated with TiO2 NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

204 

 

 

 

N
C

9.3
8

18.
75

37.
50

75.
00

150
.0

0
CY

P

0

20

40

60

80

100
5 DAYS

10 DAYS

###

#

###

*

***

§§

§§§

ZnO Nanoparticles (mg/kg)

S
er

u
m

 G
G

T
 a

ct
iv

it
y 

(U
/L

)

 

Figure 4. 67: Serum GGT activity in mice treated with ZnO NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 and 

### 
p<0.001 in 5-days exposure 

* 
p < 0.05 and 

*** 
p < 0.001 in 10-days exposure 

§§ 
p < 0.01 and 

§§§ 
p < 0.001 for the comparison between the 5- and 10- day exposures 

 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

205 

 

 

 

N
C

9.3
8

18.
75

37.
50

75.
00

150
.0

0
CY

P

0

20

40

60

80

100
5 DAYS

10 DAYS

##
##

##

#####**

*

*

***

TiO2  and ZnO NPs (mg/kg)

S
er

u
m

 G
G

T
 a

ct
iv

it
y 

(U
/L

)

 

Figure 4. 68: Serum GGT activity in mice treated with TiO2 and ZnO NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 69: Serum total bilirubin concentration in mice treated with TiO2 NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 70: Serum total bilirubin concentration in mice treated with ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 71: Serum total bilirubin concentration in mice treated with TiO2 and ZnO NPs 

at the 5- and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 72: Serum direct bilirubin concentration in mice treated with TiO2 NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 73: Serum direct bilirubin concentration in mice treated with ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

### 
p < 0.001 in 5-days exposure 

** 
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Figure 4. 74: Serum direct bilirubin concentration in mice treated with TiO2 and ZnO NPs 

at the 5- and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 and 
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p < 0.001 in 5-days exposure 
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p < 0.001 in 10-days exposure 
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p < 0.001 for the comparison between the 5- and 10- day exposures 
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Figures 4.76 – 4.78 show the results of the serum albumin concentration in mice treated 

with TiO2, ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, 

TiO2 NPs administered to mice induced a reduction in the serum albumin concentration 

(Figure 4.76) at tested doses, which was significant at only the 18.75(p < 0.001) and 37.50 

(p < 0.01) mgkg
-1

 in comparison with the mice treated with distilled water. For the 10- day 

exposure period, a reduction in the serum albumin concentration (Figure 4.76) was 

observed in the experimental mice at doses of 9.38, 18.75 and 37.50 mgkg
-1

 and increased 

at the 75.00 and 150.00 mgkg
-1

 of TiO2 NPs. A significant (p < 0.001) decrease was only 

observed at the 37.50 mgkg
-1

 in comparison with the mice treated with distilled water. A 

significant (p < 0.001) difference between the two exposure periods 5- and 10- days was 

observed only at the 18.75 mgkg
-1

 of TiO2 NPs. 

For the 5- day exposure period, mice treated with ZnO NPs exhibited a significant 

increase in the serum albumin concentration (Figure 4.77) at the 9.38 (p < 0.05), 75.00 (p 

< 0.01) and 150.00 (p < 0.05) mgkg
-1

 in comparison with the mice treated with distilled 

water while for the 10- day exposure period, there was an increase in the serum albumin 

concentration of the experimental mice at tested doses, which was significant at the 18.75 

(p < 0.05), 75.00 (p < 0.001) and 150.00 (p < 0.01) mgkg
-1

 in comparison with the mice 

treated with distilled water. The mixture of both NPs administered to mice for 5 and 10 

days induced a significant (p < 0.001) decrease in the serum albumin concentration 

(Figure 4.78) only at the 37.50, 75.00 and 150.00 mgkg
-1

 in comparison with the 

corresponding groups of mice treated with distilled water.  

Figures 4.79 – 4.81 show the results of the serum urea concentration in mice treated with 

TiO2, ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, mice 

treated with TiO2 NPs exhibited an increase in the serum urea concentration (Figure 4.79) 

at the tested doses except at the 150.00 mgkg
-1

 of TiO2 NPs. A Significant (p < 0.05) 

increase in the serum urea concentration was observed only at the 9.38 and 18.75 mgkg
-1

 

of TiO2 NPs in comparison with the mice treated with distilled water. For the 10- day 

exposure period, a significant (p < 0.001) decrease in the serum urea concentration (Figure 

4.79) was observed only at the 9.38, 18.75 and 75.00 mgkg
-1

 of TiO2 NPs in comparison 

with the mice treated with distilled water. A comparison between the 5- and 10- day 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

213 

 

exposure periods showed a significant difference at the 9.38 (p < 0.01), 18.75 (p < 0.01), 

37.50 (p < 0.01) and 150.00 mgkg
-1

 (p < 0.05) of TiO2 NPs.  

Similarly, mice treated with ZnO NPs exhibited an increase in the serum urea 

concentration (Figure 4.80) at tested doses except at the 150.00 mgkg
-1

 of ZnO NPs which 

showed a decrease. A significant (p < 0.001) increase in the serum urea concentration was 

observed only at the 9.38 and 18.75 mgkg
-1 

of ZnO NPs in comparison with the mice 

treated with distilled water. However, for the 10- day exposure period, ZnO NPs 

administered to mice induced a decrease in serum urea concentration (Figure 4.80) at 

tested doses, which was only significant (p < 0.05) at the 18.75 and 75.00 mgkg
-1

 of ZnO 

NPs in comparison with the mice treated with distilled water. A significant difference 

between the two exposure period 5- and 10- days was observed at 9.38 (p < 0.01) and 

18.75 (p < 0.001) mgkg
-1

 of ZnO NPs.  

For the 5- day exposure period, the mixture of both NPs administered to mice induced 

increased concentration of the serum urea (Figure 4.81) at tested doses but significant (p < 

0.001) only at the 18.75, 37.50 and 150.00 mgkg
-1

 of their mixture in comparison with the 

mice treated with distilled water. In contrast, for the 10-day exposure period (Figure 4.81), 

the treated mice exhibited a decrease at tested doses but significant (p < 0.01) only at the 

150.00 mgkg
-1

 of their mixture in comparison with the mice treated with distilled water. A 

significant difference between the 5- and 10- day exposure periods was observed at the 

18.75 (p < 0.01) and 150.00 (p < 0.001) mgkg
-1

 of their mixture. 

Figures 4.82 – 4.84 show the results of the serum creatinine concentration in mice treated 

with TiO2, ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, 

it was observed that mice treated with TiO2 NPs had a no significant (p > 0.05) reduction 

of serum creatinine concentration (Figure 4.82) at the doses of 9.38 and 18.75 mgkg
-1

 and 

an increase at 37.50, 75.00 and 150.00 mgkg
-1

. A significant (p < 0.05) increase in the 

creatinine concentration was observed only at the 37.50 mgkg
-1

 of TiO2 NPs in 

comparison with the mice treated with distilled water. Similarly, at the 10-day exposure 

period, treated mice had a significant (p < 0.05) increase in the serum creatinine 

concentration (Figure 4.82) at the 18.75 and 37.50 mgkg
-1 

of TiO2 NPs in comparison with 

the mice treated with distilled water. A comparison between the 5- and 10- day exposure 
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periods showed a significant difference at the 37.00 (p < 0.001), 75.00 (p < 0.01) and 

150.00 (p < 0.001) of TiO2 NPs. 

For the 5- day exposure period, ZnO NPs administered to mice induced a significant (p < 

0.05) reduction in the serum creatinine concentration (Figure 4.83) at the 9.38, 18.75 and 

37.50 mgkg
-1

 of ZnO NPs in comparison with the mice treated with distilled water. While 

for the 10- day exposure period, treated mice had an increase in the serum creatinine 

concentration (Figure 4.83) at tested doses, but significant (p < 0.05) only at the 18.75 

mgkg
-1

 of ZnO NPs in comparison with the mice treated with distilled water. A significant 

difference between the 5- and 10- day exposure periods was observed at the 18.75 (p < 

0.01) and 37.50 (p < 0.05) mgkg
-1

 of ZnO NPs. 

The mixture of both NPs administered to mice for the 5- day exposure period induced an 

increase in the serum creatinine concentration (Figure 4.84)  at tested doses but was 

significant (p < 0.05) only at the 75.00 mgkg
-1 

of their mixture in comparison with the 

mice treated with distilled water; while for the 10- day exposure, treated mice showed a 

significant increase in the serum creatinine concentration (Figure 4.84) at the 9.38 (p < 

0.05), 18.75 (p < 0.01), 37.50 (p < 0.05) and 75.00 (p < 0.001) of their mixture in 

comparison with the mice treated with distilled water. A significant (p < 0.01) difference 

between the 5- and 10- day exposure periods was observed at the 150.00 mgkg
-1

 of their 

mixture. 
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Figure 4. 75: Serum albumin concentration in mice treated with TiO2 NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 76: Serum albumin concentration in mice treated with ZnO NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 77: Serum albumin concentration in mice treated with TiO2 and ZnO NPs at the 

5- and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

## 
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Figure 4. 78: Serum urea concentration in mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 79: Serum urea concentration in mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 80: Serum urea concentration in mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 81: Serum creatinine concentration in mice treated with TiO2 NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 82: Serum creatinine concentration in mice treated with ZnO NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 83: Serum creatinine concentration in mice treated with TiO2 and ZnO NPs at 

the 5- and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figures 4.85 – 4.87 show the results of the serum total cholesterol levels in mice treated 

with TiO2, ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, 

mice treated with TiO2 NPs exhibited a reduction in the levels of the serum total 

cholesterol (Figure 4.85), which was significant at the 9.38 (p < 0.001), 18.75 (p < 0.05), 

37.50 (p < 0.01) and 75.00 (p < 0.001) mgkg
-1

 in comparison with the mice treated with 

distilled water while for the 10- day exposure period, a significant increase in the serum 

total cholesterol level (Figure 4.85) was observed in mice treated at the 9.38 (p < 0.001), 

18.75 (p < 0.001), 37.50 (p < 0.05), 75.00 (p < 0.01) and 150.00 (p < 0.001) mgkg
-1

 of 

TiO2 NPs in comparison with the mice treated with distilled water. A comparison between 

the two exposure periods 5- and 10- days showed a significant difference at the 9.38 (p < 

0.001) and 18.75 (p < 0.01) of TiO2 NPs. 

Mice treated with ZnO NPs for the 5- day exposure period exhibited a significant (p < 

0.001) reduction in the serum total cholesterol level (Figure 4.86) at tested doses in 

comparison with the mice treated with distilled water. For the 10- day exposure period, the 

treated mice evinced significant increase in the serum total cholesterol level (Figure 4.86) 

at the 18.75 (p < 0.05), 75.00 (p < 0.01) and 150.00 (p < 0.01) mgkg
-1

 of ZnO NPs in 

comparison with the mice treated with distilled water. A comparison between the 5- and 

10- day exposure period revealed a significant (p < 0.001) difference at the 18.75, 75.00 

and 150.00 mgkg
-1

 of ZnO NPs. The mixture of both NPs administered to mice for the 5- 

day exposure period induced no significant increase (p > 0.05) in the level of serum total 

cholesterol (Figure 4.87) at the 9.38 and 18.75 mgkg
-1

 and a decrease at the 37.50, 75.00 

and 150.00 mgkg
-1 

in comparison with the mice treated with distilled water. In contrast, 

for the 10- day exposure period, mice treated with their mixture exhibited a significant (p 

< 0.05) increase in the levels of serum total cholesterol (Figure 4.87) at the 9.38, 18.75 and 

150.00 mgkg
-1

 of their mixture compared with the control group treated with distilled 

water. A significant (p < 0.001) difference between the 5- and 10- day exposure periods 

was observed at 150.00 mgkg
-1

 of their mixture. 

Figures 4.88 – 4.90 show the results of the serum HDL levels in mice treated with TiO2, 

ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, TiO2 NPs 

administered to mice induced a significant reduction in the serum HDL levels (Figure 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

225 

 

4.88) at the 9.38 (p < 0.001), 18.75 (p < 0.05) and 37.50 (p < 0.05) mgkg
-1

 of TiO2 NPs in 

comparison with the mice treated with distilled water. Similarly, mice treated with TiO2 

NPs for the 10- day exposure period exhibited a significant (p < 0.001) reduction in the 

serum HDL level (Figure 4.88) at tested doses. A comparison between the 5- and 10- day 

exposures showed a significant difference at the 9.38 (p < 0.001) and 18.75 (p < 0.01) of 

TiO2 NPs.  

For the 5- day exposure period, mice treated with ZnO NPs exhibited a significant (p < 

0.001) increase in the level of serum HDL (Figure 4.89) at tested doses in comparison 

with the mice treated with distilled water. In contrast, for the 10- day exposure period 

mice treated with ZnO NPs exhibited a significant (p < 0.001) reduction in the serum HDL 

level (Figure 4.89) only at the 150.00 mgkg
-1

 of ZnO NPs when in comparison with the 

mice treated with distilled water. A significant difference between the 5- and 10- day 

exposure periods was observed  at the 9.38 (p < 0.01), 18.75 (p < 0.001), 75.00 (p < 0.05) 

and 150.00 (p < 0.01) mgkg
-1

 of ZnO NPs. For the 5- day exposure period, mice treated 

with their mixture exhibited an increase in the level of serum HDL (Figure 4.90) at tested 

doses but significant only at the 9.38 (p < 0.05), 75.00 (p < 0.001) and 150.00 (p < 0.05) 

mgkg
-1

 of their mixture in comparison with the mice treated with distilled water. 

Subsequently, treatment of mice to their mixture for the 10- day exposure period induced a 

significant (p < 0.001) reduction in the serum HDL level at tested doses in comparison 

with the mice treated with distilled water. 

Figures 4.91 – 4.93 show the results of the serum triglycerides concentration in mice 

treated with TiO2, ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure 

period, TiO2 NPs administered to mice induced a significant reduction in the concentration 

of serum triglycerides (Figure 4.91) at the 9.38 (p < 0.05), 18.75 (p < 0.01) and 37.50 (p < 

0.001) of TiO2 NPs in comparison with the mice treated with distilled water. In contrast, 

for the 10- day exposure period, mice treated with TiO2 NPs exhibited no significant 

reduction (p > 0.05) in the concentration of the serum triglycerides (Figure 4.91) at tested 

doses in comparison with the mice treated with distilled water. ZnO NPs administered to 

mice for the 5- day exposure period induced a significant (p < 0.001) reduction in the 

concentration of serum triglycerides (Figure 4.92) at the 9.38, 18.75 and 37.50 mgkg
-1

 of 
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ZnO NPs in comparison with the mice treated with distilled water. In addition, for the 10- 

day exposure period, a significant reduction in the concentration of serum triglycerides 

(Figure 4.92) was observed at the 9.38 (p < 0.01), 18.75 (p < 0.05) and 75.00 (p < 0.01) of 

ZnO NPs in comparison with the mice treated with distilled water. A significant difference 

between the 5- and 10- day exposure period was observed at the 150.00 (p < 0.001) of 

ZnO NPs. 

For the 5- day exposure period, mice treated with their mixture of both NPs exhibited a 

significant (p < 0.01) reduction in the concentration of serum triglycerides (Figure 4.93) at 

tested doses in comparison with the mice treated with distilled water while for the 10- day 

exposure period, the treated mice exhibited a significant reduction in the concentration of 

serum triglycerides (Figure 4.93) at the 9.38 (p < 0.05) and 37.50 (p < 0.01) mgkg
-1

 of 

their miture. A comparison between the two exposure periods, 5- and 10- days showed a 

significant difference at the 18.75 (p < 0.001) and 150.00 (p < 0.01) of their mixture. 

Figures 4.94 – 4.96 show the results of the urine creatinine concentration in mice treated 

with TiO2, ZnO NPs and their mixture for 5 and 10 days. For the 5- day exposure period, 

mice treated with TiO2 NPs exhibited a significant increase in the urine creatinine 

concentration (Figure 4.94) only at the 9.38 (p < 0.01) and 18.75 (p < 0.05) mgkg
-1 

of 

TiO2 NPs in comparison with the mice treated with distilled water. For the 10- day 

exposure period, there was a significant (p < 0.05) increase in the urine creatinine 

concentration (Figure 4.94) only at the 18.75 mgkg
-1 

of TiO2 NPs in the treated mice in 

comparison with the mice treated with distilled water. A significant (p < 0.001) difference 

between the 5- and 10- day exposure period was observed at the 9.38 mgkg
-1

 of TiO2 NPs.  

ZnO NPs administered to mice for the 5- day exposure period induced no significant (p > 

0.05) increase in the urine creatinine concentration (Figure 4.95) at the 9.38 and 18.75 

mgkg
-1 

and no significant (p > 0.05) reduction at the 37.50, 75.00 and 150.00 mgkg
-1

 of 

ZnO NPs in comparison with mice treated with distilled water. For the 10- day exposure 

period, mice treated with ZnO NPs exhibited a significant (p < 0.05) increase in the urine 

creatinine concentration (Figure 4.95) at the 9.38 and 18.75 mgkg
-1

 in comparison with the 

mice treated with distilled water.  
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Figure 4. 84: Serum cholesterol levels in mice treated with TiO2 NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 85: Serum cholesterol levels in mice treated with ZnO NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

### 
p < 0.001 in 5-days exposure 

* 
p < 0.05 and 

**
p < 0.01 in 10-days exposure 

§§§ 
p < 0.001 for the comparison between the 5- and 10-day exposures 

 

 

C 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

229 

 

 

N
C

9.
38

18
.7

5

37
.5

0

75
.0

0

15
0.

00
C
Y

P

0

500

1000

1500

2000

2500

5 DAYS

10 DAYS

*

*

***

§§§

§§

TiO2  and ZnO NPs (mg/kg)

S
e

ru
m

 C
h

o
le

st
e

ro
l 

le
v

e
l 

(m
g

/d
l)

 

Figure 4. 86: Serum cholesterol levels in mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 87: Serum HDL levels in mice treated with TiO2 NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 88: Serum HDL levels in mice treated with ZnO NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 89: Serum HDL levels in mice treated with TiO2 and ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 90: Serum triglycerides concentration in mice treated with TiO2 NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 91: Serum triglyceride levels in mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 92: Serum triglyceride levels in mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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A comparison between the 5- and 10- day exposures showed a significant difference at the 

9.38 (p < 0.010 and 18.75 (p < 0.05) mgkg
-1

 of ZnO NPs. For the 5- day exposure period, 

mice treated with their mixture of the NPs exhibited a significant increase in the urine 

creatinine concentration (Figure 4.96) only at 9.38 (p < 0.05), 18.75 (p < 0.05) and 37.50 

(p < 0.001) mgkg
-1

 in comparison with the mice treated with distilled water while for the 

10-day exposure period, their mixture administered to mice induced a significant increase 

in the urine creatinine concentration (Figure 4.96) at 18.75 (p < 0.001), 37.50 (p < 0.05), 

75.00 (p < 0.001) and 150.00 (p < 0.01) mgkg
-1

 in comparison with the mice treated with 

distilled water. A significant difference between the 5- and 10- day exposure period was 

observed at the 9.38 (p < 0.01), 18.75 (p < 0.01) and 75.00 (p < 0.001) of the mixture. 

Figures 4.97 – 4.99 show the results of the urine albumin concentration in mice treated 

with TiO2, ZnO NPs and their mixture for 5 and 10 days. Generally, TiO2 NPs 

administered to mice for the 5- day exposure period induced a reduction in the urine 

albumin concentration (Figure 4.97) at tested doses, which was significant (p < 0.05) only 

at the 37.50 mgkg
-1 

of TiO2 NPs in comparison with the mice treated with distilled water 

while for the 10- day exposure period, a significant (p < 0.001) reduction in the urine 

albumin concentration (Figure 4.97) was observed at tested doses of the treated mice in 

comparison with those treated with distilled water. Similarly, mice treated with ZnO NPs 

for the 5- day exposure period exhibited a significant (p < 0.001) increase in the urine 

albumin concentration (Figure 4.98) at tested doses of ZnO NPs in comparison with the 

mice treated with distilled water while for the 10- day exposure period, the treated mice 

exhibited no significant (p > 0.05) reduction in the urine albumin concentration at tested 

doses (Figure 4.98). For the 5- day exposure period, mice treated with their mixture of the 

NPs exhibited a significant (p < 0.001) increase in the urine albumin concentration (Figure 

4.99) at tested doses in comparison with the mice treated with distilled water while for the 

10-day exposure, treated mice exhibited a reduction in the urine albumin concentration 

(Figure 4.99) at tested doses, but was significant (p < 0.05) only at the 9.38 mgkg
-1 

of their 

mixture in comparison with those treated with distilled water. 
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4.4.6 Oxidative stress induced by titanium dioxide, zinc oxide nanoparticles and 

their mixture in the liver, kidney and testes of mice 

Oxidative stress parameters in the liver of mice treated with TiO2, ZnO NPs and their 

mixture for 5 and 10 days are presented in Figures 4.100 – 4.111. For  the 5- day exposure 

period, TiO2 (Figure 4.100), ZnO NPs (Figure 4.101) and their mixture (Figure 4.102) 

significantly (p < 0.001) reduced SOD activity in the liver of the treated mice at tested 

doses in comparison with the mice treated with distilled water. For the 10- day exposure 

period, the activity of SOD significantly increased only at the 37.50 mgkg
-1

 (p < 0.05) of 

TiO2 NPs (Figure 4. 100); and at the 18.75 (p < 0.01), 75.00 (p < 0.05) and 150.00 mgkg
-1

 

(p < 0.001) of their mixture (Figure 4.102) in comparison with the mice treated with 

distilled water. A significant (p < 0.05) difference between the 5- and 10- day exposure 

periods was observed at the 9.38 and 150.00 mgkg
-1

 of ZnO NPs and at tested doses of 

their mixture (except at 37.50 mgkg
-1

). 

For the 5- day exposure period, CAT activity in the liver of the treated mice was 

significantly (p < 0.001) decreased at the 9.38, 18.75 and 150.00 mgkg
-1

 of TiO2 NPs 

(Figure 4.103); 37.50, 75.00 and 150.00 mgkg
-1

 of ZnO NPs (Figure 4.104); and at tested 

doses of their mixture (Figure 4.105) in comparison with the mice treated with distilled 

water. For the 10- day exposure period, CAT activity significantly (p < 0.001) increased at 

tested doses of TiO2 NPs (Figure 4.103); significantly (p < 0.001) decreased at the 37.50, 

75.00 and 150.00 mgkg
-1

 of ZnO NPs (Figure 4.104); and at the 18.75 and 150.00 mgkg
-1

 

of their mixture (Figure 4.105) in comparison with the mice treated with distilled water. A 

significant difference (p < 0.001) between the 5- and 10- day exposure periods was 

observed at tested doses of TiO2 NPs; at the 9.38 and 18.75 mgkg
-1

 of ZnO NPs and at 

tested doses of their mixture (except at 18.75 mgkg
-1

). For the 5- day exposure period, the 

GSH level in the liver of the treated mice was significantly (p < 0.001) decreased at tested 

doses of TiO2 NPs (Figure 4.106); increased at tested doses of ZnO NPs (Figure 4.107) 

and their mixture (Figure 4.108) respectively in comparison with the mice treated with 

distilled water.  
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Figure 4. 93: Urine creatinine concentration in mice treated with TiO2 NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 

# 
p < 0.05 and 

## 
p < 0.01 in 5-days exposure 

*
p < 0.05 in 10-days exposure 

§§ 
p < 0.01 and 

§§§ 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 94: Urine creatinine concentration in mice treated with ZnO NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 95: Urine creatinine concentration in mice treated with TiO2 and ZnO NPs at 

the 5- and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 96: Urine albumin concentration in mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 97: Urine albumin concentration in mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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Figure 4. 98: Urine albumin concentration in mice treated with TiO2 and ZnO NPs at the 

5- and 10- day exposure periods.  

Data represent mean ± SEM (n = 5). Negative control (NC) = distilled water, CYP = 

cyclophosphamide (positive control). 
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For the 10- day exposure period, TiO2 NPs significantly (p < 0.001) decreased GSH level 

(Figure 4.106) in the liver of the treated mice, while an increase was induced by their 

mixture (Figure 4.108) at tested doses in comparison with the mice treated with distilled 

water. A comparison between the 5- and 10- day exposure periods showed a significant (p 

< 0.001) difference at tested doses of TiO2, ZnO NPs (except at 150.00 mgkg
-1

) and their 

mixture (except at 150.00 mgkg
-1

). For the 5- day exposure period, the MDA level in the 

liver of the treated mice was significantly (p < 0.001) increased at tested doses of TiO2 

NPs (except at 9.38 mgkg
-1

) (Figure 4.109), ZnO NPs (Figure 4.110) and their mixture 

(Figure 4.111) respectively. For the 10- day exposure period, the MDA level was 

significantly (p < 0.001) increased at tested doses of TiO2 (Figure 4.109), ZnO NPs (Figure 

4.110) and their mixture (Figure 4.111) respectively. A significant (p < 0.05) difference 

between the 5- and 10- day exposure periods was observed only at the 9.38 and 37.50 

mgkg
-1

 of TiO2 NPs, and at the 75.00 mgkg
-1

 of ZnO NPs. 

Oxidative stress parameters in the kidney of mice treated with TiO2, ZnO NPs and their 

mixture for 5 and 10 days are presented in Figures 4.112 – 4.123. For the 5- day exposure 

period, SOD activity in the kidney of the treated mice was significantly (p < 0.01) reduced 

at tested doses of TiO2 NPs (except at 37.50 mgkg
-1

) (Figure 4.112), ZnO NPs (except at 

37.50, 75.00 and 150.00 mgkg
-1

) (Figure 4. 113) and was significantly (p < 0.001) 

increased at tested doses of the mixture (except at 37.50 mgkg
-1

) (Figure 4. 114) in 

comparison with the mice treated with distilled water. For the 10- day exposure period, 

SOD activity in the kidney of the treated mice was significantly (p < 0.001) increased at 

tested doses of TiO2 NPs (except at 18.75 and 75.00 mgkg
-1

) (Figure 4.112), ZnO NPs 

(Figure 4.113) and their mixture (Figure 4.114) respectively in comparison with the mice 

treated with distilled water. A significant (p < 0.05) difference between the 5- and 10- day 

exposure periods was observed at the 37.50 and 150.00 mgkg
-1

 of TiO2 NPs; at tested 

doses of ZnO NPs (except 150.00 mgkg
-1

); and at the 18.75, 37.50 and 75.00 mgkg
-1

 of 

their mixture. 
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Figure 4. 99: SOD activity in the liver of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
**

p < 0.01 and 
***

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 100: SOD activity in the liver of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 

*** 
p < 0.001 for 5- days and 10- days exposure in comparison with their corresponding 

negative controls (NC) = distilled water; CYP = cyclophosphamide (positive control).  

# 
p < 0.05, 

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day 

exposures 
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Figure 4. 101: SOD activity in the liver of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# 
p < 0.05, 

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day 

exposures 
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Figure 4. 102: CAT activity in the liver of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# 
p < 0.05 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 103: CAT activity in the liver of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 104: CAT activity in the liver of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# 
p < 0.05, 

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison the between 5- and 10-day 

exposure 
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Figure 4. 105: GSH level in the liver of mice treated with TiO2 NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SE (n = 5). 
*** 

p < 0.001 for 5- days and 10- days exposure in 

comparison with their corresponding negative controls (NC) = distilled water; CYP = 

cyclophosphamide (positive control).  

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 106: GSH level in the liver of mice treated with ZnO NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SE (n = 5). 
*** 

p < 0.001 for 5- days and 10- days exposure in 

comparison with their corresponding negative controls (NC) = distilled water; CYP = 

cyclophosphamide (positive control).  

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 107: GSH level in the liver of mice treated with TiO2 and ZnO NPs at the 5- and 

10- day exposure periods.  

Data represent mean ± SE (n = 5). 
*** 

p < 0.001 for 5- days and 10- days exposure in 

comparison with their corresponding negative controls (NC) = distilled water; CYP = 

cyclophosphamide (positive control).  

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposure 
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Figure 4. 108: MDA level in the liver of mice treated with TiO2 NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# 
p < 0.05 for the comparison between the 5- and 10-day exposures 
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Figure 4. 109: MDA level in the liver of mice treated with ZnO NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# # 
p < 0.01 for the comparison between the 5- and 10-day exposures 
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Figure 4. 110: MDA level in the liver of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  
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For the 5- day exposure, CAT activity in the kidney of the treated mice significantly (p < 

0.001) increased at tested doses of TiO2 NPs (except at 9.39 and 18.75 mgkg
-1

) (Figure 

4.115), ZnO NPs (except at 18.75 and 150.00 mgkg
-1

) (Figure 4.116) and their mixture 

(Figure 4.117) respectively in comparison with the mice treated with distilled water. 

While for the 10- day exposure period, CAT activity significantly (p < 0.001) reduced at 

tested doses of TiO2 NPs (Figure 4.115); significantly increased (p < 0.05) only at the 

18.75 mgkg
-1

 of ZnO NPs (Figure 4.116); and significantly (p < 0.05) increased at the 

9.38 mgkg
-1

 and reduced at the 18.75 and 150.00 mgkg
-1

of their mixture (Figure 4.117) in 

comparison with the mice treated with distilled water. A significant (p <0.001) difference 

between the 5- and 10- day exposure periods was observed at tested doses of TiO2 NPs 

(except at 9.38 mgkg
-1

), ZnO NPs and their mixture (except at 37.50 and 150.00 mgkg
-1

). 

For the 5- day exposure, GSH level in the kidney of the treated mice was significantly (p < 

0.001) decreased at tested doses of TiO2 NPs (Figure 4.118); increased only at the 150.00 

mgkg
-1

 of ZnO NPs (Figure 4.119); and at tested doses of their mixture (Figure 4.120) in 

comparison with those treated with distilled water. For the 10- day exposure period, GSH 

level was significantly (p < 0.001) reduced at tested doses of TiO2 NPs (Figure 4.118); and 

significantly (p < 0.01) increased only at the 18.75 mgkg
-1

 of their mixture (Figure 4.120). 

A significant (p < 0.001) difference between the 5- and 10- day exposure periods was 

observed at tested doses of TiO2, ZnO NPs (except at 150.00 mgkg
-1

) and their mixture 

(except at 37.50 and 75.00 mgkg
-1

) respectively. 

For the 5- and 10- day exposure periods, MDA level in the kidney of the treated mice was 

significantly (p < 0.001) increased at tested doses of TiO2 (Figure 4.121), ZnO NPs 

(Figure 4.122) and their mixture (Figure 4.123), respectively in comparison with the mice 

treated with distilled water. A significant difference (p < 0.001) between the 5- and 10- 

day exposure periods was observed only at the 9.38 mgkg
-1

 of ZnO NPs and at tested 

doses of their mixture. 
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Figure 4. 111: SOD activity in the kidney of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# 
p < 0.05 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 112: SOD activity in the kidney of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 113: SOD activity in the kidney of mice treated with TiO2 and ZnO NPs at the 

5- and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# 
p < 0.05, 

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day 

exposures 
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Figure 4. 114: CAT activity in the kidney of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# 
p < 0.05 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 115: CAT activity in the kidney of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 116: CAT activity in the kidney of mice treated with TiO2 and ZnO NPs at the 

5- and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# 
p < 0.05 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-days exposures 
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Figure 4. 117: GSH level in the kidney of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-days exposures 
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Figure 4. 118: GSH level in the kidney of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 119: GSH level in the kidney of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# 
p < 0.05, 

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the5- and 10-day 

exposures 
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Figure 4. 120: MDA level in the kidney of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  
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Figure 4. 121: MDA level in the kidney of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
*** 

p < 0.001 for 5- days and 10- days exposure in 

comparison with their corresponding negative controls (NC) = distilled water; CYP = 

cyclophosphamide (positive control).  

# 
p < 0.05 for the comparison between the 5- and 10-day exposures 
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Figure 4. 122: MDA level in the kidney of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
*** 

p < 0.001 for 5- days and 10- days exposure in 

comparison with their negative controls (NC) = distilled water; CYP = cyclophosphamide 

(positive control).  

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Oxidative stress parameters in the testis of mice treated with TiO2, ZnO NPs and their 

mixture for 5 and 10 days are presented in Figures 4.124 – 4.135. For the 5- day exposure 

period, SOD activity in the testes of the treated mice was significantly (p < 0.001) reduced 

at tested doses of TiO2 NPs (except at 75.00 mgkg
-1

) (Figure 4.124), ZnO NPs (Figure 

4.125) and their mixture (Figure 4.126) respectively in comparison with the mice treated 

with distilled water. In contrast, for the 10- day exposure period, there was a significant (p 

< 0.001) increase only at the 37.50 and 150.00 mgkg
-1

 of TiO2 NPs (Figure 4.124); at 

tested doses of ZnO NPs (Figure 4.125) and their mixture (Figure 4.126) respectively in 

comparison with the mice treated with distilled water. Comparison between the 5- and 10- 

day exposure periods showed a significant (p < 0.01) difference at the 75.00 and 150.00 

mgkg
-1

 of TiO2 NPs; at all tested doses of ZnO NPs (except at 150.00 mgkg
-1

) and their 

mixture (except at 18.75 mgkg
-1

) respectively.  

The CAT activity in the testes of the treated mice was significantly (p < 0.001) reduced 

across all tested doses of TiO2 (Figure 4.127), ZnO NPs (except at 150 mgkg
-1

) (Figure 

4.128) and their mixture (Figure 4.129) respectively in comparison with the mice treated 

with distilled water for the 5- day exposure period. Similarly, for the 10- day exposure 

period, there was a significant (p < 0.001) reduction at tested doses of TiO2 NPs (except at 

75.00 mgkg
-1

) (Figure 4.127), ZnO NPs (Figure 4.128) and their mixture (Figure 4.129) 

respectively in comparison with the mice treated with distilled water. Comparison 

between the 5- and 10- day exposure periods showed a significant (p < 0.001) difference 

only at the 75.00 mgkg
-1

 of TiO2 NPs, and 75.00 and 150.00 mgkg
-1

 of ZnO NPs. 

For the 5- day exposure, the GSH level in the testes of the treated mice was significantly 

(p < 0.001) reduced only at the 9.38 mgkg
-1

 of TiO2 NPs (Figure 4.130); no significance (p 

> 0.05) in all the doses of ZnO NPs (Figure 4.131) and their mixture (Figure 4.132) were  

respectively observed in comparison with the mice treated with distilled water. In 

addition, for the 10- day exposure period, no significance (p > 0.05) was observed at 

tested doses of TiO2 (Figure 4.130), ZnO NPs (Figure 4.131) and their mixture (Figure 

4.132). The comparison between the 5- and 10- day exposure periods showed a significant 

(p < 0.05) difference only at the 18.75 mgkg
-1

 of ZnO NPs. 
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The MDA level in the testis of treated mice for the 5- day exposure period showed a 

significant (p < 0.001) increase at tested doses of TiO2 NPs (except at 9.38 mgkg
-1

) 

(Figure 4.133), ZnO NPs (Figure 4.134) and their mixture (Figure 4.135) respectively in 

comparison with the mice treated with distilled water. Subsequently, for the 10- day 

exposure period, a significant (p < 0.001) increase was observed at tested doses of TiO2 

(Figure 4.133), ZnO NPs (Figure 4.134) and their mixture (Figure 4.135) respectively in 

comparison with the mice treated with distilled water. Comparison between the 5- and 10- 

day exposure periods revealed a significant (p < 0.001) difference at the 9.38, 18.75 and 

37.50 mgkg
-1

 of TiO2NPs; and at the 75.00 and 150.00 mgkg
-1

 of ZnO NPs. 

4.5 Germ cell toxicity induced by titanium dioxide, zinc oxide nanoparticles and 

their mixture in mice 

4.5.1 Effects of titanium dioxide, zinc oxide nanoparticles and their mixture on the 

body and testicular weights of mice 

The percentage net body weights of mice treated with TiO2, ZnO NPs and their mixture 

for 35 days are presented in Table 4.14. There was a significant (p < 0.05) reduction in the 

net body weights of the mice treated with NPs and their mixture during the 35- day 

exposure period. The net body weights of the treated mice varied in a non-specific pattern 

across the five week exposure period. Subsequently, TiO2, ZnO NPs and their mixture 

were able to penetrate and accumulate in the testicular region of the treated mice (Figure 

4.136). Additionally, testicular weights of the treated mice showed no significant (p > 

0.05) decrease at the 9.38, 37.5, 75.0 and 150 mgkg
-1

 of TiO2 NPs, and at tested doses of 

their mixture in comparison with the mice treated with distilled water. In contrast, 

testicular weight of the mice treated with ZnO NPs for 35 days showed no significant 

increase at 37.5 and 75.0 mgkg
-1

 in comparison with the mice treated distilled water 

(Table 4.15). 
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Figure 4. 123: SOD activity in the testes of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# 
p < 0.05, 

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day 

exposures 
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Figure 4. 124: SOD activity in the testes of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 125: SOD activity in the testes of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  

# # 
p < 0.01 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 126: CAT activity in the testes of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# # 
p < 0.01 for the comparison between the 5- and 10-day exposures 
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Figure 4. 127: CAT activity in the testes of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
**

p < 0.01 and 
***

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control). 
# 

p < 0.05 and 
# # # 

p < 0.001 for the 

comparison between the 5- and 10-day exposures 
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Figure 4. 128: CAT activity in the testes of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05, 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 

10- days exposure in comparison with their corresponding negative controls (NC) = 

distilled water; CYP = cyclophosphamide (positive control).  
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Figure 4. 129: GSH level in the testes of mice treated with TiO2 NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SE (n = 5). 
*** 

p < 0.001 for 5- days exposure in comparison with 

distilled water (NC) = distilled water; CYP = cyclophosphamide (positive control).  
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Figure 4. 130: GSH level in the testes of mice treated with ZnO NPs at the 5- and 10- day 

exposure periods.  

Data represent mean ± SE (n = 5). Negative controls (NC) = distilled water; CYP = 

cyclophosphamide (positive control). 
# 

p < 0.05 for the comparison between the 5- and 10-

day exposures 

 

 

 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

280 

 

 

 

N
C

9.
38

18
.7

5

37
.5

0

75
.0

0

15
0.

00
C

Y
P

0

50

100

150 5 DAYS 10 DAYS

TiO2  and ZnO NPs (mg/kg)

G
S

H
 (

u
g

/m
L

)

 

Figure 4. 131: GSH level in the testes of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). Negative controls (NC) = distilled water; CYP = 

cyclophosphamide (positive control).  
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Figure 4. 132: MDA level in the testes of mice treated with TiO2 NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control). 
# 

p < 0.05, 
# # 

p < 0.01 and 
# # # 

p < 0.001 for 

the comparison between 5- and 10-days exposure. 
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Figure 4. 133: MDA level in the testes of mice treated with ZnO NPs at the 5- and 10- 

day exposure periods.  

Data represent mean ± SE (n = 5). 
* 

p < 0.05 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  

# 
p < 0.05 and 

# # # 
p < 0.001 for the comparison between the 5- and 10-day exposures 
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Figure 4. 134: MDA level in the testes of mice treated with TiO2 and ZnO NPs at the 5- 

and 10- day exposure periods.  

Data represent mean ± SE (n = 5). 
** 

p < 0.01 and 
*** 

p < 0.001 for 5- days and 10- days 

exposure in comparison with their corresponding negative controls (NC) = distilled water; 

CYP = cyclophosphamide (positive control).  
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4.5.2 Epididymal sperm parameters in mice treated with titanium dioxide, zinc 

oxide nanoparticles and their mixture  

The effect of the NPs and their mixture on the sperm motility in cauda epididymis of 

treated mice is presented in Figures 4.137- 4.139. After the 35- day exposure period, TiO2 

NPs (Figure 4.137) induced a significant (p < 0.001) reduction in the percentage means of 

the motile spermatozoa in comparison with the mice treated with distilled water. In 

contrast, a significant (p < 0.001) increase in the immotile spermatozoa of the treated mice 

was observed at tested doses of TiO2 NPs in comparison with those treated with distilled 

water. The rapidly progressive, slow progressive, non progressive and immotile 

spermatozoa of the mice treated with distilled water were 29.40, 1.25, 13.80 and 55.55 % 

respectively. The rapidly progressive motile spermatozoa showed means of 9.0, 1.8, 0.4, 

2.2 and 2.4 %; the slow progressive motility showed means of 0.5, 0.5, 0.5, 0.6 and 1.7 %; 

the non-progressive spermatozoa showed means of 9.6, 4.4, 10.4, 7.9 and 4.3 % while the 

immotile spermatozoa showed means of 81.0, 93.4, 88.8, 89.3 and 91.7 % corresponding 

to the doses at the 9.35, 18.75. 37.50, 75.00 and 150.00 mgkg
-1

 of TiO2 NPs, respectively. 

In addition, mice treated with ZnO NPs (Figure 4.138) for 35 days exhibited a significant 

(p < 0.001) reduction in the percentage means of the motile spermatozoa in comparison 

with the mice treated with distilled water. In contrast, a significant (p < 0.001) increase in 

the immotile spermatozoa was induced at tested doses in the mice treated with ZnO NPs in 

comparison with those treated with distilled water. The rapidly progressive motile showed 

means of 7.4, 7.4, 6.9 and 11.4 %; the slow progressive spermatozoa showed means of 

0.6, 0.9, 0.5 and 0.6 %; the non-progressive spermatozoa showed means of 10.3, 9.8, 12.7 

and 10.9 % while the immotile spermatozoa showed means of 81.8, 82.1, 80.1 and 77.3 % 

corresponding to the doses at the 9.38, 18.75, 37.50 and 75.00 mgkg
-1

 of ZnO NPs 

respectively.  

Similarly, mice treated with the mixture of NPs (Figure 4.139) exhibited a significant (p< 

0.001) reduction in the percentage means of the motile spermatozoa in comparison with 

the mice treated with distilled water. The rapidly progressive motile spermatozoa showed 

means of 8.1, 8.4, 7.6, 5.8 and 7.6%; the slow progressive motile spermatozoa showed 

means of 0.8, 0.4, 1.0, 0.6 and 0.6%; the non-progressive motile spermatozoa showed 
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means of 8.2, 8.9, 9.2, 9.8 and 8.7% while the immotile spermatozoa showed means of 

82.9, 82.4, 82.3, 83.8 and 83.2% corresponding to the doses at the 9.38, 18.75, 37.50, 

75.00 and 150.00 mgkg
-1

 of their mixture respectively. 

The epididymal sperm count of mice treated with TiO2, ZnO NPs and their mixture is 

presented in Figure 4. 140. A significant (p < 0.001) decrease in the sperm count was 

revealed in the cauda epididymis of mice treated with TiO2, ZnO NPs and their mixture at 

tested doses respectively in comparison with those treated with distilled water. A 1.6-, 2.4-

, 3.1-, 4.0- and 4.0- fold decrease of epididymal sperm count for TiO2 NPs; 2.2-, 2.1-, 6.4- 

and 5.8 fold decrease of epididymal sperm count for ZnO NPs; 2.8-, 2.3-, 3.0-, 11.2- and 

2.8-fold decrease of epididymal sperm count for their mixture corresponding to doses at 

9.38, 18.75, 37.50, 75.00 and 150.00 mgkg
-1

 were observed. 

The frequency of abnormal spermatozoa in the cauda epididymis of the mice treated with 

TiO2, ZnO NPs and their mixture are presented in Figure 4.141. At the 35- day exposure 

period, the frequency of sperm abnormalities in the cauda epididymis of the treated mice 

showed a significant (p < 0.001) increase only at the 75.00 and 150.00 mgkg
-1

 of TiO2 

NPs; only at the 18.75 and 37.50 mgkg
-1

 of ZnO NPs; and at tested doses of their mixture 

in comparison with the mice treated with distilled water. The frequencies of sperm 

abnormalities at the tested doses of TiO2 NPs were higher than distilled water by a 1.3-, 

2.1-, 2.6-, 5.9- and 8.0 fold increase; a 2.6- and 1.9- fold increase for ZnO NPs; and their 

combination by a 12.1-, 8.1-, 5.3-, 4.6- and 6.3 fold increase corresponding to the doses at 

9.38, 18.75, 37.50, 75.00 and 150.00 mgkg
-1

.  

The order of frequency of abnormal spermatozoa (Figures 4.142 - 4.149) in the cauda 

epididymis of the mice treated with TiO2 NPs was the spermatozoa with no hook > short 

hook > wrong angled hook > amorphous head > banana shape head > pin head > knobbed 

> wrong tail attachment > folded spermatozoa > long and sickled hook > double tails > 

abnormal mid piece > double heads. Other abnormalities observed (p > 0.05) included the 

pin head and triple tails, massive head and double hooks. Similarly, the order of frequency 

of abnormal spermatozoa in the cauda epididymis of the mice treated with ZnO NPs was 

the spermatozoa with amorphous head, followed in a descending order the pin head > no 

hook > folded spermatozoa > short hook > wrong angled hook > banana > knobbed head 
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> long and sickled > wrong tail attachment > abnormal mid piece > double tails. Other 

abnormalities observed (p > 0.05) included double tails and amorphous head, pin head and 

double tails, amorphous head and triple tails, amorphous head and double tails, massive 

head and pin head and triple tails. Finally, the mixture of the NPs administered to mice 

induced abnormal spermatozoa in the following order of frequency: amorphous head > pin 

head > no hook > wrong angle hook > knobbed head > short hook > wrong tail attachment 

> folded > banana head > double tails > long and sickled hook > abnormal mid piece > 

double heads. Other spermatozoa abnormalities (p > 0.05) included the massive head and 

double hook (Figure 4.142). 

The interaction factor (IF) for the frequency of sperm count and sperm abnormality are 

presented in Table 4.16. A synergistic effect between TiO2 NPs and ZnO NPs was 

observed in the sperm count and abnormalities at all doses except at the 75.00 mg/kg for 

the sperm abnormalities that showed antagonism. 
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Table 4. 14: Percentage net bodyweights of mice treated with titanium dioxide, zinc 

oxide nanoparticles and their mixture after 35 days exposure period 

TiO2 NPs Week 1 Week 2 Week 3 Week 4 Week 5 

Doses 

(mgkg
-1

) 

     

NC 2.03 ± 0.36 3.57 ± 0.97 7.73 ± 0.88 -7.43 ±2.37 1.09 ± 1.44 

9.38 3.23 ± 4.02 -1.80 ± 4.41 3.12 ± 2.47 0.28 ± 2.74 2.51 ± 1.40 

18.75 -1.49 ± 0.82 -0.56 ± 0.37 -0.96 ± 0.56
a
 -0.12 ± 0.66 -7.54 ± 0.45

b
 

37.50 12.42 ± 1.53
b
 5.72 ± 0.58 5.97 ± 0.99 -3.37 ± 2.90 -0.52 ± 1.30 

75.00 1.18 ± 2.18 -13.77 ± 1.16
c
 24.84 ± 4.44

c
 -2.46 ± 2.09 11.43 ± 1.86

b
 

150.00 -2.02 ± 1.24 -5.55 ± 1.73
a
 0.67 ± 0.97 -12.51 ± 1.80 22.72 ± 3.44

c
 

CYP -2.73 ± 0.75 0.73 ± 0.21 10.67 ± 1.31 1.53 ± 2.97 1.58 ± 0.86 

ZnO NPs 

Doses 

(mgkg
-1

) 

9.38 -3.90 ± 1.48 7.98 ± 0.72 -12.57 ± 2.00
c
 13.58 ± 2.37

c
 -0.63 ± 1.82 

18.75 -13.82 ± 0.95
c
 3.60 ± 2.17 16.80 ± 3.53 -3.92 ± 1.02 8.79 ± 1.03

b
 

37.50 -5.71 ± 4.99 20.68 ± 13.72 -8.17 ± 4.67
b
 8.71 ± 3.72

c
 -0.43 ± 1.47 

75.00 -3.92 ± 3.08 9.34 ± 3.01 7.92 ± 4.09 -0.68± 0.64 -0.33 ± 1.26 

CYP -2.73 ± 0.75 0.73 ± 0.21 10.67 ± 1.31 1.53 ±2.97 1.58 ± 0.85 

Mixture 

Doses 

(mgkg
-1

) 

9.38 -2.02 ± 3.42 0.90 ± 2.43 -0.04 ± 1.55
b
 -16.51 ± 0.62

b
 16.49 ± 2.63

c
 

18.75 9.62 ± 2.06 9.39 ± 0.98
a
 1.45 ± 0.72

b
 -3.42 ± 0.77 -7.23 ± 1.39

b
 

37.50 8.94 ± 2.37 4.84 ± 1.37 4.99 ± 2.01 2.34 ± 1.20
b
 11.17 ± 1.12

b
 

75.00 -4.72 ± 3.88 -4.41 ± 1.32
b
 3.31 ± 1.48 -2.46 ± 0.97 -1.69 ± 1.81 

150.00 -7.87 ± 5.93 -3.37 ± 0.91
b
 3.50 ± 1.19 -9.60 ± 0.97

b
 10.34 ± 1.27

b
 

CYP -2.73 ± 0.75 0.73 ± 0.21 10.67 ± 1.31 1.53 ± 2.97 1.58 ± 0.85 

Data represent Mean (n=5) ± SE. 
a 
p < 0.05, 

b 
p < 0.01 and 

c 
p < 0.001 for the comparison 

between the treatment groups and the negative control (NC) = distilled water; CYP = 

cyclophosphamide (positive control).   
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Figure 4. 135: Mouse showing agglomerates of TiO2 and ZnO NPs in the testes after 35 

days exposure (A). Mouse treated with ZnO NPs showing a tumour in the testicular region 

(B). The histopathology of the tumour in (B) revealed severely necrotic, deeply 

eosinophilic with basophilic debris.  Likewise, there were numerous degenerate 

neutrophils, with dense fibrous connective tissue invaded by different inflammatory cells 

(macrophages, lymphocytes) (C) Magnification: 400X. 
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Table 4. 15: Absolute and relative testicular weights of mice treated with titanium 

dioxide, zinc oxide nanoparticles and their mixture at 35- day exposure period 

Data represent Mean (n=5) ± SE for the comparison between the treatment groups and the 

negative control (NC) = distilled water; CYP = cyclophosphamide (positive control).   

Doses (mgkg
-1

) Absolute 

Testicular weight (g) 

Relative 

Testicular weight (%) 

TiO2 NPs 

NC 0.18 ± 0.01 0.61 ± 0.04 

9.38 0.18 ± 0.14 0.60 ± 0.02 

18.75 0.19 ± 0.01 0.67 ± 0.03 

37.50 0.17 ± 0.00 0.53 ± 0.01 

75.00 0.18 ± 0.00 0.54 ± 0.02 

150.00 0.17 ± 0.01 0.55 ± 0.02 

CYP 0.17 ± 0.01 0.54 ± 0.02 

ZnO NPs 

NC 0.18 ± 0.01 0.61 ± 0.04 

9.38 0.18 ± 0.01 0.61 ± 0.06 

18.75 0.18 ± 0.02 0.54 ± 0.04 

37.50 0.20 ± 0.02 0.66 ± 0.05 

75.00 0.19 ± 0.01 0.57 ±0.06 

150.00 Mortality (100%) Mortality (100%) 

CYP 0.17 ± 0.01 0.54 ± 0.02 

Mixture 

NC 0.18 ± 0.01 0.61 ± 0.04 

9.38 0.16 ± 0.01 0.51 ± 0.03 

18.75 0.17 ± 0.00 0.63 ± 0.05 

37.50 0.17 ± 0.00 0.66 ± 0.04 

75.00 0.17 ± 0.02 0.63 ± 0.05 

150.00 0.17 ± 0.02 0.59 ± 0.05 

CYP 0.17 ± 0.01 0.54 ± 0.02 
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Figure 4. 136: Sperm motility in the cauda epididymis of mice treated with TiO2 NPs 

after 35 days.  

Data represent Mean (n=5) ± SE. ** p < 0.01 and *** p < 0.001 in comparison with the 

mice expose to distilled water. Negative control (NC) = distilled water; CYP 

=cyclophosphamide (positive control).   

 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

291 

 

 

 

N
C

9.
38

18
.7

5

37
.5

0

75
.0

0
C

Y
P

0

20

40

60

80

100

Rapid Progressive
Slow Progressive

Non Progressive
Immotile

*** *** ***
***

***
* ** **

*** ***
***

***

***

ZnO Nanoparticles (mg/kg)

S
p

e
rm

 m
o

ti
li

ty
 (

%
)

 

Figure 4. 137: Sperm motility in the cauda epididymis of mice treated with ZnO NPs after 

35 days.  

Data represent Mean (n=5) ± SE. * p < 0.05, ** p < 0.01 and *** p < 0.001 in comparison 

with the mice treated with distilled water. Negative control (NC) = distilled water; CYP 

=cyclophosphamide (positive control).   
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Figure 4. 138: Sperm motility in the cauda epididymis of mice treated with TiO2 and ZnO 

NPs after 35 day.  

Data represent Mean (n=5) ± SE. * p < 0.05 and *** p < 0.001 in comparison with the 

mice treated with distilled water. Negative control (NC) = distilled water; CYP 

=cyclophosphamide (positive control).   
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Figure 4. 139: Epididymal sperm count in the cauda epididymis of mice treated with 

TiO2, ZnO NPs and TiO2 and ZnO NPs after 35 days.  

Data are represented in Mean ± SEM (n=5); ** p < 0.01 and *** p < 0.01 in comparison 

with the mice treated with distilled water. Negative control (NC) = distilled water; CYP = 

cyclophosphamide (positive control).   

 

 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

294 

 

 

 

N
C

9.
38

18
.7

5

37
.5

0

75
.0

0

15
0.

00
C

Y
P

0

20

40

60

80

TiO2 NPs

ZnO NPs

TiO2 + ZnO NPs

***

***

***

***

***

**

**

***

Concentrations (mg/kg)

F
re

q
u

e
n

cy
 (

%
) 

o
f 

sp
e

rm
 a

b
n

o
rm

a
li

ty

**

 

Figure 4. 140: Frequency of the sperm abnormality in the cauda epididymis of mice 

treated with TiO2, ZnO NPs and TiO2 and ZnO NPs after 35 days.  

Data represent Mean (n=5) ± SE. * p < 0.05, ** p< 0.01 and *** p < 0.001 in comparison 

with the mice treated with distilled water (NC) = distilled water; CYP = 

cyclophosphamide (positive control). 
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Figure 4. 141: Frequency of abnormal spermatozoa in mice treated with TiO2, ZnO NPs 

and TiO2 and ZnO NPs.  

WT: wrong tail attachment; BAN: banana; NH: no hook; WA: wrong angled hook; SH: 

short hook; KH: knobbed head; AM: Amorphous head; AMP: abnormal mid piece; LS: 

long and sickled hook; FOL: folded; DH: double heads; PH: pin head; and DT: double 

tails. 

 

 

 

0

50

100

150

200

250

300

350

WT BAN NH WA SH KH AM AMP LS FOL DH PH DT

F
re

q
u

en
cy

 

Abnormal Spermatozoa 

TiO2 NPs ZnO NPs TiO2 + ZnO NPs



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

296 

 

 

 

Figure 4. 142: Normal spermatozoon from a mouse treated with distilled water, having its 

head with the hook (almost 90
o
) and tail rightly attached to the mid piece (A). 

Spermatozoon having a pin head with triple tails from mouse treated with 18.75 mgkg
-1

 of 

ZnO NPs (B); single tail from mouse treated with 9.38 mgkg
-1

 of their mixture (C); and 

double tails from mouse treated with 150.00 mgkg
-1

 of TiO2 NPs (D). Magnification: 

1000X 
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Figure 4. 143: Spermatozoa with abnormal mid-pieces from mouse treated with 18.75 

mgkg
-1

 of ZnO NPs (A-B); spermatozoon with abnormal mid piece and double tails from 

mouse treated with 150.00 mgkg
-1

 of their mixture (C); and no hook from mouse treated 

with 150.00 mgkg
-1

 of TiO2 NPs (D). Magnification: 1000X 
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Figure 4. 144: Folded spermatozoa from mouse treated with 75.00 mgkg
-1

 of their 

mixture (A – C); 150.00 mgkg
-1

 of TiO2 NPs (D) and 18.75 mgkg
-1 

of ZnO NPs (E). 

Magnification: 1000X. 
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Figure 4. 145: Spermatozoa with amorphous heads from mouse treated with 150.00 mgkg
-1

 of TiO2 NPs (A – B); mouse treated with 

37.50 mgkg
-1

 of ZnO NPs (C – D); mouse treated with 9.38 mgkg
-1

 (E – F); and 150.00 mgkg
-1

 of their mixture (G – H) Magnification: 

1000X. 



IB
ADAN U

NIV
ERSITY LI

BRARY  

 

300 

 

 

 

Figure 4. 146: Spermatozoa with wrong tail attachments from mouse treated with 37.50 mgkg
-1

 of their mixture (A – B); 

Spermatozoon with short hook from mouse treated with 75.00 mgkg
-1

 of TiO2 NPs (C); Spermatozoa with banana heads (D – E) and 

no hook (F) from mouse treated with 9.38 mgkg
-1

of their mixture. Magnification: 1000X. 
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Figure 4. 147: Spermatozoa with knobbed hook from mouse treated with 150.00 mgkg
-1

 of TiO2 NPs (A – C); Spermatozoon with 

triple heads and fused tail from mouse treated with 18.75 mgkg
-1

 of ZnO NPs (D); Spermatozoon with sickle-like hook from mouse 

treated with 37.50 mgkg
-1

 of ZnO NPs (E); Spermatozoa with wrong angled hook from mouse treated with 9.38 mgkg
-1

 of their 

mixture  (F – H); and Spermatozoon with a massive head from mouse treated with 37.50 mgkg
-1

 of ZnO NPs (I). Magnification: 

1000X. 
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Figure 4. 148: Spermatozoa with double hooks (A) and double heads (B) from mouse treated 

with 150.00 mgkg
-1

 of TiO2 NPs; double tails (C) and double heads and fused mid pieces (D) 

form mouse treated with 18.75 mgkg
-1 

of their mixture. Magnification: 1000X. 
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Table 4. 16: Interaction factor (IF) of titanium dioxide and zinc oxide nanoparticles using 

the sperm count and abnormalities 

 

Conc.   

(mgkg
-1

) 

Sperm count  

IF ± SEIF 

Sperm abnormalities 

IF ± SEIF 

9.38 3.05 ± 3.15 64.69 ± 6.47 

18.75 6.37 ± 2.58 25.78 ± 7.89 

37.50 10.10 ± 2.21 10.41 ± 2.96 

75.00 7.86 ± 1.82 -6.58 ± 1.27 
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4.5.3 Serum reproductive hormone in mice treated with titanium dioxide, zinc 

oxide nanoparticles and their mixture after 35 days 

The serum concentrations of LH, FSH and testosterone in mice treated with TiO2, ZnO 

NPs and their mixture for 35 days are presented in Figures 4.150 – 4.152. TiO2, ZnO NPs 

and their mixture induced a significant (p < 0.05) reduction in the serum concentrations of 

LH in the mice. The serum concentrations of LH in the mice treated with 9.38, 18.75, 

37.50, 75.00 and 150.00 mgkg
-1

 of TiO2, ZnO NPs and their mixture were lower than 

those treated with distilled water by a 11.0-, 3.6-, 1.9-, 4.3- and 2.4- fold decrease; a 2.6-, 

2.9-, 1.5- and 6.2- fold decrease; a 2.2-, 3.4-, 4.1, 4.5- and 4.0 fold decrease respectively 

(Figure 4.150).  

The serum concentrations of FSH in the mice treated with TiO2 NPs showed a significant 

(p < 0.01) increase at the 75.00 and 150.00 mgkg
-1

 in comparison with the mice treated 

with distilled water. In contrast, mice treated with ZnO NPs and their mixture respectively 

showed no significant (p > 0.05) increase at the doses of 9.38, 18.75, 37.50, 75.00 and 

150.00 mgkg
-1

 in comparison with those treated with distilled water (Figures 4.151). The 

concentrations of FSH in the treated mice were higher by a 1.5-, 1.6-, 1.9-, 4.1- and 3.0- 

fold increase; a 1.4-, 1.6-, 0.6-, and 0.5- fold increase; and 1.5-, 1.3-, 1.6-, 1.4- and 1.6- 

fold increase corresponding to the doses of the 9.38, 18.75, 37.50, 75.00 and 150.00 mgkg
-

1
 of TiO2, ZnO NPs and their mixture.  

The serum testosterone concentration in the treated mice showed a dose-dependent 

increase at 9.38, 18.75, 37.50, 75.00 and 150.00 mgkg
-1

 but was significant (p < 0.001) 

only at the 150.00 mgkg
-1

 of TiO2 NPs in comparison with the mice treated with distilled 

water. ZnO NPs treated mice showed a significant (p < 0.001) increase in the serum 

testosterone at tested doses in comparison with the mice treated with distilled water. 

Likewise, the mixture of the NPs was able to induce a significant (p < 0.05) increase in the 

serum testosterone concentrations at doses of 9.38, 18.75 and 37.50 mgkg
-1

 in comparison 

with those treated with distilled water. The serum concentrations of Testosterone in the 

mice treated with 9.38, 18.75, 37.50, 75.00 and 150.00 mgkg
-1

 of TiO2, ZnO NPs and their 

mixture were higher than those treated with distilled water by a 1.0-, 1.3-, 1.4-, 1.5- and 
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2.5- fold increase; a 2.3-, 2.3-, 2.0- and 2.6- fold decrease; a 2.1-, 2.0-, 1.9, 1.4- and 1.3 

fold increase respectively (Figure 4.152) 

4.5.4 Histopathological alterations induced by titanium dioxide, zinc oxide 

nanoparticles and their mixture in the testis of mice 

The histopathology of the testes of the mice treated with distilled water showed numerous 

uniformly-sized seminiferous tubules which were closely packed with regular outlines, 

and contained numerous spermatogenic cells with spermatocytes and round spermatids. 

However, severe depletion of spermatogenic cells with irregular outlines, necrosis of 

spermatogenic cells, distended and void appearance of seminiferous tubules, loss of basal 

germinal epithelial cells, increase in luminal width, exfoliation of germinal cells from the 

basal compartment into the luminal compartment and congestion of testicular interstitial 

blood vessels were present in testes of mice treated with various doses of TiO2, ZnO NPs 

and their mixture (Figure 4.153). 
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Figure 4. 149: Serum LH concentration in mice treated with TiO2, ZnO NPs and TiO2 and 

ZnO NPs at 35 days.  

Data represent Mean ± SEM (n=4); * p < 0.05, ** p < 0.01 and *** p < 0.001 in 

comparison with the mice treated with distilled water. Negative control (NC) = distilled 

water; CYP = cyclophosphamide (positive control). 
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Figure 4. 150: Serum FSH concentration in mice induced treated with TiO2, ZnO NPs and 

TiO2 and ZnO NPs at 35 days.  

Data represent Mean ± SEM (n=4); ** p < 0.01 and *** p < 0.001 in comparison with the 

mice treated with distilled water (NC) = distilled water; CYP = cyclophosphamide 

(positive control). 
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Figure 4. 151: Serum Testosterone concentration in mice treated with TiO2, ZnO NPs and 

TiO2 and ZnO NPs at 35 days.  

Data represent Mean ± SEM (n=4); * p < 0.05, ** p < 0.01 and *** p < 0.001 in 

comparison with the mice treated with distilled water (NC) = distilled water; CYP = 

cyclophosphamide (positive control). 
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Figure 4. 152: Sections of the testes of treated mice. Mouse treated with distilled water 

shows closely packed seminiferous tubules with reduced lumen (black star) and high 

germinal epithelium (double end arrows) (A); 37.50 mgkg
-1

 of TiO2 NPs (B); 75.00 mgkg
-

1
 of TiO2 NPs (C); and 37.50 mgkg

-1
 of their mixture (D). Lesions observed include: loss 

of basal germinal epithelial cell (yellow arrow), decreased germinal epithelium (double 

ended arrow), increased luminal width (red arrow), congestion of testicular interstitial 

blood vessels (blue arrow), necrotic spermatogenic cells (black arrow) and severe loss and 

necrosis of basal germinal epithelial cells.  
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CHAPTER FIVE 

DISCUSSION 

The industrial and biomedical applications of nanoparticles are tremendously increasing 

and consequently leading to persistent increase in human exposure via oral, dermal, 

inhalation and injection (Pourhamzeh et al., 2016). Therefore, it has become imperative 

and of a growing concern to evaluate the potential of nanoparticles to bioaccumulate and 

cause undesirable health effects (Ferreira et al., 2015). So far, manufacturers, researchers 

and other end users are highly exposed to NPs either intentionally or unintentionally 

(Reshma and Mohanan, 2016). This has led to extensive investigation of various NPs on 

the respiratory system (Liang et al., 2009) and gastrointestinal tracts (Strojny et al., 2015; 

Patlolla et al., 2016; Bollu et al., 2016b; Srivastav et al., 2016), through intravenous 

(Gaharwar and Paulraj, 2015; Silva et al., 2017) and intraperitoneal exposure (Abdelhalim 

et al., 2015; Ferreira et al., 2015; Afifi et al., 2015). Thus, the present study focused on the 

exposure of TiO2, ZnO NPs and their mixture on the somatic and germ cells. Based on our 

knowledge, this is likely to be the first major study of evaluating in vivo genotoxicity, 

systemic toxicity and possible mechanism of toxicity in mice treated with their mixture of 

TiO2 and ZnO NPs. 

The administration of NPs intraperitoneally allows rapid testing of their toxicity within a 

short period of time in the test animal (Silva et al., 2017). The peritoneal cavity is rich in 

blood vessels and thus increases the absorption of the tested material, mimicking the 

intravenous administration (Silva et al., 2017). In addition, this route of administration is 

usually employed to test animals and ensure that the accurate amount of the test material is 

adequately treated. Most importantly, NPs are treated via this exposure route because of 

the colloidal suspension that is formed in distilled water (Strojny et al., 2015).
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5.1 Physicochemical characterisation of titanium dioxide, zinc oxide 

nanoparticles and their mixture using transmission electron microscopy and 

dynamic light scattering 

One of the crucial steps in nanotoxicology studies is the physicochemical characterisation 

of NPs (Akhtar et al., 2012; Srivastav et al., 2016; Silva et al., 2017). The properties and 

the biological functions of NPs are highly dependent on the size, shape, surface area, 

surface charge and crystallinity (Shukla et al., 2014; Kansara et al., 2015; Srivastav et al., 

2016). TiO2, ZnO NPs and their mixture were characterised using two different methods: 

TEM and DLS. The TEM showed that TiO2 NPs were spherical with a narrow distribution  

(Catalan et al., 2012; Zhang et al., 2013; Demir et al., 2015; Uboldi et al., 2016) while 

ZnO NPs were irregular with a wider distribution (Cho et al., 2013; Srivastav et al., 2016). 

The internalisation of NPs into the cell is determined by their shape (Magdolenova et al., 

2014; Setyawati et al., 2016). It may be assumed that the spherical shape of TiO2 NPs may 

have induced a higher diffusion coefficient, thus, penetrating faster while the irregular 

shape of ZnO NPs may have resulted into a lower diffusion coefficient, thereby 

prolonging penetration into the cells. 

The size distribution, surface charge and polydispersity index were obtained by DLS. The 

DLS gives the hydrodynamic diameter by measuring the size distribution and Brownian 

motion of clustered particles (Akhtar et al., 2012; Sharma et al., 2012b; Shukla et al., 

2014; Kansara et al., 2015). The larger hydrodynamic sizes of TiO2, ZnO NPs and their 

mixture in sterile MilliQ water in comparison to their primary sizes provided by the 

manufacturer may have been due to the tendency of both NPs and their mixture to have 

agglomerated (Setyawati et al., 2016). The divalent ion and low zeta potential values may 

be factors that induced aggregation of TiO2 and ZnO NPs in the sterile MilliQ water 

(Srivastav et al., 2016). These results are supported by the findings of Akhtar et al., 2012; 

Sharma et al., 2012b and Shukla et al., 2014.  

The surface charge of NPs strongly determines the tendency of NPs to aggregate or 

disperse. The charge accumulation around the surface of NPs in a solution, given them 

their stability in a colloidal system, is defined as the zeta potential (Pasupuleti et al., 
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2012a). The zeta potential values suggest that ZnO NPs were fairly stable while TiO2 NPs 

and their mixture were less stable in the MilliQ water.  

5.2 Acute toxicity induced by titanium dioxide, zinc oxide nanoparticles and their 

mixture in mice 

The determination of the doses of TiO2, ZnO NPs and their mixture was carried out using 

acute toxicity, which could induce mortality within 24 hours vis a vis displaying clinical 

signs of toxicity. The individual responses of the mice to the doses of TiO2, ZnO NPs and 

their mixture observed in the exhibition of the various clinical signs of toxicity may be due 

to their immune systems that acted as defense mechanisms against the NPs. Mice treated 

with 150 and 300 mgkg
-1

 of TiO2 NPs did not show any mortality or abnormal changes 

within 24 hours. This finding supports Li et al. (2010c) where mice were intraperitoneally 

treated for 14 days consecutively with TiO2 NPs (5 nm; 5 – 150 mgkg
-1

), and no death was 

recorded; feeding and drinking of treated mice were normal. Also, Silva et al. (2017) 

treated mice intraperitoneally with TiO2 NPs (100 nm; 2 mgkg
-1

) for 10 days and observed 

no death and abnormal behaviour. However, the body weight of the treated mice was 

significantly reduced. In contrast, mice treated with 150 and 300 mgkg
-1

 of ZnO NPs 

showed severe toxicity and mortality within 24 hours. Our result is also in consonance 

with Esmaeillou et al. (2013) where 20 – 30 nm of ZnO NPs (333 mgkg
-1

) was 

administered via oral gavage to mice. The researchers observed loss of appetite, severe 

lethargy and vomiting. On the third day after administration, one mouse died. The 

induction of 25 nm, 80 nm and 155 nm of ZnO NPs (5 g/kg) to ICR mice via single oral 

exposure showed that some female mice treated with 155 nm, 80 nm and 25 nm were 

inactive, anorectic and spiritless, and died within 2 days (Wang et al., 2007). Conversely, 

Li et al. (2012) treated ICR mice (males and females) to 50 nm of ZnO NPs (1.25, 2.5 and 

5 g/kg bw) or > 100 nm ZnO MPs (1.25, 2.5 and 5 g/kg bw) orally for 14 days. All mice 

survived throughout the testing period without exhibiting any abnormalities. Likewise, 

Baek et al. (2012) treated rats for 14 days to 20 nm and 70 nm of ZnO NPs (50 mgkg
-1

, 

300 mgkg
-1

 and 2000 mgkg
-1

). The rats treated 50 and 300 mgkg
-1

 showed no mortality, 

body weight changes or abnormal behaviour when in comparison with the mice treated 
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with distilled water. Contrastingly, diarrhoea and slight body weight reduction were 

revealed in some rats that received 2000 mgkg
-1

. 

The discrepancy between the results obtained in comparison with others is most likely 

attributed to their solubility properties. ZnO NPs are soluble in acidic environments (such 

as the stomach, pH 5.5), thereby dissociating to produce Zn
2+

 ions that absorb into the 

circulatory system, thereby contributing to their toxicity (Cho et al., 2013; Srivastav et al., 

2016). In contrast, TiO2 NPs are highly insoluble (Falck et al., 2009) and stable (Choi et 

al., 2013), which may make them less toxic than ZnO NPs. The exposure route (oral, 

intraperitoneal, and intravenous), experimental animals (rats, mice, strain, and gender), 

exposure dose, duration, solvent used in dissolving the NPs and preparation of the NPs 

may all be contributing factors to the different results obtained. 

5.3 Cytogenotoxic effects of titanium dioxide, zinc oxide nanoparticles and their 

mixture in the bone marrow cells of mice 

To emphasise the role of genetic damage in human health, genotoxicity of TiO2, ZnO NPs 

and their mixture were evaluated. The MN assay is one of the genotoxicity screening tests 

for chemicals, which detects chromatid and chromosome breakage (clastogenicity), and 

chromosome lagging and loss (aneugenicity) (Savage, 1988). The frequency of 

micronuclei in the PCE, as evaluated by the MN assay, increased in a dose-dependent 

manner in mice treated with TiO2 NPs for 5 days. The induction of MN in mice treated 

with TiO2 NPs is an indication that they have clastogenic and aneugenic effects on the 

bone marrow cells.  

The MN induction by TiO2 NPs may be due to their physicochemical properties of small 

primary particle size and large surface area to mass ratio. Nanoparticles with a small size 

and large surface area to mass ratio have larger amount of atoms on their surfaces, leading 

to high reactivity potential with biological materials (Magdolenova et al., 2012; 2014). In 

order words, TiO2 NPs owing to their small size may have penetrated the cell membrane 

and the nuclear pore complex where they probably interacted directly with the DNA or 

proteins involved in spindle formation, cell division and chromosome segregation 

(AshaRani et al., 2009; Barillet et al., 2010).  
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The MN induction for the 10- day exposure period showed a reduction of micronuclei 

across tested doses in comparison with the 5- day exposure period, indicating a reduction 

of DNA damage with time in the bone marrow cells. This shows that protective pathways 

and DNA repair processes may have occurred (Balasubramanyam et al., 2009b). Previous 

studies have shown that NPs are transported to the blood (Balasubramanyam et al., 2009b) 

and accumulate in the spleen and liver (Singh et al., 2013). The liver, bone marrow and 

spleen, which make up the mononuclear phagocytic system consist of monocytes and 

macrophages, and specialised endothelial cells, which remove and neutralise pathogens 

that enter the body. These cells may have the capacity to take up TiO2 NPs through 

phagocytosis, thereby significantly reducing them over time (Sycheva et al., 2011; Singh 

et al., 2013).   

The non-significant induction of micronuclei in the cells of the bone marrow of mice 

induced by ZnO NPs for 5- and 10- days implies that they may not be genotoxic. The 

effect may be due to the larger particle size, surface area and agglomeration of ZnO NPs. 

ZnO NPs (< 100 nm) used in the study agglomerated excessively in MilliQ water, thereby 

resulting in larger diameter as indicated by the hydrodynamic diameter and polydispersity 

index preventing their penetration in the nuclear membrane. Generally, NPs have the 

tendency to agglomerate in different surrounding media (e.g. distilled water, phosphate 

buffered saline and culture medium among others) due to the Van der Waals‟ forces they 

exhibit at the nanoscale. Agglomeration occurs because of the interaction between the 

surface charge of the NPs and their surrounding medium. However, when agglomeration 

occurs, it may change the physicochemical properties of ZnO NPs (Kumar and Dhawan, 

2013) and reduce the bioavailability and toxicity of ZnO NPs in the bone marrow cells of 

the treated mice. The micronuclei induced by ZnO NPs in the present study may be due to 

their solubility, in comparison with extremely less soluble metal oxide NPs, such as TiO2 

NPs (Cho et al., 2013). In addition, ZnO NPs may also have been retained in the 

cytoplasm of the cell and gain access into the nuclear DNA when the nuclear membrane 

disintegrated during cell division (Magdolenova et al., 2014).  

Similarities have been reported by Li et al. (2012) and Bollu et al. (2016b). However, 

other studies have shown the ability of ZnO NPs to induce genotoxicity (Sharma et al., 
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2012a; Choi et al., 2015, Ghosh et al., 2016). Differences observed may be as a result of 

the preparation and size of ZnO NPs, duration of exposure and the concentrations 

employed. In comparison to the 10-day exposure of TiO2 NPs, no reduction of MN was 

observed for the ZnO NPs exposure condition. This may be due to the persistence of ZnO 

NPs in the circulatory system of the treated mice (Cho et al., 2013). Zinc oxide 

nanoparticles intraperitoneally administered to mice take a longer time to be eliminated 

from the system in comparison to mice orally treated with ZnO NPs (Li et al., 2012). 

The PCE: NCE ratio for any test-treated animal gives the cytotoxicity index as well as the 

rate of cell proliferation (Suzuki et al., 1989; Krishna and Hayashi, 2000). There were 

significantly increased levels of NCE in comparison with PCE in mice treated with TiO2 

NPs during the 5- and 10- day exposure periods. In contrast, percentage PCE: NCE in 

mice treated with ZnO NPs significantly increased only at the highest concentration for 

the 5- day exposure period. This indicates that both NPs have the ability to induce rapid 

proliferation and differentiation of PCE to NCE within the bone marrow resulting to bone 

marrow toxicity, cell depression, aging and reduction of the normal life span 

(Balasubramanyam et al., 2009; Singh et al., 2013; Lozovska et al., 2015). 

TiO2 NPs showed a higher genotoxicity than ZnO NPs. This may be due to the assumption 

that titanium is a transition metal, capable of inducing oxidative stress from DNA 

damaging groups like the hydroxyl radicals produced from hydrogen peroxide and 

superoxide anions, which are cellular oxygen metabolic products (Manke et al., 2013). 

Also, it may be due to the penetration of TiO2 NPs via the mitochondrial membrane by 

passive diffusion (Zhang et al., 2012), leading to ROS production, opening of the 

transition pores and the loss of the mitochondrial membrane potential (MMP) (Manke et 

al., 2013; Magdolenova et al., 2014; Dobrzynska et al., 2014). 

The extensive usage of TiO2 and ZnO NPs individually can increase the risk of their co-

existence causing health risks to the environment and humans. Their mixture showed a 

reduction of MNPCE below the negative control and an antagonistic effect during the 5- 

day exposure period. The antagonistic effect may be due to the agglomeration of their 

mixture in MilliQ water as revealed by the polydispersity index preventing their 

immediate genotoxic effect to the bone marrow cells. The MNPCE frequency and 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

316 

 

percentage PCE: NCE during the 10- and 5- day exposure periods respectively were 

higher at lower dose (18.75 mgkg
-1

), with a gradual decline with increasing doses. This 

may have been due to the number of particles present in distilled water. Lower doses tend 

to have lower particle number, thereby resulting into less agglomeration while higher 

doses tend to have higher particle number resulting into increased agglomeration. 

Kurzawa-Zegota et al. (2017) stated that increase in agglomeration may most likely be 

due to the increase in the chances of interparticle interaction as doses increase. The degree 

of agglomeration occurs as a result of the higher chances of particles interacting due to the 

surface charges. 

The synergistic effect of the mixture of TiO2 and ZnO NPs resulting in an increase in the 

MNPCE during the 10- day exposure period is an indication that the mixture is more 

genotoxic through the induction of more micronuclei than the individual forms of TiO2 or 

ZnO NPs. The synergism observed may be explained by the following: Firstly, the 

behaviour of NPs is governed by the unique characteristic of diffusion; and as the particle 

size decreases, with increase in surface area, their diffusion increases making them behave 

similar to a gas (Kumar and Dhawan, 2013). TiO2 NPs used in this study may have a high 

diffusion coefficient due to the large surface area, thereby migrating faster into the cell 

membrane first while ZnO NPs may have a smaller diffusion coefficient migrating with 

time, and working synergistically with TiO2 NPs (Kumar and Dhawan, 2013).  

Secondly, it is well known that both NPs have photocatalytic properties; hence they are 

used in the adsorption and degradation of other environmental pollutants. With the large 

surface area, TiO2 NPs may have served as a platform for an effective adsorption rate to 

take up large amounts of ZnO NPs through electrostatic interaction and cross the cell 

membrane thereby increasing the intracellular concentration that optimised the synergistic 

interaction increasing DNA damage (Liu et al., 2013). Thirdly, exposure to their mixture 

may indicate enhanced accumulation of TiO2 and ZnO NPs, which might depend on the 

bad excretion capability of the mice. Lastly, the molar ratio (1:1) of their mixture has been 

shown to be the highest photocatalytic activity in degrading and adsorbing pollutants by 

producing hydroxyl radicals (Jiang et al., 2008). Their mixture may have increased the 

concentration of hydroxyl radicals intracellularly. It is obvious that when excess hydroxyl 
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radicals are produced intracellularly, they interact with lipids causing lipid peroxidation, 

which can in turn, damage DNA, proteins and other lipids (Jiang et al., 2008).  

It hypothesised that TiO2 NPs can cross biological barriers without a specific transporter 

or through paracellular transport and be distributed across the cell membrane and 

cytoplasm. This suggests that ZnO NPs adsorbed into TiO2 NPs could enter the bone 

marrow cells. Once in the nucleus, ZnO NPs may dissociate to Zn
2+

 and induce DNA 

damage. Moreover, adsorption of ZnO NPs by TiO2 NPs, combined with the capability of 

TiO2 NPs to penetrate the membranes of cells is critical to increasing intracellular 

concentration of both ZnO and TiO2 NPs (Zheng et al., 2012). Overall, TiO2, ZnO NPs 

and their mixture were able to induce both clastogenic (chromosome breakage) and 

aneugenic effects (inhibition of mitotic spindle) attributed to primary and secondary 

genotoxicity. Clastogenicity of both NPs and their mixture may be due to the continuous 

contact of the NPs with the DNA. The direct or indirect involvement of proteins involved 

in chromosome segregation, and the mitotic spindle components in cell division may have 

a physical interaction with the NPs resulting in aneugenicity (Muller et al., 2008; Patlolla 

et al., 2016). 

The safety of TiO2 and ZnO NPs has been raised through several cytotoxic and genotoxic 

studies as they generate ROS resulting to oxidative stress. ROS has revealed a strong 

relationship between oxidative stress and NPs (Rahman et al., 2002; Osman et al., 2010; 

Akhtar et al., 2012). Accordingly, excessive ROS production may be one of the 

mechanisms through which both NPs and their mixture induced micronucleus, as they can 

react with the cell membrane inducing a breakdown of the membrane lipids resulting into 

lipid peroxidation (Manke et al., 2013), imbalance of intracellular calcium homeostasis 

(Zhang et al., 2012) and alterations in several metabolic pathways. Chromatin 

fragmentation, which is a key feature of apoptosis, can be initiated through the calcium-

dependent endonuclease activation occurring from the imbalance of calcium homeostasis 

(Rahman et al., 2002). Our findings are in accordance with Kang et al. (2008), Trouiller et 

al. (2009), Sycheva et al. (2011), Song et al. (2012), Tavares et al. (2014), Dobrzynska et 

al. (2014) and Demir et al. (2015). In contrast, no genotoxicity was found in studies of 

Sadiq et al. (2012), Lindberg et al. (2012), Li et al. (2012), Ramesh et al. (2014), 
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Browning et al. (2014) and Bollu et al. (2016b). Moreover, the existing results of 

genotoxicity studies of TiO2 and ZnO NPs are conflicting due to the cellular responses, 

which may depend among others on the particle size, degree of agglomeration, doses, and 

preparation method.  

The toxicity of TiO2 NPs and ZnO NPs are well known and their simultaneous presence 

might induce an overlapping effect. From this study, it may be assumed that TiO2 NPs or 

ZnO NPs exhibit a synergistic property regardless of the inorganic compound utilised as a 

mixture with them. This has been indicated through several experimental studies that TiO2 

NPs interacted with lead acetate (Zhang et al., 2010; Du et al., 2012), bisphenol A (Zheng 

et al., 2012), arsenic (Wang et al., 2011), cadmium chloride (Xia et al., 2011), p, p‟ – 

DDT (Shi et al., 2010), and ZnO NPs combined with paclitaxel or cisplatin (Hackenberg 

et al., 2012) to synergistically induce cytogenotoxicity in different cell lines. Furthermore, 

Jiang et al. (2008) showed that the mixture of TiO2 and ZnO NPs in the molar ratio1:1 

decolourised CI Basic Blue 41 dye effectively with time, pH and catalyst amount.  

Morphological changes observed in the bone marrow haemopoietic stem cells across all 

the doses of TiO2, ZnO NPs and their mixture, will be one of the very few studies to report 

cytomorphological characteristics in assessing nanotoxicity. A normal red blood cell has a 

diameter of 8 µm with a central pallor as a result of its biconcavity. However, an abnormal 

red blood cell occurs as a result of its deviation from the normal size, shape and colour. 

Normal red blood cells are referred to as normocytic (normal sized red cells) and 

normochromic (normal staining of red cells seen because of adequate haemoglobinisation) 

(Cheesbrough, 2005). Aetiological processes give rise to different red blood cell 

abnormalities and the interpretation of red blood cell pathology with other laboratory and 

clinical information provide the necessary information on disease diagnosis.  

The microcytic (smaller than normal red cells) hypochromic (pale staining of red cells) red 

blood cells induced by both NPs and their mixture is an indication that they may cause 

chronic anaemia. This may be as a result of the deficiency of haemoglobin synthesis due 

to Fe
2+ 

replacement to either Ti
4+

 or Zn
2+

. Macrocytic (larger than normal cells) 

hyperchromic (excess haemoglobinisation) red cells induced by the NPs implies that they 

may have the capability of altering erythropoiesis and haemoglobin synthesis. This may 
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occur due to folate deficiency, oxidative stress erythropoiesis and impairment of DNA 

synthesis in the bone marrow. In addition, the presence of target cells (codocytes) 

(hypochromic cells with a round pigmentation at the central area) may be an indication of 

the NPs inducing severe liver disease and iron deficiency anaemia. Large amount of 

blebbing of the cytoplasmic membrane of cells were mostly observed in the two higher 

doses of both NPs and their mixture. Blebbing of the cytoplasmic membrane is one of the 

stages through which apoptosis occur. This may occur through the damage of the 

mitochondrial membrane potential (MMP) resulting in the destruction of intracellular 

signal transduction and release of proteins that will activate apoptosis (Rahman et al., 

2002). Lozovska et al. (2015) showed that cells with increased MN frequency have a fall 

in the MMP.  

5.4 Effects of titanium dioxide, zinc oxide nanoparticles and their mixture on 

organ weights of mice 

One of the most important indicators in toxicology is the organ weight; it reflects the 

impact of a test agent on the metabolism due to the immunological and health status of the 

body (Bailey et al., 2004; Almansour et al., 2015). Generally, both NPs and their mixture 

induced atrophy in the liver, spleen and brain while hypertrophy was induced in the 

kidneys, heart and testes of the treated mice during the 5- and 10- day exposure periods. A 

possible explanation for liver, spleen and brain atrophies induced by the NPs and their 

mixture may be due to the degeneration of the hepatocytes, splenocytes and neurons, 

respectively. Subsequently, kidney enlargement may be due to agglomerated NPs 

blocking the glomeruli and preventing proper filtration. This study is similar to Choi et al. 

(2015) who observed significant reduction in the coefficient of the liver and increase in 

the coefficient of the kidneys in rats intravenously treated with 30 mgkg
-1

 of ZnO NPs 

after 24 hours. Similarly, a reduction which was significant in the relative weights of the 

brain and increased significantly in the kidneys during the 5- day exposure period 

conformed to the study of Liu et al. (2009a).  

In contrast to our results obtained, a significant increase in the liver and slight changes in 

the kidneys and spleen of mice was observed after oral exposure once to TiO2 NPs (25 and 

80 nm) for 2 weeks ( Wang et al., 2007). Also, a significant increase in the coefficients of 
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liver, kidney and spleen after a 14-day exposure were observed by Liu et al. (2009a). 

Similarly, Li et al. (2010c) revealed a considerable gain in the coefficient of spleen of 

female mice treated intraperitoneally with 5 - 150 mgkg
-1

 of TiO2 NPs for 45 consecutive 

days. Silva et al. (2017) revealed a significant reduction in the kidneys and increase in the 

spleen of mice treated intrapritoneally with 2 mgkg
-1

 of TiO2 NPs for 10 days. The 

discrepancy between the present study and previous once might be attributed to the 

variations in sizes of the NPs, doses, and exposure duration and routes. Nonetheless, all 

the studies showed that NPs are able to target the liver, kidneys, spleen and brain 

regardless of the NP type and experimental variations employed. 

5.5 Effects of titanium dioxide, zinc oxide nanoparticles and their mixture on the 

haematological parameters in mice 

As nanoparticles are transported through the circulatory system, they interact directly with 

the blood components (WBC, RBC, dissolved nutrients, bioactive factors, platelets, 

coagulation factors and serum proteins) to induce inflammatory responses and 

haematological changes (Lovric et al., 2005; Choi et al., 2013; Shi et al., 2013; Gaharwar 

and Paulraj, 2015; Setyawati et al., 2015; Silva et al., 2017). An effective and sensitive 

index to the physiological and pathological changes in animals and humans is the 

haematological characteristics (Grissa et al., 2015). Haematological parameters observed 

during the 5- day exposure period showed a decrease in RBC, Hb and PCV count in mice 

treated with TiO2 NPs in comparison with those treated with distilled water. The 

decreased level of RBC, Hb and PCV in blood might be due to the hemolytic condition, 

reduced red cell production and toxicity to the bone marrow induced by TiO2 NPs, 

eventually leading to anaemia. The NPs may have affected heme biosynthesis through 

metal ion exchange as Ti
4+ 

may replace ferric ion utilised in haemoglobin synthesis, 

reducing erythropoiesis and haemoglobin production and increasing the rate of destruction 

of the erythrocytes in the haemopoietic organs (Grissa et al., 2015; Srivastav et al., 2016). 

This is similar to the observations of Grissa et al. (2015) who reported significant 

reduction in RBC, HCT and Hb and a significant increase in MCV, PLT, MPV and WBC 

in rats treated with TiO2 NPs (5 - 12 nm; 50, 100 and 200 mgkg
-1

) orally for 60 days. 
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Similarly, Srivastav et al. (2016) reported decreased levels of RBC, Hb, HCT and platelets 

in rats treated with 2000 mgkg
-1

 of ZnO NPs 48 hours post administration.  

Our study also revealed increased levels of RBC, Hb and PCV after 10- day exposure to 

TiO2 NPs, and also after both 5- and 10- day exposure to ZnO NPs and their mixture. This 

is an indication that both NPs and their mixture induced polycythaemia compared to the 

low levels of RBC for the 5- day exposure period. Reports have shown that dehydration or 

hypoxia may induce elevated RBC, PCV and Hb (Nitsche, 2004). Excessive release of 

erythropoietin due to renal damage may stimulate production of red cells (Cheesbrough, 

2005). This result is in accordance with Wang et al. (2008a) where it was demonstrated 

that 20 nm and 120 nm of ZnO NPs administered to mice induced increased levels of RBC 

and HCT. Furthermore, decreased levels of MCH and MCHC were found in TiO2 NPs 

during both 5- and 10- day exposure periods and 5- day exposure period of both ZnO NPs 

and their mixture, which is associated with mitotic period delay (Cheraghi et al., 2013).  

Previous studies have shown that growth retardation and anaemia resulting from 

deficiencies in copper and iron may be due to excessive dietary zinc in animals (Hein, 

2003). Srivastav et al. (2016) showed that excess ZnO NPs were able to induce copper 

deficiency, in which copper is an essential co-factor for ferrooxidase. Ferroxidase 

reduction leads to the immobilisation of liver iron and iron recycling of the erythrocytes 

by the Kupffer cells (Chen et al., 2006). Also in this study, WBC counts levels were 

significantly decreased during the 10- day exposure period of ZnO NPs and both 5- and 

10- day exposures of the mixture. The decreased WBC counts may be related to the 

immunosuppressive effect of TiO2 and ZnO NPs on pluripotent stem cells in the bone 

marrow (Cheraghi et al., 2013).  

Due to the higher surface area to mass ratio and more influence on the cell membrane, 

TiO2 and ZnO NPs may have influenced the WBC mitochondria and altered their enzyme 

activity. It was also reported by Sriram et al. (2010) that apoptosis occurred through the 

activation of mitochondrial enzyme caspase 3 in lymphoid cancerous cells treated with Ag 

NPs. For this reason, TiO2 and ZnO NPs perhaps may have induced oxidative stress and 

adversely affected the structure and physiology of the cells, oxidative metabolism, fat 

membrane structure and function that may induce red and white blood cells to be 
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destroyed when they pass the reticuloendothelial system of spleen and liver (Iwagami, 

1996; Sharma et al., 2009). 

5.6 Effects of titanium dioxide, zinc oxide nanoparticles and their mixture on the 

biochemical parameters evaluated in mice 

The detoxifying organ in humans is the liver; making it susceptible to NP-induced damage 

(Awasthi et al., 2015; Ferreira et al., 2015; Silva et al., 2017). Assessment of liver 

functions takes into considerations hepatocellular integrity (aminotransferases), formation 

and subsequent free flow of bile (bilirubin and transpeptidase) and protein synthesis 

(albumin and globulin). The most frequently used indicators for hepatocellular injury are 

the alanine aminotransferases (ALT) and aspartate aminotransferase (AST). Their 

activities are rapidly increased when the liver is damaged by any cause, including hepatitis 

or hepatic cirrhosis (Sheth et al., 1998) and inflammatory condition (Pasupuleti et al., 

2012a). The serum AST activity was significantly elevated after both 5- and 10- day 

exposure periods of TiO2, ZnO NPs and their mixture. Subsequently, serum ALT activity 

was significantly elevated after the 5- day exposure period of both NPs and their mixture. 

This may be an indication that both NPs and their mixture altered the hepatocellular 

membrane permeability through ionisation of TiO2 and ZnO NPs possibly resulting into 

liver damage. Our findings agree with Wang et al. (2007), Liu et al. (2009a), Pasupuleti et 

al. (2012a), Li et al. (2012), Sharma et al. (2012a), Singh et al. (2013), Shukla et al. 

(2014), Choi et al. (2015), Srivastav et al. (2016) and Silva et al. (2017). 

Interestingly, this study indicated that TiO2, ZnO NPs and their mixture induced 

significant reduction in serum ALT activity across all the doses after the 10- day exposure 

period. This study may be the first to report significant low ALT activity in nanotoxicity. 

Increased risks of mortality, end-stage renal disease and increased frailty have been 

associated with low ALT activity (Ono et al., 1995; Yasuda et al., 1995). Reduced ALT 

activity is used as a marker for detecting „early aging syndrome‟ and sarcopenia (Ramaty 

et al., 2014). Decreased activity of ALT does not indicate a sign of recovery but cell 

destruction, which results in the inadequacy of the remaining hepatocytes to support life 

(Reichling and Kaplan, 1988). This corroborates our earlier finding where there was 
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mortality from the sixth day in mice treated with ZnO NPs and their mixture during the 

10- day exposure period.  

Reports have shown that there are more clinical significance in the ratio of AST to ALT 

than their individual activities. Patients with liver impairment such as liver fibrosis and 

chronic hepatitis C (Gowda et al., 2009) usually have an increased ratio of AST to ALT 

greater than 1 (Giannini et al., 2003). In the study, TiO2, ZnO NPs and their mixture 

induced an elevated ratio greater than 1, which suggests that both NPs and their mixture 

may have induced liver cirrhosis in the treated mice. Another clinical biomarker assessed 

for liver functionality is Gamma Glutamyl Transferases (GGT). GGT activity is used 

primarily for hepatobiliary and pancreatic disease evaluation and are abnormally increased 

in cholestasis (decrease in bile flow due to impaired secretion by the hepatocytes) (Lee et 

al., 2005). In this study, a significant increase in GGT activity was induced, indicating that 

TiO2, ZnO NPs and their mixture may have induced biliary obstruction.  

An important biomarker for bile flow obstruction is bilirubin concentration, which is 

formed from the breakdown of haemoglobin in the reticuloendothelial system (Gowda et 

al., 2009). Damaged hepatocytes are unable to excrete bilirubin normally thereby causing 

bilirubin build up in the blood. Our results showed an elevation of both total and direct 

bilirubin induced by TiO2, ZnO NPs and their mixture after the 5- and 10- day exposure 

periods. This might indicate hepatocellular damage, haemolysis, defects in biliary 

metabolism and obstruction of the bile ducts. One of the most predominant serum-binding 

proteins in the body is albumin, which is synthesised in the liver (Ballmer, 2001). It is 

involved in the maintenance of osmotic pressure, metal ions, bilirubin, drugs, amino acids 

and transportation of thyroid hormones. Hepatic cirrhosis, nephrotic syndrome and 

malnutrition are a few conditions that occur as a result of low levels of albumin 

(Hypoalbuminemia). In addition, acute and chronic inflammatory responses also induce 

hypoalbuminemia (Don and Kaysen, 2004; Kaysen et al., 2004).  

For the urine albumin concentration, TiO2 NPs induced microalbuminuria in the mice after 

both 5- and 10- day exposure periods. Adverse renal expression of vascular damage is 

predicted through albuminuria (Dabla, 2010). However, ZnO NPs after the 5- and 10- day 

exposure period and their mixture after the 5- day exposure period induced 
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macroalbuminuria or proteinuria. Proximal tubular damage, glomerular filtration disease 

that prevents the ability of the tubular cells‟ to reabsorb or combinations of both are 

suggestive of the excessive excretion of albumin (Dabla, 2010).   

Serum hypoalbuminemia (low levels of albumin) was induced by TiO2 NPs and their 

mixture after both 5- and 10- day exposure periods, indicating that the NPs and their 

mixture may have induced liver disease (cirrhosis or hepatitis), renal dysfunction and 

chronic inflammation, among others. Subsequently, significant increases of serum 

albumin concentration (hyperalbuminemia) were induced by ZnO NPs after the 5- and 10- 

day exposure periods. A possible explanation for hyperalbumnemia may be due to chronic 

dehydration, severe infections, hepatitis, chronic inflammatory disease and kidney disease.  

Maintenance of physiological homeostasis is important for a healthy renal function. Serum 

urea and creatinine are good indicators for renal function and their increased levels in 

serum indicate kidney dysfunction. The major end product of nitrogen-containing 

substances is urea, which is mainly excreted by the kidneys. The present study indicated 

increased levels of urea after 5- day exposure period and a decrease after the 10- day 

exposure period in mice treated with TiO2, ZnO NPs and their mixture. Both NPs and their 

mixture may have the capability of inducing acute or chronic kidney damage or failure. In 

addition, excessive breakdown of tissue protein from wasting diseases may also increase 

urea concentration. Severe hepatic dysfunction may lead to decreased BUN, since urea is 

synthesised the liver (Baum et al., 1975).  

Creatinine is a by-product of muscle metabolism, which is released into the blood and 

excreted by the kidneys into the urine. Basically, the function of the glomerular filtration 

rate (GFR) determines the concentration of serum creatinine. When the GFR significantly 

decreases due to kidney dysfunction, the serum creatinine concentration rapidly increase. 

TiO2 NPs and their mixture significantly increased the levels of serum creatinine in treated 

mice after the 5- and 10- day exposure periods. The possible explanation for this may be 

due to the fact that both NPs and their mixture have the capacity of inducing a poor GFR 

of the kidney (Jurado and Mattix, 1998; Dalton et al., 2010). The levels of serum 

creatinine were found to be lower than the control in mice treated with ZnO NPs after the 

5- day exposure period. This may possibly be due to muscle mass deterioration and/or 
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kidney impairment, since creatinine is produced from muscle metabolism and excreted by 

the kidneys. 

One of the most common metabolic dysfunctions is the lipid abnormalities. They have 

been employed in determining the development of atherosclerosis or any heart-related 

diseases (Siemianowicz et al., 2000). Our study revealed that TiO2 and ZnO NPs induced 

a significant reduction in the level of serum cholesterol after 5- and 10- day exposure 

periods while both NPs and their mixture induced an increase in serum cholesterol after 

10- day exposure period respectively. Subsequently, significant reductions in serum 

triglyceride levels were induced by both NPs and their mixture. Additionally, HDL-

cholesterol levels were significantly low in mice treated with TiO2 NPs after 5- day 

exposure period while ZnO NPs and their mixture induced a significant increase after 5- 

day exposure period. However after the 10- day exposure period, both NPs and their 

mixture induced a significant reduction in serum HDL-cholesterol levels.  

Low plasma cholesterol levels (hypocholesterolemia) have been generally accepted to be a 

marker for cancer. It is considered an effect for a neoplastic process, where they produce 

the pro-inflammatory marker and the tumour necrosis factor that lowers serum cholesterol 

levels (Siemianowicz et al., 2000). For example, reduced plasma cholesterol levels are 

found in patients who often exhibit liver cancer (Iso et al., 2009), breast cancer (Touvier et 

al., 2015) and lung cancer (Siemianowicz et al., 2000). The most frequent lipoprotein 

abnormality is the low HDL-cholesterol (hypoalphalipoproteinemia), correlated with 

coronary heart disease risk (Van der Steeg et al., 2008; Bitzur et al., 2009). In our study, 

TiO2, ZnO NPs and their mixture showed to be quite effective in lipid metabolism by the 

significant decrease in HDL fraction and the increased serum cholesterol with a 

concomitant significant decrease in triglycerides, respectively. 

In comparison to the negative control, mice treated with TiO2, ZnO NPs and their mixture 

displayed lower HDL-cholesterol concentrations in the sera after 10-day exposure period. 

Interestingly, this study appear to be the first to examine the consequence of the mixture 

of both NPs on the lipid profile. Cholesterol is carried from the arteries to the liver with 

the help of HDL-cholesterol. Therefore, high levels of serum cholesterol may occur due to 

hepatic dysfunction (Toth, 2005; Le and Walter, 2007; Mousavi et al., 2016). This study is 
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in accordance with those of Soliman et al. (2013), Esmaeillou et al. (2013), Mousavi et al. 

(2016) and Wei et al. (2016) which showed that various NPs injected via different 

exposure routes induced significant increase in serum cholesterol, triglyceride and reduced 

HDL levels in treated rodents. An important biomarker of cardiovascular disease (CVD) 

risk is the triglycerides. However, with hypotriglyceridemia induced by both NPs and their 

mixture, it can be hypothesised that they do not have the ability of inducing coronary 

artery and cardiovascular diseases.  

5.7 Histopathological changes in organs treated with titanium dioxide, zinc oxide 

nanoparticles and their mixture in mice 

The liver is easily predisposed more than other organs to lipid peroxidation and oxidative 

stress, since it contains kupffer cells (macrophages) that are responsible for the uptake of 

NPs (Abdelhalim et al., 2015; Ferreira et al., 2015). In the kidneys, the glomerular 

filtration of NPs is majorly dependent on the size of the NPs (Sharma et al., 2012a). 

Nanoparticles with a hydrodynamic size of ≤ 5.5 nm are easily excreted by the kidneys 

because of the glomerular pore that measures 5.5 nm. Thus, NPs having a bigger size than 

5.5 nm are eliminated by the reticuloendothelial system such as the hepatobilliary 

mechanism. Therefore, bioaccumulation as a result of „long term retention‟ of the NPs 

make the liver and kidney more susceptible to ROS attacks (Li et al., 2012; Sharma et al., 

2012a; Abdelhalim et al., 2015; Ferreira et al., 2015). Accumulation of TiO2 and ZnO NPs 

are usually in the liver and kidney, thus making them potential target organs (Wang et al., 

2007; Fabian et al., 2008; Liang et al., 2009; Ma et al., 2009; Xie et al., 2011; Baek et al., 

2012; Li et al., 2012; Akhtar et al., 2012; Sharma et al., 2012a; Cho et al., 2013).  

Histopathological examinations of the tissues in this study revealed hepatotoxicity of both 

NPs and their mixture through hepatocellular necrosis, kupffer cell hyperplasia, 

aggregation of inflammatory cells, thinning of hepatic cords, dilated sinusoids and dense 

aggregates of mononuclear cells. Similarly, nephrotoxicity revealed sloughing off of the 

tubular epithelial cells, dilated glomerular tubules, congestion of the interstitial vessels, 

swelling and degeneration of tubular epithelial cells. Also, there were numerous foci of 

pigment-laden macrophages, antigenic stimulation and lymphoid proliferation, distinct 

mantle zones and atrophic spleen with wrinkled capsule in the spleen tissues. The lesions 
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observed in the liver and kidney correlate with the serum hepatic and renal function 

biochemical tests and oxidative stress induction, which may suggest the localisation and 

accumulation of TiO2 and ZnO NPs in these organs. This is in accordance with Wang et 

al. (2007; 2008a), Fabian et al. (2008), Li et al. (2010c), Pasupuleti et al. (2012a), Shukla 

et al. (2013), Najafzadeh et al. (2013), Esmaeillou et al. (2013), Soliman et al. (2013), 

Noori et al. (2014), Reddy et al. (2015), Srivastav et al. (2016) and Silva et al. (2017). 

A limitation of this study was the inability to assess the bioaccumulation of TiO2 and ZnO 

NPs in the kidney, heart, liver, spleen and brain tissues of the treated mice using 

inductively coupled plasma mass spectrophotometer. Nonetheless, in vivo studies did 

show TiO2 and ZnO NPs accumulation in the spleen, heart, liver, brain and kidney, which 

elicited various severities of histopathological alterations (Li et al., 2010c; Baek et al., 

2012; Cho et al., 2013). Recently, investigations on the potential hepatic and renal toxicity 

have demonstrated the impact of TiO2 and ZnO NPs on the liver and kidneys. Chen et al. 

(2009) demonstrated that intraperitoneal exposure of TiO2 NPs to mice accumulated in the 

liver, kidney, spleen and lungs causing hepatic fibrosis, necrosis and apoptosis of the 

hepatocytes, spleen lesions, interstitial pneumonia and renal glomerulus swelling It was 

also reported by Sharma et al. (2012b) that Zn accumulated in the human liver cells 

treated with ZnO NPs. Bioaccumulation was significantly present in the liver and kidney 

after 72 hours following administration of ZnO NPs (Baek et al., 2012) and in the kidney 

of rainbow trout treated with TiO2 NPs (Scown et al., 2009). Ma et al. (2009, 2010) 

reported elevated sizes of the spleen, kidney, thymus, liver, inflammatory cascade, altered 

liver function and histopathological changes of the liver and brain as a result of the 

intraperitoneal or intragastric administration of TiO2 NPs to mice for 14 days or 30 days. 

Several studies have also demonstrated that other NPs are distributed in the liver and 

spleen. Lankveld et al. (2010) reported the accumulation of 20 nm Ag NPs primarily in 

the liver, kidney and spleen while 110 nm and 80 nm were found in the lungs, spleen, and 

liver. Similarly, Zhang et al. (2011b) revealed the accumulation of PEG-coated gold NPs 

(5 nm and 10 nm) in the liver and 30 nm of of PEG-coated gold NPs in the spleen. Toblli 

et al. (2011) demonstrated that iron dextran and ferumoxytol induced renal and hepatic 

damage in rats through proteinuria and increased hepatic enzymes. In another study, Feng 
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et al. (2011) reported renal, hepatic and spleen alterations through changes in the 

metabolic pathways participating in lipid, glucose, energy and amino acid breakdown after 

the intraperitoneal exposure of superparamagnetic particles of iron oxide. Nonetheless, it 

is suggestive that the spleen, kidney and liver are the significant viscera for NPs 

accumulation irrespective of the exposure route and duration (Sharma et al., 2012a; Li et 

al., 2012). 

5.8 Mechanism of toxicity induced by titanium dioxide, zinc oxide nanoparticles 

and their mixture in mice 

Nanoparticles of various sizes, chemical composition and surface properties have been 

reported to attack the mitochondria, which are the organelles where redox reactions take 

place (Alarifi et al., 2014). NPs may alter the production of ROS and antioxidants, 

resulting into oxidative stress. Hence, to determine the mechanism of toxicity induced by 

TiO2, ZnO NPs and their mixture, the activities of SOD, CAT and the levels of GSH and 

MDA were evaluated in the kidney and liver tissues. The mechanism of NP-induced 

toxicity is not clearly understood but it is presumed that oxidative stress is one of the ways 

of inducing toxicity (Syama et al., 2014; Reddy et al., 2015; Niska et al., 2015; Ferreira et 

al., 2015).  

An imbalance between the levels of antioxidants and the excessive production of free 

radicals leads to oxidative stress (Syama et al., 2014; Reddy et al., 2015). ROS are 

produced in the inner mitochondria membrane during oxidative metabolism (Syama et al., 

2014; Niska et al., 2015) and are eliminated by both endogenous and exogenous 

antioxidants (Pourhamzeh et al., 2016). Alterations of metabolic pathways, imbalance of 

intracellular calcium homeostasis and breakdown of membrane lipids are induced through 

the generation of oxidative stress, which may result in apoptosis (Xue et al., 2011; Zhang 

et al., 2012). ROS can also be generated through NADPH (nicotinamide adenine 

dinucleotide phosphate) oxidase in the mitochondria (Manke et al., 2013; Sharma et al., 

2012b; Ryu et al., 2014). Damage is induced in the inner mitochondrial membrane 

through elevated ROS leading to the loss of MMP. Thus, cytochrome C is released in the 

intermembrane space due to diminished MMP, which activates other caspase proteins and 

apoptotic genes and eventually leading to cell death. 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

329 

 

Antioxidants (enzymatic and non-enzymatic) play important roles in cellular maintenance 

(Huang et al., 2010; Niska et al., 2015). SOD, CAT and GPx are the primary antioxidant 

defense enzymes (Syama et al., 2014; Gaharwar and Paulraj, 2015). The first line of 

enzyme against free radicals is the SOD. Hydrogen peroxide (H2O2) and molecular 

oxygen (O2) are generated through the catalytic dismutation of superoxide radical (O2
-
) by 

SOD (Abdelhalim et al., 2015), while CAT metabolises H2O2 to O2 and water (H2O). 

However, increased SOD and CAT activities are indications of increased H2O2 production 

that would cause more damage to the DNA, protein and lipids (Sarkar and Sil, 2014; 

Ferreira et al., 2015). Emphasis must be made on the interactions of some antioxidants 

with one another forming the „antioxidant network‟ (Sies et al., 2005). As a result, more 

relevant biological information is provided by not only measuring a single antioxidant but 

several antioxidants that are involved in the cellular defense mechanism (Niska et al., 

2015).  

Among the antioxidants, GSH is the main antioxidant that is involved in scavenging ROS 

and electrophiles (Syama et al., 2014; Strojny et al., 2015). GSH contains the thiol group 

(-SH) which plays a critical role in cellular defense. It serves as a substrate for glutathione 

peroxidase, where it is oxidised to glutathione disulfide (GSSG). Glutathione reductase 

(GR) reduces the formed GSSG to GSH in a nicotinamide adenine dinucleotide phosphate 

(NADPH) dependent manner establishing a balance between GSH and GSSG, where 98% 

of the thiol group accounts for reduced GSH (Abdelhalim et al., 2015; Strojny et al., 

2015). In addition, lipids are also major targets of ROS generation eventually leading to 

peroxides. Peroxidation of lipids is a chain initiation reaction that involves the removal of 

hydrogen atoms from unsaturated fatty acids (membrane phospholipids) (Syama et al., 

2014; Reshma and Mohanan, 2016). ROS continually attack phospholipids and fatty acid 

hydroperoxides and MDA, which is an aldehydic secondary product of lipid peroxidation, 

is an accepted marker for oxidative stress. 

Evaluation of the oxidative stress parameters in this study showed a significant decrease in 

the SOD and CAT activities and GSH level except for the treated mice of ZnO NPs that 

revealed a significant increase of GSH level in the liver after the 5- day exposure period. 

Lipid peroxidation levels increased across all the doses for both NPs and their mixture. 
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Decrease in SOD and CAT activities may be due to the increased formation of H2O2 

production and consequently hydroxyl radicals (
.
OH) overwhelming the expression 

activities of SOD and CAT respectively. These findings also support the increased MDA 

level indicating that excess 
.
OH may have interacted with the lipids causing lipid 

peroxidation. Subsequently, the increased GSH level observed may be as a result of cells 

treated with ZnO NPs trying to overwhelm the effects of ROS. Another possible 

explanation for the significant increase in GSH may be due to the increased levels of 

MDA, which may serve as a protective measure in the liver. After the 10 – day exposure 

period, TiO2 NPs induced increased SOD and CAT activities, ZnO NPs and their mixture 

induced decreased SOD and CAT activities while the GSH level was decreased and 

increased in TiO2 NPs and their mixture respectively in the treated mice. Increased SOD 

activities in the liver may have induced increased levels of superoxide radical (O2
-
) 

formation, which subsequently led to the elevation of CAT activity against the excess 

H2O2. This study agree with that of Reddy et al. (2015) which reported increased CAT 

activity in the liver, kidney and brain of female rats orally treated with Fe2O3 NPs (30, 300 

and 1000 mgkg
-1

) for 28 days. 

TiO2 and ZnO NPs induced a decrease in SOD activity while their mixture induced an 

increase in the kidney of the treated mice after the 5- day exposure period, which led to an 

increase in the formation of H2O2. The CAT activity increased in the mice treated with 

both NPs and their mixture.This may be explained by the catalytic adaptation of the 

kidney cells to withstand transient levels of hydroxyl radicals produced. This is supported 

by the increased MDA level, indicating that hydroxyl radicals produced may have 

interacted with the lipid membrane. Accordingly, adaptation or injury can occur to cells 

treated with oxidative stress. Transient levels of oxidative stress parameters usually results 

in adaptation of the cells leading to an up regulation of antioxidants (Ferreira et al., 2015). 

However, oxidative damage to the macromolecules may lead to cell injury depending on 

their severity. 

After the 10- day exposure period, the kidney of the treated mice showed increased SOD 

activity in both NPs and their mixture, along with a decrease in CAT activity in TiO2 NPs 

and their mixture, and an increase in the ZnO NPs treated mice. It has been previously 
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demonstrated by Niska et al. (2015) that TiO2 NPs significantly increased O2
- 
radical in a 

dose-dependent manner. Superoxide radical is produced from the reduction of oxygen by 

one electron and it is the precursor of other oxidizing species such as 
.
OH, H2O2 and 

peroxynitrite (ONOO
.
). Thus, it can be concluded that both NPs and their mixture have 

strong inhibitory effects on the defense systems. Zhu et al. (2011) reported a significant 

increase in SOD activity in Haliotis diversicolor supertexta treated with TiO2 NPs (1.0 

mg/L). Rapid increase in ROS generation can bring about the increased utilisation of 

antioxidant activities in the cell (Niska et al., 2015). TiO2, ZnO NPs and their mixture 

caused the excess production of O2
- 
radical, which led to the alternation of the antioxidant 

defense and lipid peroxidation through the cell membrane as indicated by increased MDA 

level. These findings agree with that of Ahamed et al. (2016) which reported that Zn-

doped TiO2 NPs induced ROS generation and GSH and depleted SOD in human breast 

cancer (MCF-7) cells. It was also demonstrated by Haseeb et al. (2012) that MDA level 

was significantly increased in the rat‟s liver while no significance were observed in its 

heart and lung. Sahu et al. (2013) reported similar findings where human lung epithelial 

(L-132) cell treated with ZnO NPs (50.24 ± 8.19 nm) at 5 – 100 µg/mL showed significant 

increase in ROS generation and a depletion of reduced GSH.  

DNA damage, oxidative stress, and apoptosis have displayed a strong positive correlation 

in several nanotoxicological studies that have utilised cultured cells and animal models 

(Akhtar et al., 2012). In healthy cells, the genomic DNA is continually under attack, and 

incomplete or excessive DNA repair can result in the accumulation of mutations, leading 

to the formation of oncogenesis. Single- and double-strand breaks, DNA-protein 

crosslinks and oxidation of purines are generated through oxygen radicals by damaging 

the nitrogen bases or DNA sugar-phosphate back bone (Osman et al., 2010; Sharma et al., 

2012a; 2012b). The present study has been able to establish that TiO2 and ZnO NPs 

induced oxidative stress via generation of ROS. These ROS have the potential of 

interacting with the DNA and inducing DNA damage via oxidative stress induction as the 

main molecular mechanism of genotoxicity. Cell cycle checkpoints and DNA repair 

processes are activated through a complete signaling network triggered by DNA damage 

(Awasthi et al., 2015). These signalling networks occur in a synchronous manner leading 

to the activation of tumour protein 53 (p53). p53 plays a major role in reacting to several 
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environmental toxicants that induce cellular DNA damage, most importantly as 

phosphorylation modulates the stability of p53 (Morsy et al., 2016). The possible 

mechanism of the DNA damage induction through hepatic and renal oxidative stress is in 

concert with the study of Li et al. (2008b) which showed that TiO2 NPs directly interacted 

with the DNA through the DNA phosphate group. Similarly, Federici et al. (2007) has 

also reported the indirect binding of TiO2 NPs to the DNA through the generation of ROS 

and inflammation. 

Accordingly, Mroz et al. (2008) reported that NPs have the capability of inducing DNA 

damage via ROS leading to carcinogenesis, p53 activation and proteins involved in DNA 

repair. In addition, Song et al. (2012) reported the production of MN and DNA damage 

via oxidative stress, which was the major mechanism of cell death by several metal NPs. 

Studies have demonstrated that exposure of ZnO NPs can alter the gene expression levels 

of various receptor protein kinases, signalling molecules, nuclear transcription factors and 

growth factors through ROS induction. In particular, p53 activation (Ng et al., 2011) and 

tyrosine phosphorylation alternations (Osman et al., 2010) involved in differentiation, 

metabolic regulation, host defence and cell growth (Hubbard et al., 1998) are reported to 

occur in the exposure to ZnO NPs. 

Bhattacharya et al. (2009) reported high levels of DNA adduct formation (8-hydroxy-2-

deoxyguanosine), which was probably due to the formation of intra- and acellular ROS 

generation in human lung cells treated with TiO2 NPs. In another study, Gurr et al. (2005) 

reported oxidative DNA damage and lipid peroxidation due to H2O2 and nitric oxide 

generation in the lung epithelial cells treated with TiO2 NPs. Also, Kang et al. (2008) 

reported that ROS generation induced DNA damage as well as activation of DNA damage 

checkpoints and p53 up-regulation in peripheral blood lymphocytes treated with TiO2 

NPs. Similarly, Shukla et al. (2011) reported increased DNA oxidation damage and MN 

induction in human epidermal cells (A431) treated with TiO2 NPs. It was suggested that 

ROS has a strong correlation with DNA oxidation damage and may be a likely mechanism 

of genotoxicity. Likewise, Sharma et al. (2012b) equally reported that DNA damage and 

apoptosis occurred due to the induction of oxidative stress in the liver cell treated with 

ZnO NPs. Evidences indicate that the formation of ROS resulting to oxidative stress is the 
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major mechanism of TiO2 and ZnO NPs toxicity. It can be postulated from this study, 

therefore, that genomic damage and systemic toxicity might have been induced through 

the ROS-mediated pathway from the inner membrane of the mitochondria. This complex 

pathway involves a cascade of events that may eventually lead to cell death (Figure 5.1). 

5.9 DNA damage induced by titanium dioxide, zinc oxide nanoparticles and their 

mixture in the germ cells of mice 

An important part of nanotoxicity that has become increasingly recognised is the germ cell 

toxicity (Ema et al., 2010). In this study, sperm count, motility and abnormality in mice 

treated with TiO2, ZnO NPs and their mixture were evaluated. In addition, the endocrine-

disrupting effects of TiO2, ZnO NPs and their mixture were investigated through the 

evaluation of serum LH, FSH and testosterone levels. In experimental studies, useful 

reproductive risk assessments are provided through the weight of the male reproductive 

organ. During spermatogenesis, the primary assessment is the testicular size, as 

approximately 98 % of the testicular mass consists of both tubules and germinal elements. 

A normal testicle consists of two types of cells: germ cells and leydig cells in equal 

proportions, thereby making the testicle round, firm and full. The function of the leydig 

cells and germ cells is to produce testosterone and spermatozoa, respectively.  

Our results revealed that mice intraperitoneally administered to TiO2, ZnO NPs and their 

mixture induced no significant changes in their testicular weight in comparison with those 

treated with distilled water. However, TiO2 NPs and their mixture induced testicular 

atrophy while ZnO NPs induced testicular hypertrophy in the mice. Testicular atrophy 

may occur due to the apoptosis of either the leydig cells or germ cells or both resulting in 

the alterations such as fluid level fluctuations, shrinking of the testicles, making them 

loose and soft. Most importantly, hormonal imbalance is reported to be a major cause of 

testicular atrophy. This is an indication that both NPs and their mixture have the ability to 

significantly affect germ cell physiology. A possible explanation of testicular atrophy or 

hypertrophy induced by TiO2 and their mixture, and ZnO NPs respectively may be due to 

their particle sizes. This implies that the TiO2 NPs and their mixture have the ability of 

damaging the testicular architecture, thus reducing spermatozoa production while ZnO 

NPs may have a longer half life in the circulatory system of the treated mice eventually 
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affecting the testicular size. It may likely suggests that ZnO NPs (< 100 nm) accumulation 

led to changes in the epithelium morphology and „swelling up‟ of the seminiferous tubules 

since they are less prone to germinal cell penetration and would rather accumulate and 

aggregate in the extracellular space of the spermatocyte (Jang et al., 2010). On the other 

hand, TiO2 NPs (< 25 nm) may have easily entered the seminiferous tubules and 

penetrated into the germ cells directly without the accumulation in the extracellular space 

(Singh and Lillard, 2009). Another possible explanation for testicular atrophy may be due 

to the inhibition of the microtubules and intermediate filaments of the Sertoli cells, thus 

affecting germ cell division (Attia, 2014). It was also observed that TiO2, ZnO NPs and 

their mixture could cross the blood-testis barrier forming agglomerates within the testes 

(Figure 4.136A). The bioaccumulation of NPs in the testes is in line with other studies 

such as Chen et al. (2003), Liu et al. (2010b), Kim et al. (2011), Morishita et al. (2012), 

Li et al. (2013), Gromadzka-Ostrowska et al. (2012), Thakur et al. (2014), Smith et al. 

(2015) and Yoisungern et al. (2015) 

The fertilisation of the ovum by the sperm cell is determined by the integrity (viability) of 

the sperm membrane (Sleiman et al., 2013; Mathias et al., 2015; Yoisungern et al., 2015). 

Several in vitro studies have shown plasma membrane toxicity in various germ cell lines 

such as mammalian germline stem cells, mouse testis leydig cell line (Komatsu et al., 

2008), spermatogonial stem cells (Zhang et al., 2015) and human spermatozoa (Gopalan et 

al., 2009; Barkhordari et al., 2013; Moretti et al., 2013; Wang et al., 2017b). In agreement 

with what has been previously reported, TiO2, ZnO NPs and their mixture may have 

significantly altered the plasma membrane of the spermatozoa. A possible hypothesis may 

be that both NPs and their mixture were phagocytosed by the spermatogonial stem cells 

during the dissolution of the NPs by the Trojan horse-type mechanism (Park et al., 2010). 

One of the most important biomarkers used in determining the testicular toxicity of 

chemicals is the sperm motility. In the spermatozoa, the mitochondria located in the 

midpiece promote sperm movement through the generation of energy to the flagella 

(Mathias et al., 2015). Reduction of sperm motility induced by TiO2, ZnO NPs and their 

mixture is an indication that they affected energy production in the sperm cells. This may 

likely be as a result of the reduced mitochondrial activity of the spermatozoa causing 
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„opening of the permeability transition pore in the inner mitochondrial membrane‟, thus 

reducing the mitochondrial membrane potential and affecting ATP production (Almofti et 

al., 2003; Mathias et al., 2015; Smith et al., 2015; Yoisungern et al., 2015). In addition, it 

is possible to assume that the membrane receptors or cells signaling involved in motility 

maintenance were affected by TiO2, ZnO NPs and their mixture (Moretti et al., 2013). 

This result agree with Smith et al. (2015) which reported a significant reduction in the 

progressive motility of mice spermatozoa treated with TiO2 NPs for 120 hours. Likewise, 

Moretti et al. (2013) reported human spermatozoa treated with gold and silver 

nanoparticles respectively, and observed a dose-dependent significant decrease. 

Yoisungern et al. (2015) observed abnormal mitochondrial architecture and increased 

mitochondrial DNA copy number in the spermatozoa of mice treated with Ag NPs.  

An important factor that is used for assessing fertility is the sperm count (Bebb et al., 

1996). Reduction in epididymal sperm count is an indication that both NPs and their 

mixture have the ability of altering the testicular architecture such as decreased 

epididymal sperm count, increased number of damaged seminiferous tubules, leydig cell 

degeneration (Yoshida et al., 2009b; Talebi et al., 2013; Attia, 2014), and apoptosis of 

germ and sertoli cells (Gao et al., 2013). Sperm count reduction may also be attributed to a 

decrease in the diameter of the seminiferous tubules epithelial cells, increased lumen 

volume, reduction in spermatogonia, spermatocytes and spermatids (Ono et al., 2007). 

Excess ROS generated may have contributed to the degeneration of the seminiferous 

tubules and loss of the spermatogonia, spermatocytes, spermatids and the production of 

the spermatozoa. A reduction in sperm count may also be due to the inhibitory effects of 

TiO2, ZnO NPs and their mixture on the spermatogonia proliferation and reduction in 

sperm cell precursors (Attia, 2014). Therefore, it may be concluded that the 

spermatogonial stem cells (SSC) are susceptible to damage by TiO2, ZnO NPs and their 

mixture since spermatogenesis involves the renewal and proliferation of SSC that will 

give rise to highly differentiated spermatozoa (Garcia et al., 2014). This finding agree 

with the studies of Gromadzka-Ostrowska et al. (2012) and Attia (2014).  

Synchronous morphological and biochemical steps such as the manchette formations and 

the replacement of histones with protamine are involved in the formation of the normal 
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sperm head (Bruce et al., 1974). The nuclei present in the sperm heads are homogeneous 

with specific structural definition (Beatty, 1970). An important endpoint that is very 

sensitive and reliable in identifying germ cell mutagens is the sperm head abnormality 

assay (Giri et al., 2002). Usually, autosomes carry the characteristics controlling sperm 

head shape (Tophan, 1980a; 1980b); however, accumulation of exogenous toxicants in the 

germ cell pool may induce alterations such as point mutations in the testicular DNA (Giri 

et al., 2002) or partial deletion on the Y chromosome (Styrna et al., 1991). In this study, 

the mechanism of sperm head abnormality induced by TiO2, ZnO NPs and their mixture 

may not be clearly known. However, it may be due to the mistakes that naturally occur at 

the differentiation process (Bruce et al., 1974). In addition, both NPs and their mixture 

may also have increased the frequency of the sperm head abnormality. Packaging of the 

genetic material may result in few mistakes that will lead to the abnormal sperm heads.  

An important pathway that may also have induced high frequency of sperm head 

abnormality in this study is the association between the ubiquitin-dependent pathway of 

protein degradation and spermatogenesis (Bebington et al., 2001). Testes of mammals that 

contain haploid spermatids usually have an increased level of ubiquitination 

(Rajapurohitam et al., 1999; 2002). The Ube2b is an important autosomal gene that 

encodes mHR6B, which is a murine ubiquitin conjugating enzyme highly predominant in 

mammalian testis (Koken et al., 1996). The formation of an abnormal sperm head during 

spermatid nuclear condensation usually results in infertility and spermatogenesis 

impairment in male mice that have a deficiency of Ube2b (Roest et al., 1996). In addition, 

mice deficient of this gene exhibit irregular diameter of the sperm flagella, impairment of 

sperm motility, apoptosis of the germ cells and depletion of the testis (Roest et al., 1996). 

Therefore, both NPs and their mixture may have led to the complete or partial loss of 

Ube2b leading to a loss of function of the Ube2b protein expression in the testes of the 

treated mice. Remodeling of the postmeiotic chromatin in the mouse testis requires histone 

degradation and subsequently replacing the transition proteins with protamines. 

Ubiquitinated nuclear proteins and histones are clearly seen in the nucleus of the mouse 

testis (Baarends et al., 1999). However, it is strongly assumed that both NPs and their 

mixture may have altered the histone ubiquitination process and replacement of histones 

with protamines as seen in the various sperm head abnormalities.  
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Another important structure that is essential for the sperm head shaping and condensation 

is the manchette development, which is primarily formed by the microtubules and its 

associated proteins (Rattner and Brinkley, 1972). During the beginning of the nuclear 

shaping, the microtubules assemble; thereafter dissemble when the nucleus reaches a 

compressed state (Meistrich et al., 1990; Russell et al., 1991). Microtubule-associated 

protein, Spnr (for spermatid perinuclear RNA binding protein) (Schumacher et al., 1998), 

and Ran-GTPase (Kierszenbaum et al., 2002a) are sperm components stored in the 

manchette (Escalier et al., 2003). On the other hand, TBP-1 (tat-binding protein-1), 

axonemal-binding protein Spag4 (Shao et al., 1999), periaxonemal cytoskeletal structures 

(Brohmann et al., 1997) and paraaxonemal mitochondria (Rivkin et al., 1997) are 

components of the manchette sorted secondarily into the developing sperm tail. Therefore, 

it can be assumed in this study that TiO2, ZnO NPs and their mixture were able to alter the 

sperm components in the manchette and cytoskeletal proteins thereby affecting the 

structure of the sperm heads of the treated mice. 

Mutation of the abnormal spermatozoon head shape (azh) located on chromosome 4 may 

be another possible explanation for the increased frequency of sperm head abnormality 

induced by both NPs and their mixture in the treated mice. Mutation of azh displays an 

autosomal mode of inheritance and the mutated azh spermatozoa often lead to tail 

detachment due to their sensitivity to mechanical forces (Mendoza-Lujambio et al., 2002). 

Likewise, the Hook1 gene (predominantly expressed in the testis) mapped on the same 

region where the azh locus is, has been reported to be extensively involved in 

microtubular structure positioning within the haploid germ cells. The mutation of the 

Hook1 gene by both NPs and their mixture may possibly lead to a total or incomplete loss 

of function of the protein in the treated mice, subsequently leading to the high frequency 

of abnormal sperm heads and reduced fertility. According to Mendoza-Lujambio et al. 

(2002), the microtubules bind to the murine Hook1 protein and also establish a contact 

between the nuclear envelope and the manchette (Walenta et al., 2001). Therefore, 

abnormal sperm head shape may be as a result of the wrong positioning of the 

microtubules due to the absence of the C-terminal domain of the Hook1 protein. This may 

often lead to the interference between the attachment of the nuclear envelope and 

manchette. In addition, the mixture of TiO2 and ZnO NPs induced the highest frequency 
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of sperm abnormalities, mostly amorphous and pin heads, which may indicate that the 

mixture targeted the DNA located in the sperm head. However, alterations in the genetic 

material results in the damage to the structure and function of the spermatozoa. The 

significant increase in the frequency of sperm anomalies induced by the mixture may be 

due to their synergistic effect in the testes. The interaction factor of TiO2 and ZnO NPs 

revealed synergism for sperm count and abnormalities, which confirms that either of the 

NPs has a synergistic property when co-administered in the biological system. Our result 

of this study agree with Gromadzka-Ostrowska et al. (2012), Attia (2014) and Yoisungern 

et al. (2015). Therefore, the consequences of TiO2 and ZnO NPs - induced germ cell 

mutation include reduced fertility, cancer, numerical chromosome aberrations, and 

heritable abnormal structural germ cells (Allen et al., 1986; Tilly, 1998; Braydich-Stolle et 

al., 2005; Aitken and De Luliis, 2010). In addition, the implications of having mutation of 

germ cells in successive generations consist of genetic diseases with various severity of 

health implications, reduced fertility, congenital malformations and embryonic or perinatal 

death (Brinkworth, 2000; Braydich-Stolle et al., 2005). 

Spermatogenesis is a multiple complex process where differentiated spermatozoa are 

produced from the spermatogonial stem cells within the seminiferous tubules of the testis 

(Li et al., 2013). This process is being controlled by a „complex-regulation‟ of 

neuroendocrine hypothalamic-pituitary gonadal axes together with „local testicular 

steroids‟ (Li et al., 2013). Male reproductive hormones such as LH, FSH and testosterone 

are essential for spermatogenesis. However, production and regulation of these hormones 

can be disrupted by endocrine disruptors or environmental toxicants (Iavicoli et al., 2012; 

Garcia et al., 2014). Therefore, alterations of these reproductive hormone concentrations 

may result in male infertility, testicular damage and malfunction of spermatogenesis (Li et 

al., 2013; Garcia et al., 2014). The study revealed a significant decline in LH, increased 

levels of FSH and testosterone indicating that TiO2, ZnO NPs and their mixture might 

have a causative effect in the steroidogenic process in the testis and interfere with the 

hypothalamic-pituitary-gonadal axis as potential endocrine disruptors. As it is known, 

testosterone, an androgen hormone maintains spermatogenesis, pubertal development and 

also necessary for male sexual differentiation (Chandra et al., 2010). In addition, it is 

responsible for the maturation of the spermatids between stages VII – VIII in the 



IB
ADAN U

NIV
ERSITY LI

BRARY 

 

 

339 

 

spermatogenic cycle (Chandra et al., 2007) and regulation of spermatogenesis by the 

Sertoli cells (Attia, 2014).   

A possible explanation of elevated testosterone may be due to an adverse effect on the 

leydig cells and the upregulation of genes that are responsible for testosterone 

biosynthesis, which may have negative impacts on the spermatogenesis of the treated 

mice. Steroidogenic acute regulatory (StAR) protein, cytochrome P450 side chain 

cleavage (P450scc), 3β- Hydroxysteroid dehydrogenase (3β-HSD), P450-17α and 17β-

HSD are genes involved in the synthesis of testosterone. In the mitochondria membrane, 

cholesterol is transported from the outer to the inner space with the help of StAR, which is 

a rate limiting step (Stocco, 2001). Also, P450scc catalyses the conversion of cholesterol 

to pregnenolone, which is a rate limiting step (Omura and Morohashi, 1995). The catalytic 

action of 3β-HSD converts pregnenolone to progesterone. P450-17α converts progesterone 

to androstenedione production (Payne and Hales, 2004). Finally, 17β-HSD converts 

androstenedione to testosterone (Payne and Youngblood, 1995). 

The present study also corroborates the result of Garcia et al. (2014) which revealed that 

Ag NPs induced a significant increase in both serum and intratesticular testosterone and 

Cyp11a1 and Hsd3b1, two enzymes involved in the biosynthetic pathway of testosterone. 

Likewise, Ramdhan et al. (2009) reported increased expression levels of Cyp11a1 mRNA 

in the testes of animals treated with nanoparticle rich diesel exhaust. Similarly, Li et al. 

(2013) also reported high testosterone levels in mice treated with PEG-NH2@AuNP. In 

addition, high testosterone levels may have occuured due to an impaired negative 

feedback mechanism on the hypothalamus and pituitary gland, resulting into leydig cell 

dysfunction and altering spermatogenesis (Yoshida et al., 1999; Ono et al., 2007). 

Similarly, a significant increase in FSH, in the absence of LH suggests a paracrine effect 

mediated by Sertoli cells (Ono et al., 2007).  

The testicular histology of mice treated with distilled water showed the normal 

architecture of the seminiferous tubules. The tubules depicted an orderly arrangement of 

the germinal cells (spermatogonia, spermatocytes, spermatids of different stages and the 

spermatozoa) and sertoli cells. In addition, the interstitial tissue was found to have a well 

organised leydig cells, blood vessels, leukocytes, lymphatic vessels and fibroblasts. 
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However, the present study showed that TiO2, ZnO NPs and their mixture induced 

necrotic spermatogenic cells, loss of basal germinal epithelial cells, increased luminal 

width and congestion of testicular interstitial blood. These histopathological findings 

corroborate the initial report of the penetration and accumulation of TiO2, ZnO NPs and 

their mixture in the testicular tissues. Depletion of spermatogenic cells and increased 

luminal width support the significant reduction of low sperm counts. These present study 

agree with that of Thakur et al. (2014) which reported atrophy in seminiferous tubules, 

germinal epithelium disorganisation, basement membrane degeneration and apoptosis of 

different germinal cells in Wistar rats treated with Ag NPs (20 µg/kg) orally for 90 days.  

Also, Smith et al. (2015) identified aggregates of TiO2 NPs (anatase) in the scrotal adipose 

tissues surrounding the testis and epididymis, thus, leading to histopathological alterations 

such as enlarged interstitial spaces, increased apoptotic cells and disorganised 

seminiferous tubules. Similarly, Hong et al. (2016) reported necrosis, severe 

disorganisation of tissue and spermatolysis in the testes of mice treated with TiO2 NPs. 

Attia (2014) reported degenerative seminiferous tubules, loss in spermatogenic epithelium 

height and sloughing of the seminiferous cellular components in the testes of mice treated 

with 500 and 1000 mgkg
-1

 of Ag NPs. Likewise, Talebi et al. (2013) reported 

vacuolisation of the sertoli cells in ZnO NPs treated with NMRI mice. Yoshida et al. 

(2008) also reported degeneration and vacuolation of the seminiferous tubules in mice 

treated with carbon black particles. Gao et al. (2013) reported decreased germinative layer 

thickness, vacuolation and mesenchymal congestion among others in mice treated with 

TiO2 NPs for 90 consecutive days. 

The exact mechanism of spermatozoa dysfunction induced by TiO2 and ZnO NPs is not 

clearly understood. However, the induction of oxidative stress and increase in intracellular 

ROS generation are one of the most importantly proposed mechanisms of DNA 

nanotoxicity due to the photocatalytic properties of both NPs. It is well established that the 

high concentration of polyunsaturated fatty acid (docosahexaenoic acid) and low 

expression levels of antioxidants make spermatozoa highly susceptible to ROS attack 

resulting in lipid peroxidation (Vernet et al., 2004; Gromadzka-Ostrowska et al., 2012; 

Chen et al., 2013). This study showed that TiO2, ZnO NPs and their mixture significantly 
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altered the antioxidants (SOD, CAT and reduced GSH) and increased lipid peroxidation 

through increased MDA level indicating oxidative stress induction in the testes of the 

treated mice. This is in accordance with the work of Zhao et al. (2014) which reported 

reduced GSH depletion, oxidised glutathione levels, reduced SOD activity and increased 

CAT activity in the testes treated with TiO2 NPs for 90 consecutive days. Similarly, 

Meena et al. (2015) reported decreased activities of CAT, GSH-Px and SOD and 

increased lipid peroxidation in the testes of animals treated with TiO2 NPs. Several studies 

have shown the interaction between lipid peroxidation, ROS and DNA damage (Ema et 

al., 2010; Zhang et al., 2015). The possible induction of spermatotoxicity affecting the 

structure and function of the spermatozoa of the mice treated with both NPs and their 

mixture is depicted in Figure 5.2. Excess ROS as indicated by the oxidative stress 

induction may have affected the DNA, proteins and lipid actively involved in 

spermatogenesis of the treated mice. 

In addition to the production of increased intracellular ROS, inflammatory responses may 

also weaken the integrity of the blood-testis barrier (BTB) through the expression of 

cytokines (Smith et al., 2015; Hong et al., 2016). Although inflammatory cytokines were 

not determined in this study but studies such as Smith et al. (2015) observed significantly 

increased levels of cytokines in the epididymal tissues of mice treated with TiO2 NPs. 

Similarly, Hong et al. (2016) reported significant increase in macrophages, lymphocytes, 

neutrophils, eosinophils and Toll-like receptors indicating inflammation in the testis of 

TiO2 NPs treated mice. The BTB is made up of adjacent Sertoli cells located at the basal 

compartment of the seminiferous epithelium (Li et al., 2013). The BTB prevents the 

penetration of exogenous and harmful toxicants from having access to developing and 

viable germ cells by serving as a „fence‟ or „gate keeper‟. Tight junctions are composed of 

different proteins such as occludin, zonula occludens, N-cadherin and connexin 43 (Fiorini 

et al., 2004) and are found between Sertoli cells where they protect developing sperm cells 

during spermatogenesis (Li et al., 2013). The mechanism of how TiO2, ZnO NPs and their 

mixture penetrated through the BTB was not investigated; however, some studies put 

forward an „elevator door‟ hypothesis for the penetration of NPs (Lan and Wang, 2012). 

The extent of the inflammatory responses determines the scale of the gap of the BTB (Li 

et al., 2013). However, the size of the BTB intracellular gap might become larger as a 
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result of the severity of the inflammatory responses of the NP exposure. Such an 

assumption may explain the reason for the accumulation of TiO2 NPs in the testis while 

ZnO NPs (< 100 nm) were kept out because their size is larger than the size of the BTB 

gaps. This conforms to our result as TiO2 NPs induced more damage to the 

spermatogonial stem cells (Ema et al., 2010) than ZnO NPs that induced moderate toxicity 

(Barkhordari et al., 2013).  
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Figure 5. 1: Possible mechanism of DNA damage and systemic toxicity induced by TiO2, 

ZnO NPs, and TiO2 and ZnO NPs in the liver, kidney and bone marrow cells respectively 

in mice. ROS: reactive oxygen species; LPO: lipid peroxidation; MN: micronucleus 

induction. 
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Figure 5. 2: A schematic diagram showing a summary of the possible mechanism of 

TiO2, ZnO NPs and their mixture induced damage in mouse testis. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

The genetic and systemic damage of TiO2, ZnO NPs and their mixture using somatic and 

germ organs in mice were investigated. The results showed that TiO2, ZnO NPs and their 

mixture induced micronucleus in mice. TiO2 NPs were more genotoxic at tested doses 

following the 5 day- exposure period, due to the smaller particle size and large surface 

area to volume ratio. However, ZnO NPs showed lower toxicity probably due to the larger 

particle size. For the 10- day exposure period, the bone marrow cells were not repaired 

indicating that ZnO NPs induced almost permanent genotoxic damage. Furthermore, their 

mixture induced significant MN after the 10- day exposure period because of the ZnO-

bound TiO2 NPs taken up into the cell membrane. Taken together, the present study 

suggests that TiO2, ZnO NPs and their mixture caused cytogenotoxic effects through the 

induction of DNA damage. TiO2, ZnO NPs and their mixture also induced various signs of 

systemic toxicity in Mus musculus. These changes include: changes in body and organ 

weights, alterations in haematologial parameters, clinical biochemical parameters and 

histopathology. 

The study also revealed that TiO2, ZnO NPs and their mixture can enter the testis via the 

blood-testis barrier, accumulate in the testis, which in turn, can affect testicular mass, 

sperm motility, sperm count and levels of male reproductive hormones. Most importantly, 

the sperm head abnormalities observed in the testes of the treated mice revealed that TiO2, 

ZnO NPs and their mixture are potential germ cell mutagens, with the mixture able to 

induce highest frequency of DNA damage through the mutation of genes associated with 

sperm head formation. These mutations may even be hereditary in the progeny of the next 

generation. Furthermore, it may be indicated that TiO2, ZnO NPs and their mixture 

effected testicular damage primarily on the germ cells and secondarily by disrupting LH, 
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FSH and Testosterone, which in turn affected spermatogonial stem cells. 

It was also observed that TiO2, ZnO NPs and their mixture induced oxidative stress and 

lipid peroxidation through alterations of SOD and CAT activities, GSH and MDA in the 

liver, kidney and testis. It is evident that the pathway for induction of DNA damage that 

brought about cytogenotoxicity in the haemopoietic stem cells and germ cells respectively; 

and systemic toxicity may possibly be through the excessive production of intracellular 

ROS. 

The specific recommendations arising from this study include: 

1. Full characterisation of the physicochemical properties (e.g. particle size, surface 

charge and surface reactivity) of NPs should be extensively assessed in both 

powder form and suspension before toxicity evaluation, to have an in-depth 

understanding on the behaviour of NPs in the biological system. 

2. Due to the severe damage induced by TiO2 and ZnO NPs in the study, there should 

be ways to facilitate safer synthesis and minimise the release of these NPs from the 

factories to the environment, as they are biopersistent and nondegradable and thus 

should be treated as hazardous. 

3. Their photocatalytic property enables them to be utilised for bioremediation in 

polluted environments and it is recommended that they should be prohibited due to 

the adverse effects they induce on the environment and human health. 

4. The health, safety and environmental risk of NPs from the air, water and soil 

should be properly investigated and should commensurate with the rate of their 

production. 

5. Due to the MN induction and germ cell toxicity induced by TiO2, ZnO NPs and 

their mixture, it is recommended that epidemiological studies be carried out to 

have an in-depth understanding of the health and safety of these NPs, most 

especially at the reproductive level.  

6. Establishment of a public dialogue is essential to creating awareness on the 

benefits and adverse effects. Also it is pivotal in regulating the disposal of these 

NPs in order to protect the environment.  
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CONTRIBUTIONS TO CURRENT KNOWLEDGE  

The following are the significant contributions to the current state of knowledge arising 

from the study: 

1. TiO2 NPs, and mixture of TiO2 and ZnO NPs induced significant cytogenetic 

damage in the bone marrow cells of mice. 

2. The mixture of TiO2 and ZnO NPs in comparison to the individual NPs induced 

more abnormalities of sperm parameters and reproductive hormones in mice.  

3. TiO2, ZnO NPs and their mixture induced significant genetic and systemic damage 

via intracellular ROS production as the major mechanism.  

4. The mixture of TiO2 and ZnO NPs had a synergistic interactive effect on the 

cytogenotixicity and  sperm parameters respectively in mice. 
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APPENDIX 3 

1. Alanine Aminotransferase 

Pipetted into test tubes 

Procedure 

     Reagent blank   Sample 

Sample    -    0.1 mL 

Buffer (R1)    0.5 mL    0.5 mL 

Distilled H2O    0.1 mL    - 

The solution was properly mixed and incubated at 37
o
C for exactly 30 minutes  

2, 4-dinitrophenylhydrazine (R2)     0.5 mL   0.5 mL 

The solution was properly mixed again, and then allowed to stand at 20 to 25
o
C for 

exactly 20 minutes 

NaOH (0.4 mol/L)       5.0 mL   5.0 mL 

The solution was read at 546 nm against the reagent blank. 

ALT activity (U/L) was read off the standard curve  

2. Aspartate Aminotransferase 

Pipetted into test tubes 

Procedure 

     Reagent blank   Sample 

Sample           -   0.1 mL 
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Buffer (R1)         0.5 mL   0.5 mL 

Distilled H2O     0.1 mL    - 

The solution was properly mixed and incubated at 37
o
C for exactly 30 minutes  

2, 4-dinitrophenylhydrazine (R2)     0.5 mL   0.5 mL 

The solution was properly mixed again, and then allowed to stand at 20 to 25
o
C for 

exactly 20 minutes 

NaOH (0.4 mol/L)       5.0 mL   5.0 mL 

The solution was read at 546 nm against the reagent blank. 

AST activity (U/L) was read off the standard curve  

3. γ- Glutamyl transferases 

Working reagent 

One vial of substrate R1b (L-γ-glutamyl-3-carboxy-4-nitroanilide) was reconstituted with 

3.0 mL of R1a (Buffer/Glycylglycine), which was stable for 21 days. 

Procedure 

Pipetted into the cuvette: 

Sample - 0.10 mL 

Reagent (25
o
C, 30

o
C, 37

o
C) -  1.00 mL 

The initial absorbance of the solution was read at 0 seconds, 1, 2 and 3 minutes at 405 nm.  

Calculation 

GGT (U/L) = A3min-A0min    X   1158  

        3 
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4. Total bilirubin 

Pipetted into test tubes 

Procedure 

     Sample 

Sulphanilic acid (R1)   200 µL  

Sodium Nitrite (R2)   50 µL  

Caffeine (R3)    1000 µL 

Sample    200 µL 

Mixed, incubated for exactly 10 minutes at 20 – 25 
o
C 

Tartrate (R4)    1000 µL 

Mixed and further incubated for 30 minutes at 25
o
C. Read at 578 nm against the reagent 

blank. 

Calculation  

T. Bilirubin (mg/dL) = 10.8 x ATB (578 nm) 

Direct bilirubin 

Pipetted into test tubes 

Procedure 

     Sample 

Sulphanilic acid (R1)   200 µL  

Sodium Nitrite (R2)   50 µL  
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0.9 % NaCl    2000 µL 

Sample    200 µL 

Mixed, incubated for exactly 10 minutes at 20 – 25 
o
C. Read at 546 nm against the reagent 

blank. 

Calculation  

D. Bilirubin (mg/dL) = 14.4 x ADB (546 nm) 

5. Albumin 

Pipette into test tubes 

Procedure 

     Reagent  Standard Sample 

Distilled H2O    0.01 mL         -      - 

Standard        -   0.01 mL     - 

Sample        -         -  0.01 mL 

BCG reagent (R1)    3 mL   3 mL  3 mL 

The solution was properly mixed and incubated at 20 – 25
o
C for 5 minutes. The standard 

and sample absorbances were read against distilled H2O at 630 nm. 

Calculation 

ALB (g/dL) = A sample   x   Concentration of the standard (4.55 g/dL) 

                    A standard 
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6. Urea 

Working reagents 

R1 = Rla (Urease) + R1b (Sodium nitroprusside) 

R2 = Dilute R2 (phenol concentrate) with 660 mL of distilled water 

R3 = Dilute R3 (Hypochlorite concentrate with 750 mL of distilled water) 

Pipetted into test tubes 

Procedure 

Blank  Standard  Sample 

Sample    -  -   10 µL 

Standard    -  10 µL   - 

Distilled water    10 µL  -   - 

Reagent 1    100 µL  100 µL   100 µL 

Mixed and incubated at 37
o
C for 10 minutes 

Reagent 2    2.5 mL  2.5 mL   2.5 mL 

Reagent 3    2.5 mL  2.5 mL   2.5 mL 

The solution was immediately mixed and incubated for 15 minutes at 37
o
C 

The standard and sample absorbances were read against distilled H2O at 546 nm. 

Calculation 

Urea (mg/dL) = A sample   x   Concentration of the standard (76.87 mg/dL) 

    A standard 
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7. Creatinine 

Working reagent = equal volumes of solutions R1a (picric acid) + R1b (sodium 

hydroxide) 

Pipetted into the cuvette   Standard Sample 

Working reagent    1.0 mL  1.0 mL 

Sample    - 0.1 mL 

Standard     0.1 mL  - 

Solutions were mixed and read at 492 nm after 30 seconds (A30sec) and 2 minutes 

(A2minutes) respectively against distilled water 

Change in absorbance = A2minutes-A30sec 

Calculation 

Creatinine (mg/dL) = Change in absorbance of sample   x      Standard concentration  

                               Change in absorbance of standard  

8. Cholesterol 

Pipetted into test tubes 

Procedure 

Reagent    Blank   Standard Sample 

Distilled water   10 µL   -  - 

Standard   -   10 µL  - 

Sample   -   -  10 µL 

Reagent    1000 µL   1000 µL 1000 µL 
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Mixed and incubated at 37
o
C for 5 minutes and read at 546 nm against the reagent blank 

Calculation 

Cholesterol (mg/dL) = ΔA sample x concentration of standard (208 mg/dL) 

             ΔA standard 

9. High-density lipoprotein 

Working reagent = Phosphotungstic acid (R1) + 20 mL redistilled water 

Precipitation 

Sample/Standard  200 µL 

Diluted Precipitant (R1) 500 µL  

The solution was properly mixed and allowed to stand at room temperature for 10 

minutes. Thereafter, it was spun for 10 minutes at 4 000 rpm. 

The clear supernatant was separated and used in determining HDL-cholesterol by the 

CHOD-PAP method 

HDL- cholesterol CHOD-PAP method 

Pipetted into the test tubes 

Reagent    Blank   Standard  Sample 

Distilled water   100 µL   -   - 

Supernatant   -   -   100 µL  

Standard supernatant  -   100 µL   - 

Reagent   1000 µL  1000 µL  1000 µL 
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The solution was mixed and incubated for 10 minutes at 25
o
C. The sample and standard 

absorbances were measured against distilled H2O at 546 nm. 

Calculation   

HDL-Cholesterol (mg/dL) = ΔA sample     x Concentration of the standard (208 mg/dL) 

            ΔA standard 

10. Triglycerides 

Working reagent = 15 mL of R1a (buffer) was added to one vial of enzyme reagent R1b 

Procedure 

Pipetted into test tubes 

Reagent    Blank   Standard  Sample 

Sample   -   -   10 µL  

Standard   -   10 µL   - 

Working Reagent  1000 µL  1000 µL  1000 µL 

The solution was properly mixed and incubated at 20 – 25
o
C for 10 minutes. The 

absorbances of the standard and sample were measured against the reagent blank at 546 

nm. 

Calculation   

TRI (mg/dL) = A sample     x Concentration of the standard (192 mg/dL) 

                     A standard 
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11. Estimation of proteins 

Reagents 

0.2 M sodium hydroxide (NaOH) 

Sodium hydroxide (8g) was dissolved in distilled H2O and the solution made up to a litre. 

Biuret reagent  

Copper sulphate (3g of CuSO4.5H2O) and 9g of sodium potassium tartarate were dissolved 

in 0.2 M NaOH (500 mL). Potassium Iodide (5g KI) was added to the solution, and 

thereafter topped up to 1000 mL with 0.2 M NaOH. 

3.   Stock Bovine Serum Albumin (standard) 

7.4 g of BSA was dissolved in 100 mL of 0.9 % NaCl so that the final concentration gave 

7.4 g/100 mL. 

4. Standard BSA curve by the Biuret method  

Stock solution was made into several dilutions of 2 – 10 mg protein/mL. Biuret reagent (4 

mL) was added into the test tubes containing 1 mL of each protein standard. The solution 

was incubated for 30 minutes at room temperature while the wave length was read at 540 

nm. A plot of protein concentration (X axis) against optical densities (Y axis) was made. 
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Table1: Protein estimate determined according to Gornal et al. (1949) 

Test tube 

number 

1 2 3 4 5 6 7 8 9 

Stock BSA 

(mL) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Distilled  

water (mL) 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

Biuret 

reagent (mL) 

4 4 4 4 4 4 4 4 4 

BSA 

concentration 

(mg/mL) 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 

Absorbance 

(540 nm) 

0.004 0.006 0.008 0.014 0.0185 0.024 0.028 0.042 0.042 

Protein estimate in samples 

Procedure 

The supernatants (post mitochondrial fractions) of the liver, kidney and testes were diluted 

5 times with distilled water. Biuret reagent (3 mL) was added to 1 mL of the supernatant 

in the test tubes. The solution was incubated for 30 minutes at room temperature. The 

optical density was read at 540 nm while distilled water served as a blank. The actual 

amount of the protein was obtained by multiplying the protein content of the samples by 5. 

12. Determination of Superoxide Dismutase Activity  

Reagents 

1. 0.05 M Carbonate Buffer, pH 10.2 
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Na2CO3.10H2O (14.3 g) and NaHCO3 (4.2 g) were dissolved in distilled water (900 mL) 

and then topped up to 1000 mL. 

2. 0.3 M of adrenaline. 

Adrenaline (epinephrine) (0.0137 g) was freshly prepared prior to the experiment by 

dissolving in distilled water (200 mL) and then topped up to 250 mL.  

Procedure  

A 1 in 10 dilution was made by diluting the sample (1 mL) and distilled water (9 mL). 

Within a cuvette, 0.3 mL of 0.3 mM adrenaline was added to the mixture of 2.5 mL of 

0.05 M carbonate buffer (pH 10.2) and 0.2 mL of the diluted sample to initiate the 

reaction.  After proper mixing by inversion, the mixture was read at every 30 seconds 

interval for a total of 150 seconds. The blank consisted of distilled water (0.2 mL), 

adrenaline (0.3 mL) and carbonate buffer (2.5 mL). 

Calculation 

Increase in absorbance per minute = A3 – A0 

        2.5 

Where A0 =   absorbance after 0 seconds  

 A3 = absorbance after 150 seconds 

% inhibition =  Increase in absorbance for substrate    x    100 

              Increase in absorbance of blank    1 

1 unit of SOD activity was given as the amount of SOD necessary to cause 50% inhibition 

of the oxidation of adrenaline. 
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13. Determination of Catalase Activity 

 Reagents 

1. Phosphate buffer (0.05 M, pH 7.4) 

Distilled water (90 mL) was added to dissolve potassium dihydrogen phosphate (0.265 g) 

and dipotassium hydrogen phosphate trihydrate (K2HPO4.3H2O) (0.696 g). Distilled water 

was added to make up 100 mL after adjusting the pH to 7.4. 

2. Hydrogen peroxide (H2O2) (19 mM) 

Phosphate buffer (pH 7.4) (50 mL) was added to hydrogen peroxide (30 %) (215.3 µL) 

and topped up to 100 mL using the same phosphate buffer.  

Procedure  

The cuvette contained 50 µL of the sample and 2.95 mL of 19 mM H2O2. The solution 

was properly mixed and immediately read at 240 nm for every 15 sec for 1 min for the 

liver and kidney homogenates, and every 1 min for 5 min for the testis homogenate. 

Calculation 

Catalase activity = ΔA240/min x reaction volume x dilution factor 

   0.0436 x sample volume x mg protein/mL 

   = µmole H2O2/min/mg protein 

14. Estimation of Reduced Glutathione (GSH) level 

Reagents 

Reduced Glutathione (GSH) working standard 

Phosphate buffer (0.1 M, pH 7.4) was used in dissolving 40 mg of GSH in a beaker, and 

topped up to 100 mL with the same phosphate buffer. 
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0.1 M Phosphate buffer (pH 7.4) 

7.1628 g of Na2HPO4.12H2O (Mol.Wt. 358.22) was dissolved in 200 mL of distilled 

water. 

100 mL of distilled water was used in dissolving 1.5603 g of NaH2PO4.2H2O. 

200 mL of (a) and 100 mL of (b) were added up to produce 0.1 M phosphate buffer. HCl 

or NaOH was used to adjust the pH to 7.4. 

Ellman‟s Reagent [5
‟
, 5

‟
-dithiobis-(2-nitrobenzoate) (DTNB)] 

0.1 M phosphate buffer was used in dissolving 40 mg of Ellman‟s reagent and then topped 

up to 100 mL using the same phosphate buffer. DNTB is stable for at least 3 weeks in the 

refrigerator. 

Precipitating Solution. 

Sulphosalicyclic acid (4 g) in little quantity was dissolved in 100 mL of distilled water in a 

standard volumetric flask. 

Procedure 

0.1 mL of diluted homogenate was further diluted with 0.9 mL of distilled water to give 1 

in 10 dilutions. 3 mL of 4% sulphosalicyclic acid solution (precipitating solution) was 

added to the diluted test sample to deproteinize it. The mixture was centrifuged at 3000 

rpm for 5 minutes. 4.5 mL of Ellman‟s Reagent was added to 0.5 mL of the supernatant. 

Reaction mixture of 4 mL of 0.1 M phosphate buffer, 0.5 mL of the diluted precipitating 

solution (addition of 3 mL of precipitating solution and 2 mL of distilled water) and 4.5 

mL of Ellman‟s Reagent was the blank. The absorbances of the samples were read at 412 

nm. 
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Table 2: Calibration for GSH standard curve  

Stock PO4 Ellman‟s  

Reagent 

Absorbance (412nm) GSH Conc.(ug/ml) 

0.02 0.48 4.50 0.033 8 

0.05 0.45 4.50 0.099 20 

0.10 0.40 4.50 0.246 40 

0.20 0.30 4.50 0.346 60 

0.30 0.20 4.50 0.505 80 

0.40 0.10 4.50 0.683 100 

15. Assessment of lipid peroxidation 

Reagents 

30% Trichloroacetic acid (TCA) 

100 mL of distilled water was used in dissolving 30 g of TCA and stored at 4
0
C. 

0.75 % Thiobarbituric acid (TBA) in 0.1M HCl 

10 mL of 0.1 M HCl was used in dissolving 0.075 g of TBA. It was freshly prepared by 

boiling in a water bath. 

0.1 M Tris- KCl buffer, pH 7.4 

Distilled water was used in dissolving 1.12 g of KCl and 2.36 g of Tris base and topped up 

to 100 mL with distilled water. The pH 7.4 was obtained using concentrated HCl. 

Procedure 
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0.5 mL of 30 % TCA was added to a mixture of 1.6 mL of Tris-KCl buffer and 0.4 mL of 

the sample. Within each test tube was added 0.5 mL of 0.75 % TBA and boiled in a water 

bath for 45 min at 80
0
C. This was cooled on ice and spun for 15 minutes at 3000 rpm. The 

pink solution formed was measured at an absorbance of 532 nm against distilled water 

(reagent blank). The method of Adam-Vizi and Sergi (1982) was used in calculating the 

MDA level. A molar extinction coefficient of 1.56 x 10
5
M

-1
Cm

-1
 was computed with lipid 

peroxidation in units /mg protein or gram tissue. 

Calculation 

MDA (units/mg protein) =   Absorbance x Volume of mixture 

        E532nm x Volume of Sample x mg Protein 

16. Assessment of Luteinizing Hormone 

Reagents 

Microwells coated with Streptavidin, LH Standards, LH enzyme conjugate, TMB 

Substrate, Stop Solution and Wash concentrate (20X). 

Working reagent 

1X Wash buffer = 25 mL of the Wash concentrate in 475 mL of distilled water stored at 

room temperature (18-26
o
C). 

Procedure: The desired numbers of coated wells were placed in a microplate holder. Then 

25 µL of the LH standards and mice sera were pipetted into the microwells and 100 µL of 

the enzyme conjugate was added to all wells. This was incubated at room temperature (18-

26
o
C) for 60 minutes. The mixtures were discarded and wash three times with the 1X 

wash buffer, blotted dry on an absorbent paper. Thereafter, 100 µL of the TMB substrate 

was added to the wells and incubated at room temperature for 15 minutes in the dark. 

Finally, 50 µL of the stop solution was added to the wells and shaken gently to stop the 

reaction. The absorbance was read within 15 minutes after the addition of the stop solution 

at 450 nm. The colour intensity was proportional to the absorbance at 450 nm. 
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Table 3: Calibration for LH standard curve 

Standard  Values (mIU/mL) OD (450 nm) 

1    0  0.010 

2    5  0.278 

3    25  0.988 

4    50  1.543 

5    100  2.104 

6    200  2.681 

17. Assessment of Follicle Stimulating Hormone 

Reagents 

Microwells coated with Streptavidin, FSH Standards, FSH enzyme conjugate, TMB 

Substrate, Stop Solution and Wash concentrate (20X). 

Working reagent 

1X Wash buffer = 25 mL of the Wash concentrate in 475 mL of distilled water stored at 

room temperature (18-26
o
C). 

Procedure: The desired numbers of coated wells were placed in a microplate holder. Then 

50 µL of the FSH standards and mice sera were pipetted into the microwells and 100 µL 

of the enzyme conjugate was added to all wells. This was incubated at room temperature 

(18-26
o
C) for 60 minutes. The mixtures were discarded and wash three times with the 1X 

wash buffer, blotted dry on an absorbent paper. Thereafter, 100 µL of the TMB substrate 

was added to the wells and incubated at room temperature for 15 minutes in the dark. 

Finally, 50 µL of the stop solution was added to the wells and shaken gently to stop the 

reaction. The absorbance was read within 15 minutes after the addition of the stop solution 

at 450 nm. The colour intensity was proportional to the absorbance at 450 nm. 
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Table 4: Calibration for FSH standard curve 

Standard  Values (mIU/mL) OD (450 nm) 

1    0  0.09 

2    5  0.20 

3    10  0.32 

4    25  0.69 

5    50  1.31 

6    100  2.46 

18. Assessment of Testosterone Hormone 

Reagents 

Microwells coated with Mouse Anti-Testosterone, Testosterone Standards, Enzyme 

Conjugate (20X), Assay Diluent, TMB Substrate, Stop Solution and Wash concentrate 

(20X). 

Working reagent 

1X Enzyme conjugate = 0.1 mL of the Testosterone enzyme conjugate concentrate to 1.9 

mL of the assay diluent. 

1X Wash buffer = 25 mL of the Wash concentrate in 475 mL of distilled water stored at 

room temperature (18-26
o
C). 

Procedure 

The desired numbers of coated wells were placed in a microplate holder. Then 25 µL of 

the Testosterone standards and mice sera were pipetted into the microwells and 100 µL of 

the Testosterone-enzyme conjugate reagent was added to all wells and swirled for 30 

seconds. This was incubated at room temperature (18-26
o
C) for 60 minutes. The liquid 
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from all wells were discarded and wash three times with the 1X wash buffer, blotted dry 

on an absorbent paper. Thereafter, 100 µL of the TMB substrate was added to the wells 

and incubated at room temperature for 15 minutes in the dark. Finally, 50 µL of the stop 

solution was added to the wells and shaken gently to stop the reaction. The absorbance 

was read within 15 minutes after the addition of the stop solution at 450 nm. The colour 

intensity was inversely proportional to the absorbance at 450 nm. 

Table 5: Calibration for Testosterone standard curve 

Standard  Values (mIU/mL) Absorbance (450 nm) 

1    0  2.38 

2    0.1  1.75 

3    0.5  1.02 

4    2.0  0.59 

5    6.0  0.34 

6    18.0  0.17 

 

 


